
Faster parallel collision detection at high resolution
for CNC milling applications

Xin Chen
Georgia Institute of Technology

xchen384@gatech.edu

Dmytro Konobrytskyi
Uber Advanced Technologies Group

dkonobr.cv@gmail.com

Thomas M. Tucker
Tucker Innovations Inc.

tommy@tuckerinnovations.com

Thomas R. Kurfess
Georgia Institute of Technology

kurfess@gatech.edu

Richard W. Vuduc
Georgia Institute of Technology

richie@cc.gatech.edu

ABSTRACT

This paper presents a new and more work-efficient parallel method

to speed up a class of three-dimensional collision detection (CD)

problems, which arise, for instance, in computer numerical con-

trol (CNC) milling. Given two objects, one enclosed by a bounding

volume and the other represented by a voxel model, we wish to

determine all possible orientations of the bounded object around

a given point that do not cause collisions. Underlying most CD

methods are 3 types of geometrical operations that are bottlenecks:

decompositions, rotations, and projections. Our proposed approach,

whichwe call the aggressive inaccessible cone angle (AICA)method,

simplifies these operations and, empirically, can prune as much

as 99% of the intersection tests that would otherwise be required

and improve load balance. We validate our techniques by imple-

menting a parallel version of AICA in SculptPrint, a state-of-the-

art computer-aided manufacturing (CAM) application used CNC

milling, for GPU platforms. Experimental results using 4 CAM

benchmarks show that AICA can be over 23× faster than a baseline

method that does not prune projections, and can check collisions

for 4096 angle orientations in an object represented by 27 million

voxels in less than 18 milliseconds on a GPU.

KEYWORDS

collision detection, massively parallel collision detection, GPU

1 INTRODUCTION

We consider a collision detection (CD) problem that arises in the

area of computer numerical control (CNC) milling [15], an applica-

tion in advanced manufacturing. An example appears in Figure 1.

There is a shape one wishes to cut starting from a block of material,

such as the head from an initial cube of plastic (the left of Figure 1).

The computational task is to construct a path that a cutting tool can

make that eventually ends with the target object (e.g., the head),

starting from the input (e.g., the block of plastic).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337838

Figure 1: Inputs to the collision detection (CD) problem:

a head object from CAD benchmark, a tool composed of

bounding cylinders and a pivot point at the end of the tool.

The orientation of the tool at the pivot is represented by a

pair of angles in polar coordinates (φ,γ), where φ ∈ (0,π) and
γ ∈ (0, 2π).

Figure 2: The output of one CD test is an accessibility map

(AM). A map at (m,n)-resolution is discretized uniformly

intom · n points, with each point denoting some (φ,γ) orien-
tation. Here, the map is shown as a grid whose vertical axis

corresponds to φ and whose horizontal axis corresponds to

γ . Schematically, a black point indicates a collision between

the voxel and the tool when oriented at (φ,γ), and a white

point means no collision.

There are several possible CD methods, which are widely used

in other settings, like CAD/CAM [1, 3, 16, 29]; computer animation,

games, and physical simulations [14]; motion planning [23, 24];

and virtual assembly [5]. To improve the speed of CD, prior ap-

proaches have combined computer graphics analysis techniques

with efficient parallelization. Such techniques include culling to

prune redundant computation [26, 28], as well as algorithms that

can exploit GPU features like visibility queries in the depth buffer,

and frame buffers and fragment shaders [7, 14, 24]. But there are

also efficient parallel CD methods for both general-purpose CPUs

and GPUs [4, 18, 23, 33].

Underlying most of these approaches are three types of fun-

damental, computationally intensive operations: decompositions,

rotations, and projections. We illustrate them in the bottom of Fig-

ure 4, in the case where one wishes to check whether a cylinder

(i.e., one model of a tool) intersects with a box (i.e., part of the

object being milled). Briefly, these operations are a sequence of

geometric calculations that transform the input object into other

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Figure 3: Schematic of the baseline parallel scheme to calculate the AM. It begins with the target (left), stored as a adaptive

(non-uniform) volumetric octree with N voxels, and the M = m · n discrete orientations of the tool to check for collisions.

