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Abstract

Material removal rate (MRR) is a commonly used metric for determining the efficiency of a
toolpath design, as it is usually used to determine the amount of machining time spent
doing useful work. Voxel-based computer-aided manufacturing (CAM) software enables
simple computation of MRR by counting the number of voxels removed (N) in one feed
step. However, depending on the geometry of the cutting tool and the voxel size used in the
CAM software, there can be disagreement between theoretical and simulated MRR values.
The cause of oscillation in voxel-based simulated MRR is the misjudgment of voxel removal
due to the discrete nature of the voxel model. MRR has a linear relationship with N, so the
analysis of MRR can be equivalent to the analysis of N as other conditions keep invariable. A
series of simulation experiments were conducted on GPGPU by using computer programs
that were developed to simulate the milling process. Discrepancies between voxel-based
simulated MRR and the theoretical MRR were investigated. The dependence with respect to
the ratio (M) between the radius of the tool and voxels size, the use of single or double

precision floating-point computations, and the end shape of the cutting tool was studied.
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Results indicate that double precision improves the ability of judgment on voxel removal,
thereby decreases the standard deviation of the N curve. Besides, ball-end milling has good
computational accuracy with a lower standard deviation than flat-end milling. The relative
range, mean absolute error, and standard deviation analysis were used to describe the
oscillation regularity of N curves. The probability distribution of normal distance from the
voxel center to tool boundary was studied. The result indicates that the distance obeys a
uniform distribution when M is large enough. Modeling of MRR computation with
computational error domain was proposed to represent the oscillation behavior of MRR,
and the result shows that the model can well predict the magnitude and period of N curves
during the milling process.

Keywords: MRR, CAM, Voxel, GPGPU, Modeling.

1. Introduction

Computer-aided manufacturing (CAM) software is a powerful tool used for the generation of
toolpath for computer numerical control (CNC) machine tools. Toolpath generation for a complex
surface is a large time-consumption for current general-purpose CPU (central processing unit)-
based CAM software. Hossain et al. (2016b) point out that the current advent of parallel
computation with graphics processing units (GPUs) enable the use of GPU-based algorithms for
toolpath design that can improve computation speed for both additive and subtractive
manufacturing processes. In recent years, some works have solved CAD and CAM acceleration
problems using GPGPU. Krishnamurthy et al. (2009)describe a unified and optimized method for
evaluating and displaying trimmed NURBS surfaces using GPGPU. It turns out GPU evaluation and
rendering speeds have an obvious elevation to CPU. Kurfess et al. (2007) use NURBS (Non-Uniform
Rational B-Spines) curves and surface-based calculation as the main methods for rendering, surface
offsetting, tool path programming. Tarbutton et al. (2010) propose a graphics-based approach to

the tool path and trajectory-planning problem found in machining and robotics applications.

A voxel model uses a three-dimensional array of small cubes to represent a part volume; these
cubes, or voxels, are the three-dimensional analog of two-dimensional pixels in an image. The use of
voxels for a CAM application enables higher surface complexity, simplified collision checking, and
more robust analysis of material removal than would be possible with typical parametric CAM
(Kurfess, 2018). Voxel-based CAM has a number of advantages over traditional parametric CAM: it

is better able to represent complex, freeform surfaces that would be difficult to describe with



analytical curves; it enables simpler collision checking between a cutting tool and a workpiece; and
the calculation and simulation of material removal along a toolpath consists of a simple summation
of removed voxels (Jang et al., 2000, Lynn et al., 2018a, Lynn et al., 2018b). To solve the enormous
data storage problem in voxel-based computation, Hossain et al. (2016a) develop hybrid dynamic
trees for an extreme-resolution 3D sparse data modeling. Abi-Chahla (2008) indicates that GPU has
a great potential in the engineering field as its powerful parallel computing ability. Lynn et al.
(2017) point out the use of GPUs for general purpose computation is of particular interest for CAM
using voxel models; instead of using analytical surfaces to define part geometry. Fig. 1 shows how a
voxel model represents a part of a collection of small cubes. The sparse voxel octree can enable
higher memory efficiency: fine voxels are near the boundary of the part and the cutting tool, and
coarse voxels are in the interior of the workpiece (Konobrytskyi, 2013). This work relies on a voxel-

based CAM software known as SculptPrint that uses GPUs to accelerate toolpath generation.
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Fig. 1. Geometrical representation in voxel-based CAM.

Material removal rate (MRR), the volumetric rate of material flow from the workpiece, is a
commonly used metric for the efficiency of a toolpath as it can be used to determine the amount of
machining time spent doing useful work. Choudhury and Appa Rao (1999) find that MRR has a
significant effect on the tool life, cutting force and energy consumption, etc. Kara and Li (2011) have
recently proposed an empirical model to characterize the relationship between energy
consumption and process variables for material removal processes. The results indicate that the
specific energy consumption (SEC) has an inverse relationship with MRR. Parametric CAM system
commonly applies a complicated NURBS interpolator to compute MRR, which has been tried one

after another by Tsai et al. (2001), Tikhon et al. (2004), and Ko et al. (2005).



