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Abstract—Efficiently accommodating uncertain renewable re-
sources in wholesale electricity markets is among the foremost
priorities of market regulators in the US, UK and EU nations.
However, existing deterministic market designs fail to internalize
the uncertainty and their scenario-based stochastic extensions are
limited in their ability to simultaneously maximize social welfare
and guarantee non-confiscatory market outcomes in expectation
and per each scenario. This paper proposes a chance-constrained
stochastic market design, which is capable of producing a
robust competitive equilibrium and internalizing uncertainty of
the renewable resources in the price formation process. The
equilibrium and resulting prices are obtained for different uncer-
tainty assumptions, which requires using either linear (restrictive
assumptions) or second-order conic (more general assumptions)
duality in the price formation process. The usefulness of the
proposed stochastic market design is demonstrated via the case
study carried out on the 8-zone ISO New England testbed.

I. INTRODUCTION

Following the restructuring of the power sector in the US
and many European nations, wholesale electricity markets
have become instrumental for unleashing competitive forces
that, at least theoretically, should encourage efficiency im-
provements among electricity suppliers and eventually reduce
the cost of electricity for consumers. For example, PJM reports
that their market has annually saved up to $2.3 billion and
reduced wholesale electricity prices by 40% in 2008-2017
[1]. However, there is a growing concern that the ability
of existing electricity market designs to continue delivering
these benefits will drastically diminish, as the current trend to
massively deploy large-scale renewable resources continues.
This concern is mainly attributed to the uncertainty and limited
controllability of renewable resources, as well as their zero
or near-zero production costs, which tend to distort market
outcomes by dispatching thermal generators in an out-of-merit
order [2], [3]. To account for the effect of constantly increasing
uncertainty on market outcomes, Morales et al. [4] redefine
the merit order to include the expected cost of uncertainty, in
addition to the original marginal cost of production, associated
with increased reserve needs due to the presence of renewable
resources. Therefore, consistent with the motivation in [2]-[4],
the US Department of Energy emphasizes the need for ‘market
structures such as ancillary services, balancing markets and
energy markets [that] maintain their competitive frameworks
[...] as resource mixes change to assure that the market rules
are providing the appropriate signals to bring forth both long-
term and short-term electricity supplies’ [5].
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This need has paved the way for new market mechanisms,
commonly referred to as stochastic market designs, that are
capable of holistically modeling probabilistic characteristics
of renewable resources, e.g., by means of scenario-based
stochastic programming. To a large extent, these mechanisms
are enabled by the seminal work of Papavasiliou and Oren
[6], which demonstrated the economic savings of scenario-
based stochastic programming attained from reducing overly
conservative deterministic reserve margins [6]. Thus, instead
of using conservative, exogenously set margins (e.g., (3 + 5)-
rule as in [6]), uncertain and variable outputs of renewable
resources can be represented via a finite set of scenarios
and their corresponding probabilities. This leads to a lower
expected and ex-post operating cost and, under the assumption
of inflexible demand, maximizes the social welfare. While
this welfare-maximization is a desired property of any market
design, existing stochastic market designs struggle to achieve
it simultaneously with two other desired properties — revenue
adequacy, i.e., the payments collected by the market from con-
sumers are greater or equal to the payments made by the mar-
ket to producers, and cost recovery, i.e., the payment to each
producer is greater or equal to its operating cost'. Furthermore,
in the specific case of scenario-based stochastic programming,
achieving revenue adequacy and cost recovery is difficult since
it must be done for both the expected case and each scenario
individually. For instance, Pritchard et al. [7], Morales et al.
[8] and Wong et al. [9] demonstrated that revenue adequacy
and cost recovery are satisfied in expectation, but do not
necessarily hold for individual scenarios. Kazempour et al.
[10] and Ruiz et al. [11] simulated a stochastic electricity mar-
ket using stochastic equilibrium problems to simultaneously
ensure cost recovery and revenue adequacy per scenario and
in expectation. However, the market designs in [10], [11] do
not guarantee social welfare maximization and, therefore, are
intended by the authors for market analyses rather than market-
clearing tools. As discussed in [10], a lack of cost recovery and
revenue adequacy guarantees inhibits implementing scenario-
based stochastic market designs in practice. As a result,
rare real-world stochastic electricity markets are limited to
exogenous sizing of probabilistic security margins (reserves)
within otherwise deterministic market-clearing routines, e.g.,
in Swissgrid [12].

Realizing the shortcomings of scenario-based stochastic
programming described above, this paper offers a different
perspective on a stochastic market design. Instead of modeling
uncertain outputs of renewable resources by means of a set of
scenarios as in [7]-[13], one can exploit a chance-constrained
approach to internalize the stochasticity of renewable resources

ICurrent deterministic US markets also use out-of-market corrections and
uplift payments to retain market participants.
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in market-clearing tools using statistical moments of the un-
derlying uncertainty (e.g., mean and standard deviation). This
approach leads to chance (probabilistic) constraints that, in
turn, can be exactly reformulated into convex, deterministic
expressions and solved efficiently at scale [14], [15]. Further-
more, these chance constraints offer a high degree of modeling
fidelity to control uncertainty assumptions (e.g., probability
distributions [16], [17]) and risk tolerance (e.g., the likelihood
of constraint violations [14]-[16], [18]). Replacing a set of
scenarios with its statistical moments using chance constraints
not only offers a more accurate representation of uncertainty
in market-clearing and dispatch tools, see comparison in [15]-
[17], but also eliminates the need to trade-off between expected
and per scenario performance, while immunizing the resulting
market outcomes against uncertainty. That is, a stochastic
solution is obtained at the expense of solving a deterministic
optimization problem, which internalizes statistical moments
and risk parameters in the price formation process.

