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Abstract 

Material removal rate (MRR) is a commonly used metric for determining the efficiency of a 

toolpath design, as it is usually used to determine the amount of machining time spent 

doing useful work. Voxel-based computer-aided manufacturing (CAM) software enables 

simple computation of MRR by counting the number of voxels removed (𝑁) in one feed 

step. However, depending on the geometry of the cutting tool and the voxel size used in the 

CAM software, there can be disagreement between theoretical and simulated MRR values. 

The cause of oscillation in voxel-based simulated MRR is the misjudgment of voxel removal 

due to the discrete nature of the voxel model. MRR has a linear relationship with 𝑁, so the 

analysis of MRR can be equivalent to the analysis of 𝑁 as other conditions keep invariable. A 

series of simulation experiments were conducted on GPGPU by using computer programs 

that were developed to simulate the milling process. Discrepancies between voxel-based 

simulated MRR and the theoretical MRR were investigated. The dependence with respect to 

the ratio (𝑀) between the radius of the tool and voxels size, the use of single or double 

precision floating-point computations, and the end shape of the cutting tool was studied. 
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Results indicate that double precision improves the ability of judgment on voxel removal, 

thereby decreases the standard deviation of the 𝑁 curve. Besides, ball-end milling has good 

computational accuracy with a lower standard deviation than flat-end milling. The relative 

range, mean absolute error, and standard deviation analysis were used to describe the 

oscillation regularity of 𝑁 curves. The probability distribution of normal distance from the 

voxel center to tool boundary was studied. The result indicates that the distance obeys a 

uniform distribution when 𝑀 is large enough. Modeling of MRR computation with 

computational error domain was proposed to represent the oscillation behavior of MRR, 

and the result shows that the model can well predict the magnitude and period of 𝑁 curves 

during the milling process. 

Keywords: MRR, CAM, Voxel, GPGPU, Modeling. 

1. Introduction 

Computer-aided manufacturing (CAM) software is a powerful tool used for the generation of 

toolpath for computer numerical control (CNC) machine tools. Toolpath generation for a complex 

surface is a large time-consumption for current general-purpose CPU (central processing unit)-

based CAM software. Hossain et al. (2016b) point out that the current advent of parallel 

computation with graphics processing units (GPUs) enable the use of GPU-based algorithms for 

toolpath design that can improve computation speed for both additive and subtractive 

manufacturing processes. In recent years, some works have solved CAD and CAM acceleration 

problems using GPGPU. Krishnamurthy et al. (2009)describe a unified and optimized method for 

evaluating and displaying trimmed NURBS surfaces using GPGPU. It turns out GPU evaluation and 

rendering speeds have an obvious elevation to CPU. Kurfess et al. (2007) use NURBS (Non-Uniform 

Rational B-Spines) curves and surface-based calculation as the main methods for rendering, surface 

offsetting, tool path programming. Tarbutton et al. (2010) propose a graphics-based approach to 

the tool path and trajectory-planning problem found in machining and robotics applications.  

A voxel model uses a three-dimensional array of small cubes to represent a part volume; these 

cubes, or voxels, are the three-dimensional analog of two-dimensional pixels in an image. The use of 

voxels for a CAM application enables higher surface complexity, simplified collision checking, and 

more robust analysis of material removal than would be possible with typical parametric CAM 

(Kurfess, 2018). Voxel-based CAM has a number of advantages over traditional parametric CAM: it 

is better able to represent complex, freeform surfaces that would be difficult to describe with 



analytical curves; it enables simpler collision checking between a cutting tool and a workpiece; and 

the calculation and simulation of material removal along a toolpath consists of a simple summation 

of removed voxels (Jang et al. , 2000, Lynn et al. , 2018a, Lynn et al. , 2018b). To solve the enormous 

data storage problem in voxel-based computation, Hossain et al. (2016a) develop hybrid dynamic 

trees for an extreme-resolution 3D sparse data modeling. Abi-Chahla (2008) indicates that GPU has 

a great potential in the engineering field as its powerful parallel computing ability. Lynn et al. 

(2017) point out the use of GPUs for general purpose computation is of particular interest for CAM 

using voxel models; instead of using analytical surfaces to define part geometry. Fig. 1 shows how a 

voxel model represents a part of a collection of small cubes. The sparse voxel octree can enable 

higher memory efficiency: fine voxels are near the boundary of the part and the cutting tool, and 

coarse voxels are in the interior of the workpiece (Konobrytskyi, 2013). This work relies on a voxel-

based CAM software known as SculptPrint that uses GPUs to accelerate toolpath generation. 

Tool

Workpiece

 

Fig. 1. Geometrical representation in voxel-based CAM. 

Material removal rate (MRR), the volumetric rate of material flow from the workpiece, is a 

commonly used metric for the efficiency of a toolpath as it can be used to determine the amount of 

machining time spent doing useful work. Choudhury and Appa Rao (1999) find that MRR has a 

significant effect on the tool life, cutting force and energy consumption, etc. Kara and Li (2011) have 

recently proposed an empirical model to characterize the relationship between energy 

consumption and process variables for material removal processes. The results indicate that the 

specific energy consumption (SEC) has an inverse relationship with MRR. Parametric CAM system 

commonly applies a complicated NURBS interpolator to compute MRR, which has been tried one 

after another by Tsai et al. (2001), Tikhon et al. (2004), and Ko et al. (2005).  



Voxel-based CAM enables simple computation of MRR for a toolpath of any complexity. The 

whole toolpath is composed of motion steps. In each step, the tool center moves just an identical 

distance of the voxel size. The total volume of all removed voxels over one-step can be summed up. 

The time length of the step is the ratio of the voxel size to the feedrate. Finally, MRR is obtained as 

the ratio of the volume to the time. For example, consider a simple raster toolpath shown on the 

prismatic workpiece: for this ball-end milling along a linear trajectory, which has constant cutting 

depth and feedrate, so the theoretical MRR of the milling process should be constant. A voxel-based 

CAM software known as SculptPrint (Lynn et al. , 2016) is used to simulate such a steady-state 

milling process. The cutting depth is 0.1 inch, and feedrate is 0.5 inches/s. The simulated MRR 

curve using the voxel model is computed and plotted in the bottom in Fig. 2. However, the 

simulated MRR is not constant and instead exhibits oscillation.  

