Faster parallel collision detection at high resolution
for CNC milling applications

Xin Chen

Georgia Institute of Technology
xchen384@gatech.edu

Thomas R. Kurfess

Georgia Institute of Technology
kurfess@gatech.edu

ABSTRACT

This paper presents a new and more work-efficient parallel method
to speed up a class of three-dimensional collision detection (CD)
problems, which arise, for instance, in computer numerical con-
trol (CNC) milling. Given two objects, one enclosed by a bounding
volume and the other represented by a voxel model, we wish to
determine all possible orientations of the bounded object around
a given point that do not cause collisions. Underlying most CD
methods are 3 types of geometrical operations that are bottlenecks:
decompositions, rotations, and projections. Our proposed approach,
which we call the aggressive inaccessible cone angle (AICA) method,
simplifies these operations and, empirically, can prune as much
as 99% of the intersection tests that would otherwise be required
and improve load balance. We validate our techniques by imple-
menting a parallel version of AICA in SculptPrint, a state-of-the-
art computer-aided manufacturing (CAM) application used CNC
milling, for GPU platforms. Experimental results using 4 CAM
benchmarks show that AICA can be over 23X faster than a baseline
method that does not prune projections, and can check collisions
for 4096 angle orientations in an object represented by 27 million
voxels in less than 18 milliseconds on a GPU.

KEYWORDS

collision detection, massively parallel collision detection, GPU

1 INTRODUCTION

We consider a collision detection (CD) problem that arises in the
area of computer numerical control (CNC) milling [15], an applica-
tion in advanced manufacturing. An example appears in Figure 1.
There is a shape one wishes to cut starting from a block of material,
such as the head from an initial cube of plastic (the left of Figure 1).
The computational task is to construct a path that a cutting tool can
make that eventually ends with the target object (e.g., the head),
starting from the input (e.g., the block of plastic).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08...$15.00
https://doi.org/10.1145/3337821.3337838

RIGHTSE LI MN iy

Dmytro Konobrytskyi
Uber Advanced Technologies Group
dkonobr.cv@gmail.com

Thomas M. Tucker

Tucker Innovations Inc.
tommy@tuckerinnovations.com

Richard W. Vuduc
Georgia Institute of Technology
richie@cc.gatech.edu

Figure 1: Inputs to the collision detection (CD) problem:
a head object from CAD benchmark, a tool composed of
bounding cylinders and a pivot point at the end of the tool.
The orientation of the tool at the pivot is represented by a
pair of angles in polar coordinates (¢, y), where ¢ € (0, 7) and
y €(0,2m).

Figure 2: The output of one CD test is an accessibility map
(AM). A map at (m, n)-resolution is discretized uniformly
into m - n points, with each point denoting some (¢, y) orien-
tation. Here, the map is shown as a grid whose vertical axis
corresponds to ¢ and whose horizontal axis corresponds to
y. Schematically, a black point indicates a collision between
the voxel and the tool when oriented at (¢, y), and a white
point means no collision.

There are several possible CD methods, which are widely used
in other settings, like CAD/CAM [1, 3, 16, 29]; computer animation,
games, and physical simulations [14]; motion planning [23, 24];
and virtual assembly [5]. To improve the speed of CD, prior ap-
proaches have combined computer graphics analysis techniques
with efficient parallelization. Such techniques include culling to
prune redundant computation [26, 28], as well as algorithms that
can exploit GPU features like visibility queries in the depth buffer,
and frame buffers and fragment shaders [7, 14, 24]. But there are
also efficient parallel CD methods for both general-purpose CPUs
and GPUs [4, 18, 23, 33].

Underlying most of these approaches are three types of fun-
damental, computationally intensive operations: decompositions,
rotations, and projections. We illustrate them in the bottom of Fig-
ure 4, in the case where one wishes to check whether a cylinder
(i.e., one model of a tool) intersects with a box (i.e., part of the
object being milled). Briefly, these operations are a sequence of
geometric calculations that transform the input object into other

ICPP 2019, August 5-8, 2019, Kyoto, Japan

oo o o0 9

M orientations

N voxels

=

Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

. Parallelize N voxels and M orientations across GPU threads

=> i Intersected=False |

ﬁ |::> AM

CD test 5
Parallel CD Tests

'Output

Figure 3: Schematic of the baseline parallel scheme to calculate the AM. It begins with the target (left), stored as a adaptive
(non-uniform) volumetric octree with N voxels, and the M = m - n discrete orientations of the tool to check for collisions.
Each (GPU) thread considers one orientation and executes Algorithm 2, which traverses the octree to see if that orientation
causes an intersection with any voxels. (Algorithm 2 does not need to visit all voxels if it detects early in the traversal that no

intersection is possible.)

representations, as explained in Section 2. These three operations
also appear commonly in other types of basic geometric intersec-
tion tests, such as sphere-box intersection, box-box intersection,
and cylinder-sphere intersection. Such tests are the basis of discrete
collision detection (DCD) and continuous collision detection (CCD)
algorithms in computer graphics [3, 4, 10, 17, 18, 33].

However, for CD, cylinder-box intersection tests dominate and
may be sped up considerably. We do so using a novel abstraction,
called the inaccessible cone angle (ICA), that eliminates a high per-
centage of the usual cost of CD tests for decompositions, rotations,
and projections. We further accelerate this method via a parallel
algorithm that we call the aggressive inaccessible cone angle (AICA)
method. Prior methods to test for the intersection between two
objects relied on a general bounding volume hierarchy (BVH) and
fine-grained volumetric representation of the cutting tool. How-
ever, in our application we can replace this representation by a
simpler collection of bounding volumes, like the bounding cylin-
ders suggested in Figure 1, thereby making the three fundamental
operations cheaper. This simplification also suggests a new way
to express the computation, yielding a method that has smaller
“constant factors” and is easier to load-balance. Our ICA abstraction
could be extended into a new primitive and, thereby, applied in
other CD contexts that involve rotational operations (Section 6).

In brief, the main claimed contributions of this paper are the ICA
abstraction, the AICA parallel algorithm, and an empirical valida-
tion thereof. ! The basic ICA abstraction allows us to reason about
the object over all orientations in a computationally compact way,
thereby reducing the number of operations and checks than prior
art. When using an adaptive volumetric octree to store the target
object (e.g., the head of Figure 1), we observe that as many as 99%
of the CD tests can be eliminated on a variety of complex input
geometries. We have prototyped our approach in a version of the
commercial SculptPrint software package. Our AICA method can
be over 23x faster than a baseline approach that uses 3D projection,
and nearly 4.8X faster than another novel method we present. In
absolute performance, AICA enables the checking of 4096 orien-
tations for an object represented by 27 million voxels in just 18
milliseconds on a recent GPU.

