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Abstract—Recent trends in gas-fired power plant installation
has increased the connections between the electric power and
natural gas industries. Despite these dependencies, both indus-
tries must meet commercial, political, operational and technical
requirements that often force the industries to plan and operate
in isolation. As a result, undesired situations may arise, such as
those experienced by both systems during the winter of 2013/2014
in the northeastern United States. In this paper, we consider the
technical challenges and present a Combined Electricity and Gas
Expansion (CEGE) planning model. The CEGE model minimizes
the cost of meeting gas and electricity demand during high-
stress conditions and introduces an elasticity model for analysis
of gas-price volatility caused by congestion. The underlying
mathematical formulation considers recent advances in convex
approximations to make the problem computationally tractable
when applied to large-scale CEGE instances. We conduct an in-
depth analysis on integrated test systems that include the New
England area.

Index Terms—AC-OPF, Natural Gas, Convex Optimization,
Second-Order Cone, Elasticity Model, Gas-Price Volatility, Heat-
Rate Curves

I. INTRODUCTION

AS the price of natural gas has declined, power grids in
many parts of North America have become increasingly

reliant on natural gas as a fuel for the power generation fleet.
This increasing dependence of the power grid on the supply
system for a single fuel poses some risks, including gas supply
vulnerabilities and gas price spikes caused by competition for
scarce pipeline capacity and/or disruptions due to extreme
weather conditions. Despite recent studies suggesting that
large power grids could accommodate a substantial fraction of
generation coming from natural gas during normal conditions
[1], [2], extreme cold weather events during the winters of
2010/11 [3] and 2013/14 [4] have raised concerns among
industry and regulators. Gas-fired power plants without on-
site storage or dual-fuel capabilities may face fuel delivery
insecurity arising from the interruptible nature of the gas
transmission capacity contracts that many generators sign [4].
The asynchronous nature of gas and electric power price
formation has also created uncertainty for gas-fired generators
since they may receive commitment or dispatch instructions
from the power grid operator without full knowledge of their
marginal operating cost [5], [6].
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In this paper, we introduce the Combined Electric and
Gas Expansion (CEGE) planning model, an open-source
optimization-based modeling framework that is computation-
ally tractable for joint planning and operations problems
involving interdependent natural gas and electric power trans-
mission systems. The CEGE framework represents a contribu-
tion to a small, but growing, body of literature that considers
joint expansion planning for natural gas and electric power
transmission [7]–[18] in several distinct ways of interest to
the power systems modeling and economics community. First,
the CEGE model endogenizes price feedbacks from expansion
decisions and incorporates these price feedbacks into the
planning objective function. CEGE, to our knowledge, repre-
sents the first attempt to incorporate endogenously determined
commodity prices into a joint gas-grid expansion planning
model in a way that permits the joint optimization of capital
and operational costs. It also identifies the tradeoffs involved
in network hardening to avoid the economic consequences
of weather events like the Polar Vortex that place coincident
stress on both the gas and electricity networks.

Second, we demonstrate that the CEGE framework is com-
putationally tractable for moderately sized joint gas-grid net-
works, despite the fact that it captures nonlinearities and does
not rely on transportation flow or other linear approximations
which were used in [8]–[10], [12], [19]–[23]. It thus builds on
prior work focused on joint operational modeling of natural
gas and electric power transmission systems [6], [19]–[26].

Third, we implement the CEGE framework on an integrated
gas-grid test system with realistic topology. This test system
is composed of the IEEE 36-bus NPCC electric power sys-
tem [27] with marginal costs for coal, nuclear, hydro, wind,
oil and refuse generation as reported in [28] and a multi-
company gas transmission network covering the Pennsylvania-
To-Northeast New England area in the US. This test system
has been previously described in [16] but the present paper
represents the first successful implementation of any planning
or operational analysis on this benchmark. The value of this
implementation to the research community is to provide the
first set of public-domain performance benchmarks for joint
gas-grid optimization problems that can be used in future re-
search on improved algorithms or other modeling innovations.

Fourth, and perhaps most important for the research com-
munity, the CEGE model represents the first public-domain
package that is able to handle joint gas-grid planning and
operations problems on test systems with realistic topology.
The modeling framework and test system data are available
for use by any researcher. A very preliminary version of the
CEGE framework was described in [16] but did not contain
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the economic modeling features described in the present paper
and was not tractably implemented on our Northeastern gas-
grid test system.

By way of documenting the structure of CEGE package
for the archival literature and illustrating some ways in which
the modeling framework may be used (with computational
performance benchmarks), we simulate three specific scenarios
and compare the optimal investment plans arising from each.
The first set of simulations solves for the lowest-cost invest-
ment plan to meet a specific level of demand for electricity
and natural gas without considering the impacts of those
investments on spot gas prices or power-plant fuel costs. For
this “expansion only” set of scenarios, we find that substantial
increases in demand are required to justify any additional
network expansion. The second set of simulations solves the
CEGE model for different levels of peak electricity and gas
demand that vary spatially over our northeastern U.S. test
system. These “endogenous price” simulations do consider the
impacts of network expansions on gas prices, and we find
that economic drivers would, in some cases, justify additional
gas and electric transmission investments. We also simulate
a scenario where the gas transmission network is hardened to
an extent that would prevent large price spikes during extreme
demand events. We find that the network investments required
to avoid these price spikes would be substantial, around 40 per-
cent higher than the cost of the investment plan that balances
capital costs and network operational costs. Collectively, our
results suggest that there is a strong economic justification for
some level of coordinated infrastructure planning. However,
a policy of expanding infrastructure solely to avoid extreme
price spikes in electricity and gas markets is likely to be overly
costly.

In Section II we provide a detailed specification of the
CEGE model and discuss the relaxations that we implement
in order for the CEGE framework to be computationally
tractable. Section III describes the test system that we use
to implement the CEGE framework, and provides specific
information on how we endogenize commodity prices for
natural gas in particular. The results of our computational
experiments are described in Section IV, which includes a
robustness check on the computational performance of the
CEGE model to different natural gas price function specifi-
cations. We conclude in Section V with some thoughts on
future directions for research on interdependent natural gas
and electric power systems.

II. CEGE OPTIMIZATION PROBLEM

The CEGE optimization problem consists of constraints and
variables associated with modeling the non-convex physics of
electric power and natural gas systems, modeling expansion
options and costs, modeling heat-rate curves, and incorporat-
ing power generation costs. Bold notation is used for constants,
while underline and overline notation is used to denote lower
and upper bounds. All edges in the model are undirected, so
that aij refers to the arbitrary orientation of edge a from node
i to node j. This convention is used when linking bus i to
a. In this case, aij refers to those edges oriented from i to a

node j and aji refers to those edges oriented from a node j
to i.