Voxel-based CAM enables simple computation of MRR for a toolpath of any complexity. The
whole toolpath is composed of motion steps. In each step, the tool center moves just an identical
distance of the voxel size. The total volume of all removed voxels over one-step can be summed up.
The time length of the step is the ratio of the voxel size to the feedrate. Finally, MRR is obtained as
the ratio of the volume to the time. For example, consider a simple raster toolpath shown on the
prismatic workpiece: for this ball-end milling along a linear trajectory, which has constant cutting
depth and feedrate, so the theoretical MRR of the milling process should be constant. A voxel-based
CAM software known as SculptPrint (Lynn et al., 2016) is used to simulate such a steady-state
milling process. The cutting depth is 0.1 inch, and feedrate is 0.5 inches/s. The simulated MRR
curve using the voxel model is computed and plotted in the bottom in Fig. 2. However, the

simulated MRR is not constant and instead exhibits oscillation.

The cause of oscillation in voxel-based MRR computation would be the misjudgment of voxel
removal. Due to the discrete nature of the voxel model, the theoretical MRR may not always match
the simulated MRR. The theoretical analysis and the simulation experimental demonstration are
both presented in this article. All the simulation experiments in this article were conducted on GPU
using CUDA (Compute Unified Device Architecture) respectively with single precision and double
precision. In addition, the basic judging criterion of voxel removal is the distance from the voxel
center to tool boundary. The probability distribution of the normal distance from the voxel center

to tool boundary is studied in this article for better understanding the nature of MRR oscillation.

Fig. 2. Simulated MRR curve using voxel-based CAM software SculptPrint.

This work presents a voxel-based model of MRR computational accuracy using GPGPU
computing. Mathematical expressions of MRR with voxel representation was derived using
Cavalieri’s principle. Analysis under both single and double precision computational errors of the
amount of voxel removal is presented to explain the cause of oscillation in the computed MRR

curves. A scale factor M is defined as a ratio of the tool radius to the voxel size. The simulation



experimental results demonstrate that the amplitude and oscillation of N curves during stable
cutting stage are related to M, computation accuracy, and end shape of the cutting tool. The
probability distribution of normal distance from the voxel center to tool boundary was studied, and
the result indicates that the normal distance obeys a uniform distribution. A computation model
was proposed to describe the oscillating behavior of N curves; the error domain is embedded into

the model to describe the voxel misjudgment during MRR computation.

2. Related works

Material Removal Rate

MRR is defined as the volume of material removed per unit time. The higher cutting parameters, the
higher MRR. As shown in Fig. 3, MRR in flat-end milling process with a cylindrical milling cutter is
the product of the depth of cut, the width of cut, and the feedrate. The mathematical expression of

MRR for linear flat-end milling is represented in Equation (1).

MRR=D X W X F (1)
where D is the cutting depth, W is the cutting width, and F is the feedrate.

MRR=D xW X F

D: Cutting depth

F: Feedrate

W: Cutting width

Fig. 3. The mathematical expression of MRR in the flat-end milling process.

More generally, as shown in Fig. 4, when the tool moves along a three-dimensional curve, the
removed material volume is equal to the swept volume generated by the tool-material contact area

1 along the tool trajectory. A generalized MRR expression can be calculated as follows:

MRR=f ds-F (2)
P

where v is the tool-material contact surface during machining, F is the federate of the tool at any

point on the contact surface 1, and d5s is the area vector of the finite element at the point. The inner



production ds - F is the finite MRR on the infinitesimal area near the point. For 5-axis milling,
federate F is usually not a constant on surface 1, but a vector function in three-dimensional space.
What needs to be pointed out is that the tool outline surface is the enveloping surface of the cutting

edge due to its spinning.

T
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Fig. 4. Schematic diagram of the generalized MRR definition. Removed material volume is equal to the tool-
material contact area moving along the tool trajectory.

Floating Point Representation

CUDA is a parallel computing platform and application programming interface (API) model created
by NVIDIA that enables a GPU to be used for general purpose processing - an approach termed
GPGPU. The CUDA platform is a software layer that gives direct access to the GPU's virtual
instruction set and parallel computational elements for the execution of compute kernels. The
creation of GPU-based algorithms for toolpath generation and analysis in this work relies on CUDA.
Sanders and Kandrot (2010) describe that CUDA is designed as a parallel platform and
programming model to work with programming languages such as C, C++, and FORTRAN. CUDA
accepts both single and double precision numbers as determined by specific GPU architecture that
is targeted during application development. The single and double precision floating point formats

are described as shown in Fig. 5 (IEEE, 2018).

sign exponent (8 bits) fraction (23 bits)
(@
31 30 23 22 bit index 0
exponent
sign (11 bits) fraction (52 bits)
(b)
63 o bit index 0

Fig. 5. IEEE754 binary floating-point format. (a): single precision, (b): double precision.