! An initial sketch of the ICA appeared earlier in an unrefereed work [15]. However,
the previously proposed calculation of ICA is incorrect. In this paper, we first give
a correct description and then present a parallel scheme, neither of which appeared
before.

RIGHTSE LI MN iy

/ GPU threads Each thread checks octree for an orientation CD test \

Call CheckBox
Parallel CD Tests /

Return intersected=
True/False

-:>J£""=b .ﬂ? «:»&

1. Decomposition | [2.Rotation | [3. Projection |
\ CheckBox (voxel)

e

o

Figure 4: Our baseline algorithm that performs the paral-
lel CD tests by calling CHECkBox, which involves the three
steps that cost 216 operations.

2 BACKGROUND AND MOTIVATION

Problem Statement. The inputs of our CD problem are (a) a 3D
object, which is the target (e.g., the head); (b) another 3D object,
which is the tool; (c) a pivot point upon which one end of the tool
is fixed; and (d) the set of (discretized) orientations of the tool to
consider. The output is an accessibility map (AM) that indicates
whether or not each orientation leads to a collision between the
two objects. Figures 1 and 2 illustrate these inputs and outputs.

To efficiently detect collisions, we will assume the setup of Fig-
ure 3. The target object is represented by a high-resolution volu-
metric (voxel-based) adaptive octree and the tool object is enclosed
within a collection of simple bounding cylinders. Both octree and
bounding volumes (BVs) are spatial data structures widely used in
many applications [3, 16, 18-20, 28]. We denote the total number of
voxels (root + interior + leaves) in the target object by N, and use
M for the number of discrete tool orientations to check. We will
consider single GPU-parallel algorithms, where the basic building
unit of computation is a CD test, which checks if a given orientation
intersects with a given voxel; the adaptive octree will allow both
the baseline algorithm and our improved schemes to dynamically
prune CD tests when no collisions are possible.

Baseline Algorithm. Figure 4 illustrates our baseline algorithm,
which is GPU-parallel. Each GPU thread considers an orientation,

Faster parallel collision detection at high resolution
for CNC milling applications

600 1600
A A
500 g 1400 y
1200
f 400 51000
< 300 T 800
I - £
£ A A E
F 200 £ 600
400
100 200 Aeeros
0 %] 93 3 3 0 292 3 a2
26° 5127 1024° 2048 3 6 1287 256

Object Resolution Map Resolution

Figure 5: Execution time of varying the object resolution in
the head model (map size is 64°) and varying the map reso-
lution (object resolution is 1024%), with Algorithm 2.

traversing the octree to determine whether that orientation yields
any intersections with the target. (The code that each thread runs
is CHECKOCTREE, shown in Algorithm 2.) During its traversal, the
thread performs a CD test at each voxel it traverses, assessing
whether the tool at the given orientation intersects the voxel. The
intersection calculation is performed by a subroutine referred to as
CHEckBox, which consists mainly of three computationally inten-
sive geometrical operations: decomposition, rotation, and projection.
The decomposition step decomposes the tool into one or more
cylinders, the voxel into 6 faces, and each face into 4 line segments.
Secondly, rotation changes the coordinate frame so that the cylinder
becomes axis-aligned, which greatly simplifies some subsequent
calculations and requires 9 elementary operations (e.g., scalar arith-
metic). Thirdly, the projection step projects the geometries from
3D space to 2D. In total the algorithm CHECKBOX executes at most
N¢-6-4-9 = 216N, elementary operations.

Initial experimental study. To gain some intuition for how
this baseline performs, consider the following experiment on a
NVIDIA GTX 1080Ti GPU (see Section 5.1 for hardware details).

Suppose we generate an AM with the baseline algorithm. Figure 5
shows the execution time as we vary either the object resolution
(N = k® voxels on the x-axis of the left subplot) or accessibility
map resolution (M = [? along the x-axis of the right subplot).
Even though increasing the object resolution sharply increases the
number of voxels in the octree representation, the largest observed
increase in execution time is a factor of two (2) when increasing
the number of voxels by eight (1024% to 20483 grid). This scaling
behavior is sublinear in resolution because the octree induces a
pruning of possible checks. By contrast, when the map resolution
increases from 1282 to 2562, a 4x increase in cells, the corresponding
execution time also increases by the same factor. This observation is
also not surprising as the total amount of work is proportional to the
number of orientations being tested. For relatively low-resolution
accessibility maps (e.g., 322 or 64%), the execution time appears flat;
that behavior is due to the number of threads of work being less
than or comparable to the number of physical execution cores (3,548
CUDA cores on this particular system). However, that absolute time
is high enough to prohibit real-time CD. (Real-time is not required
in CNC milling but can be in other graphics problems.)

Our paper focuses on the performance improvement of the CD
test between cylinders and voxels. It contains two parts: ICA ab-
straction in Section 3 and our parallel algorithm AICA in Section 4.
ICA aims to reduce the cost of a single CD test. AICA aims to
improve parallelism and load balance.

RIGHTSE LI MN iy

ICPP 2019, August 5-8, 2019, Kyoto, Japan

-
- ~

----- The pivot point ---_,____Infprsected = False
\

) =7 A
T . PP "
i SO, b ®

vector passing the voxel center -~~~ vector passing the tool center

Figure 6: (Left) How a cone is formed with the tool cylin-
ders exactly touching the surface of the sphere in 3D. (Right)
How ICA is formed to check the intersection in 2D.

3 ICA ABSTRACTION

We improve the baseline by first making it more work-efficient,
namely, by reducing the high cost of the three basic geometrical
operations of decompositions, rotations, and projections. Our ap-
proach is an abstraction, the inaccessible cone angle (ICA), which
simplifies the 3D operations into 2D equivalents.

3.1 Spherical approximation

First, consider the following approximation, designed to reduce the
complexity of a CD test: replacing a voxel by a sphere.

A general strategy to make CD tests cheaper is to axis-align the
objects, that is, perform the calculations in a coordinate frame where
one or more axes align “naturally” to one of the objects. Since it is
rare that the two objects of an intersection test are simultaneously
axis-aligned, we need to axis-align one object and rotate the other.
In our method, we choose to axis-align the cylindrical tool because
projecting the side surface of a cylinder is more complex than
projecting the face of a voxel.

However, calculating the new coordinates of the voxel’s geomet-
ric elements (e.g., faces, edges) in this new coordinate frame can
still be high. In 2D, an axis-aligned line segment becomes skewed
after a rotation, and so does a square. In 3D, this problem worsens
because a voxel has multiple (six) faces.