NOMENCLATURE

Electric Power Sets
Ne set of electric power buses (nodes)
Ω set of electric power generators
Gi set of generators connected to bus i
Ne
i set of buses connected to bus i by an edge

Ae set of electric power lines (edges)
Electric Power Parameters
pli, q

l
i active and reactive load at bus i

gsi, bsi active and reactive compensation at bus i
ga, ba, ca conductance, susceptance, and charging of edge a
ra,∆a tap ratio and phase shift of edge a
ξa capacity rating of edge a
pg
i
, pgi active power limits of generator i

qg
i
, qgi reactive power limits of generator i

vi, vi voltage magnitude limits of bus i
κea cost of building edge a
µi1, µ

i
2, µ

i
3 production cost coefficients of generator i

ι index of the reference bus
θ maximum voltage angle difference between two

buses connected by an edge
Electric Power Variables
pij active power leaving bus i on an edge to bus j
qij reactive power leaving bus i on an edge to bus j
pgj , q

g
j active and reactive output of generator j

vi, θi voltage magnitude and phase angle at bus i
zea binary expansion variable for new edge a
wi, wia variable used for relaxing v2

i of bus i and relaxing
v2
i of bus i with edge a

wra variable used for relaxing vivj cos(θi−θj) of edge
aij

wia variable used for relaxing vivj sin(θi−θj) of edge
aij

Natural Gas Sets
Agp set of natural gas pipelines
Agc set of natural gas compressors
Agv set of natural gas valves
Ag set of natural gas lines, Agp ∪Agc ∪Agv
Ng set of natural gas junctions (nodes)
Natural Gas Parameters
wa resistance factor of pipeline a
d̂i firm consumption at node i
αa, αa (de)compression limits of edge a
di, di limits on consumption at node i
si, si limits on production at node i
πi, πi limits on pressure squared at node i
zga binary expansion variable for new pipeline a
κga cost of building pipeline a
Natural Gas Variables
πi pressure squared at node i
xa flow on edge a
si, di flexible production and consumption at node i
y+
a , y

−
a binary direction variables for pipeline a

βa McCormick variables linking the pressure differ-
ence of pipeline a to flow direction
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Coupling Sets
Γi set of generators that consume gas at junction i
Z set of pricing zones
Ng
ζ set of junctions in zone ζ

Coupling Parameters
hj1, h

j
2, h

j
3 heat rate coefficients of generator j

mζ
1,m

ζ
2,m

ζ
3 gas price coefficients in zone ζ

nζ1, n
ζ
2, n

ζ
3 gas pressure penalty coefficients in zone ζ

Cζ minimum cost of gas in zone ζ
Coupling Variables
ψζ cost of gas in zone ζ
γζ flexible gas consumed in zone ζ
ρζ maximum pressure squared in zone ζ
wζ pressure penalty in zone ζ

A. Electric Power Model

The AC physics of electric power systems are governed
by Kirchoff’s and Ohm’s laws. Within the CEGE, we use
constraints

∑
j∈Gi p

g
j − pli − gsiv2

i =
∑
j∈Nei

pij ∀i ∈ Ne, (1)∑
j∈Gi q

g
j − qli + bsiv

2
i =

∑
j∈Nei

qij ∀i ∈ Ne, (2)

to model Kirchoff’s laws. Here, Ne, Gi, and Ne
i model the sets

of all buses (nodes), the generators connected to bus i, and the
buses connected to bus i by an edge, respectively. Variables pij
and qij model the active and reactive power leaving bus i on an
edge to bus j respectively. Variables pgj and qgj model the active
and reactive outputs of generator j. The notation vi is used
to denote the voltage magnitude of bus i. Finally, pli, q

l
i, gsi,

and bsi are used to denote active load, reactive load, active
compensation, and reactive compensation. The lossy Ohm’s
law is then modeled with these constraints ∀a = aij ∈ Ae

pij = ga
r2
a+∆2

a
v2
i −

(gara+ba∆a)
r2
a+∆2

a
vivj cos(θi − θj)

−bara−ga∆a

r2
a+∆2

a
vivj sin(θi − θj), (3)

pji = gav
2
j −

(gara−ba∆a)
r2
a+∆2

a
vivj cos(θj − θi)

−bara+ga∆a

r2
a+∆2

a
vivj sin(θj − θi), (4)

qij = − ba+ ca
2

r2
a+∆2

a
v2
i + bara+ga∆a

r2
a+∆2

a
vivj cos(θi − θj)

−gara+ba∆a

r2
a+∆2

a
vivj sin(θi − θj), (5)

qji = (−ba + ca
2 )v2

j + bara−ga∆a

r2
a+∆2

a
vivj cos(θj − θi)

−gara−ba∆a

r2
a+∆2

a
vivj sin(θj − θi), (6)

The notation ga, ba, and ca are used to denote the line conduc-
tance, susceptance, and charging respectively. Parameters ra
and ∆a are then used to model the transformer tap ratio and
transformer phase shift. These are set to 1 and 0 respectively,
for non-transformer lines. The notation θi is used to denote
the voltage phase angle at bus i. The thermal limits and
voltage phase angle difference of the lines are modeled using
constraints

p2
ij + q2

ij ≤ ξ2
a, ∀a = aij ∈ Ae, (7)

p2
ji + q2

ji ≤ ξ2
a, ∀a = aij ∈ Ae, (8)

−θ ≤ θi − θj ≤ θ, ∀a = aij ∈ Ae, (9)

where ξa is the rating of the line. Finally, we bound voltage
magnitudes, generator output, and reference bus phase angle
with these constraints

pg
i
≤ pgi ≤ p

g
i , ∀i ∈ Ω, (10)

qg
i
≤ qgi ≤ q

g
i , ∀i ∈ Ω, (11)

vi ≤ vi ≤ vi, ∀i ∈ Ne, (12)
θι = 0 (13)

where Ω denotes the set of all generators.
Expansion variables for new power lines are denoted with

zea. These variables are used to set qij and pij to 0 and
these variables turn off Constraints (3)-(6) when zea = 0. For
example, Equation (3) becomes

pij = zea(·), ∀a = aij ∈ Ae, (14)

where (·) is used to denote the right-hand side of Equation
(3).

B. Natural Gas Model

The steady-state physics of natural gas systems are modeled
using the Weymouth equations, which relate the flow of gas
to pressure differences using the constraint

(πi − πj) = wa|xa|xa, ∀a = aij ∈ Agp, (15)

where Agp denotes the set of pipelines in the natural gas system.
Here, πi is used to denote the pressure squared at natural gas
junction (node) i, wa is the resistance factor of the pipe, and
xa is the flow of gas in the pipe. The Weymouth equations
are a steady-state abstraction of the differential equations
modeling gas flow in a pipe. They have been particularly
effective in gas expansion planning (e.g., [29]). Like [29], we
reformulate Eq. (15) with its disjunctive form, i.e.,

y−a U ≤ xa ≤ y+
a U, (16)

y−a πi ≤ πi − πj ≤ y+
a πi, (17)

y+
a + y−a = 1, (18)

βa ≥ πj − πi + (πi − πj)(y+
a − y−a + 1), (19)

βa ≥ πi − πj + (πi − πj)(y+
a − y−a − 1), (20)

βa ≤ πj − πi + (πi − πj)(y+
a − y−a + 1), (21)

βa ≤ πi − πj + (πi − πj)(y+
a − y−a − 1), (22)

βa = wax
2
a, (23)

for all a = aij , where U =
∑
i∈Ng si. Here Eqs. (16)-(18)

force flow and pressure drops to match the direction of the
pipe. Eqs. (19)-(22) linearize the absolute value of pressure
drop, βa = (y+

a −y−a )(πi−πj), using the standard McCormick
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relaxation [30]. This linearization is exact because y+
a and y−a

are binary. Eq. (23) restates the Weymouth equation using this
disjunctive form.