Each (GPU) thread considers one orientation and executes Algorithm 2, which traverses the octree to see if that orientation

causes an intersection with any voxels. (Algorithm 2 does not need to visit all voxels if it detects early in the traversal that no

intersection is possible.)

representations, as explained in Section 2. These three operations

also appear commonly in other types of basic geometric intersec-

tion tests, such as sphere-box intersection, box-box intersection,

and cylinder-sphere intersection. Such tests are the basis of discrete

collision detection (DCD) and continuous collision detection (CCD)

algorithms in computer graphics [3, 4, 10, 17, 18, 33].

However, for CD, cylinder-box intersection tests dominate and

may be sped up considerably. We do so using a novel abstraction,

called the inaccessible cone angle (ICA), that eliminates a high per-

centage of the usual cost of CD tests for decompositions, rotations,

and projections. We further accelerate this method via a parallel

algorithm that we call the aggressive inaccessible cone angle (AICA)

method. Prior methods to test for the intersection between two

objects relied on a general bounding volume hierarchy (BVH) and

fine-grained volumetric representation of the cutting tool. How-

ever, in our application we can replace this representation by a

simpler collection of bounding volumes, like the bounding cylin-

ders suggested in Figure 1, thereby making the three fundamental

operations cheaper. This simplification also suggests a new way

to express the computation, yielding a method that has smaller

“constant factors” and is easier to load-balance. Our ICA abstraction

could be extended into a new primitive and, thereby, applied in

other CD contexts that involve rotational operations (Section 6).

In brief, the main claimed contributions of this paper are the ICA

abstraction, the AICA parallel algorithm, and an empirical valida-

tion thereof. 1 The basic ICA abstraction allows us to reason about

the object over all orientations in a computationally compact way,

thereby reducing the number of operations and checks than prior

art. When using an adaptive volumetric octree to store the target

object (e.g., the head of Figure 1), we observe that as many as 99%

of the CD tests can be eliminated on a variety of complex input

geometries. We have prototyped our approach in a version of the

commercial SculptPrint software package. Our AICA method can

be over 23× faster than a baseline approach that uses 3D projection,

and nearly 4.8× faster than another novel method we present. In

absolute performance, AICA enables the checking of 4096 orien-

tations for an object represented by 27 million voxels in just 18

milliseconds on a recent GPU.

1An initial sketch of the ICA appeared earlier in an unrefereed work [15]. However,
the previously proposed calculation of ICA is incorrect. In this paper, we first give
a correct description and then present a parallel scheme, neither of which appeared
before.

Figure 4: Our baseline algorithm that performs the paral-

lel CD tests by calling CheckBox, which involves the three

steps that cost 216 operations.

2 BACKGROUND AND MOTIVATION

Problem Statement. The inputs of our CD problem are (a) a 3D

object, which is the target (e.g., the head); (b) another 3D object,

which is the tool; (c) a pivot point upon which one end of the tool

is fixed; and (d) the set of (discretized) orientations of the tool to

consider. The output is an accessibility map (AM) that indicates

whether or not each orientation leads to a collision between the

two objects. Figures 1 and 2 illustrate these inputs and outputs.

To efficiently detect collisions, we will assume the setup of Fig-

ure 3. The target object is represented by a high-resolution volu-

metric (voxel-based) adaptive octree and the tool object is enclosed

within a collection of simple bounding cylinders. Both octree and

bounding volumes (BVs) are spatial data structures widely used in

many applications [3, 16, 18–20, 28]. We denote the total number of

voxels (root + interior + leaves) in the target object by N , and use

M for the number of discrete tool orientations to check. We will

consider single GPU-parallel algorithms, where the basic building

unit of computation is a CD test, which checks if a given orientation

intersects with a given voxel; the adaptive octree will allow both

the baseline algorithm and our improved schemes to dynamically

prune CD tests when no collisions are possible.