This paper proposes an alternative stochastic market design
that uses chance constraints to accurately model uncertainty
of renewable resources. Relative to scenarios, which are often
difficult to obtain, the chance constraints can be formulated
using statistical moments of uncertain quantities, which are
readily available from historical observations? [17], and in-
ternalize this uncertainty in market-clearing tools. To this end,
we formulate a two-stage chance-constrained unit commitment
(CCUC) problem that follows pool-market assumptions typical
for US wholesale electricity markets. Within this CCUC prob-
lem, we consider three different assumptions on underlying un-
certainty. First, we assume that the uncertainty is represented
by a normal distribution. In this case, the CCUC problem is
reduced to a mixed-integer linear program (MILP) that can be
used for pricing electricity similarly to the current US practice
(e.g., as in [20], [21]). Second, to better accommodate realistic
uncertainty, which is often not normally distributed [22], and
quadratic production costs of thermal generators, we formulate
distributionally robust chance constraints and approximate
them using the Chebyshev approximation, leading to a mixed-
integer second-order conic (MISOC) program. Third, since
the Chebyshev approximation is notoriously conservative, we
invoke an exact second-order conic (SOC) reformulation of
distributionally robust chance constraints from [23], which
also renders a MISOC program. Note that the second and third
assumptions cannot be accommodated for electricity pricing
by means of linear duality theory, as in [20], [21], and thus the
resulting MISOC programs require using more general SOC
duality. This paper proves that the MISOC equivalents of the
CCUC problem yield a robust competitive equilibrium and an-
alyzes electricity prices obtained by means of SOC duality. In
addition to its superior computational performance relative to
scenario-based stochastic programming [15], using the CCUC
for electricity pricing is advantageous in several aspects. First,
the market-clearing procedure does not rely on scenarios and

2Such historical observations can either be collected by the market oper-
ator from their day-to-day operations, or obtained from public repositories
supported by the US National Aeronautics and Space Administration and
National Oceanic and Atmospheric Administration [17], or licensed/purchased
from third-party data providers [19].

produces a single set of market decisions. Hence, market
participants, who are currently distrustful of a scenario-based
stochastic market with scenario parameters they do not control
[10], will not be exposed to risk of losses. Second, the prices
obtained from the proposed market internalize uncertainty and
risk parameters in the price formation process, without trading
off between expected and per scenario performance. As a
result, the proposed chance-constrained market design enables
real-world implementations of stochastic electricity markets.

II. STOCHASTIC MARKET VIA CHANCE CONSTRAINTS

Following the current US practice, we formulate a two-
stage CCUC problem that optimizes the power production for
a single time instance in the future, where the only source of
uncertainty stems from wind power generation:

E, Z [Co,iui + Cipi(w) + Cz,ip?(w) (1a)

min
i (W),pi,rou,u; iel
pz(w) =p;—oqw, YVieTl (1b)
Py, [uiP; < pi(w) < Paug, Vi€ I] >1—¢ (lc)
a; <wu,, VieT (1d)
Zpi(w)—&-W—i—w:D (le)
i€l
> ai=1 (1)
i€l
pi=0,0<a;<lLu {01}, VieZ, (g

where u; is a binary decision on the on/off status of
controllable generator ¢ from set Z and p;(w) is the power
output of this generator under uncertainty w. Similarly to
the current practice, in which the market operator provides
forecasts and estimates the reserve requirements, it is assumed
that forecasts D and W, as well as parameters characterizing
uncertainty w (e.g., distribution and statistical moments), are
released by the market operator and are common for all
market participants. Assuming that common forecasts are
shared among market participants makes it possible to neglect
the effects of information asymmetry that can be exploited
by strategically acting market participants with proprietary
(and different from the market) information, see [24]. Eq. (1a)
minimizes the expected operating cost given decisions u; and
p;(w) and production cost of each controllable generator given
by coefficients C5 ;, C'y; and Cy ;. The output of generator ¢
under uncertainty is modeled using a proportional control law
in (1b), where p; is a scheduled power output and «; is a
reserve participation factor. Note that the control law in (1b)
assumes that recourse decision p;(w) is parameterized in terms
of first-stage decisions p; and «;, which corresponds to preven-
tive security when the operator aims to withstand uncertainty
realizations without corrective control actions. Alternatively,
one can replace (1b) with a corrective recourse as explained in
[25]. The joint, two-sided chance constraint in (1c) ensures that
pi(w) is within the minimum (P;) and maximum (P;) power
output limits with the probability given by (1—e¢), where € > 0
is a small number that represents the tolerance of the market
to constraint violations. We assume that wind producers are
modeled as undispatchable price-takers with the uncertain
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power outputs of W 4+ w, where W is a given forecast and
w is its uncertainty. Eq. (1d) ensures that participation factor
a; = 0, if controllable generator 7 is offline, i.e., u; = 0, and
attains a non-negative value from its domain range 0 < o; < 1,
if otherwise. The system-wide power balance is enforced in
(1e), which balances the total output of conventional and wind
power generation resources and demand. Eq. (1f) ensures the
sufficiency of reserve provided by controllable generators to
cope with uncertainty w. The decision variables are declared
in (1g). Solving the CCUC in (1) depends on the treatment of
(1c) and the assumptions made on w as discussed below.

1) Approximation by individual chance constraints: To
avoid dealing with the joint, two-sided chance constraint in
(1c), it is common to invoke two ad-hoc assumptions that
follow from power system practices. First, it is assumed
that violations on different generators are independent of one
another during normal (steady-state) power system operations.
Second, simultaneous violations of the minimum and max-
imum output limits on a given conventional generator are
impossible. As a result, (Ic) can be approximated by the
following separate, one-sided chance constraints:

Viel
Viel,

Py [pi(w) < Piu;] > 1 — ¢,
Py [uiP; < pi(w)] >1— e,

(2a)
(2b)

where parameter €; denotes the tolerance of the market to

constraint violations at controllable generator ¢. The value
of ¢; is typically set to a small positive number, which is
anticipated to vary for different systems based on the market’s
security preferences, and can be chosen via extensive data-
driven simulations, e.g., as in [26], to meet a given ad-
hoc reliability criteria (e.g., expected energy not served or
loss of probability metrics). Previous studies, e.g., [14], [18],
[25], have also shown that this approximation limits the joint
violation probability effectively due to a few simultaneously
active constraints. Further treatment of (2) depends on the
assumption made on uncertainty w. Data-driven analyses in
[17] show that w can be parameterized using pu = E[w] as
the mean forecast error and 0> = Var|w] as its variance.
Given p = E(w) and ¢? = Var[w], terms E,, [C ;p;(w)]
and E,, (2 ;p?(w)] in (1a) can be replaced with the following
deterministic expressions:

Eo, [C1,ipi(w)] = C1,iBu [(ps — aiw) |=Chi(pi — cipr) (2¢)