Conversion of a single precision binary floating-point number to decimal can be performed

using Equation (3) and (4) (IEEE, 2018):

23
Value = (_1)1731 X (1 + Z b23—i2_i> X 2(6—127) (3)
i=1
7
e= Z bz 2% (4)
i=0
where by, by,+++, bzq are the binary digits. Double precision also has similar expressions as shown

in equation (5) and (6) (IEEE, 2018). After transformation from binary to decimal, the number has
only six or seven significant decimal digits with the single precision (log;,(223) ~ 6.92), while

about fifteen or sixteen with the double precision (log,o(2°%) ~ 15.65).

52 | 5)
Value = (—1)Ps3 x (1 + z bsz—iz_l> % 2(e=1023)
i=1
10 | ©)
e= z bsa4i 2"
i=0

Non-Uniform Rational B-Splines (NURBS) interpolator

Non-Uniform Rational B-Splines (NURBS) interpolator was used in computer-aided design (CAD)
and manufacturing (CAM) to represent a wide range of curves and surfaces due to its flexibility and
precision. NURBS are parametric curves and surfaces, which is usually described by standard STEP
files in CAD/CAM systems. The parametric form is very convenient for controlling multi-axis
machine tools and robotics, where each axis is driven individually (Zhang and Greenway, 1998). A
three-dimensional curve is expressed in parametric form as follows:
- (7)
C) = [x(), y@, 2] = ) fi(wP
i=0
where u is an arbitrary parameter and usually normalized to [0,1], {P; }are control points, and
{f;(w)} are piecewise polynomial basis functions forming a basis for the vector space of all

piecewise polynomial functions of the desired degree and continuity . Similarly, A three-

dimensional surface is expressed by two parameters (u and v), as shown in Equation (8).



n m (8)
S =[x, v),y(@,v), 2w )] = Y 3 fiwg P,
i=0

j=0
C(u) and S(u) are called basis spline (B-spline) functions, were first used to define curves and
surfaces for CAD by Gordon and Riesenfeld (1974). Many mainstream CAM software, e.g.
Mastercam, CAMWorks, CATIA, Siemens NX CAM, etc., all adapt NURBS interpolator to represent

the geometry.

For a steady linear milling process (cutting depth: 0.1 inches, milling tool feedrate: 0.5 inch/s,
the radius of the ball-end tool: 0.1 inches.), MRR are computed respectively using the voxel model
and the NURBS interpolator. For the voxel model, MRR is calculated on the different voxel sizes (or
the different scale factor M). For NURBS interpolator, an open-source package NURBS-Python
(Bingol and Krishnamurthy, 2019) is used to simulate the milling process and compute the change
in MRR. As shown in Fig. 6, the truth MRR of the milling is 2.936E-4 inch?/s, and the MRR curve of
NURBS is close to the truth value with a relative error of less than 1%. However, with an increase of
M (or decrease of the voxel size), the MRR curves of the voxel mode draw closer to the truth-value,
and the oscillation is getting smaller. In other words, fine voxel can obtain a smaller bias and
variance in MRR computation. Nevertheless, it is attention that the voxel mode has higher accuracy
and lower oscillation than NURBS when M is roughly equal to or greater than 1,000. This means we

can get high computation precision of MRR by means of reducing the voxel size.

3.4E-04
Voxel (M=50)
Voxel (M=100)
3.2E-04 Voxel (M=1000)
***** Truth
-~
2 30804- NURBS
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(8]
£
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=
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Time (s)

Fig. 6. MRR computational results of steady linear milling.



3. Voxel-based MRR expression of the milling process

Fig. 7 shows some common types of end mills. Flat-end milling and ball-end milling are the two
most common milling processes. Flat-end milling with a cylindrical tool is mainly used to produce a
flat surface, while ball-end milling is widely used in the multi-axis NC machines for manufacturing
complicated curved surface. In this section, voxel-based MRR expression of both the flat-end milling

and the ball-end milling are derived respectively.

Fig. 7. Common types of end mills

3.1 Voxel-based MRR expression of the flat-end milling

As shown in Fig. 8, the flat-end milling process is first discussed to deduce the voxel-based
MRR expression. Flat-end milling is, in essence, a two-dimensional problem. Top view of the flat-
end milling process is shown in Fig. 9. The red circular arc is the external surface of the cylindrical
tool in top view, the squares are voxels that make up the part, the bold dots are the center points of
voxels, and the distance of feed step is chosen the same value as the voxel size (a). Once a bold dot
intrudes into the tool boundary, the corresponding voxel will be removed by the tool. It can be seen
that there is one and only one voxel removed in each row along the moving direction. All the voxels
to be removed are marked as green within the current step. Fig. 10 shows the relationship of the
real removed shape (which is a crescent shape in the physical milling process, domain A) and the
discrete voxels removed (which is made up of the entire removed voxels in one-step, domain B)
when the tool moves just one-step. According to the Cavalieri’s principle (Wikipedia, 2018), the
area of the domain A is equal to the total area of the domain B between the upper and lower limits.
Above all, the quantity of voxels removed (N) in one feed step is equal the number of voxels in the

projected plane (marked with brown in Fig. 8) for three-dimensional flat-end milling.