By contrast, a sphere would be naturally neutral to axis-alignment
regardless of how it is rotated. Consequently, the complexity of an
elementary intersection test involving the sphere would be invari-
ant to its rotation. We could, therefore, approximate the voxel by,
say, a circumscribed sphere. Doing so truncates the corners, but it is
possible to resolve the inaccuracy introduced by this approximation.
We explain how in Section 3.3.

3.2 Inaccessible Cone Angle (ICA)

Suppose we are given (i) a spherical object approximated by a voxel,
(ii) a tool composed of several cylinders, and (iii) a position where
one end of the tool is fixed. Our goal is to calculate all the inaccessible
orientations, that is, orientation angles at which the tool collides
with the spherical object. Any remaining orientations are accessible.
With this setup, we propose the concept of an inaccessible cone
angle, or ICA, which represents the possible region of intersection
between the tool and the voxel.

Figure 6 gives a general example on how a cone is formed in
considering a potential collision. On the left, there is the tool, a

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Tool eylinders Grow by the

radius of voxel

R

] - i
Vector passing the tool center The pivot point

Vector passing the voxel center

Figure 7: The tool cylinders and the voxel are simplified into
rectangles and a circle. The voxel’s ICA value is calculated
as the maximum angle that the circle touches the surface of
rectangles.

target sphere, and a pivot point, with vectors from the pivot through
the centers of the sphere and the tool. Observe that the tool may
touch the sphere at many points, but that the angle between the
tool vector and the target vector is constant in all cases. The set
of all orientations for which the tool surfaces touch the sphere
forms a cone, which we refer to as the inaccessible cone: all tool
directions within the cone will yield a collision (intersected=True),
while directions outside are collision-free (intersected=False).

The inaccessible cone is associated with an angle between two
vectors, one passing through the center line of the tool and the
other passing through the center of the voxel. This angle is the ICA,
calculated as a 2D value; see Figure 6 (right). The ICA is the largest
angle at which the tool collides with the sphere, or, conversely, the
smallest angle at which the tool does not do so.

Algorithm 1 CHECKICA
Input: tool as cylinders, orientation S;, pivot point p, voxel

1: procedure CHECKICA(cylinders, S;, p, voxel)

2 r « radius of sphere within the voxel

3 v « the center of the voxel

4: ica; «— GETTooLICA(cylinders, p, v, r)

5: icag « GETTOOLICA(cylinders, p, v, \3r)

6 vector; « the center line of tool at orientation S;
7 vectory « the vector passing p and ¢

8 angle « the angle between vector; and vectors

9 if angle < ica; then

10: return intersected = True

11: else if angle > icay then

12: return intersected = False

13: else > Corner case
14: return CHECKBox(cylinders, S;, p, voxel)

15: end if

16: end procedure

To calculate an ICA, one must determine at which points a circle
might just touch a given rectangle (tool). Figure 7 illustrates how
to do so. A cross-section of a cylinder that passes its center line is
a constant rectangle, and a cross-section of a sphere that passes
its center is a constant circle, so these 2D geometries are used
to represent the original 3D objects. Our idea starts by logically
expanding the size of the rectangle by the radius of the voxel. Then,

RIGHTS LI N K}

Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Sphere, with the radiusT = /2. Sphere, with the radius 3 + r

Spacespherelc Spacevaxel’ Spacevoxelc Spacesphere'z

Figure 8: Two spheres are constructed for each voxel. For
sphere,, its surface is tangent to the 6 sides of the voxel, and
for sphere,, the voxel’s 8 corners are on its surface.

fixing the distance between the pivot point and the center of the
voxel, it determines all points along an arc, centered at the pivot,
that intersect the expanded rectangle. These points are crossed
points. A crossed point might be located at any point on the border
of the expanded rectangle, whether it be on the side, the bottom, or
the corner. Crossed points correspond to centers of voxels whose
circumscribed sphere just touches the original rectangle.

3.3 CHECKICA algorithm to preserve accuracy

The preceding procedure approximates a voxel by a sphere. The
resulting CD test may, therefore, yield false-positive reports of
accessibility. For instance, if the tool intersects with a corner of
the voxel—a literal “corner case”—the approximation will report
“accessible” because that corner is outside the sphere. This case is
detrimental in CNC milling, where any collision could damage the
target part or tool.

The algorithm CHECKICA in Algorithm 1 covers such cases.
It considers two spheres at each voxel, one inscribed within the
voxel (Sphere;) and one circumscribed about the voxel (Sphere,),
as shown in Figure 8. Each of these spheres yields an ICA value.
Then, it verifies the following two conditions by comparing the
two ICA values as in line 9 and 11. Lastly, if the angle lies between
the two ICA values, which is a corner case in line 13, we cannot
verify the intersection using only the definition of ICA; therefore,
we must fallback to the original CHECKBoXx described in Section 2.
If in the absence of a corner case, the cost of invoking CHECKICA
is N¢-2-5 4+ 3 = 10-N, + 3 operations, where 10-N is the cost of
calculating ICA and 3 is the cost of verifying the intersection with
the ICA values. Here 2 means the 2 spheres; N, denotes the number
of cylinders in the tool; 5 means there are 5 components to check
for each rectangle (cylinder).

One question is how often the CHECKICA algorithm might need
to invoke the baseline CHECKBoOX, or what is the probability that
we encounter a corner case. We define the ICA efficiency as the
fraction of intersection tests that do not resort to calling CHECKBoOX.
That is, an efficiency of zero means we always call CHECKBoX, and
a value of 1 means we never need to call CHECKBox.

Figure 9 derives a theoretical estimate of ICA efficiency, in a
simple setting where the cylinders are approximated by a straight
line and there are an infinite number of orientations to check. ICA
efficiency is inversely proportional to (r/dist), where r is the radius
of a voxel, and dist is the distance from the pivot point to the center

Faster parallel collision detection at high resolution
for CNC milling applications

\Cases: o

(¢
FPRETSL ey o ﬁ

sphere,

a=1CA> — ICAy
i

1}

i

vy (\ﬁr) oo i
- o = asin m — asinf E) E
i I I

dist 3]

1}

1}

L}

69.44% < ICA efficiency < 100%

Given: (1 <

[remmm—em————————————

Figure 9: Theoretical ICA efficiency analysis. We assume
that the sizes of the cylinders do not influence the ICA value
and the tool becomes a straight line.

of the voxel. In practice, for most voxels the distance should be much
larger than the radius, resulting in a higher ICA efficiency than
the minimal value: the pivot point must be outside the 3D object,
and a point inside the object must result in a collision. The relation
between the distance and the radius are crucial to ICA efficiency.
As the resolution of the target object increases, the voxel will have
a smaller r, thereby yielding a higher ICA efficiency. Thus, ICA
efficiency benefits naturally from high-resolution representations.
The concept of an ICA confers several benefits. First, using the
ICA in elementary tests does not require any decomposition, since
it represents the entire tool. Secondly, the ICA value is independent
of the given orientation of the tool. Thus, regardless of the number
of orientations a test needs to check, we need only compute the ICA
once. Thirdly, the ICA does not require any expensive rotations
or projections thanks to the spherical approximation. Compared
with CHECkBox, CHECKICA reduces the overall cost from 216N,
operations to 10N, + 3 operations, a roughly 20-fold decrease.