BaselineAlgorithm. Figure 4 illustrates our baseline algorithm,

which is GPU-parallel. Each GPU thread considers an orientation,

Faster parallel collision detection at high resolution

for CNC milling applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

Figure 5: Execution time of varying the object resolution in

the head model (map size is 642) and varying the map reso-

lution (object resolution is 10243), with Algorithm 2.

traversing the octree to determine whether that orientation yields

any intersections with the target. (The code that each thread runs

is CheckOctree, shown in Algorithm 2.) During its traversal, the

thread performs a CD test at each voxel it traverses, assessing

whether the tool at the given orientation intersects the voxel. The

intersection calculation is performed by a subroutine referred to as

CheckBox, which consists mainly of three computationally inten-

sive geometrical operations: decomposition, rotation, and projection.

The decomposition step decomposes the tool into one or more

cylinders, the voxel into 6 faces, and each face into 4 line segments.

Secondly, rotation changes the coordinate frame so that the cylinder

becomes axis-aligned, which greatly simplifies some subsequent

calculations and requires 9 elementary operations (e.g., scalar arith-

metic). Thirdly, the projection step projects the geometries from

3D space to 2D. In total the algorithm CheckBox executes at most

Nc ·6·4·9 = 216·Nc elementary operations.

Initial experimental study. To gain some intuition for how

this baseline performs, consider the following experiment on a

NVIDIA GTX 1080Ti GPU (see Section 5.1 for hardware details).

Supposewe generate anAMwith the baseline algorithm. Figure 5

shows the execution time as we vary either the object resolution

(N = k3 voxels on the x-axis of the left subplot) or accessibility

map resolution (M = l2 along the x-axis of the right subplot).

Even though increasing the object resolution sharply increases the

number of voxels in the octree representation, the largest observed

increase in execution time is a factor of two (2) when increasing

the number of voxels by eight (10243 to 20483 grid). This scaling

behavior is sublinear in resolution because the octree induces a

pruning of possible checks. By contrast, when the map resolution

increases from 1282 to 2562, a 4× increase in cells, the corresponding

execution time also increases by the same factor. This observation is

also not surprising as the total amount of work is proportional to the

number of orientations being tested. For relatively low-resolution

accessibility maps (e.g., 322 or 642), the execution time appears flat;

that behavior is due to the number of threads of work being less

than or comparable to the number of physical execution cores (3,548

CUDA cores on this particular system). However, that absolute time

is high enough to prohibit real-time CD. (Real-time is not required

in CNC milling but can be in other graphics problems.)

Our paper focuses on the performance improvement of the CD

test between cylinders and voxels. It contains two parts: ICA ab-

straction in Section 3 and our parallel algorithm AICA in Section 4.

ICA aims to reduce the cost of a single CD test. AICA aims to

improve parallelism and load balance.

Figure 6: (Left) How a cone is formed with the tool cylin-

ders exactly touching the surface of the sphere in 3D. (Right)

How ICA is formed to check the intersection in 2D.

3 ICA ABSTRACTION

We improve the baseline by first making it more work-efficient,

namely, by reducing the high cost of the three basic geometrical

operations of decompositions, rotations, and projections. Our ap-

proach is an abstraction, the inaccessible cone angle (ICA), which

simplifies the 3D operations into 2D equivalents.

3.1 Spherical approximation

First, consider the following approximation, designed to reduce the

complexity of a CD test: replacing a voxel by a sphere.

A general strategy to make CD tests cheaper is to axis-align the

objects, that is, perform the calculations in a coordinate framewhere

one or more axes align “naturally” to one of the objects. Since it is

rare that the two objects of an intersection test are simultaneously

axis-aligned, we need to axis-align one object and rotate the other.

In our method, we choose to axis-align the cylindrical tool because

projecting the side surface of a cylinder is more complex than

projecting the face of a voxel.