Eo [Co,ip} (w)] = CoiBo [(pi — aiw)?|=Eq [Coi(p} —

2waip; + (wei)?] = Coip} — 2pcip; + (0 + p?). (2d)
Note that (2¢)-(2d) are derived only using pu = E(w) and
0? = Var[w] and do not assume a particular parametric
distribution (e.g., normal). Thus, using the result in (2¢)-(2d)
in (1a) and invoking that w ~ N (u,0?) to reformulate (2a)-
(2b), the CCUC problem in (1) is recast as:

min Z |:C0,iui + Ch,i(pi — pog)+
€L

Pi, g, Uj £

Coi (P} = 2pciip; + o (0 + p?)) (32)

pi < Piu; — 6505, Vi€l (3b)

3

-pi < —Pu; — o505, Vie€T (3c)
Y pi=D-W Ge)
€l
> ai=1 (31)
€l
Di Z 0,0éi Z Oaui € {Oa 1}5 Vi € Ia (3g)

where 6; = (P71(1 — ¢;)0 — ) is a given parameter and

®~1(.) is the inverse cumulative distribution function of the
standard normal distribution. Note that, if u; = 0 in (3), it
follows from (3d) that o; = 0 and p; = 0 due to (3b)-
(3c). While the constraints of (3) are linear, the objective
function in (3a) is quadratic, thus turning (3) into a mixed-
integer quadratic program (MIQP), which can be solved by
off-the-shelf solvers (e.g., CPLEX, Gurobi).

2) Approximation by the Chebyshev inequality: While the
normal assumption on w in (3) fares well in practice, e.g., [14],
[15], it introduces some inaccuracies as empirically measured
uncertainty does not follow this distribution exactly, e.g., [17],
[22]. To overcome this limitation, w can be modeled using a
set of distributions, rather than a single distribution as in (3):

Q= {P: Eplw] = p, Ep[w?] = 02}, (4)

where uncertainty set () encapsulates all probability measures
with given first- and second-order moments Ep[w] and Ep[w?].
Assuming w € {2 makes it possible to recast (I1c) as distribu-

tionally robust chance constraints [23], [27], [28]:
. . < 7. . > _ . .
Pi,nefﬂ P, [pz(w) < qul} >1—¢, Viel (5a)
i P <, >1—¢ i e T.
IP’inefQ P, [ulﬂZ < pz(w)} >1—¢, Viel (5b)

Applying the Chebyshev inequality to (5) as described in [23],
[27], [28], the CCUC problem in (1) can be replaced with:

min Z {Co,iui + Cri(pi — povi)+
Pi i U

€T

Co i (0} — 2paipi + af(o® + 1)) | (6a)
Di < Fiui — 5'1’041" Viel (6b)
— Di < —Elul —(NTZ'CVZ', Viel (60)
> pi=D-W (6¢)
€T
dai=1 (6f)
€T
Di 2 0,0éi 2 Oaui € {07 1}7 Vi € Ia (6g)

where 6; = ( 1;—151'07#). Similarly to (3), (6) is a MIQP that
can be solved efficiently with off-the-shelf solvers. Although
adjusting parameter &; allows for better fitting of empirical
data on uncertainty w, the accuracy of the Chebyshev ap-
proximation reduces when e¢; — 0 and its solution becomes
unnecessarily conservative or may even be infeasible, [23].
Note that €; in (6) can be chosen such that 6; = &, i.e., (3)
and (6) yield identical solutions.
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3) Exact SOC reformulation: Motivated by the need to
overcome the conservatism of the Chebyshev approximation
in (6), Xie and Ahmed [23] derived an SOC equivalent of (1c).
Using [23, Theorem 2], the CCUC problem in (1) is equivalent
to:

D0 Y T Z {Coyi“i + Cyi(pi — poy)+

min
i€T
Coi (07 — 2pcip; + o (0 + M2))} (7a)
P, + P.
Pi—Yi —mi < %Uu Viel (7b)
P, + P,
—Pi—yi—ﬁiﬁ—%ui, VieZl (7¢)
P, - P, 2
y? +aio® < ei(2z — m) , Yiel (7d)
a; <wu;, VieT (7e)
D pi=D-W (7f)
€T
> ai=1 (79)
€T
?i_Bi .
pz2070SalS1’yIZO7OS7(lST’ule{()?1}7VZ 61—7
(7h)

where y; and 7; are auxiliary variables and (7b)-(7d) are exact
equivalents of (Ic). Relative to the optimization in (3) and (6)
that only have linear constraints, the notable difference of (7)
is constraint (7d), which is a SOC constraint.

A. Pricing with Chance Constraints via LP duality

1) Prior work: Motivated by the current practice of elec-
tricity markets to use LP duality for obtaining electricity
prices, [21] proposed to reduce the MIQP in (3) to a linear
program (LP) by invoking two restrictive assumptions that
p =0, ie, w ~ N(0,0%), and Cy; = 0, which leads to
the following MILP:

i, 3 oz + o
€T

pi < Pu;— 604, Vi€TL (8b)
—p; < —Pu; — 6504, Vi€ (8¢)
a; < uy, Viel (8d)
> pi=D-W (8¢)
i€T

Z a; =1 (81)
i€z

Di >0,0<a; £1,u; € {0,1}, ViEI, (Sg)

Remark 1. The MILP in (8) can be related to currently
used deterministic market-clearing procedures, if the reserve
contribution of each controllable generator 7 is expressed in
terms of «;. Indeed, the upward (rj) and downward (rf)
reserve margins in (8b) and (8c) due to «; can be computed as
rj = rii = @;0;. Accordingly, the total upward and downward

4

reserve requirement allocated in (8) can be computed as
ZieI riT = ZieI rii = Ziel ;0.