To quantitatively describe the relative size of the voxel to the milling tool, a scale factor M is

defined in Equation (9) as a ratio of the tool radius to the voxel size.



R
M=— (9)
a

where R is the radius of the milling tool, and a is the voxel size. The scale factor M illustrates the
relative size of the tool radius to the voxel size. For a fixed tool, a larger M means fine voxel, while a

smaller M means rough voxel.

-

R *a¢

*a¢

D
AN[WIN ([~

Fig. 8. Voxelization of the workpiece-tool system in flat-end milling

/

__/yQQQ

Fig. 9. Top view of the flat-end milling.

As shown in Fig. 10, it can be seen that the maximum error between domain A and domain B is
two voxels that are located on the head and end of the domain B. When the scale factor M is large
enough, the residual area outside the two limits of domain B can be ignored. Therefore, the area of
domain A can be substituted by the area of domain B in MRR computation. The relative error
satisfies the inequality (10). This inequality illustrates and guarantees the bias of the voxel-based

MRR results in Fig. 6.
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Fig. 10. Area equivalence principle. According to Cavalieri’s principle, the area of domain A is equal to the area
of domain B between the upper and lower limits. N is the number of voxels in domain B.
Based on the definition, MRR is the ratio of volume removed to traveling time as expressed in
Equation(11):
Na3
MRR = — = Na?F 11
a/F (11)
where N is the variable quantity of removal voxels in one feed step, and F is the feedrate. It is

visible that MRR is proportional to N. Therefore, the analysis of MRR can be equivalent to the

analysis of N as other conditions keep invariable.

In the flat-end milling process, N can be expressed in a discrete form as shown in Equation
(12), which is a product of voxel quantity in the top view and cutting depth. Then the expression of

MRR of flat-end milling is represented as Equation (13).

N = [ [ 2] 2
MRR; g = Njjq,a%F = [2M] [%] a?F (13)

where a is the voxel size, R is the radius of the tool, D is the depth of cut, and [] is the ceiling
function. MRR would be a constant value in the face milling with fixed a, F, M, D, and R. The ceiling
function can be neglected when M is large enough, and N can be expressed as a quadratic function

of M in Equation (14).



2D
Nflat = FMZ (14)

3.2 Voxel-based MRR expression of the ball-end milling

The ball-end milling process can be regarded as flat-end milling with a variable radius. As
shown in Fig. 11, the cross-section of the intersection between a sphere and cuboid is voxelized by
cubes. The sphere is the milling tool, and voxels inside the sphere are removal material. The
number of voxels removed (N) in one feed step is equal to the number of voxels in the projected

plane (marked with brown in Fig. 11).

In order to express MRR, each voxel layer is simplified into a flat-end milling process with a
cutting depth of a. Taking the i*" voxel layer as the research object, Nﬁau is the variable number of
voxel removed in one feed step and can be computed as in Equation (15), where 1; is the radius of
the circle on the i*" voxel layer and can be calculated by Equation (16). The total number of voxel
removed (Npq;) in one feed step is the sum of N}, with i from 1 to [D/a]. [D/a] is the number of
layers within the scope of the ball-end tool. In conclusion, MRR in ball-end milling process can be

expressed in Equation (18).

. 2r;
Npan = [j (15)
1, =+/(D —ia)(2R — D + ia) (16)
[D/a]
Npau = z ngall (17)
i=1

MRRpai = Npana®F (18)
Ball-end milling is a nonlinear sum of a series of variable-radius flat-end millings. Due to its
nonlinearity, it is difficult to get a concise equation for MRR in the ball-end milling process. The flat-
end milling process with a cylindrical tool has a constant radius along the rotational axis. The
research on flat-end milling would reveal more general laws than the ball-end milling or some other

formed millings.
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Fig. 11. Voxelization of the workpiece-tool system in ball-end milling

4. MRR Computational results with GPGPU

Studies on flat-end and ball-end millings were respectively performed to determine the accuracy of
material removal calculation from voxel models. The radius of the cutting tool is R, and the depth of
cutis D. As shown in Fig. 10, the internal domain of the tool boundary is defined as domain I and
the outside is domain O. Any voxel in domain I is considered to be removed when its center point

crosses from domain O to domain [ when the tool is moving through the workpiece.

N is the number of voxels removed in one-step, and a function of tool shape, tool size, and
voxel size. First, according to Equation (11), MRR is proportional to N. MRR and N have the same
variation trend in the same cutting parameters. Second, N can be computed by counting the number
of voxels crossing into the tool boundary as the center of the tool moves from one voxel center to
the next. Third, N is a time-independent variable, which can just focus on the tool and voxel size.
Therefore, for better understanding the cause of MRR oscillation during the milling process, N is
studied as the research objective instead of MRR. Theoretically, for a steady-state linear milling
process, the mill tool keeps the fixed cutting depth and feedrate. N should be a constant; however,
due to misjudgment of voxel status caused by discretization, N has oscillation in numerical
computation. A series of simulation experiments were conducted using computer programs that are
developed to simulate the two millings as shown in Fig. 8 and Fig. 11. The cutting process contains
three stages: cut-in, steady cutting, and cut-out. All voxel removal calculations were conducted
using CUDA on an NVidia Quadro M4000 GPU, which uses Maxwell architecture and supports both

the single and double precisions.