However, calculating the new coordinates of the voxel’s geomet-

ric elements (e.g., faces, edges) in this new coordinate frame can

still be high. In 2D, an axis-aligned line segment becomes skewed

after a rotation, and so does a square. In 3D, this problem worsens

because a voxel has multiple (six) faces.

By contrast, a spherewould be naturally neutral to axis-alignment

regardless of how it is rotated. Consequently, the complexity of an

elementary intersection test involving the sphere would be invari-

ant to its rotation. We could, therefore, approximate the voxel by,

say, a circumscribed sphere. Doing so truncates the corners, but it is

possible to resolve the inaccuracy introduced by this approximation.

We explain how in Section 3.3.

3.2 Inaccessible Cone Angle (ICA)

Suppose we are given (i) a spherical object approximated by a voxel,

(ii) a tool composed of several cylinders, and (iii) a position where

one end of the tool is fixed. Our goal is to calculate all the inaccessible

orientations, that is, orientation angles at which the tool collides

with the spherical object. Any remaining orientations are accessible.

With this setup, we propose the concept of an inaccessible cone

angle, or ICA, which represents the possible region of intersection

between the tool and the voxel.

Figure 6 gives a general example on how a cone is formed in

considering a potential collision. On the left, there is the tool, a

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Figure 7: The tool cylinders and the voxel are simplified into

rectangles and a circle. The voxel’s ICA value is calculated

as the maximum angle that the circle touches the surface of

rectangles.

target sphere, and a pivot point, with vectors from the pivot through

the centers of the sphere and the tool. Observe that the tool may

touch the sphere at many points, but that the angle between the

tool vector and the target vector is constant in all cases. The set

of all orientations for which the tool surfaces touch the sphere

forms a cone, which we refer to as the inaccessible cone: all tool

directions within the cone will yield a collision (intersected=True),

while directions outside are collision-free (intersected=False).

The inaccessible cone is associated with an angle between two

vectors, one passing through the center line of the tool and the

other passing through the center of the voxel. This angle is the ICA,

calculated as a 2D value; see Figure 6 (right). The ICA is the largest

angle at which the tool collides with the sphere, or, conversely, the

smallest angle at which the tool does not do so.

Algorithm 1 CheckICA

Input: tool as cylinders, orientation Si , pivot point p, voxel

1: procedure CheckICA(cylinders, Si , p, voxel)
2: r ← radius of sphere within the voxel

3: v ← the center of the voxel

4: ica1 ← GetToolICA(cylinders,p,v, r)
5: ica2 ← GetToolICA(cylinders,p,v,√3r)
6: vector1 ← the center line of tool at orientation Si
7: vector2 ← the vector passing p and c
8: angle← the angle between vector1 and vector2
9: if angle ≤ ica1 then

10: return intersected = True

11: else if angle ≥ ica2 then

12: return intersected = False

13: else � Corner case

14: return CheckBox(cylinders, Si , p, voxel)
15: end if

16: end procedure

To calculate an ICA, one must determine at which points a circle

might just touch a given rectangle (tool). Figure 7 illustrates how

to do so. A cross-section of a cylinder that passes its center line is

a constant rectangle, and a cross-section of a sphere that passes

its center is a constant circle, so these 2D geometries are used

to represent the original 3D objects. Our idea starts by logically

expanding the size of the rectangle by the radius of the voxel. Then,

Figure 8: Two spheres are constructed for each voxel. For

sphere1, its surface is tangent to the 6 sides of the voxel, and

for sphere2, the voxel’s 8 corners are on its surface.

fixing the distance between the pivot point and the center of the

voxel, it determines all points along an arc, centered at the pivot,

that intersect the expanded rectangle. These points are crossed

points. A crossed point might be located at any point on the border

of the expanded rectangle, whether it be on the side, the bottom, or

the corner. Crossed points correspond to centers of voxels whose

circumscribed sphere just touches the original rectangle.