While the MILP in (8) cannot be used for pricing electricity
directly due to the presence of binary variables w;, which
prevents computing dual variables of binding constraints, it
can be converted into an equivalent LP problem, which can
be used for electricity pricing as proven in [20], [21]. First,
(8) is solved using a MILP solver (e.g., CPLEX, Gurobi)
to obtain the optimal values of binary variables u;. Second,
the following LP equivalent of (8) is solved to obtain dual
variables:

;mn(}zllnul Z [Co,iui + Cl,ipi] (9a)
ieT
(7;): pi < Piu; — 6304, Yi€TL (9b)
(1) —pi < —Pu; — 6,05, Vi€T (9¢)
N: Y pp=D-W (9d)
e
0: Y =1 (%)
ieT
(vi): a;<wuy, Viel (91)
(’Vi) LU = u;k (9g)

where variables u; are converted into real-valued variables

and (9g) sets the value of this variable to ;. Since (8) and
(9) yield the same optimal solution, as proven in [20], [21],
dual variables A, x, and ~; of constraints (9d)-(9g) can be
leveraged for electricity pricing. Next, [21] defines the robust
competitive equilibrium as follows:

Definition 1. A robust competitive equilibrium for the stochas-
tic market defined by (8) is a set of prices {\, x, {7, Vi € Z}}
and a set of dispatch decisions {p;, a;, u;, Vi € I} that (i) clear
the market, ie., > ,.;pi = D — W and ), ;o; = 1, and
(i1) maximize the profit of individual generators.

We now prove that (8) and (9) return this equilibrium in the
following theorem:

Theorem 1. Let {p},a},u},Vi € I} be an optimal solution
of (8) and let {\*, x*, {7}, Vi € Z}} be dual variables of (9).
Then {{p},af,uf,v ,Vi € T}, A", x*} constitutes a robust
competitive equilibrium, i.e.:
1) The market clearsat ), ,p;j =D—Wand ), ;af = 1.
2) Each producer maximizes its profit under the payment of
I =Npf+xaf +fuf.

Proof. See our previous work in [21]. [

In other words, Theorem 1 establishes that dual variables ),
X, and ~ represent prices for energy, reserve, and commitment
allocations that attain the least-cost solution and support a
market equilibrium, i.e., no generator has any incentive to
deviate from the solution of (8). Similarly to the current
electricity markets, Theorem 1 entitles every generator to
receive the following three payments: (i) A*p; for the energy
produced, (ii) x*«; for the reserve provided, and (iii) v, u}
for the commitment status.
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2) Extensions of prior work: While still using the LP dual-
ity as in [20], we extend the results from [21] by demonstrating
that prices A, x, and y; internalize both uncertainty (i, o) and
risk (¢;) parameters. Consider the stationary conditions of (9):

oL

=Ci,+@;—p—A=0, Viel (10a)
Opi -
oL _ . . )
e :uiai—&-gioi—x—i-vi =0, Viel (10b)
oL = .
Em =Co; —pPi +p, Py —v; —v =0, VieZ, (10c)

where £ denotes the Lagrangian function of (9):

L= Z |:C0,iui + Cripi + 11 (pi — Piui + 6i0) + p1 (—pi
i€T
+ Bluz + 5}‘0@) + ’Ui(ai — ui) + %(u;«k - ul)]

+)\(D7W—Zpi) +x(1—Zai)

€T i€l

(1)

Using the stationary conditions in (10) and 6; = (®~*(1 —
€;)0 — ), prices A, X, and v can be expressed as follows:

A=Cri+p;—p, Viel (12a)
x= (@ (1 —e)o —p) (@ +p,) +vi, YieI (12b)
v = Co,; — Pipy; + Pip, —vi, Viel. (12¢)

As per (12), reserve price x explicitly depends on p, o and
€;, while energy and commitment prices A and ~; depend on
these parameters implicitly via dual variables of inequality
constraints p. and 7z;. Unlike the scenario-based stochastic
market desigils in [7]-[10], [13], the prices in (12) incorporate
uncertainty and risk parameters without the need to consider
multiple scenarios and trading off among per scenario and
expected performance. Notably, if inequality constraints in
(9b) are not binding, i.e., p, = =0, these prices reduce to
A=Ci4, x=0and v :70071- that matches the prices of the
deterministic market design implemented based on [20].

Remark 2. The results in Theorem 1 and in (12) are ob-
tained for the optimization in (8) under the assumption that
Cs; = 0 and . = 0. However, the former assumption can
be overcome by adjusting the value of ¢;. For example, if
the actual uncertainty is modeled as w ~ N(u,0?) and
the desired tolerance to constraint violations is given by ¢€;,
the optimization (8) is still applicable, despite the underlying
assumption that p = 0, if €; in (8b)-(8c) is selected such that
O (1 —¢)o= (D Y1 —&)o — p).

Remark 3. Since Theorem 1 is obtained by reducing (1) to
a MILP and proved using the same procedure as in [20], this
market design inherits the same cost recovery and revenue
adequacy properties as the market design in [20] (which
currently underlies US markets), i.e., it requires an uplift
payment to each generator equal to ;. to reflect the cost of
commitment decisions.

Using the uplift payment mechanism, we can show that the
equilibrium obtained with Theorem 1 is sufficient to recover
the operating cost of each producer:

5

Corollary 1. Theorem 1 ensures the full cost recovery by
each producer, i.e., IIY =TI — Cp ;uf —Cy ;p; = 0, under the
robust competitive equilibrium.

Proof. Using [21], we reformulate (9) as the following equi-
librium for a given value of w:

{ max *Hi (13a)
Pi &, Ui =U;

pi < Piu; — 60 (13b)

—pi < —Pu; — 6,04 (13¢)

aiguf},ViEI (13d)

{(A): > pi+W=D (13e)
icT

: Y ai=1 (13f)
ieT

(74) - Uz‘—uf7Vi€I}, (13g)

where (13a)-(13d) is solved by each producer to maximize
their profit and (13e)-(13g) is the market-clearing problem. Let
{pf,af,ul,vF, Vi € T}, A", x*} be the robust equilibrium
obtained from Theorem 1, i.e., it solves (9) and (13). When
(13) is solved, the profit of each generator can be computed
as IIY = I'f — Couf — Crpf = Npf + x¥ o) + viul —
Coui — C1,:p;. To show that IT7 > 0 at the optimal solution,
we invoke the strong duality theorem for (13a)-(13d), which
yields:

® *
Hi = ViU ,

(13h)

where v; > 0 and, hence, ITY > 0.
O

Theorem 1 is developed under the assumption that © = 0
and Cy; = 0. The effect of the first assumption on the
optimal solution can be mitigated by tuning parameters e;,
see Remark 2 and the discussion in [16]. The second assump-
tion does not allow for accurately® computing the expected
operating cost, which is crucial for the efficiency of any
stochastic electricity market design, see Morales et al. [4].
These shortcomings cannot be addressed using LP duality as in
[20], [21] and motivate the main proposition of this paper, that
is to invoke SOC duality for electricity pricing, which allows
for a rigorous stochastic market-clearing procedure under
high-fidelity assumptions on the underlying uncertainty and
internalizing this uncertainty in the market-clearing problem.