Flow balance at the junctions is preserved using constraints∑
a=aij∈Ag

xa −
∑

a=aji∈Ag
xa = si − di − d̂i, ∀i ∈ Ng, (24)

where Ag denotes all edges in the gas system. The notation
si, di, and d̂i is used to model gas production, flexible gas
consumption, and firm gas consumption respectively. Ng is
used to refer to all junctions in the gas network. The change in
pressure through compressors and control valves are modeled
with constraints (∀a = aij ∈ Agc ∪Agv,)

πiαa − y−a (πiαa − πj) ≤ πj ≤ πiαa + y−a (πj − πiαa)(25)
πjαa − y+

a (πjαa − πi) ≤ πi ≤ πjαa + y+
a (πi − πjαa)(26)

where αa and αa are used to denote the lower and upper
(de)compression ratios (squared). For compressors (the set
Agc ), these values are typically ≥ 1 and for control valves
(the set Agv) these values are typically ≤ 1. Control valves
also include on/off variables to turn off these constraints and
set x = 0 (see [29]). Finally, flexible consumption, production,
and pressures are bound by the following constraints

di ≤ di ≤ di, ∀i ∈ Ng, (27)
si ≤ si ≤ si, ∀i ∈ Ng, (28)
πi ≤ πi ≤ πi, ∀i ∈ Ng, (29)

Expansion variables for new natural gas pipelines are denoted
with zga . These variables are used to set xa to 0 and turn off
constraints (15) when zga = 0, i.e.,

zgaβa = wax
2
a, ∀a = aij ∈ Agp, (30)

C. Heat Rate Model

The electric power and natural gas systems are connected
by constraints representing heat rate curves of gas generators:

di =
∑
j∈Γi

(hj1 + hj2p
g
j + hj3(pgj )

2), ∀i ∈ Ng. (31)

Here, h describes the heat rate coefficients of a quadratic
curve and Γi refers to those generators that consume gas at
junction i. In the model, we use h3 = 0, so the constraint
is convex. However, when h3 6= 0, this is a non-convex
constraint. Convexity is restored by relaxing equality to ≥.
This relaxation allows solutions that consume more gas than
the generator needs. Since the objective function (discussed
later) penalizes congestion, this relaxation is generally tight.
However, if it is beneficial to consume more gas, i.e., to lower
pressure, then solutions will not be tight.

D. Endogenous Gas Price Determination

One of the key contributions of this paper is the endogenous
modeling of natural gas prices, which will change based on
construction of new natural gas pipelines or increased gas
demand. We refer to this modeling approach as endogeniz-
ing natural gas prices because the prevailing gas price is
determined by the chosen set of expansions, which in turn
are chosen, in part, based on their impacts on the natural
gas price. For a pricing zone, ζ ∈ Z, there is a function
Z(ζ) that computes the location-specific natural gas price.
From a pratical standpoint, as long as Z(ζ) is convex, the
addition of this term to the CEGE problem does not impact
its overall computational complexity. We demonstrate this
numerically in Section IV through the use of multiple convex
parameterizations of Z(ζ). Moreover, the definition of pricing
zones can be as granular as desired. Our formulation of
Z(ζ) admits nodal pricing through the definition of a pricing
function for each node, or zonal pricing by using a single
pricing function for multiple nodes. In our simulation results
in Section IV, we define two pricing zones for the purposes
of illustration, but the modeling framework itself is highly
flexible. The parameterization that we use in our simulations
is described further in Section III.

E. Objective Function

The objective function of the CEGE defines the cost of
expansion (building pipes and power lines), the cost of gas
used by power generators, the cost to produce power for all
non-gas fired generators, and the pressure penalty cost, i.e.,

min
∑
a∈Ae κ

e
az
e
a +

∑
a∈Agp κ

g
az
g
a +

∑
ζ∈Z Z(ζ) + (32)∑

i∈Γ µ
i
1 + µi2p

g
i + µi3(pgi )

2

where κe and κg are used to denote the cost of building power
lines and pipelines respectively, Γ refers to all generators in
the model, and the coefficients µ are used to quadratically
cost power production. Since gas is already priced with ψζ ,
µ is typically 0 for all gas-fired generators. Also note that
κ = 0 and z = 1 for all existing pipes and power lines in the
network.

F. MISOCP Relaxation

Given the complexity associated with solving this non-
convex optimization problem, we reformulate the constraints
associated with the Electric Power Model using the second-
order cone (SOCP) relaxation discussed in [31]. Similarly, we
reformulate the Natural Gas Model using the second order
cone relaxation introduced in [29].

In the electric power model, the inclusion of the v2
i ,

vivj cos(θi − θj), and vivj sin(θi − θj) terms yields non-
convexities. The SOCP relaxation replaces these terms with
lifted variables wi, wra, and wia, respectively. Moreover, in
order to model the on/off constraints for line flows, we also
add a variable wia, where wia = wi when the line is built.
These variables are bounded by
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v2
i ≤ wi ≤ v2

i , ∀i ∈ Ne, (33)
zav

2
i ≤ wia ≤ zav2

i , ∀a = aij ∈ Ae, (34)
zav

2
j ≤ wja ≤ zav2

j , ∀a = aij ∈ Ae, (35)

zavivj cos(θ) ≤ wra ≤ zavivj , ∀a = aij ∈ Ae, (36)

zavivj sin(−θ) ≤ wia ≤ zavivj sin(θ), ∀a = aij ∈ Ae, (37)

The relationship between wia and wi is formalized with

wi − v2
i (1− za) ≤ wia ≤ wi − v2

i (1− za), (38)
wj − v2

j (1− za) ≤ wja ≤ wj − v2
j (1− za), (39)

∀a = aij ∈ Ea. Given that v and θ represent a complex
number, w, wr, and wi are linked through

wi2a + wr2
a ≤ wiwj , (40)

wi2a + wr2
a ≤ v2

iwjza, (41)
wi2a + wr2

a ≤ wiv2
jza, (42)

for all a = aij ∈ Ae. Under this formulation, the voltage
magnitudes (v) and voltage phase angles (θ) are implicit and
constraints (9) are replaced with

tan(−θ)wra ≤ wia ≤ tan(θ)wra ∀a ∈ Ea. (43)

Eqs. (3)-(6) are then replaced with,

pij = ga
r2
a+∆2

a
wia − (gara+ba∆a)

r2
a+∆2

a
wra − bara−ga∆a

r2
a+∆2

a
wia(44)

pji = gawja − (gara−ba∆a)
r2
a+∆2

a
wra − bara+ga∆a

r2
a+∆2

a
wia (45)

qij = − ba+ ca
2

r2
a+∆2

a
wia + bara+ga∆a

r2
a+∆2

a
wra − gara+ba∆a

r2
a+∆2

a
wia(46)

qji = (−ba + ca
2 )wja + bara−ga∆a

r2
a+∆2

a
wra − gara−ba∆a

r2
a+∆2

a
wia (47)

for all a = aij ∈ A. The only non-convexities of the gas
model are in Eq (30). This is relaxed to the rotated second
order cone constraint of the form

zgaβa ≥ wax2
a, ∀a = aij ∈ Agp, (48)

The implementation of these models is available for download
at https://github.com/lanl-ansi/GasGridModels.jl.