3.3 CheckICA algorithm to preserve accuracy

The preceding procedure approximates a voxel by a sphere. The

resulting CD test may, therefore, yield false-positive reports of

accessibility. For instance, if the tool intersects with a corner of

the voxel—a literal “corner case”—the approximation will report

“accessible” because that corner is outside the sphere. This case is

detrimental in CNC milling, where any collision could damage the

target part or tool.

The algorithm CheckICA in Algorithm 1 covers such cases.

It considers two spheres at each voxel, one inscribed within the

voxel (Sphere1) and one circumscribed about the voxel (Sphere2),

as shown in Figure 8. Each of these spheres yields an ICA value.

Then, it verifies the following two conditions by comparing the

two ICA values as in line 9 and 11. Lastly, if the angle lies between

the two ICA values, which is a corner case in line 13, we cannot

verify the intersection using only the definition of ICA; therefore,

we must fallback to the original CheckBox described in Section 2.

If in the absence of a corner case, the cost of invoking CheckICA

is Nc ·2·5 + 3 = 10·Nc + 3 operations, where 10·Nc is the cost of

calculating ICA and 3 is the cost of verifying the intersection with

the ICA values. Here 2 means the 2 spheres; Nc denotes the number

of cylinders in the tool; 5 means there are 5 components to check

for each rectangle (cylinder).

One question is how often the CheckICA algorithm might need

to invoke the baseline CheckBox, or what is the probability that

we encounter a corner case. We define the ICA efficiency as the

fraction of intersection tests that do not resort to calling CheckBox.

That is, an efficiency of zero means we always call CheckBox, and

a value of 1 means we never need to call CheckBox.

Figure 9 derives a theoretical estimate of ICA efficiency, in a

simple setting where the cylinders are approximated by a straight

line and there are an infinite number of orientations to check. ICA

efficiency is inversely proportional to (r/dist), where r is the radius
of a voxel, and dist is the distance from the pivot point to the center

Faster parallel collision detection at high resolution

for CNC milling applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

Figure 9: Theoretical ICA efficiency analysis. We assume

that the sizes of the cylinders do not influence the ICA value

and the tool becomes a straight line.

of the voxel. In practice, for most voxels the distance should bemuch

larger than the radius, resulting in a higher ICA efficiency than

the minimal value: the pivot point must be outside the 3D object,

and a point inside the object must result in a collision. The relation

between the distance and the radius are crucial to ICA efficiency.

As the resolution of the target object increases, the voxel will have

a smaller r, thereby yielding a higher ICA efficiency. Thus, ICA

efficiency benefits naturally from high-resolution representations.

The concept of an ICA confers several benefits. First, using the

ICA in elementary tests does not require any decomposition, since

it represents the entire tool. Secondly, the ICA value is independent

of the given orientation of the tool. Thus, regardless of the number

of orientations a test needs to check, we need only compute the ICA

once. Thirdly, the ICA does not require any expensive rotations

or projections thanks to the spherical approximation. Compared

with CheckBox, CheckICA reduces the overall cost from 216Nc

operations to 10Nc + 3 operations, a roughly 20-fold decrease.

4 DESIGN OF PARALLEL AICA

Our approach, AICA, consists of two stages: parallel ICA calcula-

tion and parallel CD tests. These are illustrated in Figure 10. The

inputs to the first stage are the target octree and tool geometry, and

the output is a memoized table storing that holding some precom-

puted ICA values for the upper-levels of the tree. The number of

levels is a tunable parameter, described below. In the second stage,

each logical GPU thread again checks one orientation; however,

when it performs a CD test and calls CheckICA, the CheckICA

algorithm can now use the memoized table to look up the pre-

computed ICA values instead of computing them on-the-fly. Any

yet-to-be-computed ICA values are computed on-demand. The rest

of this section describes our approach to GPU thread mapping,

parallelization of the CD tests, and reduction of costly corner cases.