4 DESIGN OF PARALLEL AICA

Our approach, AICA, consists of two stages: parallel ICA calcula-
tion and parallel CD tests. These are illustrated in Figure 10. The
inputs to the first stage are the target octree and tool geometry, and
the output is a memoized table storing that holding some precom-
puted ICA values for the upper-levels of the tree. The number of
levels is a tunable parameter, described below. In the second stage,
each logical GPU thread again checks one orientation; however,
when it performs a CD test and calls CHECKICA, the CHECKICA
algorithm can now use the memoized table to look up the pre-
computed ICA values instead of computing them on-the-fly. Any
yet-to-be-computed ICA values are computed on-demand. The rest
of this section describes our approach to GPU thread mapping,
parallelization of the CD tests, and reduction of costly corner cases.

4.1 GPU threads mapping

For the parallel ICA calculation, we compute the values of the voxels
on the top S levels in octree. Each thread corresponds to a voxel,
yielding a highly efficient SIMDization.

For the parallel CD test, given the workload with the N voxels
and the M orientations, there are two natural parallelization strate-
gies. One is to partition the octree among threads, and then each
thread processes M orientations. The other is to map each orienta-
tion to a thread and then each thread will traverse the octree, as
with the baseline algorithm. We use the latter, for two reasons. One

RIGHTSE LI MN iy

ICPP 2019, August 5-8, 2019, Kyoto, Japan

(@ Parallel ICA calculation (@)Parallel CD tests

D test to
Invoke CheckICA

Input|c>

Each thread traverses octree to
check intersection for a orientation

Each thread calculates
ICAs of a voxel

Figure 10: Overview of aggressive inaccessible cone angle
(AICA) with two stages: parallel ICA calculation and parallel
CD tests.

Algorithm 2 CHECKOCTREE

Input: tool, orientation S;, pivot point p, octree

1: procedure CHECKOCTREE(tool, S;, p, octree)

2 stack «— {voxels at the top level of octree}

3 while !stack. IsEmpty() do

4 voxel = stack.pop()

5: intersected = CHECKBox(tool, S;, p, voxel)
6 if lintersected then

7 continue

8 else if intersected & voxel.IsLeafNode() then
9 return True

10: else
11: stack.push_back(voxel.children())

12: end if

13: end while
14: return False

15: end procedure

is that it enables more aggressive exploitation of the adaptive octree
for pruning. Finding an interior voxel node that does not intersect
with the tool can avoid any calculations on all of its descendants;
similarly, a solid voxel that intersects with the tool means that we
can directly return that a collision will occur. Another reason is
simplicity: assigning threads to orientations is an owner-computes
strategy that avoids communication and synchronization. The over-
all algorithm, which each thread executes, appears in Algorithm 2.

4.2 Mitigating load imbalance

The choice of thread mapping affects load imbalance in the baseline.
The execution time of a thread is determined by the number of
checks at the line 3 of Algorithm 2, which varies with each orienta-
tion. To mitigate this load imbalance, we calculate ICAs of the voxels
on upper S levels of octree in parallel as a precomputation stage
before the parallel CD tests, rather than calculating ICA at runtime
as shown in the left side of Figure 11. In practice, each thread’s
calculation of an ICA and comparisons alternate with checks, and
the time spent in the two phases appears in Figure 11. We create,

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Calculation of two ICAs (10* N.) Comparison of ICA (3)

Parallel ICA calculation
Parallel CD tests

Figure 11: The parallel ICA calculation mitigates load im-
balance and improves the performance, by saving the cost
of redundant ICA calculation and efficient parallelization.

for each voxel in the target, a memoized table of ICA values. These
are the values labeled ica; and icay for the two spheres, meaning
one pair per voxel. This increased storage is a modest fraction of
the total voxel storage and this precomputation is pleasingly paral-
lel since there are no inter-voxel dependencies. Precomputation is
feasible because ICA is independent of the tool’s orientation.

This approach confers three overall benefits. First, it avoids re-
dundant calculations as the ICA values in the table are calculated
once but reused by all threads. Secondly, it mitigates load imbalance
as calculating ICA in the precomputation stage is easily paralleliz-
able, at the granularity of voxels. Lastly, it reduces the execution
time of all threads and thus improves overall performance because
of efficient SIMDization on GPU.

As S increases, the total cost of all CHECKICA tends to increase,
whereas the amortized cost of CHECKBoOX tends to decrease. Thus,
there is a tradeoff. A heuristic is that S can be set to a relatively
higher value on recent, more powerful GPUs (Section 5.4).

4.3 Optimization on the corner cases

For corner cases, we may still need to invoke the baseline CHECKBox
to verify the intersection. However, we can reduce the corner case
cost by utilizing the hierarchical spatial structure as an optimization.

Suppose that the algorithm stops at a voxel facing the corner
case as shown in Figure 12 (left). We have two choices. One is
to directly invoke the baseline algorithm. The other is to expand
the voxel into its children voxels, and then apply our CHECKICA
algorithm recursively on each voxel; the recursion stops when no
further expansion is allowed, in which case CHECKBoOX is still used
as the fallback. Our optimization approach is to choose the latter.

The cost of this approach is an increase of the number of checks
resulting from the expansion. Nevertheless, the benefit is the reduc-
tion in cost of CD test by invoking CHECKICA. We believe that the
benefit largely outweighs the cost. Note that the cost of a single
CHECKICA is 3 here, rather than N % 10 + 3, since most voxels’ ICA
values have already been calculated in the precomputation stage.
The corner case is also an important factor that causes the load
imbalance, so we will benefit from optimizing it, too. This tradeoff
will be evaluated in detail in Section 5.2.

RIGHTSE LI MN iy

Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Invoke CheckBox

2164 No<
Meeting the corner case
in CheckICA algorithm

Invoke CheckICA on its children voxels

Figure 12: Optimization on the corner cases. When meeting
a corner case on a voxel, AICA algorithm expands it into its
children voxels and calls CHECKICA recursively.