G. Solution Approach

Within the expansion planning literature, most approaches
and papers have focused on developing methods for optimizing
the expansions with respect to approximations (i.e., the DC
formulation of power systems) or relaxations, such as [32].
There is comparatively limited work on evaluating the quality
of such solutions with respect to the full AC power flow
physics. Here, we develop a procedure for finding a feasible
solution based on a solution obtained using a relaxation or
approximation. It is based on recently developed approaches
for optimal power flow [31] that use the relaxed solution
as an initial solution for gradient methods to find a locally
optimal solution in the non-convex space. For this problem,

Algorithm 1 CEGE Solution Method
1: function SOLVECEGE(M)
2: σ ← SOLVEMISCOP(M)
3: σ ← SOLVENLP(M, σ)
4: return 〈σ, σ〉
5: end function

we modify the approach by fixing the binary variables to the
values found by the relaxation and then proceeding with the
gradient method. Such a procedure (or something similar) is an
important best practice for future work in expansion planning.

This solution approach is outlined in pseudo code in Al-
gorithm 1. Line 2 in Algorithm 1 solves the CEGE problem
according to the MISOCP relaxation introduced earlier. The
solution to the MISOCP is returned as a lower bound solution,
σ. Line 3 uses σ to recover a feasible solution to the original
MINLP formulation. In the MINLP formulation, we replace all
the binary variables with constants based on the assignments
of those variables in the relaxed solution in σ. The resulting
problem is a non-linear program (NLP) that we solve to local
optimality using a nonlinear solver (function SOLVENLP) to
return an upper bound solution σ. To improve convergence,
SOLVENLP also imposes a constraint that states that the
objective function needs to be within 5% of the objective value
of σ. This type of a constraint was also used in [33] in the
context of AC optimal power flow to improve convergence.
Line 4 returns the upper and lower bound solutions to the

CEGE. While this approach is not guaranteed to find the
globally optimal solution, as seen in Section IV, empirically,
this approach yields good solutions with theoretically provable
bounds on solution quality.

III. NORTHEASTERN UNITED STATES GAS GRID MODEL

We illustrate the tractability and utility of the CEGE using
a new gas-grid test system, which is representative of the
natural gas and electric power systems in the Northeastern
United States. While the model has a realistic topology, it was
constructed from multiple public sources and does not have
the same level of detail as typically featured in electric power
system planning cases. The data associated with this model are
posted online at https://github.com/lanl-ansi/GasGridModels.
jl.

a) Electric Power Model: The electric transmission sys-
tem is based on the 36-bus NPCC model first discussed in [27].
Based on the bus names, we geo-located the buses to facilitate
coupling the power system to the natural gas system. The
original power system model has roughly 10% extra generation
capacity. In order to stress electricity consumption in the NE
model and focus our studies on the coupling between gas
and power (and reflect the current trend to expand generation
capacity with gas), we assume that there is infinite extra
natural gas generation capacity at existing locations. Thus,
the only constraints on satisfying increased demand for power
arise from limitations in the natural gas and electric power
transmission systems. Future work will include expansion
models of generation.
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Within the Northeastern United States, the mix of combined
versus single cycle natural gas generation is not uniform.
For example, the ratio of combined cycle plants to single
cycle is much higher in New England than in New York.
Locational differences in gas-fired power plant technology mix
will naturally affect the costs of both gas and electricity prices.
We built such technology variation into our test system by
assigning each gas-fired generation node from [27] a share of
combined and single cycle gas generation technology. These
shares are based on EPA e-GRID data [34] for different
utility service territories in the geographic footprint covered
by our test system. Within this model, we included power line
expansions in parallel with existing lines. Based on [35], the
cost of new lines was set to $1.9M per mile for lines greater
than 500 kV, $1.3M per mile for 345 kV lines, and $1M per
miles for lines of 230 kV or smaller.

b) Natural Gas Model: The natural gas network for
the Northeastern United States was constructed by using the
gas delivery points described in [17]. We created firm gas
demand profiles based on location-specific delivery data on
the public posting web sites of natural gas transmission firms
operating in the NE geographic area (a complete list of
web sites was previously described in [17]). These firm gas
demand profiles are assumed to be price-inelastic, and the only
price-sensitive demand is assumed to be from electric power
plants. Gas source points in our test system were identified
by identifying marketing points (i.e., points of injection into
the gas transmission system) in pipeline atlases published by
the gas transmission firms operating in the NE region. We
do not include gas storage facilities in our model, although
the Leidy field in Northern Pennsylvania is represented in
our model as a supply point. Gas storage is an important
determinant of regional prices and supply, and will be included
in a future version of the test system. The units of the flows
are million standard cubic feet per day (Mmscfd). Pipelines
between receipt points were built based on information in
pipeline atlases posted on the public web sites of natural gas
transmission companies. The resistance value of pipes was set
using the function described in [36]

wa = c ∗ D
5
a(2 log( 3.6∗Da

ε ))2

zTLa∆ , ∀a ∈ Agp (49)

where c is the gas relative constant (96.074830e-15), D is
the diameter of the pipe in mm (we assume all pipes are 762
mm), ε is the absolute rugosity in mm (0.05), z is the gas
compressibility factor (0.8), T is the gas temperature in K
(281.15), ∆ is the density of the gas relative to air (0.6106),
and L is the pipe length in km (Euclidean distance). The
system has 125 nodes and 143 (existing) edges.