4.1 GPU threads mapping

For the parallel ICA calculation, we compute the values of the voxels

on the top S levels in octree. Each thread corresponds to a voxel,

yielding a highly efficient SIMDization.

For the parallel CD test, given the workload with the N voxels

and theM orientations, there are two natural parallelization strate-

gies. One is to partition the octree among threads, and then each

thread processesM orientations. The other is to map each orienta-

tion to a thread and then each thread will traverse the octree, as

with the baseline algorithm. We use the latter, for two reasons. One

Figure 10: Overview of aggressive inaccessible cone angle

(AICA)with two stages: parallel ICA calculation and parallel

CD tests.

Algorithm 2 CheckOctree

Input: tool, orientation Si , pivot point p, octree

1: procedure CheckOctree(tool, Si , p, octree)
2: stack← {voxels at the top level of octree}

3: while !stack.IsEmpty() do

4: voxel = stack.pop()

5: intersected = CheckBox(tool, Si , p, voxel)
6: if !intersected then

7: continue

8: else if intersected & voxel.IsLeafNode() then

9: return True

10: else

11: stack.push_back(voxel.children())

12: end if

13: end while

14: return False

15: end procedure

is that it enables more aggressive exploitation of the adaptive octree

for pruning. Finding an interior voxel node that does not intersect

with the tool can avoid any calculations on all of its descendants;

similarly, a solid voxel that intersects with the tool means that we

can directly return that a collision will occur. Another reason is

simplicity: assigning threads to orientations is an owner-computes

strategy that avoids communication and synchronization. The over-

all algorithm, which each thread executes, appears in Algorithm 2.

4.2 Mitigating load imbalance

The choice of thread mapping affects load imbalance in the baseline.

The execution time of a thread is determined by the number of

checks at the line 3 of Algorithm 2, which varies with each orienta-

tion. Tomitigate this load imbalance, we calculate ICAs of the voxels

on upper S levels of octree in parallel as a precomputation stage

before the parallel CD tests, rather than calculating ICA at runtime

as shown in the left side of Figure 11. In practice, each thread’s

calculation of an ICA and comparisons alternate with checks, and

the time spent in the two phases appears in Figure 11. We create,

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Figure 11: The parallel ICA calculation mitigates load im-

balance and improves the performance, by saving the cost

of redundant ICA calculation and efficient parallelization.

for each voxel in the target, a memoized table of ICA values. These

are the values labeled ica1 and ica2 for the two spheres, meaning

one pair per voxel. This increased storage is a modest fraction of

the total voxel storage and this precomputation is pleasingly paral-

lel since there are no inter-voxel dependencies. Precomputation is

feasible because ICA is independent of the tool’s orientation.

This approach confers three overall benefits. First, it avoids re-

dundant calculations as the ICA values in the table are calculated

once but reused by all threads. Secondly, it mitigates load imbalance

as calculating ICA in the precomputation stage is easily paralleliz-

able, at the granularity of voxels. Lastly, it reduces the execution

time of all threads and thus improves overall performance because

of efficient SIMDization on GPU.

As S increases, the total cost of all CheckICA tends to increase,

whereas the amortized cost of CheckBox tends to decrease. Thus,

there is a tradeoff. A heuristic is that S can be set to a relatively

higher value on recent, more powerful GPUs (Section 5.4).

4.3 Optimization on the corner cases

For corner cases, wemay still need to invoke the baseline CheckBox

to verify the intersection. However, we can reduce the corner case

cost by utilizing the hierarchical spatial structure as an optimization.

Suppose that the algorithm stops at a voxel facing the corner

case as shown in Figure 12 (left). We have two choices. One is

to directly invoke the baseline algorithm. The other is to expand

the voxel into its children voxels, and then apply our CheckICA

algorithm recursively on each voxel; the recursion stops when no

further expansion is allowed, in which case CheckBox is still used

as the fallback. Our optimization approach is to choose the latter.

