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Abstract

Simultaneous interpretation, translation of
the spoken word in real-time, is both
highly challenging and physically de-
manding. Methods to predict interpreter
confidence and the adequacy of the in-
terpreted message have a number of po-
tential applications, such as in computer-
assisted interpretation interfaces or ped-
agogical tools. We propose the task of
predicting simultaneous interpreter perfor-
mance by building on existing methodol-
ogy for quality estimation (QE) of ma-
chine translation output. In experiments
over five settings in three language pairs,
we extend a QE pipeline to estimate in-
terpreter performance (as approximated by
the METEOR evaluation metric) and pro-
pose novel features reflecting interpreta-
tion strategy and evaluation measures that
further improve prediction accuracy.1

1 Introduction

Simultaneous Interpretation (SI) is an inherently
difficult task that carries significant cognitive and
attentional burdens. The role of the simultane-
ous interpreter is to accurately render the source
speech in a given target language in a timely and
precise manner. Interpreters employ a range of
strategies, including generalization and summa-
rization, to convey the source message as effi-
ciently and reliably as possible (He et al., 2016).
Unfortunately, the interpreter is pitched against the
limits of human memory and stamina, and after
only minutes of interpreting, the number of errors
made by an interpreter begins to increase exponen-
tially (Moser-Mercer et al., 1998).

1https://github.com/craigastewart/qe sim interp

Figure 1: Simultaneous interpretation scenarios

We examine the task of estimating simultaneous
interpreter performance: automatically predicting
when interpreters are interpreting smoothly and
when they are struggling. This has several im-
mediate potential applications, one of which being
in Computer-Assisted Interpretation (CAI). CAI is
quickly gaining traction in the interpreting com-
munity, with software products such as Interpret-
Bank (Fantinouli, 2016) deployed in interpreting
booths to provide live and interactive terminology
support. Figure 1(b) shows how this might work;
both the interpreter and the CAI system receive the
source message and the system displays assistive
information in the form of terminology and infor-
mational support.

While this might improve the quality of inter-
preter output, there is a danger that these sys-
tems will provide too much information and in-
crease the cognitive load imposed upon the in-
terpreter (Fantinouli, 2018). Intuitively, the ideal
level of support depends on current interpreter per-
formance. The system can minimize distraction
by providing assistance only when an interpreter
is struggling. This level of support could be mod-
erated appropriately if interpreter performance can
be accurately predicted. Figure 1(c) demonstrates



how our proposed quality estimation (QE) system
receives and evaluates interpreter output, allowing
the CAI system to appropriately lower the amount
of information passed to the interpreter, maximiz-
ing the quality of interpreter output.

As a concrete method for estimating interpreter
performance, we turn to existing work on QE for
machine translation (MT) systems (Specia et al.,
2010, 2015), which takes in the source sentence
and MT-generated outputs and estimates a mea-
sure of quality. In doing so, we arrive at two natu-
ral research questions:

1. Do existing methods for performing QE on
MT output also allow for accurate estimation
of interpreter performance, despite the inher-
ent differences between MT and SI?

2. What unique aspects of the problem of in-
terpreter performance estimation, such as the
availability of prosody and other linguistic
cues, can be exploited to further improve the
accuracy of our predictions?

The remainder of the paper describes meth-
ods and experiments on English-Japanese (EN-
JA), English-French (EN-FR), and English-Italian
(EN-IT) interpretation data attempting to answer
these questions.

2 Quality Estimation

Blatz et al. (2004) first proposed the problem of
measuring the quality of MT output as a pre-
diction task, given that existing metrics such as
BLEU (Papineni et al., 2002) rely on the availabil-
ity of reference translations to evaluate MT output
quality, which aren’t always available. As such,
QE has since received widespread attention in the
MT community and since 2012 has been included
as a task in the Workshop on Statistical Machine
Translation (Callison-Burch et al., 2012), using
approaches ranging from linear classifiers (Ueff-
ing and Ney, 2007; Luong et al., 2014) to neural
models (Martins et al., 2016, 2017).

QuEst++ (Specia et al., 2015) is a well-known
QE pipeline that supports word-level, sentence-
level, and document-level QE. Its effectiveness
and flexibility make it an attractive candidate for
our proposed task. There are two main modules to
QuEst++: a feature extractor and a learning mod-
ule. The feature extractor produces an intermedi-
ate representation of the source and translation in
a continuous feature vector. The goal of the learn-
ing module, given a source and translation pair, is

to predict the quality of the translation, either as
a label or as a continuous value. This module is
trained on example translations that have an as-
signed score (such as BLEU) and then predicts the
score of a new example. QuEst++ offers a range of
learning algorithms but defaults to Support Vector
Regression for sentence-level QE.