In this model we assume that one pipe can be built in
parallel with existing pipes and these parallel pipes have
identical characteristics to existing pipes. The cost of building
new pipes was set at $5M per mile [37].

c) Gas-Grid model: The natural gas generators of the
electric power network were linked to the closest natural gas
receipt point in the gas system. We used [38] to set the heat
rate curve for single cycle gas generators to h = [0, 0.48, 0]

and to set the heat rate curve for combined cycle generators
to h = [0, 0.192, 0]1.

d) Endogenous gas pricing: To demonstrate endogenous
gas price modeling, we develop a data driven gas pricing
model based on the behavior of spot natural gas prices in
the Northeastern U.S. in January 2014 (the month in which
the Polar Vortex events occurred). Our implementation of
the endogenous gas pricing model features two price zones
based on Transco Zone 6 (Non New York) and the Transco
Leidy Zone (extrapolated to include the other gas utilities in
their region). We refer to these pricing zones as the cheap
gas zone and the expensive gas zone to reflect the modeled
difference in price sensitivity to network operating conditions.
Based on analysis of historical price and operating data (Fig.
1), we parameterize the zonal pricing functions Z(ζ) using
quadratic functions. The pricing model links the price of gas
to the total amount of gas consumption in a zone and includes
a penalty cost on the maximum pressure in the zone. This
builds on the intuition that consumption is linked to congestion
through larger pressure differentials and the need to incur
higher compression costs to deliver gas to constrained network
locations. Spot gas prices will consequently rise in situations
where demand is higher in a specific location, although this
price sensitivity will vary by zone. We limit the penalty cost
formulation to natural gas prices because those prices have
historically been more volatile than prices for coal or nuclear
fuel in the U.S., and oil is not a major component of the
U.S. power generation fleet. The same type of formulation,
however, could be used to endogenize the spot prices of other
power-generation fuels where appropriate.

For a pricing zone, ζ ∈ Z, where Z is the set of all zones
(specifically, Transco Zone 6 and Transco Leidy Zone in our
simulations), we calculate the cost of gas, ψζ , with

ψζ ≥mζ
1 +mζ

2γζ +mζ
3γ

2
ζ , (50)

where

γζ =
∑
i∈Ngζ

di, (51)

γζ is the total amount of flexible gas consumed in ζ, and Ng
ζ

are the junctions located in ζ. The coefficients, m, are used
to quadratically price the gas consumption. We calculated the
pressure penalty cost based on the maximum pressure in ζ.
The maximum pressure ρζ is modeled with the constraints

ρζ ≥ πi,∀i ∈ Ng
ζ , (52)

and the pressure penalty cost ωζ is calculated as

ωζ = nζ1 + nζ2ρζ + nζ3ρ
2
ζ . (53)

The coefficients n are used to quadratically price the pressure.
This constraint is also not convex and we relax the equality
with ≥. This relaxation is tight because ρζ only influences a
minimization term in the objective function.

1These numbers are based on converting Mmscfd into BTUs per MW/h
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Fig. 1. Normalized price sensitivities for the expensive gas zone (left panel,
based on Transco Zone 6 Non-New York) and the cheap gas zone (right panel,
based on the Transco Leidy zone).

TABLE I
COEFFICIENTS USED IN DEMAND AND PRESSURE PRICING MODELS

Pressure Pricing
Transco Zone 6 Transco Leidy Zone

Stress n1 n2 n3 Stress n1 n2 n3

- 0.0 -0.0064 2e-8 - 794.37 5e-5 0.0

Demand Pricing
Transco Zone 6 Transco Leidy Zone

Stress m1 m2 m3 Stress m1 m2 m3

1.00 0.0 -4641.9 39.436 1.00 0.0 970.77 0.0161
2.25 0.0 -3714.3 47.446 2.25 0.0 980.97 0.0097
4.0 0.0 -1852.4 54.925 4.0 0.0 991.05 0.0033
6.25 0.0 1447.7 56.546 6.25 0.0 997.13 0.0007
9.0 0.0 5446.3 92.844 9.0 0.0 1001.9 0.0040

For this pricing model, we add a minimum price constraint
of the form

ψζ ≥ Cζγζ , (54)

where Cζ denotes a linear coefficient on the minimum cost
of gas. We impose this constraint to avoid model solutions
with negative gas prices.Thus, for the purposes of this paper,
Z(ζ) = ψζ + ωζ .

Implementation of the zonal pricing model used data
on spot natural gas prices for the two areas obtained
from the SNL Financial database, as well as opera-
tional data published on the Transco 1Line web site
(http://www.1line.williams.com/Transco/index.html).

In Figure 1, we plot the prices in each zone as a function of
normalized demand and we fit a convex quadratic polynomial
to this data. The coefficients of this polynomial, shown in
Table I, serve as the coefficients in the pressure penalty cost
equation 53. There is thus a greater sensitivity of the spot gas
price to pressure conditions in the expensive gas zone than in
the cheap gas zone. We set C = 450 for the expensive gas
zone and we set C = 530 for the cheap gas zone. We also put
a minimum price of 0 for the pressure penalty pricing. For the
expensive gas zone, the price curve is < 0 when the pressure
is < 566, so any pressure below this has no penalty. The
coefficients for demand-based pricing vary depending on the
firm demand in the system, because we assume only flexible
demand (i.e., gas power plants) is price-sensitive.

e) Network Stress: We generated variations of the NE
Model to stress the system and analyze the impact of stress

to the system design and overall gas prices. We uniformly
stressed the power system by multiplying the power demand
by a value in {1.0, 1.1, 1.25, 1.3, 1.35}. Similarly, we uni-
formly stressed the natural gas system by multiplying the firm
gas demand by a value in {1.0, 2.25, 4.0, 6.25, 9.0}.

IV. NUMERICAL RESULTS

In this section, we describe the numerical results of applying
the CEGE to the NE Model. The MISCOP of the CEGE
model are solved using Gurobi 7.0.1. The NLP model is solved
using Knitro 9.1.0. All computations were performed with an
Intel(R) Xeon(R) CPU E5-2660 v3 processor (2.60 GHz) and
62 GB of memory.

A. Uniform Stress

We illustrate the capabilities of the model by increasing the
consumption of gas at each gas demand node by a uniform
proportion and increasing the consumption of electricity at
each electricity demand node by a uniform proportion. For
these stress cases, a 12 hour time limit was placed on com-
puting solutions to the MISOCP relaxation of the CEGE. In
order to obtain a more reasonable balance between expansion
and operational costs, we multiplied the cost of operations
by 365 in the CEGE objective function. This represents
minimizing the combined expansion cost and operational cost
for a full year, assuming uniform daily levels of demand. This
assumption can be relaxed in future work to consider peak/off-
peak demand scenarios for electricity and natural gas. The
pressure penalty cost relative to the cost of gas consumption
was adjusted so that these costs had roughly the same order of
magnitude within each gas pricing zone. The pressure penalty
of Zone 6 is multiplied by 175 and the pressure penalty of the
Leidy zone is multiplied by 600.