The cause of oscillation in voxel-based MRR computation would be the misjudgment of voxel 

removal. Due to the discrete nature of the voxel model, the theoretical MRR may not always match 

the simulated MRR. The theoretical analysis and the simulation experimental demonstration are 

both presented in this article. All the simulation experiments in this article were conducted on GPU 

using CUDA (Compute Unified Device Architecture) respectively with single precision and double 

precision. In addition, the basic judging criterion of voxel removal is the distance from the voxel 

center to tool boundary. The probability distribution of the normal distance from the voxel center 

to tool boundary is studied in this article for better understanding the nature of MRR oscillation. 

 

Fig. 2. Simulated MRR curve using voxel-based CAM software SculptPrint.  

This work presents a voxel-based model of MRR computational accuracy using GPGPU 

computing. Mathematical expressions of MRR with voxel representation was derived using 

Cavalieri’s principle. Analysis under both single and double precision computational errors of the 

amount of voxel removal is presented to explain the cause of oscillation in the computed MRR 

curves. A scale factor 𝑀 is defined as a ratio of the tool radius to the voxel size. The simulation 



experimental results demonstrate that the amplitude and oscillation of 𝑁 curves during stable 

cutting stage are related to 𝑀, computation accuracy, and end shape of the cutting tool. The 

probability distribution of normal distance from the voxel center to tool boundary was studied, and 

the result indicates that the normal distance obeys a uniform distribution. A computation model 

was proposed to describe the oscillating behavior of 𝑁 curves; the error domain is embedded into 

the model to describe the voxel misjudgment during MRR computation. 

2. Related works 

Material Removal Rate 

MRR is defined as the volume of material removed per unit time. The higher cutting parameters, the 

higher MRR. As shown in Fig. 3, MRR in flat-end milling process with a cylindrical milling cutter is 

the product of the depth of cut, the width of cut, and the feedrate. The mathematical expression of 

MRR for linear flat-end milling is represented in Equation (1). 

 MRR = 𝐷 ×𝑊 × 𝐹 (1) 

where 𝐷 is the cutting depth, 𝑊 is the cutting width, and 𝐹 is the feedrate.  

W: Cutting width
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MRR = 𝐷 ×𝑊 × 𝐹 

 

Fig. 3. The mathematical expression of MRR in the flat-end milling process. 

More generally, as shown in Fig. 4, when the tool moves along a three-dimensional curve, the 

removed material volume is equal to the swept volume generated by the tool-material contact area 

𝜓 along the tool trajectory. A generalized MRR expression can be calculated as follows: 

 MRR = ∫ 𝑑𝑠 ∙ 𝐹⃗
𝜓

 (2) 

where 𝜓 is the tool-material contact surface during machining, 𝐹⃗ is the federate of the tool at any 

point on the contact surface 𝜓, and 𝑑𝑠 is the area vector of the finite element at the point. The inner 



production 𝑑𝑠 ∙ 𝐹⃗ is the finite MRR on the infinitesimal area near the point. For 5-axis milling, 

federate 𝐹⃗ is usually not a constant on surface 𝜓, but a vector function in three-dimensional space. 

What needs to be pointed out is that the tool outline surface is the enveloping surface of the cutting 

edge due to its spinning. 

𝐹⃗ 

d𝑠 

𝜓 

 

Fig. 4. Schematic diagram of the generalized MRR definition. Removed material volume is equal to the tool-
material contact area moving along the tool trajectory. 

Floating Point Representation 

CUDA is a parallel computing platform and application programming interface (API) model created 

by NVIDIA that enables a GPU to be used for general purpose processing – an approach termed 

GPGPU. The CUDA platform is a software layer that gives direct access to the GPU's virtual 

instruction set and parallel computational elements for the execution of compute kernels. The 

creation of GPU-based algorithms for toolpath generation and analysis in this work relies on CUDA. 

Sanders and Kandrot (2010) describe that CUDA is designed as a parallel platform and 

programming model to work with programming languages such as C, C++, and FORTRAN. CUDA 

accepts both single and double precision numbers as determined by specific GPU architecture that 

is targeted during application development. The single and double precision floating point formats 

are described as shown in Fig. 5 (IEEE, 2018). 

sign exponent (8 bits) fraction (23 bits)

sign
exponent
(11 bits) fraction (52 bits)

(a)

(b)

022233031

063

bit index

bit index  

Fig. 5. IEEE754 binary floating-point format. (a): single precision, (b): double precision. 



Conversion of a single precision binary floating-point number to decimal can be performed 

using Equation (3) and (4) (IEEE, 2018): 

 Value = (−1)𝑏31 × (1 +∑𝑏23−𝑖2
−𝑖

23

𝑖=1

) × 2(𝑒−127)  (3) 

 𝑒 =∑𝑏23+𝑖

7

𝑖=0

2+𝑖  (4) 

where 𝑏0, 𝑏1, ⋯ , 𝑏31 are the binary digits. Double precision also has similar expressions as shown 

in equation (5) and (6) (IEEE, 2018). After transformation from binary to decimal, the number has 

only six or seven significant decimal digits with the single precision (log10(2
23) ≈ 6.92), while 

about fifteen or sixteen with the double precision (log10(2
52) ≈ 15.65). 

 
Value = (−1)𝑏63 × (1 +∑𝑏52−𝑖2

−𝑖

52

𝑖=1

) × 2(𝑒−1023)  
(5) 

 
𝑒 =∑𝑏52+𝑖

10

𝑖=0

2+𝑖  
(6) 

Non-Uniform Rational B-Splines (NURBS) interpolator 

Non-Uniform Rational B-Splines (NURBS) interpolator was used in computer-aided design (CAD) 

and manufacturing (CAM) to represent a wide range of curves and surfaces due to its flexibility and 

precision. NURBS are parametric curves and surfaces, which is usually described by standard STEP 

files in CAD/CAM systems. The parametric form is very convenient for controlling multi-axis 

machine tools and robotics, where each axis is driven individually (Zhang and Greenway, 1998). A 

three-dimensional curve is expressed in parametric form as follows: 

 
𝐶(𝑢) = [𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢)] =∑𝑓𝑖(𝑢)𝑃𝑖

𝑛

𝑖=0

 
(7) 

where 𝑢 is an arbitrary parameter and usually normalized to [0,1], {𝑃𝑖}are control points, and 

{𝑓𝑖(𝑢)} are piecewise polynomial basis functions forming a basis for the vector space of all 

piecewise polynomial functions of the desired degree and continuity . Similarly, A three-

dimensional surface is expressed by two parameters (𝑢 and 𝑣), as shown in Equation (8). 