3 Quality Estimation for Interpretation

The default, out-of-the-box, sentence-level fea-
ture set for QuEst++ includes seventeen features
such as number of tokens in source/target utter-
ances, average token length, n-gram frequency,
etc. (Specia et al., 2015). While this feature set
is effective for evaluation of MT output, SI out-
put is inherently different—full of pauses, hesita-
tions, paraphrases, re-orderings and repetitions. In
the following sections, we describe our methods to
adapt QE to handle these phenomena.

3.1 Interpretation-specific Features
To adapt QE to interpreter output, we augment the
baseline feature set with four additional types of
features that may indicate a struggling interpreter.

Ratio of pauses/hesitations/incomplete words:
Sridhar et al. (2013) propose that interpreters regu-
larly use pauses to gain more time to think and as a
cognitive strategy to manage memory constraints.
An increased number of hesitations or incomplete
words in interpreter output might indicate that an
interpreter is struggling to produce accurate out-
put. In our particular case, both corpora we use in
experiments are annotated for pauses and partial
renditions of words.

Ratio of non-specific words: Interpreters often
compress output by replacing or omitting com-
mon nouns to avoid specific terminology (Sridhar
et al., 2013), either to prevent redundancy or to
ease cognitive load. For example: “The chairman
explained the proposal to the delegates” might be
rendered in a target language as “he explained it to
them.” To capture this, we include a feature that
checks for words from a pre-determined seed list
of pronouns and demonstrative adjectives.

Ratio of ‘quasi-’cognates: In related language
pairs, often words of a similar root are ortho-
graphically similar, for example “artificial”(EN),
“artificiel”(FR) and “artificiale”(IT). Likewise in
Japanese, words adapted from English are tran-
scribed in katakana script to indicate their foreign



origin. Transliterated words in interpreted speech
could represent facilitated translation by language
proximity, or an attempt to produce an approxima-
tion of a word that the interpreter did not know.
We include a feature that counts the number of
words that share at least 50% identical orthogra-
phy (for EN, FR, IT) or are rendered in the inter-
preter transcript in katakana (JA).

Ratio of number of words: We further include
three features from QuEst++ that compare source
and target length and the amount of transcribed
punctuation. Information about utterance length
makes sense in an interpreting scenario, given the
aforementioned strategies of omission and com-
pression of information. A list, for example, may
be compressed to avoid redundancy or may be an
erroneous omission (Barik, 1994).

3.2 Evaluation Metric

Novice interpreters are assessed for accuracy on
the number of omissions, additions and the in-
accurate renditions of lexical items and longer
phrases (Altman, 1994), but recovery of content
and correct terminology are highly valued. While
no large corpus exists that has been manually
annotated with these measures, they align with
the phenomena that MT evaluation tries to solve.
One important design decision is which evalua-
tion metric to target in our QE system. There is
an abundance of evaluation metrics available for
MT including WER (Su et al.), BLEU (Papineni
et al., 2002), NIST (Doddington, 2002) and ME-
TEOR (Denkowski and Lavie, 2014), all of which
compare the similarity between reference transla-
tions and translations. Interpreter output is fun-
damentally different from any reference that we
may use in evaluation because interpreters employ
a range of economizing strategies such as seg-
mentation, omission, generalization, and reformu-
lation (Riccardi, 2005). As such, measuring in-
terpretation quality by some metrics employed in
MT such as BLEU can result in artificially low
scores (Shimizu et al., 2013). To mitigate this, we
use METEOR, a more sophisticated MT evalua-
tion metric that considers paraphrases and content-
function word distinctions, and thus should be bet-
ter equipped to deal with the disparity between
MT and SI. Better handling of these divergences
for evaluation of interpreter output, or fine-grained
evaluation based on measures from interpretation
studies is an interesting direction for future work.

4 Data: Interpretation Corpora

For our EN-JA language data we train the pipeline
on combined data from seven TED Talks taken
from the NAIST TED SI corpus (Shimizu et al.,
2013). This corpus provides human transcribed SI
output from three interpreters of low, intermediate
and high levels of proficiency denoted B-rank, A-
rank and S-rank respectively, with 559 utterances
from each interpreter. The corpus also provides
written translations of the source speech, which
we use as reference translations when evaluating
interpreter output using METEOR.

Our EN-FR and EN-IT data are drawn from
the EPTIC corpus (Bernardini et al., 2016), which
provides source and interpreter transcripts for
speeches from the European Parliament (manu-
ally transcribed to include vocal expressions), as
well as translations of transcripts of the source
speech. The EN-FR and EN-IT datasets contain
739 and 731 utterances respectively. While the
EPTIC translations are accurate, they were created
from an official transcript that differs significantly
in register from the source speech. As a proxy
for our experiments, we generated translations of
the original speech using Google Translate, which
resulted in much more qualitatively reliable ME-
TEOR scores than the EPTIC translations.

5 Interpreter Quality Experiments

To evaluate the quality of our QE system, we use
the Pearson’s r correlation between the predicted
and true METEOR for each language pair (Gra-
ham, 2015). As a baseline, we train QuEst++ on
the out-of-the-box feature set (Section 2).