Table II describes the quality of the solutions for differ-
ent levels of uniform stress for the endogenous-price model
and compares them with an alternative objective formulation
(expansion-only) which excludes the operational cost terms.
This allows us to isolate design choices made for feasibility
from design choices made to improve the operating costs2. In
Table II, the first column shows the multiplier applied to all
fixed gas demand. The remainder of the table is divided into
five groups, where each group shows results for the power
demand specified in the first row. Within each group, the
columns labeled Obj, Gap, and CPU report the objective value
of the relaxed solution (TO is used to indicate time out), its
optimality gap, and the CPU time required to solve the prob-
lem. The column labeled Obj reports the objective value of the
primal feasible solution and the column labeled Gap reports
the gap between the primal feasible solution and the relaxed
solution. All objective values are scaled by 1.0E8. All gaps
are reported in terms of percentages. Values with no % symbol
report the relative feasibility error. Except in the most extreme
gas stress cases (stress multiplier of 9.0), the CEGE problem
is computationally tractable to solve. Generally speaking, the

2Objective values are not directly comparable as the operating costs for the
expansion only solutions do not include the actual operating costs
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TABLE II
THE CEGE SOLUTIONS FOR THE UNIFORMLY STRESSED NE MODEL. THE COLUMNS ARE USED TO STRESS THE POWER SYSTEM (PS). THE ROWS ARE

USED TO STRESS THE GAS SYSTEM (GS).

Expansion-Only Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap
1.0 GS 0 0% 10 0 1e-3 0 0% 13 0 2e-3 0.58 0% 4 0.58 1e-4 0.58 0% 15 0.58 7e-4 7.82 0% 21 7.82 0%
2.25 GS 0 0% 58 0 1e-2 0 0% 31 0 3e-3 0.58 0% 9 0.58 0% 0.58 0% 25 0.58 3e-4 7.82 0% 30 7.82 3e-4
4.0 GS 0 0% 214 0 3e-3 0 0% 200 0 2e-3 0.58 0% 36 0.58 6e-4 0.58 0% 24 0.58 4e-3 7.82 0% 23 7.82 2e-3
6.25 GS 0 0% 1950 0 7e-3 0 0% 11790 0 6e-3 0.58 0% 156 0.58 5e-4 0.58 0% 67 0.58 3e-3 7.82 0% 56 7.82 2e-4
9.0 GS 2.74 100% TO 2.74 3e-4 1.75 100% TO 1.75 3e-4 2.81 79.2% TO 2.81 2e-4 2.72 78% TO 2.72 2e-4 10.6 23.7% TO 10.6 5e-4

Endogenous-Price Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap Obj Gap CPU Obj Gap
1.0 GS 40.3 0% 39 42.2 4.7% 49.3 0% 33 51.7 4.9% 63.7 0% 53 66.9 5.0% 70.2 0% 49 70.6 0.5% 82.2 0% 2908 82.2 0%
2.25 GS 41.9 0% 69 44.0 5.0% 51.3 0% 40 53.8 4e-6 66.3 0% 36 69.6 4.9% 72.9 0% 84 72.9 0% 85.4 0% 585 89.6 4.9%
4.0 GS 43.9 0% 484 43.9 0% 53.7 0% 640 53.7 0.0% 69.6 0% 443 69.6 0% 76.4 0% 368 80.2 4.9% 89.1 0% 1438 89.1 0%
6.25 GS 46.2 0% 11188 48.5 4.9% 56.4 0% 1666 59.2 4.9% 73.1 0% 20435 76.7 4.9% 80.2 0.5% TO 84.2 6.8% 93.1 0.2% TO 97.7 5.1%
9.0 GS 60.5 13.1% TO 59.1 5e-2 72.4 11.2% TO 76.1 18.3% 92.2 9.4% TO 96.8 15.9% 100.8 9.2% TO 100.8 9.2% 115 8.9% TO 115 8.9%

TABLE III
DESIGN AND OPERATING PROPERTIES OF CEGE SOLUTIONS FOR THE UNIFORMLY STRESSED NE MODEL.

Expansion Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

ze zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL

1.0 GS 0 0 209 567 560 504 0 0 239 643 566 505 1 0 293 745 574 620 1 0 316 779 566 506 5 0 332 822 527 643
2.25 GS 0 0 209 567 531 506 0 0 239 643 566 507 1 0 290 745 619 640 1 0 302 779 823 785 5 0 334 822 593 800
4.0 GS 0 0 209 568 566 551 0 0 239 643 566 549 1 0 287 745 616 820 1 0 301 779 582 1032 5 0 317 822 621 957
6.25 GS 0 0 209 570 563 1153 0 0 239 646 642 1103 1 0 287 751 726 1116 1 0 298 795 903 1096 5 0 273 776 846 1117
9.0 GS 0 0 120 298 995 1159 0 5 160 370 1149 1200 1 5 174 548 1148 1200 1 6 210 437 1141 1200 5 7 285 517 995 1195

Endogenous-Price Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

ze zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL z

e zg γ6 γL
√
ρ6

√
ρL

1.0 GS 5 0 181 600 528 503 5 0 211 677 520 504 7 0 253 802 566 508 8 0 269 848 566 506 13 0 274 897 537 507
2.25 GS 5 0 181 600 558 535 8 0 196 693 566 558 8 0 247 810 566 535 10 0 253 865 566 515 13 0 268 897 565 508
4.0 GS 8 0 166 616 566 538 8 0 196 693 566 602 10 0 235 826 566 537 10 0 250 865 566 559 13 0 260 897 565 542
6.25 GS 7 0 162 616 573 1120 8 0 196 694 580 1145 10 0 235 827 606 1144 10 0 249 865 615 1144 13 0 260 897 623 1120
9.0 GS 8 14 158 621 736 1116 9 13 185 696 804 1134 11 14 225 831 845 1125 13 13 234 870 802 1080 16 12 249 902 842 1118

TABLE IV
COST PROPERTIES OF CEGE SOLUTIONS FOR THE UNIFORMLY STRESSED NE MODEL.

Expansion-Only Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

1.0 GS 0.7 1.0 0.4 0.2 1.1 1.1 0.5 0.2 2.0 1.2 0.7 0.2 2.5 1.3 0.8 0.2 2.8 1.3 0.8 0.2
2.25 GS 1.3 1.0 0.6 0.2 1.8 1.1 0.8 0.2 3.0 1.2 1.0 0.2 4.0 1.3 1.3 0.2 4.1 1.3 1.2 0.2
4.0 GS 2.0 1.0 1.0 0.2 2.7 1.1 1.1 0.2 4.1 1.2 1.4 0.2 4.5 1.3 1.5 0.2 5.1 1.3 1.6 0.2
6.25 GS 2.8 1.1 1.3 0.2 3.7 1.2 1.6 0.2 5.4 1.3 1.9 0.2 6.9 1.3 2.3 0.2 5.6 1.3 2.1 0.2
9.0 GS 4.3 0.8 3.6 0.3 7.9 0.9 4.9 0.2 8.3 1.1 4.8 0.2 9.7 1.0 4.6 0.2 13 1.3 4.6 0.2

Endogenous-Price Model
1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

ζ6 ζL
ζ6
γ6

ζL
γL

1.0 GS 0.4 1.1 0.3 0.2 0.8 1.2 0.4 0.2 1.3 1.3 0.5 0.2 1.6 1.3 0.6 0.2 1.7 1.4 0.6 0.2
2.25 GS 0.9 1.1 0.5 0.2 1.1 1.2 0.6 0.2 2.0 1.3 0.8 0.2 2.1 1.3 0.8 0.2 2.4 1.4 0.9 0.2
4.0 GS 1.2 1.1 0.7 0.2 1.7 1.2 0.9 0.2 2.6 1.3 1.1 0.2 3.0 1.4 1.2 0.2 3.2 1.4 1.3 0.2
6.25 GS 1.7 1.1 1.1 0.2 2.4 1.2 1.3 0.2 3.5 1.3 1.5 0.2 4.0 1.4 1.6 0.2 4.3 1.4 1.7 0.2
9.0 GS 3.7 1.1 2.3 0.2 5.0 1.2 2.7 0.2 7.0 1.4 3.1 0.2 7.1 1.4 3.0 0.2 8.1 1.4 3.3 0.2
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design solutions based on the relaxation have feasible (albeit
higher) operating costs. Even in those cases where a feasible
solution is not found, the worst infeasibility is relatively small.