4.1 Flat-end milling process with single precision computation
For a steady-state linear milling process, the tool, cutting depth, and feedrate are all fixed. It

means theoretical MRRs should be the same in different scale factors (M). Fig. 12 shows simulated



results of N with M. All four figures show that the curves have three stages: cut-in (ascent stage),

steady cutting (dynamic stability stage), and cut-out (descent stage). Unlike the theoretical constant

value of N in the steady cutting stage, the curves exhibit oscillation. For each curve during the

steady cutting stage, the average value IVﬂat and standard deviation o are calculated in

Table 1. The theoretical value of N in the stable cutting stage (N) can also be calculated by

Equation (12). All the data points of N in the stable cutting stage are plotted into frequency

histograms as shown in Fig. 13. The distribution of N conforms to the law of normal distribution,

where the parameters of the mean value (IVﬂat) and standard deviation (0f;4.) are shown in

Table 1. Fig. 14 shows scatter points of (M, Nﬂat), and quadratic fit curve through points of

(M, N).
Table 1. Computational results with the single precision of flat-end milling in the steady cutting stage. R =
0.1,D = 0.01.
M a [D/a] Nriae Oflat N
10 0.01 1 20.95 1.31525 20
100 0.001 10 1808 27.58856 2000
200 0.0005 20 7619 61.68451 8000
500 0.0002 50 50049 130.24701 50000
1000 0.0001 100 200099 429.43052 200000
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Fig. 12. Computed results of N by GPGPU with single precision (R = 0.1, D = 0.01), and the theoretical MRR is
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Fig. 14. The quadratic increase of N changes against the increasing M.

4.2 Flat-end milling process with double precision computation

The simulation experiments with double precision were conducted on the same GPGPU. The

comparison results are shown in Fig. 15. Diagrams (a), (b) and (c) show the variation of N along the

cutting path with both single and double precisions, and diagram (d) is an enlarged portion of the

curve which is depicted by the rectangle in diagram (c). The average value (Nﬂat) and standard

deviation (o) of N during the stable cutting stage with double precision are presented in Table 2. It

is obvious that double precision computation has a lower standard deviation than single precision.

Lower standard deviation shows up as smaller oscillation on the curves of N.
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Fig. 15. Comparison using of N single and double precisions in flat-end milling (R = 0.1, D = 0.01).

Table 2. Computational results with the double precision of flat-end milling in the steady cutting stage. R =

0.1, D = 0.01.
M a [D/al] Nrige Oflat
10 0.01 1 21 1.26352
100 0.001 10 1809 6.17655
200 0.0005 20 8020 9.64606
500 0.0002 50 50050 72.40815
1000 0.0001 100 200099 336.11364

4.3 Ball-end milling process

Both single precision and double precision computations were conducted for ball-end milling
process with different voxel sizes. Fig. 17 shows the comparison results of N between ball-end and
flat-end millings with single precision using the same values of tool radius (R = 0.1) and cutting
depth (D = 0.01). It can be seen that ball-end milling has a lower value and smaller oscillation than
flat-end milling. The penetration shape of the cutting tool for flat-end milling is a cylinder, while it is
a spherical crown for ball-end milling. Based on the analysis before, N is proportional to the
projection area of the active part of the tool along the direction of motion (brown voxels in Fig. 8
and Fig. 11). As shown in Fig. 16, for ball-end milling, the projection area is a circular segment

(MHN); for flat-end milling, the projection area is a rectangle (CDEF). With the same tool radius (R)



and cutting depth (D), the ratio of the two millings on N in the stable cutting stage is equal to the
ratio of the two projection areas. When R = 0.1 and D = 0.01, the theoretical ratio is about 3.41.
From the computed results in Table 3, the computed ratio agrees well with the theoretical one
when the values of M is larger than 100. However, the ratio of Ny;q¢/Npq deviates drastically from
the theoretical ratio when M = 10. In other words, coarse voxel size and shallow cutting depth
(technologically speaking, the smaller number of layers [D/a]) will cause a severe computational

error for ball-end milling in voxel-based MRR calculation.

Compared with the flat-end milling, a smaller oscillation of ball-end milling manifests lower
standard deviation (op4;;), which is shown in Table 3. The reason for the lower standard deviation

of ball-end milling will be analyzed in the following section.

Q

Fig. 16. The projection areas of the active part of tools for flat-end and ball-end mills.

Table 3. Computational results with the single precision of ball-end milling in the steady cutting stage. R =

0.1, D = 0.01.
M a [D/a] Npan Opall Nriat/Npaun
10 0.01 1 1 0 20.95
100 0.001 10 539 0.55164 3.35436
200 0.0005 20 2254 0.80397 3.38021
500 0.0002 50 14454 1.43342 3.46264

1000 0.0001 100 58271 2.64711 3.43394
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Fig. 17. Comparison of N curves in ball-end and flat-end millings with single precision (R = 0.1, D = 0.01).