The cost of this approach is an increase of the number of checks

resulting from the expansion. Nevertheless, the benefit is the reduc-

tion in cost of CD test by invoking CheckICA. We believe that the

benefit largely outweighs the cost. Note that the cost of a single

CheckICA is 3 here, rather than Nc ∗ 10+ 3, since most voxels’ ICA

values have already been calculated in the precomputation stage.

The corner case is also an important factor that causes the load

imbalance, so we will benefit from optimizing it, too. This tradeoff

will be evaluated in detail in Section 5.2.

Figure 12: Optimization on the corner cases. When meeting

a corner case on a voxel, AICA algorithm expands it into its

children voxels and calls CheckICA recursively.

5 EVALUATION

We evaluated three aspects of our approach: (1) examining the

impact of the parallelism method and verifying the efficacy of ICA

efficiency; (2) assessing absolute performance with various object

resolutions and various AM resolutions; (3) analyzing the cost of

the parallel ICA calculation under various configurations.

Our comparison includes AICA and four other schemes:

• A parallel box (PBox), which is the baseline algorithm with

parallel CD tests using CheckBox.

• An optimized PBox is still on the baseline algorithm but

using axis-aligned bounding boxes (AABBs). The optimiza-

tion is to apply AABBs on the voxel after each rotation. If

no intersection exists on the bounding box, we can directly

return False.

• A parallel ICA (PICA), which is the algorithm with the par-

allel CD tests using CheckICA.

• A memoized ICA (MICA), which is the algorithm that has

the parallel CD tests using CheckICA and has the parallel

ICA calculation but without the optimization of corner cases.

• Our approach, AICA, which has both.

The first two—PBox and optimized PBox—represent the state-of-the-

art, and are both implemented in SculptPrint.

Table 2: Experimental test platforms.

Two Setups GTX 1080 Ti GTX 1080

CPU Intel i7-2600K Intel i7-7820HK

3.40GHZ 2.90GHZ

DRAM 16GB 32GB

OS Windows 7 windows 10

CUDA runtime 9.1 10.0

GPU card 11GB, 1.68GHZ 8GB, 1.77GHZ

3548 CUDA cores 2560 CUDA cores

5.1 Experimental Setup

CAD Benchmarks. Our experiments use 4 CAD benchmarks for

evaluation. A summary of the input meshes and their detailed

Faster parallel collision detection at high resolution

for CNC milling applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 1: Geometric statistics of sample CAD Benchmarks.

Head Candle Holder Turbine Teapot

Number of Triangles 23028 38000 57792 57600

Dimension XYZ(mm) 48.6*46.0*64.4 48.4*48.9*57.7 48.9*48.9*31.1 46*46*31

Bounding Volume 51331 21275 7823 25619

Effective Resolution 2563 5123 10243 20483 2563 5123 10243 20483 2563 5123 10243 20483 2563 5123 10243 20483

#layers 6 7 8 9 7 7 8 9 6 7 8 9 6 7 8 9

#voxels in octree(106) 0.44 1.06 4.26 17.56 0.57 1.59 5.92 26.94 0.62 1.37 6.44 26.06 0.74 1.53 6.14 23.89

#points on path(103) 61.14 101.3 203.7 409.3 58.32 97.32 196.9 360.6 29.43 41.46 83.48 168.2 30.60 44.57 89.37 179.1

Figure 13: Comparison between the number of voxels in oc-

tree and the number of checks under various object resolu-

tions. The actual number of checks on the critical thread is

much smaller than the total number of voxels.

geometrical characteristics are listed in Table 1. For each benchmark,

we evaluate 4 target resolutions on the construction of octree, from

2563 to 20483. The tool geometry has 4 cylinders, with varying radii

(31.5, 20, 6.225, 6.35)mm and heights (22.1, 78, 76.2, 25.4)mm. The

AM resolution starts from 322 to 2562. To choose representative

pivot points, we generate a path surrounding the CADmodels, with

each point on the path having a 1 mm distance from the surface of

the model.