We use k-fold cross-validation individually on
EN-JA, EN-FR, and EN-IT source-interpreter lan-
guage pairs with a held-out development set and
test set for each fold. For each experiment setting,
we run the experiment for each fold (ten iterations
for each set) and evaluate average Pearson’s r cor-
relation on the development set.

In our baseline, we extract features based on
the default QuEst++ sentence-level features (base-
line). We ablate baseline features via cross-
validation and remove relating bigram, trigram,
and punctuation frequency features in the source
utterance, creating a more effective trimmed
model (trimmed).

Subsequently, we add our interpreter features
(Section 3.1) and arrive at our proposed model.
We then repeat each experiment using the test set



baseline trimmed proposed

EN-JA(B-rank) 0.514 0.542 0.593
EN-JA(A-rank) 0.487 0.554 0.591
EN-JA(S-rank) 0.325 0.334 0.411
EN-FR 0.631 0.610 0.691
EN-IT 0.569 0.543 0.576

Table 1: Pearson’s r scores for predicted ME-
TEOR for baseline, trimmed and proposed fea-
ture sets on the test set (highest accuracy for each
dataset indicated in bold).

data from each fold and compare the resulting av-
erage Pearson’s r scores.

5.1 Results

Table 1 shows our primary results comparing the
baseline, trimmed, and proposed feature sets. Our
first observation is that, even with the baseline fea-
ture set, QE obtains respectable correlation scores,
proving feasible as a method to predict interpreter
performance. Our trimmed feature set performs
moderately better than the baseline for Japanese,
and slightly under-performs for French and Ital-
ian. However, our proposed, interpreter-focused
model out-performs in all language settings with
notable gains in particular for EN-JA(A-Rank)
(+0.104), achieving its highest accuracy on the
EN-FR dataset. Over all datasets, the gain of
the proposed model is statistically significant at
p < 0.05 by the pairwise bootstrap (Koehn, 2004).

5.2 Analysis

We further present two analyses: ablation on the
full feature set and a qualitative comparison. Ta-
ble 2 iteratively reduces the feature set by first re-
moving the ‘quasi-’cognate feature (w/o cog); spe-
cific words (w/o spec); pauses, hesitations, and
incomplete words (w/o fill); and finally sentence
length and punctuation differences (w/o length).

Relative difference in utterance length appears
to aid Japanese and French above other lan-
guages. Cognates are particularly useful in EN-FR
and EN-IT; this may be indicative of the corpus
domain (European Parliament proceedings being
rich in Latinate legalese) or of cognate frequency
in those languages. In Japanese, cognates were
more indicative of quality for the more skilled in-
terpreter (S-rank). While pauses and hesitations
seem to aid the model in EN-FR and EN-IT, they
appear to hinder EN-JA.

w/o cog w/o spec w/o fill w/o len

EN-JA(B) +0.007 +0.012 +0.016 -0.053
EN-JA(A) -0.006 -0.011 -0.012 -0.031
EN-JA(S) -0.014 +0.001 +0.004 -0.061
EN-FR -0.013 -0.006 +0.007 -0.054
EN-IT -0.020 +0.002 +0.020 +0.005

Average -0.009 -0.001 +0.007 -0.039

Table 2: Relative difference in Pearson’s r scores
for ablated features after removing cognates,
specifics, fillers and length difference (cumulative
ablation, left to right). Omission and addition are
key features distinguishing SI from translation.

Below is a qualitative EN-IT example with
METEOR score 0.079 (substantially lower than
the average METEOR score across all datasets;
0.262). The baseline predicts a score of 0.127,
while our model predicts 0.066:

SOURCE: “Will the Parliament grant President Dilma
Rousseff, on the very first occasion after her groundbaking
groundbreaking election and for no sound formal reason, the
kind of debate that we usually reserve for people like Mu-
gabe? So, I ask you to remove Brazil from the agenda of the
urgencies.”

INTERP: “Ehm il Parlamento... dopo le elezioni... darem-
dar spazio a un dibattito sul ehm sul caso per esempio del
presidente Mugabe invece di mettere il Brasile all’ordine del
giorno?”

GLOSS: “Ehm the Parliament... after the elections... we’ll
gi- will give way to a debate on the ehm on the case for ex-
ample of President Mugabe instead of putting Brazil on the
agenda?”

Our model can better capture the issues in this
example because it has many interpretation spe-
cific qualities (pauses, compression, and omis-
sion). This is an example in which a CAI system
might offer assistance to an interpreter struggling
to produce an accurate rendition.

6 Conclusion

We introduce a novel and effective application of
QE to evaluate interpreter output, which could
be immediately applied to allow CAI systems
to selectively offer assistance to struggling inter-
preters. This work uses METEOR to evaluate in-
terpreter output, but creation of fine-grained mea-
sures to evaluate various aspects of interpreter per-
formance is an interesting avenue for future work.
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