Just as flat-end milling, the ball-end milling simulation is also affected by the computational
accuracy. As shown in Fig. 18, the curves with double precision have almost zero oscillation in the
stable cutting stage. The markedly statistical result of N in Table 4 is that all the standard
deviations are zeros. It means the ball-end milling with double precision can effectively avoid voxel

misjudgment.
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Fig. 18. The comparison result of N with both single and double precisions in ball-end milling (R = 0.1, D =
0.01).



Table 4. Computational results with the double precision of ball-end milling in the steady cutting stage (R =

0.1, D = 0.01).

M a [D/a] Npau Opall
10 0.01 1 1 0
100 0.001 10 542 0
200 0.0005 20 2254 0
500 0.0002 50 14454 0
1000 0.0001 100 200099 0

5. Error analysis of voxel-based MRR

The amplitude and oscillation of N curves in the stable cutting stage change with M, computational
accuracy, and tool end shape. Error analysis is essential to understand such behavior of MRR
calculation error variations. Conclusions of this section are helpful to set up the criterion for voxel

size limit in the voxel-based CAM to guarantee the MRR computation accuracy.

5.1 Relative range analysis of N

The relative range is defined as the ratio of the range to mean value, as shown in Equation (19),

_ Ninax = Nmin (19)

where N, is the maximum number of the sample, N,,;,, is the minimum number of the sample,
and N is the predicted outcome which can be calculated by equation (12). The relative ranges of N
in the steady cutting stage of flat-end milling are shown in Fig. 19. It can be seen that the reciprocal
of the relative range has a linear relationship with M. The fitting equation is expressed in Equation

(20). For single precision, a = 2.195, b = 0.1153; while for double precision, a = 11.51,b = 0.1971.

1
—=a+bM (20)

r
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Fig. 19. The relative range changes against M in the flat-end milling.

5.2 Mean absolute error analysis of N
The mean absolute error (MAE) is a quantity used to measure how close predictions are to the

eventual outcomes. The MAE is given by equation (21):

a|N; — N

MAE = (21)

where N; is the computed data points, N is the predicted outcome which can be calculated by
equation (12), and n is the sample capacity. The computed values for MAE with both single and
double precisions in flat-end milling are shown in Fig. 20. MAE increases with the increasing M.

Double precision has a smaller MAE than single precision.
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Fig. 20. MAE against M on both single and double precision in flat-end milling.

5.3 Variance analysis

From the previous discussion, double precision can improve the ability of judgment on voxel
removal, and decrease the standard deviation of N curves. Besides, ball-end milling has good
computational accuracy with a smaller variance than flat-end milling. According to Fig. 21, standard
deviations of flat-end milling increase with M for both single and double precision, while standard

deviations of ball-end milling are approximate horizontal lines due to their small values.

To explain this phenomenon, we can establish a simple mathematical model on the variance of

random variables. Based on the previous analysis, Ny, is accumulated by many the same single-

layers and expressed in Equation (22), but Npg,; is accumulated by descending series of single-

layers and expressed in Equation (23). Mathematical expectation and variance of N for flat-end and
ball-end are respectively expressed in Equation (25)-(28). E(X;) = [?] is the mathematical
expectation of voxels removed on the first layer in Fig. 8. E(Y;) is the expected quantity of voxels
removed on the first layer in Fig. 11, and equal to [Zaﬁ] < [%] = E(X,). E(Y;) is a decreasing
sequence, 0 E(Nyq) = Xe E(Y;) < nE(Y,) < nE(Xy) = E(Nﬂat). In addition, it can be seen that

0?(x) is a monotonously increasing function from Fig. 21. So 62(Y;) = o2 (%) <c? (Zai) <

02 (2) = 62(X,), we get 02 (Npay) = Bl 02(Y) < Tty 02(Xy) = no? (X;) < n?0?(Xy) =

o? (Nﬂat). It means the variance (standard deviation) of the ball-end milling is far less than the

variance (standard deviation) of the flat-end milling. Base on the above analysis, we get



E(Npai)/E(Nfiar) < 1,and 2(Npgy) /02 (Nfiqr) < 1/n = [a/D]. This conclusion is perfectly

compatible with the computed results on the difference of the ball-end and the flat-end millings.

Nflat :X1 +X2++Xn :nX1 (22)
n
Noas =¥ + ¥ + ok Yy = ) Y, (23)
i=1
D
n= H (24
a
E(Nfiqe) = nE(X,) (25)
O'Z(Nflat) = TlZO'Z(Xl) (26)
n
Epau) = ) E(Y) < nE(¥) < E(Njige) (27)
i=1
n
0 WNpa) = ). (1) < n02(1) < 0*(Nyiae) (28)
i=1

where X; is the number of voxels removed on the i*" layer as shown in Fig. 8, Y; is the number of

voxels removed on the i layer as shown in Fig. 11, and n is the total number of layers.
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Fig. 21. The standard deviation of N



5.4 Analysis of periodic characteristics

The curves of N show periodic characteristics. The minimal positive period of N changes slightly
with M in flat-end milling is shown in Fig. 22. With the increase of M, the minimal positive period
just decreases a little, but with no obvious variation trend. The average value of the minimal

positive period of N is about 2.9, which is quite close to 3.
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Fig. 22. The minimal positive period of N in flat-end milling.