 
𝑆(𝑢) = [𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)] =∑∑𝑓𝑖(𝑢)𝑔𝑗(𝑣)𝑃𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 
(8) 

𝐶(𝑢) and 𝑆(𝑢) are called basis spline (B-spline) functions, were first used to define curves and 

surfaces for CAD by Gordon and Riesenfeld (1974). Many mainstream CAM software, e.g. 

Mastercam, CAMWorks, CATIA, Siemens NX CAM, etc., all adapt NURBS interpolator to represent 

the geometry. 

For a steady linear milling process (cutting depth: 0.1 inches, milling tool feedrate: 0.5 inch s⁄ , 

the radius of the ball-end tool: 0.1 inches.), MRR are computed respectively using the voxel model 

and the NURBS interpolator. For the voxel model, MRR is calculated on the different voxel sizes (or 

the different scale factor 𝑀). For NURBS interpolator, an open-source package NURBS-Python 

(Bingol and Krishnamurthy, 2019) is used to simulate the milling process and compute the change 

in MRR. As shown in Fig. 6, the truth MRR of the milling is 2.936E-4 inch3 s⁄ , and the MRR curve of 

NURBS is close to the truth value with a relative error of less than 1%. However, with an increase of 

M (or decrease of the voxel size), the MRR curves of the voxel mode draw closer to the truth-value, 

and the oscillation is getting smaller. In other words, fine voxel can obtain a smaller bias and 

variance in MRR computation. Nevertheless, it is attention that the voxel mode has higher accuracy 

and lower oscillation than NURBS when M is roughly equal to or greater than 1,000. This means we 

can get high computation precision of MRR by means of reducing the voxel size. 
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Fig. 6. MRR computational results of steady linear milling. 



3. Voxel-based MRR expression of the milling process 

Fig. 7 shows some common types of end mills. Flat-end milling and ball-end milling are the two 

most common milling processes. Flat-end milling with a cylindrical tool is mainly used to produce a 

flat surface, while ball-end milling is widely used in the multi-axis NC machines for manufacturing 

complicated curved surface. In this section, voxel-based MRR expression of both the flat-end milling 

and the ball-end milling are derived respectively. 

Flat-end   Ball-end   Tapered-end   Bull nose    Drillin-end   

Fig. 7. Common types of end mills 

3.1 Voxel-based MRR expression of the flat-end milling 

As shown in Fig. 8, the flat-end milling process is first discussed to deduce the voxel-based 

MRR expression. Flat-end milling is, in essence, a two-dimensional problem. Top view of the flat-

end milling process is shown in Fig. 9. The red circular arc is the external surface of the cylindrical 

tool in top view, the squares are voxels that make up the part, the bold dots are the center points of 

voxels, and the distance of feed step is chosen the same value as the voxel size (𝑎). Once a bold dot 

intrudes into the tool boundary, the corresponding voxel will be removed by the tool. It can be seen 

that there is one and only one voxel removed in each row along the moving direction. All the voxels 

to be removed are marked as green within the current step. Fig. 10 shows the relationship of the 

real removed shape (which is a crescent shape in the physical milling process, domain A) and the 

discrete voxels removed (which is made up of the entire removed voxels in one-step, domain B) 

when the tool moves just one-step. According to the Cavalieri’s principle (Wikipedia, 2018), the 

area of the domain A is equal to the total area of the domain B between the upper and lower limits. 

Above all, the quantity of voxels removed (𝑁) in one feed step is equal the number of voxels in the 

projected plane (marked with brown in Fig. 8) for three-dimensional flat-end milling. 

To quantitatively describe the relative size of the voxel to the milling tool, a scale factor 𝑀 is 

defined in Equation (9) as a ratio of the tool radius to the voxel size.  



 𝑀 =
𝑅

𝑎
 (9) 

where 𝑅 is the radius of the milling tool, and 𝑎 is the voxel size. The scale factor 𝑀 illustrates the 

relative size of the tool radius to the voxel size. For a fixed tool, a larger 𝑀 means fine voxel, while a 

smaller 𝑀 means rough voxel. 
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Fig. 8. Voxelization of the workpiece-tool system in flat-end milling 
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Fig. 9. Top view of the flat-end milling. 

As shown in Fig. 10, it can be seen that the maximum error between domain A and domain B is 

two voxels that are located on the head and end of the domain B. When the scale factor 𝑀 is large 

enough, the residual area outside the two limits of domain B can be ignored. Therefore, the area of 

domain A can be substituted by the area of domain B in MRR computation.  The relative error 

satisfies the inequality (10). This inequality illustrates and guarantees the bias of the voxel-based 

MRR results in Fig. 6.  



 𝜀𝐴|𝐵 <
2

2𝑅 𝑎⁄
=
1

𝑀
 (10) 

where 𝜀𝐴|𝐵  is the relative error between domain A and domain B.  
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Fig. 10. Area equivalence principle. According to Cavalieri’s principle, the area of domain A is equal to the area 
of domain B between the upper and lower limits. 𝑁 is the number of voxels in domain B. 

Based on the definition, MRR is the ratio of volume removed to traveling time as expressed in 

Equation(11): 

 MRR =
𝑁𝑎3

𝑎 𝐹⁄
= 𝑁𝑎2𝐹 (11) 

where 𝑁 is the variable quantity of removal voxels in one feed step, and 𝐹 is the feedrate. It is 

visible that MRR is proportional to 𝑁. Therefore, the analysis of MRR can be equivalent to the 

analysis of 𝑁 as other conditions keep invariable. 

In the flat-end milling process,  𝑁 can be expressed in a discrete form as shown in Equation 

(12), which is a product of voxel quantity in the top view and cutting depth. Then the expression of 

MRR of flat-end milling is represented as Equation (13). 

 𝑁𝑓𝑙𝑎𝑡 = [
2𝑅

𝑎
] [
𝐷

𝑎
]=[2𝑀] [

𝑀𝐷

𝑅
] (12) 

 MRR𝑓𝑙𝑎𝑡 = 𝑁𝑓𝑙𝑎𝑡𝑎
2𝐹 = [2𝑀] [

𝑀𝐷

𝑅
] 𝑎2𝐹 (13) 

where 𝑎 is the voxel size, 𝑅 is the radius of the tool, 𝐷 is the depth of cut, and [] is the ceiling 

function. MRR would be a constant value in the face milling with fixed 𝑎, 𝐹, 𝑀, 𝐷, and 𝑅. The ceiling 

function can be neglected when 𝑀 is large enough, and 𝑁 can be expressed as a quadratic function 

of 𝑀 in Equation (14). 