B. Pricing with Chance Constraints via SOC duality

This sections deals with electricity pricing for distribution-
ally robust formulations based on the Chebyshev approxima-
tion in (6) and the exact SOC reformulation in (7) and assumes
Cs,; > 0, which inhibits invoking LP duality.

To show that (6) and (7) can be used for electricity pricing,
we will follow the same procedure as in [20], [21]. We show

3Note that current electricity markets approximate quadratic production
costs using piece-wise linear functions
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that the original mixed-integer problem in both cases can be
converted into a MISOC program and has an augmented and
continuous equivalent (i.e., when the binary decisions are fixed
to the optimal value). Second, we will prove that the dual
variables of the continuous equivalent are electricity prices and
support a robust competitive equilibrium defined similarly to
Definition 1:

Definition 2. A robust competitive equilibrium for the
stochastic market defined by either (6) or (7) is a set of
prices {A, x,{7,"¥: € Z}} and a set of dispatch decisions
{pi, s, u;, Vi € T} that (i) clear the market, ie., >, 7 pi =
D —W and ), ;a; = 1, and (ii) maximize the profit of
individual generators.

1) Pricing under the Chebyshev approximation: Given
Definition 2, our hypothesis is that dispatch decisions
{pi, i, u;, Vi € T} will be obtained by solving the mixed-
integer optimization in (6) and respective prices will be given
by the dual solution of the following augmented equivalent:

p_Héinu‘ Z [Co,iui + Cripi + Co i (P} + @f0?) | (14a)
T ez
pi < Pyu; — 6505, Yi€T (14b)
-pi < —Pu; — o0, VieT (14c¢)
o <wu;, Viel (14d)
> pi=D-W (14e)
i€T
Zai =1 (14f)
i€T
u =u;, Viel (14g)
P >00<a;<1,0<u;<1,VieZ,  (14h)

This hypothesis leads to the following theorem:

*

Theorem 2. Let {p}, o}, u;,Vi € I} be an optimal solution
of (6) and let {\*,x*,{/,Vi € I}} be dual variables of
constraints (3d), (3e) and (13b) of the augmented equivalent
in (14). Then {{p},af,ul, v}, Vi € T}, A*,x*,} is a robust
competitive equilibrium given by Definition 2, i.e.:
1) The market clears at ), ,p; +W =D and ), ;a;=l.
2) Each producer maximizes its profit under the payment of
I3 = Npi + x"af + 7w

Proof. Consider (6). If it is feasible and solved to optimality,
optimal values p; and o must satisfy equality constraints
(3e) and (3f). As a result, it follows that ZiezprrW =D
and Zieza;":l, i.e., the first postulate of Theorem 2 holds.

Proving the second postulate of Theorem 2 requires showing
that dual variables of the augmented optimization in (14)
represent and can be interpreted as marginal sensitivities of the
equivalent constraints in the mixed-integer optimization in (6).
This proof follows from [29, Proposition 1], which establishes
equivalence between the optimal solution of a given MIQP
problem and its augmented problem with relaxed integer
decision set to their optimal values. Hence, dual variables \*,
x*, and 7] of the augmented problem in (14) are sensitivities
of the equivalent constraints in (6).

6

Now we show that optimal values p},aq,u;, \*, x*, 7,
maximize the profit of each producer. To this end, we recast
(14) as the following equivalent MISOC program using sub-

stitution z; = p? and 2; = a?:

Z |:CO,iui + Cripi + Cy (i + 0%2;) | (152)

. min

=

(6): pi <@, Viel (15b)

(i): af <z, Viel (15¢)

(1z;) pi < Piu; — 6,04, Yi€TL (15d)

(n): —pi < —Pu;— 605, Viel (15¢)

(Vi) a; <wu;, Viel (15f)

(A) ZPiZD—W (15g)
i€l

0: D ai=1 (15h)
i€l

(vi): wi=u, Viel (15i)
pi >0,0;>20,0<u; <1, VieT, (15j)

where x; and z; are auxiliary decision variables, (15b)
and (15¢) are SOC constraints. Note that dual variables of
constraints in (15) are given in parenthesis.

In turn, the optimization in (15) can be reformulated as the
following equilibrium problem (as proven in Appendix A):

{ max II; (16a)
Pi Ui, ,T5,24
(¢i): p} < (16b)
(i) of <z (16¢)
(7;) © pi < Piuy — 604 (16d)
(HJ : —Di < _Eiuz 0,0 (166)
('Ui) oo < ui}, Viel (16f)
{(A): > pi=D-W, (16g)
€L
0 > ai=1, (16h)
€L
(e) + wi = uj, } (16i)

where (16a)-(16f) is solved by each producer individually and
(16g)-(161) is solved by the market. Note that the objective
function of each producer given by (16a) is profit-maximizing
and is formulated based on Definition 2 as II; = (/\pi +xo; +
Yiw; —Co iui — O ipi — Cy (5 —|—02z,-)). Each producer solves
its optimization given by (16a)-(16e) and obtains optimal
decisions p}, o, u that must satisfy the market problem in
(16g)-(16i), ie., >, .7 i +W =D and ), _; o = 1, which
returns prices A and x’. Under this equilibrium solution, the
profit of each producer is maximized, due to the objective
function in (16a), and can be computed as I} = (Np] +
X' o+ — Coiuf — Cripy, — Co,i(p)? — Cai0°())?).
Since the equilibrium problem in (16) is equivalent to (15),
as proven in Appendix A, and (15) is equivalent to the original
optimization in (6), as per [29, Proposition 1], their optimal
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*

solutions are equal. Hence, we note \* = X, x* = x/, v/ =
i, pf = pi, af = of, and u} = u}. This leads to II} = II,.
Since II/ is maximized by the optimization in (16a)-(16f), so
is II7. Thus, {p},af,ul, A", x*, 7/} ensures that the second

postulate of Theorem 2 holds. O

While semantically similar to Theorem 1, the result of
Theorem 2 is a generalization of Theorem 1 that leverages
SOC duality for electricity pricing and allows for more
accurate market prices and dispatch allocations due to (i)
modeling distributionally robust chance constraints in (15) (the
assumption of w ~ N(0,0?) used in Theorem 1 is no longer
required) and (ii) considering quadratic production costs since
Cy,; > 0. Accordingly, using Theorem 2, we can obtain
explicit expressions for energy, reserve and commitment prices
by using stationary conditions of (15) given in Appendix A.
Indeed, re-arranging terms in (26a)-(26¢) leads to:

A= Chi +2C2;p; + 1 — B (17a)
X = 205:0%a; + ;64 + p.G6i — v; (17b)
vi = Coi — 1;Pi + p.P; + vi. (17¢)

Expressing p; and «; from (17a) and (17b) as functions of A
and x and plugging these expressions into (15g) and (15h),
respectively, leads to the following expressions:

A{D W+ ZCIZ+M_%]/2201 ,

X‘{”Z%}/Zw

i€l i€L

(17d)

(17¢)

Similarly to (12), A and ~y; in (17c) and (17d) do not depend on
uncertainty and risks parameters, while y in (17¢) internalizes
these parameters via o;.

2) Pricing under the exact SOC reformulation: Similarly to
(6), the optimization in (7) is a MISOC problem and, therefore,
we can follow the same procedure as described in Section II-B
to show that (7) can yield a robust competitive equilibrium
as given by Definition 2. First, we define the continuous
equivalent of (7):

Z |:CO,iui+Ol,ipi +C2,1(I¢+Z¢02) (18a)

min
pi,ai,ui,yi,xi,zi,ﬂ'iiez
(¢i): pi<w, Viel (18b)
(W)): a?<z, Viel (18¢)
P, +P
(Pi): pi— %uz<yz+m, VieT (184d)
P, + P,
(p,) —pﬁ%uiéymm, VieT (18e)

P, - P, ?
y12+a2202 §€1(217T1) s Vi e Z (18f)

(Ui) : (673 S U; (18g)

N: Y pi=D- (18h)
i€T

0: Y =1 (18i)
i€T

(vi) : ui = (18j)

7

i—P;

p;>0,0;>0,y,>0,0<m; < ,0<u; <1,Vi € Z,

(18k)

where x; = p? and z; = o? are auxiliary variables, (18b)

and (18b) are auxiliary SOC constraints, and v is the optimal
solution of (7) that can be obtained using off-the-shelf solvers.
Using the original mixed-integer optimization in (7) and its
augmented SOC equivalent in (18), we prove:

Theorem 3. Let {p},a},u},Vi € I} be an optimal solution
of (7) and let {\*,x*,{y/,Vi € ZI}} be dual variables of
constraints (18h), (18i) and (18j) of the augmented SOC
equivalent in (18). Then {{p}, af,uf, v ,Vi € T}, \*,x*} is
a robust competitive equilibrium given by Definition (2), i.e.:
1) The market clears at ), p; =D—W and ), _,a;=1.
2) Each producer maximizes its profit under the payment of
L5 = XNpi +x i +yiuf

Proof. Note that (7) and (18) are MISOC and SOC problems,
and, thus, are similar to (6) and (15) in Theorem 2. There-
fore, Theorem 3 can be proven analogously to the proof of
Theorem 2. We omit the proof for brevity. [

Using the equilibrium established by Theorem 3, we can
analyze the dependency of the resulting prices on uncertainty
and risk parameters. Consider the Lagrangian function of (18)
and recall that z; = p? and z; = a?:

L= Z [Co,iui+01,ipi+02,i(p§+0@202)+ﬂ¢(ﬁi— Tiui
e
Fi +£i
—Yi — 7Ti)+ﬁi<TUi —pi —Yi — ) +pi (y? +ajo?

?i *B’ 2 *
- ei(TZ — i) >+Uz‘(ui — o)+ yiug — Uz)}

FAD-W=>"p) +x(1-) i) (19)
i€T ieT
and obtain the following stationary conditions:
oL
;s = Cl,i + 202,ipi +p; — P, — A=0 (20a)
oL
S = 2Cs ;0% + 2pioa; — x — v; = 0. (20b)
oL P+ P, _
=Coit+———(p, —p; 5 — Yi- 2

m Coi+ ——(p, =p) +vi = (20c)

Expressing p; and «; from (20a) and (20b) as functions of A
and Y, respectively, and using these expressions in (18h) and
(18i) leads to:

Cl K

A= |D— 21

[ W ; 2021 }/22021 1)
1
= — ;. 21b
X e 1/(2Ca0% + 2p0%) (210)
Using (20c), we obtain:
ﬁi + Pz —

Yi = CO,i + Ti(gz - pz) + v;. (21c)

Note that similarly to the prices in (21a) and (21c), A and
v; in (21a) and (21c) are independent of uncertainty and risk
parameters, while y in (21b) internalizes o.
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C. Design Properties of the SOC-based Markets

The market outcomes obtained under Theorems 2 and 3 not
only internalize uncertainty and risk parameters in the price
formation process, but also are helpful in ensuring such market
design properties as cost recovery and revenue adequacy.

1) Cost recovery: Cost recovery implies that producers
recover their operating cost from market outcomes and can
be formalized as II; > 0,Vi € Z, where II; = (Ap; + xov; +
Yiui — Coiui — C1ipi — Cy (i + 022;)) as defined for the
equilibrium problem in (16). Since the optimization problem
of each producer in (16a)-(16f) is convex, we can invoke the
strong duality theorem for the optimal market outcomes. The
strong duality theorem makes it possible to equate the primal
and dual objective functions of (16a)-(16f) as follows:

IL; = yiug, (22a)

where II; is the primal objective function and ~;u; is the

dual objective function. At the optimum, (15) and (16) yield

equivalent solutions (see Appendix A). Therefore, we express
i from (17c) and recast (22a) as follows:

I} = Cou; + vjuj + pi Pyuy — 7 Pl (22b)
Since (16a) (16f) is a maximization problem, ; > 0, u I >
0 and vy > 0. Therefore, the first three terms of (22b) are
always non-negative. Since ,u > 0, the last term in (22b) is
negative and, thus, II; can attain negative values. However,
there are two specific, but practical cases to ensure that II7 >
0. First, we can restrict ;7 > 0 to avoid negative (confiscatory)
commitment prices, as common in real-life markets (see [30]).
This will make all terms in (22b) non-negative and guarantee
that II7 > 0. Second, if the market is convex, i.e., controllable
generators have P, = 0 and p; € [0, P;], the cost recovery is
guaranteed:

IIr >0 (22¢)
This is an important property of the proposed SOC-based
market design that allows for explicitly considering uncertainty
and risk parameters in the price formation process without
compromising social welfare.