The design and operating choices for both methods (the
expansion-only model and endogenous-price model consid-
ering both expansion and operational costs) are shown in
Table III. This table is structured in the same way as Table
II. Here, ze refers to the number of power lines that were
built; zg refers to the number of pipe lines built; γ6 and
γL refer to the Mmscfd used in Zone 6 and Leidy Zone to
produce power; ρ6 and ρL refer to maximum pressure squared
in the two zones. In the expansion only model, there are
fewer expansions in both the natural gas and electric power
transmission systems built for feasibility requirements (i.e.,
for reliability). Once the power system is stressed by a factor
of 1.25 in the expansion-only model, one power line is built.
Even at 1.35, only five power lines are built. Similarly, gas
pipelines are only built in the 9.0 stress case. In contrast,
the endogenous-price model encourages additional expansions
to decrease operational costs. In the gas stress cases < 9.0,
between 5−10 additional power lines are added to the network.
These choices are made to shift gas demand used to produce
power from the high-cost gas zone in the eastern portion of our
test system to the low-cost gas zone in the western portion of
our test system. In this case, gas by wire is the cheaper option
to deliver additional electricity to the constrained area of our
network. This is in some contrast to prior work [39], which
suggests that, in the presence of static prices, transportation
of gas via pipeline is more cost-effective than moving gas by
wire. The operating condition results for the gas stress 9.0 are
even more interesting. Here, the maximum pressure in the high
gas price zone for the expansion-only model is near the upper
limit and incurs a very high penalty pressure cost3. In contrast,
the endogenous-price model builds significantly more gas
pipelines to drive those pressures down. These observations
are reinforced by Table IV where the actual operating costs
are shown. Here, the extra pipes and power lines are clearly
used to drive the costs associated with Zone 6 down. In this
table, ζi = ψi+ωi refers to the total daily amount of procured
gas for generation in each price zone, scaled by 106, and ζ

γ

tracks the daily price per Mmscfd, scaled by 104.

B. Avoiding Extreme Price Spikes

We also considered constraining the expansion problems so
that the network expansions are sufficient to avoid extreme
price spikes like those that arose during the polar vortex event
during the winter of 2014. We impose a limit on the pressure
penalty costs, which caps price spikes in constrained areas of
the gas network. The network expansion problem determines
how best to expand the network while staying within the
prescribed limit. The results are described in Table V, where
the limit is computed using the penalty obtained in the optimal
solution of the CEGE problem presented earlier. In particular,
the results present the network expansion when the limit is set
to 100%, 10%, 5%, 1%, and 0% of the penalty for the 9.0 GS

3As a post processing step, we minimized the operating costs for the
expansion design to produce these results.

Fig. 2. Electric and gas transmission network additions in the 2.25 gas stress
and 1.35 electric power stress case.

and 1.35 PS problem. The variables ze, zg , Obj and Gap have
the same interpretation as in Tables II-IV. Interestingly, the gas
network must be expanded by another 40% compared to earlier
results to avoid the types of price spikes that were observed
during the polar vortex, as soon as the penalty is limited to
10% or less. The electricity network is not affected in this
case, consistent with the observation that gas transmission was
scarce during the polar vortex, not gas supply per se. Our
results do suggest that a policy of infrastructure hardening to
avoid the economic consequences of weather-driven demand
spikes in the electricity and natural gas systems would be
costly, relative to the benefits of spot gas price reduction,
and would need to be concentrated on enhancing fuel delivery
rather than electric power delivery.

C. Non Uniform Stress

Finally, we consider a scenario where gas system stress
is not uniform over space. The power system is stressed at
the 1.35 level at every electricity consumption point in our
test system. We increase the gas demand for customers other
than power plants in the western portion of our test system
(corresponding roughly to western Pennsylvania and New
York) by a multiplicative factor of 13.0 (if d̂ < 1, we assume
d̂ = 1 for the purposes of computing stress here), reflecting
a type of scenario where gas demand in one portion of our
network is driven by commercial or industrial applications
and not by the power generation sector. The optimality gap
of the convex relaxations for this non-uniform stress scenario
is 0.16%. The outcome of this scenario is compared to the
1.35 power stress, 9.0 uniform natural gas stress scenario from
Table III. Increasing the gas stress only in the western portion
of our test system actually leads to a smaller number of gas
pipelines being built as compared to a scenario where gas
demand increases by a smaller amount uniformly throughout
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TABLE V
PROPERTIES OF THE 9.0 GS PROBLEM WHEN THE PRESSURE PENALTY COST IS RESTRICTED TO AVOID EXTREME SPIKES IN NATURAL GAS PRICES.

1.0 PS 1.1 PS 1.25 PS 1.3 PS 1.35 PS
ze zp Obj Gap ze zp Obj Gap ze zp Obj Gap ze zp Obj Gap ze zp Obj Gap

100% 8 14 60.5 13.1% 9 13 73.2 11.8% 11 14 95.1 11.8% 13 13 100.8 9.2% 16 12 115 8.9%
10% 7 17 63.6 16.7% 10 15 75.4 12.3% 10 17 95.6 12.2% 11 17 104.6 12.0% 14 17 118 11.1%
5% 8 15 64.2 18.1% 10 14 76.8 16.1% 10 17 97.1 13.2% 10 19 105.9 12.8% 16 17 119 11.2%
1% 9 17 64.2 19.7% 9 19 77.5 16.3% 10 19 99.2 14.1% 10 19 106.4 11.9% 16 17 122 12.4%
0% 8 16 64.2 15.6% 10 17 77.5 13.6% 11 18 99.8 14.0% 11 20 107.9 12.1% 16 19 122 11.7%

Fig. 3. Electric and gas transmission network additions in a scenario where
gas stress is at the 9.0 level and uniformly distributed over space and electric
stress is at the 1.35 level.

the entire test system (16 pipelines in the case shown in Figure
3 versus 4 pipelines in the case shown in Figure 4).