 𝑁𝑓𝑙𝑎𝑡 ≃
2𝐷

𝑅
𝑀2 (14) 

3.2 Voxel-based MRR expression of the ball-end milling 

The ball-end milling process can be regarded as flat-end milling with a variable radius. As 

shown in Fig. 11, the cross-section of the intersection between a sphere and cuboid is voxelized by 

cubes. The sphere is the milling tool, and voxels inside the sphere are removal material. The 

number of voxels removed (𝑁) in one feed step is equal to the number of voxels in the projected 

plane (marked with brown in Fig. 11). 

 In order to express MRR, each voxel layer is simplified into a flat-end milling process with a 

cutting depth of 𝑎. Taking the 𝑖𝑡ℎ voxel layer as the research object, 𝑁𝑏𝑎𝑙𝑙
𝑖  is the variable number of 

voxel removed in one feed step and can be computed as in Equation (15), where 𝑟𝑖 is the radius of 

the circle on the 𝑖𝑡ℎ voxel layer and can be calculated by Equation (16). The total number of voxel 

removed (𝑁𝑏𝑎𝑙𝑙) in one feed step is the sum of 𝑁𝑏𝑎𝑙𝑙
𝑖  with 𝑖 from 1 to [𝐷 𝑎⁄ ].  [𝐷 𝑎⁄ ] is the number of 

layers within the scope of the ball-end tool. In conclusion, MRR in ball-end milling process can be 

expressed in Equation (18). 

 𝑁𝑏𝑎𝑙𝑙
𝑖 = [

2𝑟𝑖
𝑎
] (15) 

 𝑟𝑖 = √(𝐷 − 𝑖𝑎)(2𝑅 − 𝐷 + 𝑖𝑎) (16) 

 𝑁𝑏𝑎𝑙𝑙 = ∑ 𝑁𝑏𝑎𝑙𝑙
𝑖

[𝐷 𝑎⁄ ]

𝑖=1

 (17) 

 
MRR𝑏𝑎𝑙𝑙 = 𝑁𝑏𝑎𝑙𝑙𝑎

2𝐹 

 
(18) 

Ball-end milling is a nonlinear sum of a series of variable-radius flat-end millings. Due to its 

nonlinearity, it is difficult to get a concise equation for MRR in the ball-end milling process. The flat-

end milling process with a cylindrical tool has a constant radius along the rotational axis. The 

research on flat-end milling would reveal more general laws than the ball-end milling or some other 

formed millings. 
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Fig. 11. Voxelization of the workpiece-tool system in ball-end milling 

4. MRR Computational results with GPGPU 

Studies on flat-end and ball-end millings were respectively performed to determine the accuracy of 

material removal calculation from voxel models. The radius of the cutting tool is 𝑅, and the depth of 

cut is 𝐷. As shown in Fig. 10, the internal domain of the tool boundary is defined as domain I and 

the outside is domain O. Any voxel in domain I is considered to be removed when its center point 

crosses from domain O to domain I when the tool is moving through the workpiece. 

𝑁 is the number of voxels removed in one-step, and a function of tool shape, tool size, and 

voxel size.  First, according to Equation (11), MRR is proportional to 𝑁. MRR and 𝑁 have the same 

variation trend in the same cutting parameters. Second, 𝑁 can be computed by counting the number 

of voxels crossing into the tool boundary as the center of the tool moves from one voxel center to 

the next. Third, 𝑁 is a time-independent variable, which can just focus on the tool and voxel size. 

Therefore, for better understanding the cause of MRR oscillation during the milling process, 𝑁 is 

studied as the research objective instead of MRR. Theoretically, for a steady-state linear milling 

process, the mill tool keeps the fixed cutting depth and feedrate. 𝑁 should be a constant; however, 

due to misjudgment of voxel status caused by discretization, 𝑁 has oscillation in numerical 

computation. A series of simulation experiments were conducted using computer programs that are 

developed to simulate the two millings as shown in Fig. 8 and Fig. 11. The cutting process contains 

three stages: cut-in, steady cutting, and cut-out. All voxel removal calculations were conducted 

using CUDA on an NVidia Quadro M4000 GPU, which uses Maxwell architecture and supports both 

the single and double precisions.  

4.1 Flat-end milling process with single precision computation 

For a steady-state linear milling process, the tool, cutting depth, and feedrate are all fixed. It 

means theoretical MRRs should be the same in different scale factors (𝑀). Fig. 12 shows simulated 



results of 𝑁 with 𝑀. All four figures show that the curves have three stages: cut-in (ascent stage), 

steady cutting (dynamic stability stage), and cut-out (descent stage). Unlike the theoretical constant 

value of 𝑁 in the steady cutting stage, the curves exhibit oscillation. For each curve during the 

steady cutting stage, the average value 𝑁̅𝑓𝑙𝑎𝑡 and standard deviation 𝜎 are calculated in   

Table 1. The theoretical value of 𝑁 in the stable cutting stage (𝑁̂) can also be calculated by 

Equation (12). All the data points of 𝑁 in the stable cutting stage are plotted into frequency 

histograms as shown in Fig. 13. The distribution of 𝑁 conforms to the law of normal distribution, 

where the parameters of the mean value (𝑁̅𝑓𝑙𝑎𝑡) and standard deviation (𝜎𝑓𝑙𝑎𝑡) are shown in   

Table 1. Fig. 14 shows scatter points of (𝑀, 𝑁̅𝑓𝑙𝑎𝑡), and quadratic fit curve through points of 

(𝑀, 𝑁̂).  

Table 1. Computational results with the single precision of flat-end milling in the steady cutting stage. 𝑅 =
0.1, 𝐷 = 0.01. 

𝑀 𝑎 [𝐷 𝑎⁄ ] 𝑁̅𝑓𝑙𝑎𝑡 𝜎𝑓𝑙𝑎𝑡 𝑁̂ 

10 0.01 1 20.95 1.31525 20 

100 0.001 10 1808 27.58856 2000 

200 0.0005 20 7619 61.68451 8000 

500 0.0002 50 50049 130.24701 50000 

1000 0.0001 100 200099 429.43052 200000 
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Fig. 12. Computed results of 𝑁 by GPGPU with single precision (𝑅 = 0.1, 𝐷 = 0.01), and the theoretical MRR is 
identical in four cases. 
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Fig. 13. Frequency histogram of N with single precision (𝑅 = 0.1, 𝐷 = 0.01). 
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Fig. 14. The quadratic increase of 𝑁 changes against the increasing 𝑀. 