6. The probability distribution of normal distance from voxel to tool

According to the analysis above, the cause of oscillation in voxel-based MRR computation is the
misjudgment of voxel removal due to the discrete nature of the voxel model. The basic judging
criterion of voxel removal is the distance from the voxel center to tool boundary. Once the distance
changes from positive to negative, the voxel is removed. The probability distribution of normal
distance from the voxel center to tool boundary is studied to understand the error distribution

when the voxel model makes a decision for voxel removal or not.

6.1 Definition of distance from the voxel center to tool boundary

The centers of voxels that comprise the workpiece from a point grid that the cutting tool travels
through as it removes material. Fig. 23 shows a graphical depiction of distances from various voxel
centers to the boundary of the cutting tool, which is shown as a red circle. In this figure, the tool
moves from left to right, therefore, the material is only removed on the right side of the tool. Some
points near the right-hand side of tool boundary are efficient points, which are probable to be

removed in the current or next step with tool traveling. Distances from these efficient points to the



tool boundary form a mathematical set X, which can be normalized using Equation (30), to form set

Y as expressed in Equation (31).

X = {x11x21x31 ey X, XN } (29)
x.

y; = Ele [—V2,V2] (30)

y={y1,y2;y3;"';yi;"'yN*} (31)

where N* is the total amount of the efficient points, x; is the normal distance from the it voxel

center to the tool boundary, y; is the normalized distance of x;.
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Fig. 23. Distance from voxel centers to tool boundary.

6.2 Probability distribution results
The probability distribution of elements in set Y when the tool center locates coincides with a voxel
center is shown in Fig. 24, and the probability distribution of elements in set Y when the tool center
coincides with a voxel vertex is shown in Fig. 25. As M increases, the histogram tends to be a
uniform distribution. As M tends to infinity, the distribution will be a uniform distribution even
when the tool center is located randomly on the voxel grid; this case is shown in Fig. 26. Based on
the analysis above, all the elements in set X obey uniform distribution when M tends to infinity; the
probability density function of set X is expressed in Equation (32).

Fx) = 4—\/3 ,—\/EanS\/Ea

0 ,x< —2a orx > 2a

The uniform distribution indicates that all the voxels have the same probability, regardless of

(32)

the distance to the tool boundary; in other words, the misjudgment in voxel removal has a linear

relationship with the computational error. The misjudgment in voxel removal causes the oscillation



on the curve of N, which should be a constant in the steady cutting stage. The relative range R,. can
be used to characterize the metric of misjudgment; the ratio of misjudgment between single and

double precision in voxel removed is presented in Equation (33),

(Rr)s _ (a+bM)q _ ()4 01971
(R)dly.. (@+bM)|, —~— (b)s 01153

= 1.709 (33)

where subscript s is single precision, and subscript d is double precision. As mentioned above, the
data precision with single precision computation has six or seven significant decimal digits; with
double precision computation, it has and fifteen or sixteen significant digits. The ratio in Equation
(33) reveals that the possibility of misjudgment in voxel removal with single precision computation

is about 1.709 times that of the probability when using double precision computation.
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Fig. 24. The probability distribution of elements in set ¥ when the tool center coincides with a voxel center.
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Fig. 25. The probability distribution of elements in set Y when the tool center coincides with a voxel vertex.
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Fig. 26. The probability distribution of elements in set Y when the tool center is located randomly on the
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6.3 Frequency distribution of the length of circular segments

Fig. 27 shows how the tool boundary was broken into many segments by the voxel grid. When the
M is large enough, the length of each circular segment tends to be infinitely small, and the length of
a circular segment can be substituted by the length of the chord drawn between the ends of the

segment.

The probability distribution of the chord lengths is shown in Fig. 28, where two distinct
portions are visible: the first portion is a uniform distribution located on [0, a], and the second
portion is a monotonically decreasing curve on the interval [a, V2 a]. The probability density
approaches infinity at a. It means the greatest possibility of the chord length is equal to the voxel

length a.
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Fig. 27. The tool boundary is broken into many segments by the voxel grid.
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Fig. 28. The probability distribution function of the chord lengths (unit of x-axis: a; unit of y-axis: 1/a).



7. Error Modeling of MRR computation

Modeling and simulation are two powerful tools in scientific research and engineering application
(Allen, 2004, Nie et al., 2015, Nie et al., 2018, Stavropoulos and Chryssolouris, 2007). Due to the
discreteness of the voxel model, a computer cannot make an accurate judgment of voxel removal
when a voxel center is located close to the tool boundary. Thus, an error band should be considered

when performing analysis and modeling the number of voxels removed in one-step.