Analogously, in the case of the exact SOC reformulation,
(7) can be used to formulate an equilibrium problem similar
to (16). In this equilibrium problem, each producer is modeled
as {maxII;|{Eq. (18b) — (18)}}. Hence, similarly to the
Chebyshev case, we can exploit the strong duality property
to obtain:

P;,—P, > .
—)" + iy

5 (22d)

I} = pjei(
Since p; > 0, (P; — P;) > 0, we can ensure that IT¥ > 0
in (22d) similarly to (22c), i.e., either we restrict v, > 0 (see
[30]) or the market is convex and p; € [O,PZ-].

Note that if no additional restriction is imposed on non-
negativity of dual variables u and v, one can compute the
uplift payment for each producer as T = max [O H*} if
Iy < 0.

2) Revenue adequacy: Revenue adequacy is needed to
ensure that the total payment from consumers collected by
the market operator covers the total payment to producers
made by the market operator. Since the stochastic market
designs in Theorems 2-3 are based on the same principles
as the currently practiced market design in [20], they are also
revenue-inadequate. Thus, the market revenue deficit (A*) is:

> TP+ AW - XD,
i€l

A" = —min [07 (23a)
where the first two terms represent the payment to controllable
and wind power producers and the last term is the payment
collected from consumers. Recall that Theorems 2-3 define
Iy = XNpj + x*af + vjuj and establish that ), ;o =1
and doicrPi = (D w). Hence, (23a) is recast as:

= vuy

1€L

A" = — mln O —x* (24a)
Since x* > 0, the sign of (24a) depends on <, which can
attain both negative and positive values. Hence, if A* > 0
in (24a), this deficit must be additionally allocated among
consumers, e.g., as in [20]. However, similarly to the cost re-
covery properties discussed above, we can guarantee A* = 0,
i.e. the market is revenue-adequate, in the special cases of
non-confiscatory prices (y; < 0) and convex markets (p; €

[0, P;)). Indeed, if 77 > 0, then (—x* — > ,czviu)) < 0,
which leads to A* = 0. Similarly, if the market is convex

€ [0, P;], we obtain from (17¢) and (21c) that v} > 0,
which results in (—x* — >, 7 7/u;j) <0 and A* = 0.

3) Expected vs Per Scenario Performance: The cost re-
covery and revenue adequacy properties described above are
shown for expected quantities, i.e., the assumption is that
Y icrPi =D —W and ),y af = 1. However, since these
two constraints are always met, if the optimizations in (6)
and (7) are feasible, we can invoke [15, Lemma 2.1], which
ensures that the expected solution is “viable”, equivalent to
the solution for every realization of uncertainty assumed on
random variable w, e.g., > ;7 pi(w) +W +w = D. As a re-
sult, the cost recovery and revenue adequacy properties of the
market outcomes obtained with Theorems 2-3 hold for both the
expected case and every realization of w drawn consistently
with the assumed uncertainty (e.g., distribution parameters or
uncertainty set) and risk tolerance (e.g., tolerance to violating
chance constraints). Hence, unlike scenario-based stochastic
programming [10], the proposed market designs do not require
trading-off market outcomes among the expected and per
scenario cases at the expense of increasing the operating cost.

III. CASE STUDY

The case study is carried out on the 8-zone ISO New Eng-
land testbed [31], [32], which includes 76 thermal generators
with a total installed capacity of roughly 30 GW and techno-
economic characteristics reported in [31]. The notable feature
of wind power modeling in [31] is that it adopts an agent-
based approach to account for the effects of local weather
conditions, changes in the mix of wind turbine types, and
changes in the geographical placement of wind turbines in
order to model future wind penetration outputs at the system
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TABLE I: Numbers of Variables and Constraints

# of | MILP in (1) Chebyshev in (6) Exact SOC in (7)
Binary variables | Nt Nt Nt
Continuous variables | 2Nt 2Nt 4Nt
Constraints | 2Nz +2 2N7 +2 3Nz +2

N7z denotes the cardinality of set Z, i.e. Nz = card(Nt)
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Fig. 1: Energy (\*) and reserve (\*) prices for different values
of e under different market designs.

level. It is assumed that all nuclear power plants are committed
(= 8 GW) to serve base loads. The forecast wind power
output (W) is modeled as described in [32] for three different
penetration levels: 2% (current), 10% and 20% of the total
demand. We additionally assume that W > 0, i.e. the system-
wide wind power production is always non-negative, as well
as that 0 = 0.2W and € = ¢;, Vi € Z, i.e., the market operator
has a uniform tolerance to constraint violations. Furthermore,
we vary the value of parameter e in the range from 0.0001
to 0.25 in order to capture the sensitivity of market outcomes
to a wide range of choices available for this parameter. In
practice, each market operator will need to calibrate this
value to match their security preferences given the specifics
of the underlying transmission system. All numerical results
presented below were computed on a 2.9 GHz Intel Core
15 with 8 GB RAM under macOS Mojave. Table I reports
the size of each optimization problem solved. Note that each
optimization problem, including the exact MISOC equivalent,
was solved under 3 seconds.