4.2 Flat-end milling process with double precision computation 

The simulation experiments with double precision were conducted on the same GPGPU. The 

comparison results are shown in Fig. 15. Diagrams (a), (b) and (c) show the variation of 𝑁 along the 

cutting path with both single and double precisions, and diagram (d) is an enlarged portion of the 

curve which is depicted by the rectangle in diagram (c). The average value (𝑁̅𝑓𝑙𝑎𝑡) and standard 

deviation (𝜎) of 𝑁 during the stable cutting stage with double precision are presented in Table 2. It 

is obvious that double precision computation has a lower standard deviation than single precision. 

Lower standard deviation shows up as smaller oscillation on the curves of 𝑁. 
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Fig. 15. Comparison using of 𝑁 single and double precisions in flat-end milling (𝑅 = 0.1, 𝐷 = 0.01). 

Table 2. Computational results with the double precision of flat-end milling in the steady cutting stage. 𝑅 =
0.1, 𝐷 = 0.01. 

𝑀 𝑎 [𝐷 𝑎⁄ ] 𝑁̅𝑓𝑙𝑎𝑡 𝜎𝑓𝑙𝑎𝑡 

10 0.01 1 21 1.26352 

100 0.001 10 1809 6.17655 

200 0.0005 20 8020 9.64606 

500 0.0002 50 50050 72.40815 

1000 0.0001 100 200099 336.11364 

 

4.3 Ball-end milling process 

Both single precision and double precision computations were conducted for ball-end milling 

process with different voxel sizes. Fig. 17 shows the comparison results of 𝑁 between ball-end and 

flat-end millings with single precision using the same values of tool radius (𝑅 = 0.1) and cutting 

depth (𝐷 = 0.01). It can be seen that ball-end milling has a lower value and smaller oscillation than 

flat-end milling. The penetration shape of the cutting tool for flat-end milling is a cylinder, while it is 

a spherical crown for ball-end milling. Based on the analysis before,  𝑁  is proportional to the 

projection area of the active part of the tool along the direction of motion (brown voxels in Fig. 8 

and Fig. 11). As shown in Fig. 16, for ball-end milling, the projection area is a circular segment 

(𝑀𝐻𝑁); for flat-end milling, the projection area is a rectangle (𝐶𝐷𝐸𝐹). With the same tool radius (𝑅) 



and cutting depth (𝐷), the ratio of the two millings on 𝑁 in the stable cutting stage is equal to the 

ratio of the two projection areas. When 𝑅 = 0.1 and 𝐷 = 0.01, the theoretical ratio is about 3.41. 

From the computed results in Table 3, the computed ratio agrees well with the theoretical one 

when the values of 𝑀 is larger than 100. However, the ratio of 𝑁̅𝑓𝑙𝑎𝑡 𝑁̅𝑏𝑎𝑙𝑙⁄  deviates drastically from 

the theoretical ratio when 𝑀 = 10. In other words, coarse voxel size and shallow cutting depth 

(technologically speaking, the smaller number of layers [𝐷 𝑎⁄ ]) will cause a severe computational 

error for ball-end milling in voxel-based MRR calculation. 

Compared with the flat-end milling, a smaller oscillation of ball-end milling manifests lower 

standard deviation (𝜎𝑏𝑎𝑙𝑙), which is shown in Table 3. The reason for the lower standard deviation 

of ball-end milling will be analyzed in the following section. 
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Fig. 16. The projection areas of the active part of tools for flat-end and ball-end mills.  

Table 3. Computational results with the single precision of ball-end milling in the steady cutting stage. 𝑅 =
0.1, 𝐷 = 0.01. 

𝑀 𝑎 [𝐷 𝑎⁄ ] 𝑁̅𝑏𝑎𝑙𝑙 𝜎𝑏𝑎𝑙𝑙 𝑁̅𝑓𝑙𝑎𝑡 𝑁̅𝑏𝑎𝑙𝑙⁄  

10 0.01 1 1 0 20.95 

100 0.001 10 539 0.55164 3.35436 

200 0.0005 20 2254 0.80397 3.38021 

500 0.0002 50 14454 1.43342 3.46264 

1000 0.0001 100 58271 2.64711 3.43394 
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Fig. 17. Comparison of 𝑁 curves in ball-end and flat-end millings with single precision (𝑅 = 0.1, 𝐷 = 0.01). 

Just as flat-end milling, the ball-end milling simulation is also affected by the computational 

accuracy.  As shown in Fig. 18, the curves with double precision have almost zero oscillation in the 

stable cutting stage. The markedly statistical result of  𝑁 in Table 4 is that all the standard 

deviations are zeros. It means the ball-end milling with double precision can effectively avoid voxel 

misjudgment. 

0 100 200 300 400

0

100

200

300

400

500

600

100 150 200
530

535

540

545

550

N

Step

M=100

Flat-end

Step

 Double precision

 Single precision

 

Fig. 18. The comparison result of 𝑁 with both single and double precisions in ball-end milling (𝑅 = 0.1, 𝐷 =
0.01). 



Table 4. Computational results with the double precision of ball-end milling in the steady cutting stage (𝑅 =
0.1, 𝐷 = 0.01). 

𝑀 𝑎 [𝐷 𝑎⁄ ] 𝑁̅𝑏𝑎𝑙𝑙 𝜎𝑏𝑎𝑙𝑙 

10 0.01 1 1 0 

100 0.001 10 542 0 

200 0.0005 20 2254 0 

500 0.0002 50 14454 0 

1000 0.0001 100 200099 0 

 

5. Error analysis of voxel-based MRR 

The amplitude and oscillation of 𝑁 curves in the stable cutting stage change with 𝑀, computational 

accuracy, and tool end shape. Error analysis is essential to understand such behavior of MRR 

calculation error variations. Conclusions of this section are helpful to set up the criterion for voxel 

size limit in the voxel-based CAM to guarantee the MRR computation accuracy. 