5 EVALUATION

We evaluated three aspects of our approach: (1) examining the
impact of the parallelism method and verifying the efficacy of ICA
efficiency; (2) assessing absolute performance with various object
resolutions and various AM resolutions; (3) analyzing the cost of
the parallel ICA calculation under various configurations.

Our comparison includes AICA and four other schemes:

e A parallel box (PBox), which is the baseline algorithm with
parallel CD tests using CHECKBOX.

e An optimized PBox is still on the baseline algorithm but
using axis-aligned bounding boxes (AABBs). The optimiza-
tion is to apply AABBs on the voxel after each rotation. If
no intersection exists on the bounding box, we can directly
return False.

o A parallel ICA (PICA), which is the algorithm with the par-
allel CD tests using CHECKICA.

e A memoized ICA (MICA), which is the algorithm that has
the parallel CD tests using CHECKICA and has the parallel
ICA calculation but without the optimization of corner cases.

e Our approach, AICA, which has both.

The first two—PBox and optimized PBox—represent the state-of-the-
art, and are both implemented in SculptPrint.

Table 2: Experimental test platforms.

Two Setups GTX 1080 Ti GTX 1080
CPU Intel i7-2600K Intel i7-7820HK
3.40GHZ 2.90GHZ
DRAM 16GB 32GB
(ON] Windows 7 windows 10
CUDA runtime 9.1 10.0
GPU card 11GB, 1.68GHZ 8GB, 1.77GHZ

3548 CUDA cores 2560 CUDA cores

5.1 Experimental Setup

CAD Benchmarks. Our experiments use 4 CAD benchmarks for
evaluation. A summary of the input meshes and their detailed

Faster parallel collision detection at high resolution
for CNC milling applications

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Table 1: Geometric statistics of sample CAD Benchmarks.

Head ‘

Candle Holder

‘ Turbine Teapot

Number of Triangles 23028 38000
Dimension XYZ(mm) 48.6*46.0"64.4 48.4%48.9*57.7
Bounding Volume 51331 21275

57792 57600
48.9"48.9*31.1 46"46"31
7823 25619

Effective Resolution | 256° | 512° | 1024% | 2048% | 256° | 512° | 1024% | 2048° | 256° | 512° | 1024° | 2048 | 256 | 512% | 1024° | 2048°

#layers 6 7 8 9 7 7 8

#voxels in octree(10°) | 0.44 1.06 4.26 17.56 | 0.57 1.59 5.92
#points on path(10%) | 61.14 | 101.3 | 203.7 | 409.3 | 58.32 | 97.32 | 196.9

9 6 7 8 9 6 7 8 9
26.94 | 0.62 1.37 6.44 26.06 | 0.74 1.53 6.14 23.89
360.6 | 29.43 | 41.46 | 83.48 | 168.2 | 30.60 | 44.57 | 89.37 | 179.1

‘- 256° DM 512° 271 1024° RS 20487
3.0 le7 4.5 le3
4.0t [
2.5 . 35 0
%4 £
2.0 3 3.0) o
® S B o
X K 9 2.5 N 4
S15 o1 N o
r 2.0 < X
o e Kl &
1.0 K {*15 2 o
K] Pt o
: :} 0.5 {:
0.0 i 0.0 M7 L
\,\ead) ot

ade VOSEiDI0® ear” Y\ea((;ﬂcs\e OO eoP
Figure 13: Comparison between the number of voxels in oc-
tree and the number of checks under various object resolu-
tions. The actual number of checks on the critical thread is
much smaller than the total number of voxels.

geometrical characteristics are listed in Table 1. For each benchmark,
we evaluate 4 target resolutions on the construction of octree, from
256% to 20483. The tool geometry has 4 cylinders, with varying radii
(31.5, 20, 6.225, 6.35)mm and heights (22.1, 78, 76.2, 25.4)mm. The
AM resolution starts from 322 to 2562. To choose representative
pivot points, we generate a path surrounding the CAD models, with
each point on the path having a 1 mm distance from the surface of
the model.

Configuration. We implement our algorithms in SculptPrint, a
computer-aided manufacturing (CAM) application for producing
CNC tool paths [9]. During the process of generating an AM, we
assume that all of the information about the 3D object model has
already been loaded onto the GPU, since this information is read-
only and only need only be loaded once. Thus, the cost of the
transferring is excluded in our experimental results.

In our experiments, 2000 random points are chosen from the
path as the pivot points. The last row of Table 1 shows the total
number of points on the path. Every experimental result in this
section is the average value of the 2000 samples. We directly expand
the top 5 levels of octree into one level, and report the final number
of levels under various resolutions in Table 1. This expansion aims
at reducing the height of octree (see the load imbalance part in
Section 5.2). The parameter S is set to 8, which means that the

RIGHTSE LI MN iy

parallel ICA calculation stage computes the ICA values for the
voxels on the upper 8 levels (~7 billion voxels).

5.2 Analysis of Parallelism Exploitation

Threads mapping. Figure 13 shows the total number of voxels
under various resolutions for the 4 models. However, the total
number of voxels does not reflect the actual workload on each
thread. The right-hand plot presents the actual number of checks
on the critical thread. Because of the spatial hierarchy of octree in
Algorithm 2, each thread unnecessarily traverses all voxels. It is
obvious that the number of the actual checks is much smaller than
the number of voxel in octree, indicating that our approach of the
threads mapping is very efficient.

Mitigating load imbalance. Figure 14 shows how the parallel
ICA calculation stage mitigates load imbalance and, thereby, im-
proves performance. The leftmost plot shows the actual number
of checks executed by each thread. The leftmost and rightmost
threads run the same number of checks, because we expanded the
top 5 levels into 1 level as mentioned before, and these threads have
to check all voxels on the top level before returning. In the two
plots of the second column, we can see that the execution time is
proportional to the number of checks, where CHECKICA is used
for CD tests. Comparing the two GPU cards, we can see that the
time on GTX 1080 is a little shorter than the other, because GTX
1080 has a higher clock rate 1.77 GHz than 1.68 GHz of GTX 1080
Ti. In the two plots of the third column, the bottom area represents
the time of the parallel ICA calculation, which mitigates the load
imbalance by reducing the execution time of calculating ICA values.
Note that the CD tests in the corner cases are not influenced by the
parallel ICA calculation, which still takes a relatively long period
of time. Comparing the two GPU cards, we can see that the time of
the parallel ICA calculation on GTX 1080 (~ 3.8 ms) is longer than
the other (~ 3.1 ms), because GTX 1080 has 2560 CUDA cores while
GTX 1080 Ti has 3548 CUDA cores.