D. Gas Transmission Expansion Options

In our simulations, we allow any existing gas or electric
transmission corridor to expand its capacity and allow some
new gas pipeline corridors to be added. The options for new
candidate corridors are defined based on proposed gas pipeline
expansions in the northeastern U.S. These expansions would
all facilitate additional gas shipments from the Marcellus
Shale producing area in Pennsylvania to demand centers in
the Mid-Atlantic, New York, and New England. The specific
expansions are listed below, with their geographic locations
and names of the proposed pipeline expansions on which our
modeled expansions are based.

1) NG1: A new east-west link across PA (expansion of the
Texas East line)

2) NG2: A new link increasing delivery into eastern PA and
NJ (the Penn East line)

3) NG3: New links from north-central PA to the south and
northeast (the Transco expansions)

4) NG4: A new link from north-central PA going north
towards NY (the Marc II line)

5) NG5: A new link from PA to NY (the Constitution line)

Fig. 4. Electric and gas transmission network additions in a scenario where
gas stress is at the 13.0 level in the western portion of the test system and
electric stress is at the 1.35 level, uniformly distributed over space.

TABLE VI
NEW GAS TRANSMISSION CORRIDORS BUILT IN HIGH GAS STRESS CASES.

Power System Stress Case New Gas Transmission
1.0 PS NG3
1.1 PS NG3 and NG6
1.25 PS NG2 and NG6
1.3 PS NG2 and NG6
1.35 PS NG2 and NG6

6) NG6: A new link increasing delivery from north-central
PA to southeastern PA (the Sunbury line)

In our simulations, new pipeline corridor expansions were
chosen in the highest gas stress cases as lower-cost alternatives
to expanding existing corridors to meet higher gas demand and
to ameliorate gas price spikes. The new pipeline corridors that
were chosen by the model did vary by the power system stress
case, as shown in Table VI. At lower levels of power system
stress, the model adds combinations of new gas corridors
NG3 and NG6, which would expand gas deliveries from the
Marcellus producing areas to areas of higher gas prices in
New York and the Mid-Atlantic coast. At higher levels of
power system stress, the model adds NG2 and NG6, which
expand gas delivery capability into the Mid-Atlantic coastal
areas rather than expanding capacity into New York.
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TABLE VII
COST AND DESIGN PROPRIETIES OF THE CEGE SOLUTIONS FOR ALTERNATE ENDOGENOUS PRICING MODELS

1.35 PS (Apr) 1.35 PS (Jul) 1.35 PS (Oct)
Obj Gap ze zg Obj Gap ze zg Obj Gap ze zg

1.0 GS 72.0 0.0% 6 0 72.2 0.0% 6 0 72.0 0.0% 6 0
6.25 GS 72.2 0.0% 6 0 73.0 0.1% 6 0 72.0 0.0% 6 0
9.0 GS 76.3 6.1% 6 10 79.0 5.2% 6 10 75.8 5.1% 6 10

TABLE VIII
COEFFICIENTS USED IN DEMAND AND PRESSURE PRICING MODELS FOR

THE ALTERNATE PRICING MODEL

Pressure Pricing
Transco Zone 6 Transco Leidy Zone

Month n1 n2 n3 Month n1 n2 n3

Apr 456 4e-5 0.0 Apr 400 3e-5 0.0
Jul 0.0 307 0.0 Jul 0.0 0.0003 0.0
Oct 415 0.0002 0.0 Oct 0.0 7e-5 0.0

Demand Pricing
Transco Zone 6 Apr Transco Leidy Zone Apr

Stress m1 m2 m3 Stress m1 m2 m3

1.0 0.0 465 0.1 1.0 0.0 517 0.0
6.25 0.0 513 0.2 6.25 0.0 516 0.0
9.0 0.0 505 0.07 9.0 0.0 515 0.0

Transco Zone 6 Jul Transco Leidy Zone Jul
1.0 0.0 477 0.4 1.0 0.0 741 0.01

6.25 0.0 609 0.8 6.25 0.0 755 0.09
9.0 0.0 760 0.1 9.0 0.0 1001 0.004

Transco Zone 6 Oct Transco Leidy Zone Oct
1.0 0.0 468 0.3 1.0 0.0 756 0.02

6.25 0.0 516 0.2 6.25 0.0 759 0.03
9.0 0.0 547 0.2 9.0 0.0 760 0.03

E. Alternate Pricing Models

The pricing model used in the earlier analysis was defined
by the parameters in Table I, which were determined based
on analysis of market data from January 2014 (the month
of the Polar Vortex). In this section, we consider different
parameterizations of the pricing model, which we determine
empirically based on market data from April, July, and October
2014. These results show how planning for less stressed con-
ditions leads to different solutions and also demonstrates how
the pricing model can be changed in the CEGE formulation
(as long as it is convex). The coefficients for the alternate
parameterizations of the gas pricing model are found in Table
VIII. The cost and design properties of the CEGE solutions
under these alternate gas pricing parameterizations are found
in Table VII. Higher temperatures in April, July, and October
implied less demand for natural gas for space conditioning,
and we thus observe a much lower price sensitivity. With
price spikes less of an economic driver, we observe a smaller
number of expansions and lower total cost of operations as
compared to the results in Tables II - IV. This observation
indicates that planning based on “normal” operations will
underestimate infrastructure investments that are needed for
extreme stress cases. The quality of the solutions found in a
12 hour limit are similar to those from the January 2014 gas
pricing model, providing evidence that the computation prop-
erties do not depend heavily on the particular parameterization

from January 2014.

V. CONCLUSION

We have developed and demonstrated a computationally
tractable framework for modeling expansion planning deci-
sions in nonlinear natural gas and electric power transmission
systems (Combined Gas-Electric Expansion, or CEGE) that
can identify cost-minimizing network expansions made for
reliability reasons and expansions made for economic reasons.
Our modeling framework also uses a data-driven approach to
endogenizing the impacts of network expansion on natural gas
and electric power operational costs.

We illustrate the CEGE model on a new joint gas-grid
test system under varying demand scenarios for natural gas
and electric power. Our simulation results suggest that, when
demand increases by moderate amounts (1.25 or 1.3) in the
electric power grid, for example) the natural gas cost impact is
minimal and any network expansions can be attributed to the
need to maintain sufficient delivery capacity to high-demand
areas. At higher levels of demand growth, a mix of reliability-
driven and economic investments emerge. We also find that
the decisions to build gas or electric infrastructure to serve
higher electricity demand are interchangeable, and whether
it is cheaper to move electricity or move fuel over longer
distances varies by location and natural gas price sensitivity.

The primary contributions of the present paper are the de-
velopment and illustration of a computable CEGE model with
endogenous commodity price formation, and the introduction
of a new gas-grid test system that serves as a platform for
computational CEGE experiments. In the present paper, we
have chosen to provide detailed results for a set of experiments
to provide information on the computational performance of
our CEGE model as well as to articulate broad insights from a
type of planning scenario for which our modeling framework
may be particularly well suited.

Future work involves incorporating gas generation expan-
sion scenarios into the CEGE model (such as some types of
scenarios outlined in [2]); and conducting security-constrained
joint planning for natural gas and electric power systems.
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