5.1 Relative range analysis of 𝑁 

The relative range is defined as the ratio of the range to mean value, as shown in Equation (19),  

 𝑅𝑟 =
𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛

𝑁̂
 (19) 

where 𝑁𝑚𝑎𝑥 is the maximum number of the sample, 𝑁𝑚𝑖𝑛 is the minimum number of the sample, 

and 𝑁̂ is the predicted outcome which can be calculated by equation (12). The relative ranges of 𝑁 

in the steady cutting stage of flat-end milling are shown in Fig. 19. It can be seen that the reciprocal 

of the relative range has a linear relationship with 𝑀. The fitting equation is expressed in Equation 

(20). For single precision, 𝑎 = 2.195, 𝑏 = 0.1153; while for double precision, 𝑎 = 11.51, 𝑏 = 0.1971. 

 
1

𝑅𝑟
= 𝑎 + 𝑏𝑀 (20) 
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Fig. 19. The relative range changes against 𝑀 in the flat-end milling. 

5.2 Mean absolute error analysis of 𝑁 

The mean absolute error (MAE) is a quantity used to measure how close predictions are to the 

eventual outcomes. The MAE is given by equation (21): 

 MAE =
∑ |𝑁𝑖 − 𝑁̂|
𝑛
𝑖=1

𝑛
 (21) 

where 𝑁𝑖 is the computed data points, 𝑁̂ is the predicted outcome which can be calculated by 

equation (12), and 𝑛 is the sample capacity. The computed values for MAE with both single and 

double precisions in flat-end milling are shown in Fig. 20. MAE increases with the increasing 𝑀. 

Double precision has a smaller MAE than single precision. 
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Fig. 20. MAE against 𝑀 on both single and double precision in flat-end milling. 

5.3 Variance analysis  

From the previous discussion, double precision can improve the ability of judgment on voxel 

removal, and decrease the standard deviation of 𝑁 curves. Besides, ball-end milling has good 

computational accuracy with a smaller variance than flat-end milling. According to Fig. 21, standard 

deviations of flat-end milling increase with 𝑀 for both single and double precision, while standard 

deviations of ball-end milling are approximate horizontal lines due to their small values.  

To explain this phenomenon, we can establish a simple mathematical model on the variance of 

random variables. Based on the previous analysis, 𝑁𝑓𝑙𝑎𝑡 is accumulated by many the same single-

layers and expressed in Equation (22), but 𝑁𝑏𝑎𝑙𝑙 is accumulated by descending series of single-

layers and expressed in Equation (23). Mathematical expectation and variance of 𝑁 for flat-end and 

ball-end are respectively expressed in Equation (25)-(28). 𝐸(𝑋1) = [
2𝑅

𝑎
] is the mathematical 

expectation of voxels removed on the first layer in Fig. 8. 𝐸(𝑌1) is the expected quantity of voxels 

removed on the first layer in Fig. 11, and equal to [
2𝑟1

𝑎
] < [

2𝑅

𝑎
] = 𝐸(𝑋1). 𝐸(𝑌𝑖) is a decreasing 

sequence, so 𝐸(𝑁𝑏𝑎𝑙𝑙) = ∑ 𝐸(𝑌𝑖)
𝑛
𝑖=1 < 𝑛𝐸(𝑌1) < 𝑛𝐸(𝑋1) = 𝐸(𝑁𝑓𝑙𝑎𝑡).  In addition, it can be seen that 

𝜎2(𝑥) is a monotonously increasing function from Fig. 21.  So 𝜎2(𝑌𝑖) = 𝜎
2 (

2𝑟𝑖

𝑎
 ) < 𝜎2 (

2𝑟1

𝑎
 ) <

𝜎2 (
2𝑅

𝑎
 ) = 𝜎2(𝑋1), we get 𝜎2(𝑁𝑏𝑎𝑙𝑙) = ∑ 𝜎2(𝑌𝑖)

𝑛
𝑖=1 < ∑ 𝜎2(𝑋1)

𝑛
𝑖=1 = 𝑛𝜎2(𝑋1) ≪ 𝑛2𝜎2(𝑋1) =

𝜎2(𝑁𝑓𝑙𝑎𝑡). It means the variance (standard deviation) of the ball-end milling is far less than the 

variance (standard deviation) of the flat-end milling. Base on the above analysis, we get 



𝐸(𝑁𝑏𝑎𝑙𝑙) 𝐸(𝑁𝑓𝑙𝑎𝑡)⁄ < 1, and 𝜎2(𝑁𝑏𝑎𝑙𝑙) 𝜎
2(𝑁𝑓𝑙𝑎𝑡)⁄ < 1 𝑛⁄ = [𝑎 𝐷⁄ ]. This conclusion is perfectly 

compatible with the computed results on the difference of the ball-end and the flat-end millings. 

 𝑁𝑓𝑙𝑎𝑡 = 𝑋1 + 𝑋2 +⋯+𝑋𝑛 = 𝑛𝑋1 (22) 

 𝑁𝑏𝑎𝑙𝑙 = 𝑌1 + 𝑌2 +⋯+ 𝑌𝑛 =∑𝑌𝑖

𝑛

𝑖=1

 (23) 

 𝑛 = [
𝐷

𝑎
] (24) 

 𝐸(𝑁𝑓𝑙𝑎𝑡) = 𝑛𝐸(𝑋1) (25) 

 𝜎2(𝑁𝑓𝑙𝑎𝑡) = 𝑛
2𝜎2(𝑋1) (26) 

 𝐸(𝑁𝑏𝑎𝑙𝑙) =∑𝐸(𝑌𝑖)

𝑛

𝑖=1

< 𝑛𝐸(𝑌1) < 𝐸(𝑁𝑓𝑙𝑎𝑡) (27) 

 𝜎2(𝑁𝑏𝑎𝑙𝑙) =∑𝜎2(𝑌𝑖)

𝑛

𝑖=1

< 𝑛𝜎2(𝑌1) ≪ 𝜎2(𝑁𝑓𝑙𝑎𝑡) (28) 

where 𝑋𝑖 is the number of voxels removed on the 𝑖𝑡ℎ layer as shown in Fig. 8, 𝑌𝑖  is the number of 

voxels removed on the 𝑖𝑡ℎ layer as shown in Fig. 11, and 𝑛 is the total number of layers.  
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Fig. 21. The standard deviation of 𝑁 

 



5.4 Analysis of periodic characteristics 

The curves of 𝑁 show periodic characteristics.  The minimal positive period of 𝑁 changes slightly 

with 𝑀 in flat-end milling is shown in Fig. 22.  With the increase of 𝑀, the minimal positive period 

just decreases a little, but with no obvious variation trend. The average value of the minimal 

positive period of 𝑁 is about 2.9, which is quite close to 3. 
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Fig. 22. The minimal positive period of 𝑁 in flat-end milling. 