The last column of Figure 14 shows the cost of the corner cases
and the effect of our optimization technique, which effectively
improves performance further from the previous column.

ICPP 2019, August 5-8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

X1 Parallel ICA calculation [Parallel CD tests

3500 ‘ ‘ ‘ 730 “PiCAon] 2O MICA on GTX 1080 T |~ 2O AICA on GTX 1080 Ti
n 401 GTX 1080 Ti 1w 40t 1w 40t
3000, £ 30} ' €30} 1€ 30
19 20t
2500} £
v {i= 10}
< 2000} 10 0 0
0 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
o
O 15001] ‘ ‘ ‘ ‘ :
_ 20 PICA'on _ 20 MICA on GTX 1080 |~ >0 AICA on GTX 1080
0 40t n 40+ n 40+
1000} € 30! GTX 1080 € 30! 1€ 30!
5004 g 1220
F jF 10 o g
0 L L L L O O X X X O X X X
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 O 500 1000 1500 2000

Threads ID

Threads ID Threads ID Threads ID
Figure 14: The parallel ICA calculation mitigates the load imbalance and improves the performance, with the head model with
1024> resolution and 2048 orientations. The first column plot shows the actual number of checks on all threads.

-®- Box check% in MICA

-®- PBox -®- PICA -4- AICA -®- PBox -®- PICA -4- AICA

-@- Increased% of the total check Optimized PBox -+#- MICA Optimized PBox -+#- MICA

~- Box check% in AICA 10° Head 103, Candle Holder 104 Head 103, Candle Holder
3 Head Candle Holder = _-u - o
g Rl R 102 I I AT L el ol 2
L 40 40 - = -l - ;:‘
=2 -4 SUPGNPSE, 4 et iuln). 220 --e-=--%¥=: 102 2= PEE e 24
£, ot . L G g 10! 3= =3 10 t:i—-—t‘ 3 g ;53:;*,3 10! ‘__i-;
] e 0-—-@—-O - o --0--0 o o [0

° 10 0 10 10
5 Py EPP Y S S 5 [y I G S S 256351231924204831 2563512%102420483 322 642 12822562 322 642 12822562
o 256%512°10242048% ~256°512°102420483 103 Turbine 103 Teapot 103 Turbine 103 Teapot
3 Turbine Teapot 7 n--1 m _m U g
< P € 102 I-——.—--I"l 2| M- E 102 M-—-m---0" o] BT

& P £10 10 £10 10 R

g 40 > 40 - ¢ p 3 _==t==z > __:8 _=x.x_,¢
S.le 20l * FRIEE == == SRdila &= = FRURE = E5 2o JIRTOE =
] -0 o-—-O--®--0 F 100 0 F 100 0

-- 10 0 10 10
e b S Y R S 256512°102430487 0 2563512310242048° 322 642 12822562 322 642 12822562
o 0 0
o 2563512310242048% 25635123102420483 Object resolution Object resolution Map resolution Map resolution

Object resolution Object resolution

Figure 15: Optimization of corner cases.

An intentional increase of the total
checks is made to reduce the number of
Box checks from MICA to AICA, where
ICA efficiency (=1-Box checks%)

Figure 16: Averaged execution time
of 5 approaches with various object
resolutions. Our approach AICA per-
forms 23.9% faster than the approach of
CHECKBOX, and 4.8% faster than our best
optimized version of CHECKkBox.

Figure 17: Averaged execution time of
5 approaches with various AM resolu-
tions. Our approach AICA performs
20.2x faster than the approach of
CHECKBox, and 4.1x faster than our
best optimized version of CHECkBox.

Optimization of corner cases. Since the performance of gen-
erating the AM is determined by the thread that has the longest
execution time, namely the critical thread, we only report the exe-
cution on the critical thread.

Figure 15 reports three types of percentages: box checks in MICA,
box checks in AICA, and the increased percentage of the total check
from MICA to AICA. Recall that our optimization of corner cases
reduces box checks at the expense of increasing the total checks,
where the cost of a single ICA check is much smaller than the cost
of a single box check. We can see that the percentage decreases from
14.4% to 0.9% on average, comparing AICA with MICA, resulting
in a 34.1% increase on the total number of checks. Suppose that
we need to reduce S number of box checks; then, the number of
required ICA checks should be larger than the number S as the
cost, because one Box check demands a substitute of multiple ICA
checks on the expanded children voxels.

However, increasing the number of ICA checks is worthwhile
because doing so reduces the number of box checks and improves
performance, given the inherent difference in costs between the

RIGHTSE LI MN iy

two types of checks. The remaining percentage of box checks is the
actual ICA efficiency, which is 99% on average, indicating that 99%
of CD tests benefit from the ICA abstraction.

5.3 Overall Performance Results

Varying Object resolution. Figure 16 shows the average execu-
tion time for all 4 models. For PICA, it is 23.9% faster than PBox,
and 4.8x faster than the optimized version on average of the 4
models. That is because CHECKICA only needs 2D computations
with the ICA and avoids most of the three computation-intensive
operations that exist in CHECkBox. MICA improves the speed by
28.3% on average compared to PICA. The simple parallelization of
the ICA precomputation is faster than the on-the-fly ICA computa-
tion, even though MICA memoizes ICA values for all voxels, while
PICA only applies the calculations on the voxels in the current test.
Note that the cost of the precomputation increases as the number
of the voxels grows. On the 2563 resolution, the improvement is
32.5% while for size 20483, the improvement becomes only 19.3%.
A detailed discussion of the cost on varying the number of voxels

Faster parallel collision detection at high resolution
for CNC milling applications

\- ICAcost [==J CD tests

50 50
GTX 1080 Ti

B Others ‘

GTX 1080

Time(ms)

5 6 7 8 9
Number of levels calculating ICA

Figure 18: Time breakdowns under various numbers of lay-
ers in octree, using the head input model in 2048> resolution
with AICA approach. Though the ICA cost increases as the
growth of the layers, the overall performance is improving.

7 8 9

in octree is given in Section 5.4. For AICA, it is 81.1% faster than
MICA on average, indicating that increasing the total number of
the checks can still yield a higher ICA efficiency. A detailed analysis
of this tradeoff is given in Section 5.2.

Varying the resolution of the AM. Increasing the resolution
of the AM leads to a large number of orientations to check. The
object model resolution is fixed to 1024°. The 322 resolution requires
1024 threads and 64? needs 4096 threads. The experiments run on
GTX 1080 Ti that has 3548 cores. This number of cores explains why
the increasing ratio of the execution time from 322 to 642 is smaller
than the others. Figure 17 presents the average execution time of
all 4 models. For PICA, it is 20.2X faster than PBox on the average
of the 4 models, and 4.1X better than our optimized CHECKBoX. For
MICA, it is improved by 39.5% compared to PICA. AICA achieves
84.8% improvement than MICA due to a high ICA efficiency, which
it includes the cost of creating the memoized table.