Figure 1 compares the energy (A*) and reserve (x*) prices
obtained with the MILP model (Theorem 1), Chebyshev model
(Theorem 2), exact MISOC reformulation (Theorem 3) for
different values of e. The effect of parameter € on the resulting
energy and reserve prices varies. Since the energy prices
in all three models do not explicitly depend on ¢, in some
cases they remain constant for a wide range of values of
€. Also, as the wind penetration rate increases, the energy
prices tend to decrease for the same value of ¢, since more

(A) Wind - 2 % (B) Wind - 10 % (C) Wind - 20 %
175 0
150 [ - [
150 150
« 100 P Ed
S £ 100 £ 100
X
%0 50 50
Cheb. SOC Cheb. SOC Cheb. SOC
I Opearting cost I Wind. payment (\*W)

I Gen. payment (3 I';) [T ]Consumer payment (A*D)

Fig. 2: Comparison of the Chebyshev and MISOC models in
terms of their market design features.

wind power generation replaces controllable generators with a
relatively high production cost and the remaining controllable
generators are dispatched in an out-of-merit order. On the other
hand, as the value of € reduces, reserve prices monotonically
increase under all models and wind penetration rates, thus
reflecting a greater need in reserve to deal with the uncertainty
and variability of wind power generation. In all simulations,
the Chebyshev model, which is based on a conservative
approximation of chance constraints, yields the greatest energy
prices, regardless of the value of e chosen. On the other
hand, the reserve prices under the Chebyshev approximation
is lower than under the exact MISOC reformulation, since the
Chebyshev’s conservative dispatch leads to a greater out-of-
merit order degree that results in a large amount of committed
headroom capacity available for providing reserves.

The trade-off between the energy and reserve prices ob-
tained with the Chebyshev approximation and exact MISOC
reformulation affects the revenue adequacy and cost recov-
ery of these models. Figure 2 compares the Chebyshev and
MISOC models for e = 0.0001, as it is the most conserva-
tive solution among the results in Figure 1 and, therefore,
is expected to cause greatest out-of-merit order distortions.
Additionally, we analyze the market performance of these

(A) Wind - 2 % (B) Wind - 10 %

(C) Wind - 20 %
175 175 175

150 150 150

100

x10°8
x10°8
x10%S

50 50 50

Cheb. SOC

Cheb. SOC

Cheb. SOC

(I Variable [ Fixed |

Fig. 3: Comparison of the Chebyshev and MISOC models
in terms of their fixed and variable operating costs. In both
models, the fixed operating cost is computed as ) ;. Co ;u;
and the variable operating cost is computed as the total
operating cost minus the fixed operating cost.
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Fig. 4: Comparison of the Chebyshev and MISOC models in
terms of the payment to conventional generators. The energy,
reserve and commitment payments are defined as ), Ap;,

> iez Xay and D7, 7 i

models in terms of their total operating cost as defined by
respective objective functions and shown in Figure 3, total
payment made by the market to controllable (3, ;I'; as
itemized in Figure 4) and wind power (A*WW) generators and
the total payment collected by the market from consumers
(A*D). Regardless of the wind penetration rate, the Chebyshev
model yields a more expensive solution due to its inherent
conservatism, see Figure 3. This conservatism results in 311
MW of more committed power of conventional generators in
the Chebyshev case relative to the MISOC case. Nevertheless,
both the Chebyshev and exact MISOC models yield such
prices that the total payment ), . I'; is sufficient to cover
the total operating cost, as well as we also manually checked
that I'; > 0,Vi € Z, i.e., every controllable generator attains
a non-negative profit. In other words, the market outcomes in
Figure 1 lead to cost recovery for all producers.

As the wind penetration rate increases, we observe in
Figure 2 that the payment made by the market to wind
power generators increases. Although the payment made to
controllable generators reduces, the effect of zero-cost wind
power generators suppress electricity prices at higher wind
penetration rates (see Figure 1), which makes the market
revenue-inadequate (e.g., the market deficit A* > 0). This
revenue inadequacy is observed for the 20% penetration levels
and causes the relative mismatch between the total payment to
producers and the total payment from consumers equal to 0.2%
and 3.1% for the MISOC and Chebyshev cases, respectively.

Furthermore, the effect of greater wind penetration rates is
observed in Figures 3 and 4. Thus, greater wind penetrations
tend to increase fixed costs in absolute values and relative to
the total operating cost for both the MISOC and Chebyshev
market designs. However, the fixed costs of the MISOC solu-
tion is systematically lower than in the Chebyshev case. Figure
4 shows that the reserve and commitment payments increase
for greater wind penetration rates. Notably, the MISOC market
design consistently results in lower commitment payments
than the Chebyshev case.

IV. CONCLUSION

This paper described an alternative approach to design a
stochastic wholesale electricity market that allows one to
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internalize uncertainty of renewable generation resources and
risk tolerance of the market operator in the price formation
process using the chance constraints. The resulting stochastic
market design exploits SOC duality to obtain a robust com-
petitive equilibrium that has the cost recovery and revenue
adequacy properties similar to existing deterministic markets.
In the future, our work will focus on the application of the
proposed pricing theory to multi-period network- and security-
constrained stochastic market designs, which are needed by
current market practices, and on achieving revenue adequacy
of the stochastic market (e.g. by means of using alternative
auction schemes [33]).

APPENDIX A
EQUIVALENCE OF (15) AND (16)

We prove that (15) and (16) yield equivalent solutions.
Consider (15) and recall that x; = p? and 2; = «F. The
Lagrange function of (15) is then given by:

L= Z [Co,z‘ui + Chipi + C2,i(1022 + 02%2) + 7 (v — ;)
i€l

+ 1;(pi — Piui + 6505) + Hi(_pi + P,u; + 51»041-)}

FAD =W = "p) +x(1-> ) (252)
i€ ieT
Using (25a), we obtain the KKT conditions of (15) :
oL
Op; =Ch,;+2C;p; +1n; — B = A=0 (26a)
oL
o = 202:0% 00 + TG+ i = x =0 (26b)
oL —
=Coi —vi —mPi+pP;=0 (26¢)

811,1' —
Y pi=D-W (26d)
i€z
> ai=1 (26€)
i€z
u; = u; (26f)
0<m L (Pu;—d6a; —p;)>0 (26g)
0<p, L (pi—Pu—da;) >0, (26h)

where (26a)-(26b) are the stationary conditions, (26d)-(26f)

are the primal feasibility conditions, and (26g)-(26h) are the
complementary slackness conditions. Note that (26a)-(26f)
match the KKT conditions of (16a)-(16f) and that (26g)-(26h)
match the KKT conditions of (16g)-(16h). Hence, (15) and
(16) are characterized by the same set of KKT conditions and,
thus, yield the equivalent solutions, [10], [34]. O
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