As shown in Fig. 29, voxels to be removed is located in one of three domains: E, O, and .
Domain E is the error band, which is an annulus centered around the tool boundary with radius
interval [R — &, R + ¢]; domain O is an annulus that is completely external to the tool boundary,
concentric with domain E, with radius interval [R + &R ++2a+ e] ; and domain [ is an annulus
that is completely internal to the tool boundary, concentric with domain E, with radius interval
[R —v2a—¢&R—¢, ] When the step length is just equal to the voxel size, the six possible domain
changes are shown in Fig. 30: (1): 0 - 0,(2):0 - E,(3):0 > I,(4):E - 1,(5):E > E, (6):1 - I.

R—V2a-c¢ R—¢ R R+e¢ R+V2a+¢

Fig. 29. Three domains: E, O and I.
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Fig. 30. Possible domain changes:

(1):0-0,(2):0->E 3):0-14):E—I()E->E (6):1-I

The definition of the contribution function Sij of the it" voxel in jt" step is presented in
Equation (34). The contribution function can be used to assist in voxel judgment as follows: when
the domain changes clearly from O to I (O — I), the value of the contribution function is 1; when the
domain remains unchanged (O = O,E — E,I — I), the value of the contribution function is 0; when
the domain changes into or out of the error range (0 — E, E — I), the voxel status cannot be judged
accurately and the contribution function can be either 1 or 0 with the same probability of 0.5.
Usually, O — E is prior to E — I when the tool moves through the voxel grid; however, there exist
several distinct paths that a voxel center may take as it transitions through the O — E — I domains.
The possible state changes are as follows: (a): one or more E — E transitions followan 0 - E
transition and the voxel center never reaches domain /; (b): a single E — I transition follows the
O — E transition; (c): one or more E — E transitions occur between the O — E transition and the

E — I transition. All the algorithms are shown in Table 5.
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Table 5. The algorithm of contribution function on the error domain.

(G —1)" step J™ step
5/710 ~ B) = 1, (50%) S{E->D =0
/710 > E) = 0, (50%) s{(E-D=1

As computational error ¢ is quite small with respect to the voxel size a, most of the voxels in
domain O will directly experience O — I, and only a few voxels experience other domain
transitions. The modeling results of the flat-end milling with single precision are shown in Fig. 31. It
can be seen that the two curves are basically the same in the amplitude and oscillation, the period
of the modeling curve is 3, which is close to the computed curve. One distinction between the two
curves is the symmetry of amplitude: the modeling curve is transversely zygomorphic, and the
previously computed curve not. The reason is complex, and one possible explanation is the

probability is not 0.5 in O - E judgment.
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Fig. 31. Comparison between error modeling prediction and previously computed data.



8. Conclusions

This research presented an analysis and modeling of voxel-based MRR computation of the
milling process. The cause of oscillation in voxel-based MRR computation is the misjudgment of
voxel removal due to the discrete nature of the voxel model. Discrepancies between theoretical
MRR and computed MRR were investigated using both single and double precision computation of
the number of voxels removed in one feed step (V) of milling processes. By the Cavalieri’s principle,
discrete mathematical expressions of MRR were respectively derived for flat-end milling and ball-
end milling. MRR has a linear relationship with the variable quantity of voxels removed (N) in one
feed step, so the analysis of MRR can be equivalent to the analysis of N as other conditions keep

invariable.

A series of simulation experiments were conducted on GPGPU by using computer programs we
developed to simulate the two millings. Discrepancies between these two values were investigated
of N. The dependence with respect to the ratio between the radius of the tool and the voxels size,
and the use of single or double precision floating-point computations were studied. Results indicate
that the cause of oscillation in discrete MRR computation is the misjudgment of voxel removal due
to computational error. Comparisons on N-curves indicate that double precision can improve the
ability of judgment on voxel removal, and decrease the standard deviation of N curves. Besides,
ball-end milling has good computational accuracy with a lower standard deviation than flat-end

milling.

Error analysis conducted on the curves of N revealed that the relative range decreased with the
increasing scale factor M, and the mean absolute error increased with the increasing M. Standard
deviation analysis was conducted through a simple mathematical model on the variance of random
variables. It turns out that the variance (standard deviation) of ball-end milling is far less than the
variance of flat-end milling. This conclusion is perfectly compatible with the computed results on
the difference of ball-end and flat-end millings. Finally, analysis of the periodic characteristics
reveals that all the curves approximately have a minimal period of 2.9. The probability distribution
of normal distance from the voxel center to tool boundary is studied to understand the error
distribution when the voxel model makes a decision for voxel removal or not. It turns out that the

normal distance obeys a uniform distribution when M is large enough.



For better understanding and improving MRR computation precision in voxel-based CAM, a
computational error model was proposed to describe the behavior of N-curves. The error domain
was embedded into the model, and the contribution function was used to count the valid number of
voxels removed. Comparison between the modeling result and the previously computed result

shows that the model can well predict the periodic variation of N curves in the milling process.

The error model demonstrates the error source of MRR computation and offers a promising
method to accuracy control in CAM. In our future work, the criterion for voxel size limit will be set

up in the voxel-based CAM to guarantee the MRR computation accuracy.
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