5.4 Cost Analysis

Calculating ICA affects execution time in the manner shown in
Figure 18. There, the x-axis represents the number of the upper
levels in octree that we calculate the ICA values. If the ICA value is
not precomputed, it will be calculated in runtime. In both subplots,
for the upper 3-4 levels in octree, there is not much time reduction
of CD tests. This is because the execution time is always bounded
by the critical thread. Starting from the 5 upper level, an obvious
reduction of the time appears, and meanwhile, the cost of calcu-
lating ICA increases as the number of voxels grows exponentially.
Taking the cost into account, it is still worth calculating ICA for
the voxels on the uppper 8 levels to speed up the CD tests.

We also explore variations in the object resolution from 2563 to
20483, Figure 19 presents the performance results. The execution
time increases gradually, as the cost of ICA calculation increases
with an exponential growth of the number of voxels. Therefore, we
believe that using a more powerful GPU card can reduce the cost
further, and thus achieve better performance. If we do not have a
new GPU card, we still can gain a decent performance by tuning
the parameter S to control the cost of the parallel ICA calculation.

6 APPLY ICA TO BOUNDING BOX

ICA abstraction is also applicable to bounding box. Bounding box is
a general data structure used to simplify computation by enclosing
a series of arbitrary objects. Similar to the way that a voxel is

RIGHTSE LI MN iy

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Il [CAcost [=J CDtests B Others ‘
20
15+
m
£
3 10
£
'_
5t
0 2567 512710242048256° 512°102420487256° 512°10242048256° 512°10242048
Head Candle Holder Turbine Teapot

Object resolution
Figure 19: Time breakdowns under various resolutions of ob-
ject models with AICA. As the object resolution rises, most
of the increasing portion comes form the ICA cost.

approximated by 2 spheres described in Figure 8, a bounding box
can also be approximated into 2 cylinders. Both cylinders are able
to use ICA for the checking. There should be certain corner cases
that are not covered by ICA, but the percentage should be very
small, similar to our ICA efficiency analysis. Therefore, ICA is a
general geometric abstraction that substantially simplifies CD tests.
We believe that our ICA abstraction will be implemented into a
new standard elementary procedure in many other tests, such as
cylinder-sphere, sphere-box, and box-box CD tests.

7 RELATED WORK

The problem of efficient CD has been well studied and excellent
surveys are available [6, 13, 31]. In this section, the approaches of
improving the performance of CD are classified into three cate-
gories: acceleration using graphics representations, acceleration
using novel parallelization schemes, and lastly others.

Many graphics techniques including spatial data structure [16,
18-20], culling [7], ray casting [12], visibility query and collision
map, are commonly used for approximation of CD [1, 30, 32]. By
using depth maps store distance values to represent outer shape
of objects, Kolb [14] handles collision detection and reaction of
particles with objects for arbitrary shape in massively parallel sim-
ulations. Sucan [24] describes a collision map data structure, which
uses axis aligned cubes to model the point cloud and to perform
collisions. Bounding sphere is commonly used for CD acceleration
as an encapsulation of the target object [2, 8, 11, 21] with an ap-
proximation. Our proposed approach targets on the performance
improvement of elementary CD tests and preserves accuracy.

Many algorithms [17, 18, 23, 25, 27, 33] have been proposed to
exploit computational capabilities of a multi-core platform. Lauter-
bach [17] presents novel GPU-based algorithms to efficiently per-
form collision and separation distance queries using tight-fitting
bounding volumes. With the goal to compute collision-free paths
for robots in complex environments, Pan [23] presents a novel GPU-
based parallel algorithm to perform collision queries for sample-
based motion planning. A novel hybrid parallel continuous collision
detection is proposed by Kim [10], which utilizes both CPUs and
GPUs to achieve the interactive performance of CD. Instead of focus-
ing a shared-memory test bed, Du [4] targets on high-performance

ICPP 2019, August 5-8, 2019, Kyoto, Japan

cluster with a parallel continuous collision detection(CCD) algo-
rithm aiming to accelerate CCD culling by efficiently distributing
workload. Our parallel algorithm can be integrated with these vari-
ous parallel schemes to explore efficient parallelisms.

Pan [22] formulates collision checking as a two-class classifica-
tion problem, applying machine learning to compute the collision
probability for acceleration. Ding [3] conducts the interference de-
tection between the tool oriented bounding boxes and the gray
octants of the surface octree in order to simplify the computation
process of updating tool positions and orientations in 5-axis machin-
ing. Zhiwei [34] proposes an efficient algorithm of CD to generate
tool posture collision-free area for the whole free-form surface
by sampling and cubic B-surface interpolation. Since these tech-
niques still need to process the elementary CD tests, our proposed
abstraction can be embedded to further improve the performance.

8 CONCLUSIONS AND FUTURE WORK

The key ideas of our proposed methods are the ICA concept, which
is a new geometric abstraction for the CD problem, and its parallel
algorithm AICA, including the mitigation of load-imbalance and
the optimization on corner cases. We have prototyped our AICA
algorithm within a real CNC milling tool, SculptPrint [9]. Experi-
mental results on 4 CAD benchmarks demonstrate that AICA is up
to 23X faster than the approach of the traditional approach.

While our results show ICA can be effective, our experimental
analysis also identifies several new opportunities. For instance,
neighboring pivot points, which were outside the scope of this
paper, are likely to have AM with overlapping values. Therefore,
future work should develop methods to reuse the AM values among
nearby pivots. Another idea is to construct an algorithm that can
intelligently tune the parameter S to adjust the cost of the parallel
ICA calculation. Lastly, to broaden its use in computer graphics, our
AICA should be extended and tested against other spatial volume
structures common in that domain, such as BVH (Section 1) and
kd-trees, among others.

REFERENCES

[1] Jeremy A Carter, Thomas M Tucker, and Thomas R Kurfess. 2008. 3-Axis CNC
path planning using depth buffer and fragment shader. Computer-Aided Design
and Applications 5, 5 (2008), 612-621.

[2] Jung-Woo Chang, Wenping Wang, and Myung-Soo Kim. 2010. Efficient collision
detection using a dual OBB-sphere bounding volume hierarchy. Computer-Aided
Design 42, 1 (2010), 50-57.

[3] SDing, MA Mannan, and Aun Neow Poo. 2004. Oriented bounding box and octree
based global interference detection in 5-axis machining of free-form surfaces.
Computer-Aided Design 36, 13 (2004), 1281-1294.