6. The probability distribution of normal distance from voxel to tool 

According to the analysis above, the cause of oscillation in voxel-based MRR computation is the 

misjudgment of voxel removal due to the discrete nature of the voxel model. The basic judging 

criterion of voxel removal is the distance from the voxel center to tool boundary. Once the distance 

changes from positive to negative, the voxel is removed. The probability distribution of normal 

distance from the voxel center to tool boundary is studied to understand the error distribution 

when the voxel model makes a decision for voxel removal or not. 

6.1 Definition of distance from the voxel center to tool boundary 

The centers of voxels that comprise the workpiece from a point grid that the cutting tool travels 

through as it removes material. Fig. 23 shows a graphical depiction of distances from various voxel 

centers to the boundary of the cutting tool, which is shown as a red circle. In this figure, the tool 

moves from left to right, therefore, the material is only removed on the right side of the tool.  Some 

points near the right-hand side of tool boundary are efficient points, which are probable to be 

removed in the current or next step with tool traveling. Distances from these efficient points to the 



tool boundary form a mathematical set 𝑋, which can be normalized using Equation (30), to form set 

𝑌 as expressed in Equation (31). 

 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑖 , ⋯ 𝑥𝑁∗  } (29) 

 𝑦𝑖 =
𝑥𝑖
𝑎
∈ [−√2, √2] (30) 

 𝑌 = {𝑦1, 𝑦2, 𝑦3,⋯ , 𝑦𝑖 ,⋯ 𝑦𝑁∗ } (31) 

where 𝑁∗ is the total amount of the efficient points, 𝑥𝑖  is the normal distance from the 𝑖𝑡ℎ voxel 

center to the tool boundary, 𝑦𝑖 is the normalized distance of 𝑥𝑖 . 
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Fig. 23. Distance from voxel centers to tool boundary. 

6.2 Probability distribution results 

The probability distribution of elements in set 𝑌 when the tool center locates coincides with a voxel 

center is shown in Fig. 24, and the probability distribution of elements in set 𝑌 when the tool center 

coincides with a voxel vertex is shown in Fig. 25.  As 𝑀 increases, the histogram tends to be a 

uniform distribution. As 𝑀 tends to infinity, the distribution will be a uniform distribution even 

when the tool center is located randomly on the voxel grid; this case is shown in Fig. 26. Based on 

the analysis above, all the elements in set 𝑋 obey uniform distribution when 𝑀 tends to infinity; the 

probability density function of set X is expressed in Equation (32). 

 𝑓(𝑥) = {
√2

4𝑎
,−√2𝑎 ≤ 𝑥 ≤ √2𝑎

0 , 𝑥 ≤ −√2𝑎 or 𝑥 ≥ √2𝑎

 (32) 

The uniform distribution indicates that all the voxels have the same probability, regardless of 

the distance to the tool boundary; in other words, the misjudgment in voxel removal has a linear 

relationship with the computational error. The misjudgment in voxel removal causes the oscillation 



on the curve of 𝑁, which should be a constant in the steady cutting stage. The relative range 𝑅𝑟  can 

be used to characterize the metric of misjudgment; the ratio of misjudgment between single and 

double precision in voxel removed is presented in Equation (33), 

 
(𝑅𝑟)s
(𝑅𝑟)d

|
𝑀→∞

=
(𝑎 + 𝑏𝑀)d
(𝑎 + 𝑏𝑀)s

|
𝑀→∞

=
(𝑏)d
(𝑏)s

=
0.1971

0.1153
= 1.709 (33) 

 where subscript s is single precision, and subscript d is double precision. As mentioned above, the 

data precision with single precision computation has six or seven significant decimal digits; with 

double precision computation, it has and fifteen or sixteen significant digits. The ratio in Equation 

(33) reveals that the possibility of misjudgment in voxel removal with single precision computation 

is about 1.709 times that of the probability when using double precision computation. 

 

Fig. 24. The probability distribution of elements in set 𝑌 when the tool center coincides with a voxel center. 



 

Fig. 25. The probability distribution of elements in set 𝑌 when the tool center coincides with a voxel vertex. 

 

Fig. 26. The probability distribution of elements in set 𝑌 when the tool center is located randomly on the 
voxel grid.  



6.3 Frequency distribution of the length of circular segments 

Fig. 27 shows how the tool boundary was broken into many segments by the voxel grid. When the 

𝑀 is large enough, the length of each circular segment tends to be infinitely small, and the length of 

a circular segment can be substituted by the length of the chord drawn between the ends of the 

segment.  

The probability distribution of the chord lengths is shown in Fig. 28, where two distinct 

portions are visible: the first portion is a uniform distribution located on [0, 𝑎], and the second 

portion is a monotonically decreasing curve on the interval [𝑎, √2𝑎]. The probability density 

approaches infinity at 𝑎. It means the greatest possibility of the chord length is equal to the voxel 

length 𝑎. 

Feed

 

Fig. 27. The tool boundary is broken into many segments by the voxel grid. 
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Fig. 28. The probability distribution function of the chord lengths (unit of x-axis: 𝑎; unit of y-axis: 1 𝑎⁄ ). 



7. Error Modeling of MRR computation 

Modeling and simulation are two powerful tools in scientific research and engineering application 

(Allen, 2004, Nie et al. , 2015, Nie et al. , 2018, Stavropoulos and Chryssolouris, 2007). Due to the 

discreteness of the voxel model, a computer cannot make an accurate judgment of voxel removal 

when a voxel center is located close to the tool boundary. Thus, an error band should be considered 

when performing analysis and modeling the number of voxels removed in one-step. 

As shown in Fig. 29, voxels to be removed is located in one of three domains: 𝐸, 𝑂, and 𝐼. 

Domain 𝐸 is the error band, which is an annulus centered around the tool boundary with radius 

interval [𝑅 − 𝜀, 𝑅 + 𝜀]; domain 𝑂 is an annulus that is completely external to the tool boundary, 

concentric with domain 𝐸, with radius interval [𝑅 + 𝜀, 𝑅 + √2𝑎 + 𝜀]; and domain 𝐼 is  an annulus 

that is completely internal to the tool boundary, concentric with domain 𝐸, with radius interval 

[𝑅 − √2𝑎 − 𝜀, 𝑅 − 𝜀, ]. When the step length is just equal to the voxel size, the six possible domain 

changes are shown in Fig. 30: (1): 𝑂 → 𝑂, (2): 𝑂 → 𝐸, (3): 𝑂 → 𝐼, (4): 𝐸 → 𝐼, (5): 𝐸 → 𝐸, (6): 𝐼 → 𝐼. 
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Fig. 29. Three domains: 𝐸, 𝑂 and 𝐼. 