[4] Peng Du, Elvis S Liu, and Toyotaro Suzumura. 2017. Parallel continuous collision
detection for high-performance GPU cluster. In Proceedings of the 21st ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM, 4.

[5] Peng Du, Jie-Yi Zhao, Wan-Bin Pan, and Yi-Gang Wang. 2015. GPU accelerated
real-time collision handling in virtual disassembly. Journal of Computer Science
and Technology 30, 3 (2015), 511-518.

[6] Christer Ericson. 2004. Real-time collision detection. CRC Press.

[7] Naga K Govindaraju, Stephane Redon, Ming C Lin, and Dinesh Manocha.
2003. CULLIDE: Interactive collision detection between complex models in
large environments using graphics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware. Eurographics Associ-
ation, 25-32.

[8] Philip M Hubbard. 1996. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics (TOG) 15, 3 (1996), 179-210.

[9] Tucker Innovations Inc. [n. d.]. SculptPrint. http://www.sculptprint.com. Ac-
cessed: 2018-09-30.

[10] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, and Sung-eui Yoon. 2009.
HPCCD: Hybrid parallel continuous collision detection using CPUs and GPUs.

RIGHTSE LI MN iy

[11

[12]

=
&

(14

[15

[16

-
=

(18

[19]

[20]

[21

[22

[23

[24]

[25

™
2

[27

(28]

[29

[30

@
=

(32

[33

[34

Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1791-1800.
Dong-Jin Kim, Leonidas J Guibas, and Sung-Yong Shin. 1998. Fast collision
detection among multiple moving spheres. IEEE Transactions on Visualization
and Computer Graphics 4, 3 (1998), 230-242.

David Knott. 2003. CInDeR: collision and interference detection in real time using
graphics hardware. Ph.D. Dissertation. University of British Columbia.

Sinan Kockara, Tansel Halic, K Igbal, Coskun Bayrak, and Richard Rowe. 2007.
Collision detection: A survey. In Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on. IEEE, 4046-4051.

Andreas Kolb, Lutz Latta, and Christof Rezk-Salama. 2004. Hardware-based
simulation and collision detection for large particle systems. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. ACM,
123-131.

Dmytro Konobrytskyi. 2013. Automated CNC tool path planning and machining
simulation on highly parallel computing architectures. Ph.D. Dissertation. Clemson
University.

Dmytro Konobrytskyi, Mohammad M Hossain, Thomas M Tucker, Joshua A
Tarbutton, and Thomas R Kurfess. 2018. 5-Axis tool path planning based on
highly parallel discrete volumetric geometry representation: Part I contact point
generation. Computer-Aided Design and Applications 15, 1 (2018), 76-89.
Christian Lauterbach, Qi Mo, and Dinesh Manocha. 2010. gProximity: hierarchical
GPU-based operations for collision and distance queries. In Computer Graphics
Forum, Vol. 29. Wiley Online Library, 419-428.

Orion Sky Lawlor and Laxmikant V Kalée. 2002. A voxel-based parallel colli-
sion detection algorithm. In Proceedings of the 16th international conference on
Supercomputing. ACM, 285-293.

Roby Lynn, Didier Contis, Mohammad Hossain, Nuodi Huang, Tommy Tucker,
and Thomas Kurfess. 2017. Voxel model surface offsetting for computer-aided
manufacturing using virtualized high-performance computing. Journal of Manu-
facturing Systems 43 (2017), 296-304.

Roby Lynn, Mahmoud Dinar, Nuodi Huang, James Collins, Jing Yu, Clayton
Greer, Tommy Tucker, and Thomas Kurfess. 2018. Direct Digital Subtractive
Manufacturing of a Functional Assembly Using Voxel-Based Models. Journal of
Manufacturing Science and Engineering 140, 2 (2018), 021006.

Ian J. Palmer and Richard L. Grimsdale. 1995. Collision detection for animation
using sphere-trees. In Computer Graphics Forum, Vol. 14. Wiley Online Library,
105-116.

Jia Pan, Sachin Chitta, and Dinesh Manocha. 2017. Probabilistic collision detection
between noisy point clouds using robust classification. In Robotics Research.
Springer, 77-94.

Jia Pan and Dinesh Manocha. 2012. GPU-based parallel collision detection for
fast motion planning. The International Journal of Robotics Research 31, 2 (2012),
187-200.

Toan A Sucan, Mrinal Kalakrishnan, and Sachin Chitta. 2010. Combining plan-
ning techniques for manipulation using realtime perception. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2895-2901.
Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul, and Dinesh
Manocha. 2006. Fast proximity computation among deformable models using
discrete voronoi diagrams. ACM Transactions on Graphics (TOG) 25, 3 (2006),
1144-1153.

Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong. 2011. Collision-streams:
Fast GPU-based collision detection for deformable models. In Symposium on
interactive 3D graphics and games. ACM, 63-70.

Min Tang, Dinesh Manocha, and Ruofeng Tong. 2009. Multi-core collision de-
tection between deformable models. In 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling. ACM, 355-360.

Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil Heo, and Ruo-Feng
Tong. 2011. VolCCD: Fast continuous collision culling between deforming volume
meshes. ACM Transactions on Graphics (TOG) 30, 5 (2011), 111.

Joshua Tarbutton, Thomas R Kurfess, Tommy Tucker, and Dmytryi Konobrytskyi.
2013. Gouge-free voxel-based machining for parallel processors. The International
Journal of Advanced Manufacturing Technology 69, 9-12 (2013), 1941-1953.
Joshua A Tarbutton, Thomas R Kurfess, and Tommy M Tucker. 2010. Graphics
based path planning for multi-axis machine tools. Computer-Aided Design and
Applications 7, 6 (2010), 835-845.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. 2017. Handbook of discrete
and computational geometry. Chapman and Hall/CRC.

Sai-Keung Wong, Wen-Chieh Lin, Chun-Hung Hung, Yi-Jheng Huang, and Shing-
Yeu Lii. 2013. Radial view based culling for continuous self-collision detection of
skeletal models. ACM Transactions on Graphics (TOG) 32, 4 (2013), 114.

Xinyu Zhang and Young J Kim. 2014. Scalable collision detection using p-partition
fronts on many-core processors. IEEE transactions on visualization and computer
graphics 20, 3 (2014), 447-456.

Lin Zhiwei, Shen Hongyao, Gan Wenfeng, and Fu Jianzhong. 2012. Approximate
tool posture collision-free area generation for five-axis CNC finishing process
using admissible area interpolation. The International Journal of Advanced Man-
ufacturing Technology 62, 9-12 (2012), 1191-1203.