1

6

3

4

5

2

 

Fig. 30. Possible domain changes:  

(1): 𝑂 → 𝑂, (2): 𝑂 → 𝐸, (3): 𝑂 → 𝐼, (4): 𝐸 → 𝐼, (5): 𝐸 → 𝐸, (6): 𝐼 → 𝐼. 

The definition of the contribution function 𝑆𝑖
𝑗  of the 𝑖𝑡ℎ voxel in 𝑗𝑡ℎ step is presented in  

Equation (34). The contribution function can be used to assist in voxel judgment as follows: when 

the domain changes clearly from 𝑂 to 𝐼 (𝑂 → 𝐼), the value of the contribution function is 1; when the 

domain remains unchanged (𝑂 → 𝑂, 𝐸 → 𝐸, 𝐼 → 𝐼), the value of the contribution function is 0; when 

the domain changes into or out of the error range (𝑂 → 𝐸, 𝐸 → 𝐼), the voxel status cannot be judged 

accurately and the contribution function can be either 1 or 0 with the same probability of 0.5. 

Usually, 𝑂 → 𝐸 is prior to 𝐸 → 𝐼 when the tool moves through the voxel grid; however, there exist 

several distinct paths that a voxel center may take as it transitions through the 𝑂 − 𝐸 − 𝐼 domains. 

The possible state changes are as follows: (a): one or more 𝐸 → 𝐸 transitions follow an 𝑂 → 𝐸 

transition and the voxel center never reaches domain 𝐼; (b): a single 𝐸 → 𝐼 transition follows the 

𝑂 → 𝐸 transition; (c): one or more 𝐸 → 𝐸 transitions occur between the 𝑂 → 𝐸 transition and the 

𝐸 → 𝐼 transition. All the algorithms are shown in Table 5.  



 𝑆𝑖
𝑗 =

{
 
 

 
 
0
1|0
1
1|0
0
0

𝑂 → 𝑂
𝑂 → 𝐸
𝑂 → 𝐼
𝐸 → 𝐼
𝐸 → 𝐸
𝐼 → 𝐼

 (34) 

 𝑁𝑗 =∑𝑆𝑖
𝑗

𝑁∗

𝑖=1

 (35) 

 

Table 5. The algorithm of contribution function on the error domain. 

(𝒋 − 𝟏)th step 𝒋th step 

𝑆𝑖
𝑗−1(𝑂 → 𝐸) = 1, (50%) 𝑆𝑖

𝑗(𝐸 → 𝐼) = 0 

𝑆𝑖
𝑗−1(𝑂 → 𝐸) = 0, (50%) 𝑆𝑖

𝑗(𝐸 → 𝐼) = 1 

 

As computational error 𝜀 is quite small with respect to the voxel size 𝑎, most of the voxels in 

domain 𝑂 will directly experience 𝑂 → 𝐼, and only a few voxels experience other domain 

transitions. The modeling results of the flat-end milling with single precision are shown in Fig. 31. It 

can be seen that the two curves are basically the same in the amplitude and oscillation, the period 

of the modeling curve is 3, which is close to the computed curve. One distinction between the two 

curves is the symmetry of amplitude: the modeling curve is transversely zygomorphic, and the 

previously computed curve not. The reason is complex, and one possible explanation is the 

probability is not 0.5 in 𝑂 → 𝐸 judgment. 
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Fig. 31. Comparison between error modeling prediction and previously computed data. 



 

8. Conclusions 

This research presented an analysis and modeling of voxel-based MRR computation of the 

milling process. The cause of oscillation in voxel-based MRR computation is the misjudgment of 

voxel removal due to the discrete nature of the voxel model. Discrepancies between theoretical 

MRR and computed MRR were investigated using both single and double precision computation of 

the number of voxels removed in one feed step (𝑁) of milling processes. By the Cavalieri’s principle, 

discrete mathematical expressions of MRR were respectively derived for flat-end milling and ball-

end milling. MRR has a linear relationship with the variable quantity of voxels removed (𝑁) in one 

feed step, so the analysis of MRR can be equivalent to the analysis of 𝑁 as other conditions keep 

invariable. 

A series of simulation experiments were conducted on GPGPU by using computer programs we 

developed to simulate the two millings. Discrepancies between these two values were investigated 

of N. The dependence with respect to the ratio between the radius of the tool and the voxels size, 

and the use of single or double precision floating-point computations were studied. Results indicate 

that the cause of oscillation in discrete MRR computation is the misjudgment of voxel removal due 

to computational error. Comparisons on 𝑁-curves indicate that double precision can improve the 

ability of judgment on voxel removal, and decrease the standard deviation of 𝑁 curves. Besides, 

ball-end milling has good computational accuracy with a lower standard deviation than flat-end 

milling.  

Error analysis conducted on the curves of 𝑁 revealed that the relative range decreased with the 

increasing scale factor 𝑀, and the mean absolute error increased with the increasing 𝑀. Standard 

deviation analysis was conducted through a simple mathematical model on the variance of random 

variables. It turns out that the variance (standard deviation) of ball-end milling is far less than the 

variance of flat-end milling. This conclusion is perfectly compatible with the computed results on 

the difference of ball-end and flat-end millings. Finally, analysis of the periodic characteristics 

reveals that all the curves approximately have a minimal period of 2.9. The probability distribution 

of normal distance from the voxel center to tool boundary is studied to understand the error 

distribution when the voxel model makes a decision for voxel removal or not. It turns out that the 

normal distance obeys a uniform distribution when 𝑀 is large enough.  



For better understanding and improving MRR computation precision in voxel-based CAM, a 

computational error model was proposed to describe the behavior of 𝑁-curves. The error domain 

was embedded into the model, and the contribution function was used to count the valid number of 

voxels removed. Comparison between the modeling result and the previously computed result 

shows that the model can well predict the periodic variation of 𝑁 curves in the milling process.  

The error model demonstrates the error source of MRR computation and offers a promising 

method to accuracy control in CAM. In our future work, the criterion for voxel size limit will be set 

up in the voxel-based CAM to guarantee the MRR computation accuracy. 
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