Configuration. We implement our algorithms in SculptPrint, a

computer-aided manufacturing (CAM) application for producing

CNC tool paths [9]. During the process of generating an AM, we

assume that all of the information about the 3D object model has

already been loaded onto the GPU, since this information is read-

only and only need only be loaded once. Thus, the cost of the

transferring is excluded in our experimental results.

In our experiments, 2000 random points are chosen from the

path as the pivot points. The last row of Table 1 shows the total

number of points on the path. Every experimental result in this

section is the average value of the 2000 samples. We directly expand

the top 5 levels of octree into one level, and report the final number

of levels under various resolutions in Table 1. This expansion aims

at reducing the height of octree (see the load imbalance part in

Section 5.2). The parameter S is set to 8, which means that the

parallel ICA calculation stage computes the ICA values for the

voxels on the upper 8 levels (∼7 billion voxels).

5.2 Analysis of Parallelism Exploitation

Threads mapping. Figure 13 shows the total number of voxels

under various resolutions for the 4 models. However, the total

number of voxels does not reflect the actual workload on each

thread. The right-hand plot presents the actual number of checks

on the critical thread. Because of the spatial hierarchy of octree in

Algorithm 2, each thread unnecessarily traverses all voxels. It is

obvious that the number of the actual checks is much smaller than

the number of voxel in octree, indicating that our approach of the

threads mapping is very efficient.

Mitigating load imbalance. Figure 14 shows how the parallel

ICA calculation stage mitigates load imbalance and, thereby, im-

proves performance. The leftmost plot shows the actual number

of checks executed by each thread. The leftmost and rightmost

threads run the same number of checks, because we expanded the

top 5 levels into 1 level as mentioned before, and these threads have

to check all voxels on the top level before returning. In the two

plots of the second column, we can see that the execution time is

proportional to the number of checks, where CheckICA is used

for CD tests. Comparing the two GPU cards, we can see that the

time on GTX 1080 is a little shorter than the other, because GTX

1080 has a higher clock rate 1.77GHz than 1.68GHz of GTX 1080

Ti. In the two plots of the third column, the bottom area represents

the time of the parallel ICA calculation, which mitigates the load

imbalance by reducing the execution time of calculating ICA values.

Note that the CD tests in the corner cases are not influenced by the

parallel ICA calculation, which still takes a relatively long period

of time. Comparing the two GPU cards, we can see that the time of

the parallel ICA calculation on GTX 1080 (∼ 3.8 ms) is longer than

the other (∼ 3.1 ms), because GTX 1080 has 2560 CUDA cores while

GTX 1080 Ti has 3548 CUDA cores.

The last column of Figure 14 shows the cost of the corner cases

and the effect of our optimization technique, which effectively

improves performance further from the previous column.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

Figure 14: The parallel ICA calculationmitigates the load imbalance and improves the performance, with the headmodel with

10243 resolution and 2048 orientations. The first column plot shows the actual number of checks on all threads.

Figure 15: Optimization of corner cases.

An intentional increase of the total

checks is made to reduce the number of

Box checks from MICA to AICA, where

ICA efficiency (=1-Box checks%)

Figure 16: Averaged execution time

of 5 approaches with various object

resolutions. Our approach AICA per-

forms 23.9× faster than the approach of

CheckBox, and 4.8× faster than our best

optimized version of CheckBox.

Figure 17: Averaged execution time of

5 approaches with various AM resolu-

tions. Our approach AICA performs

20.2× faster than the approach of

CheckBox, and 4.1× faster than our

best optimized version of CheckBox.

Optimization of corner cases. Since the performance of gen-

erating the AM is determined by the thread that has the longest

execution time, namely the critical thread, we only report the exe-

cution on the critical thread.

Figure 15 reports three types of percentages: box checks inMICA,

box checks in AICA, and the increased percentage of the total check

from MICA to AICA. Recall that our optimization of corner cases

reduces box checks at the expense of increasing the total checks,

where the cost of a single ICA check is much smaller than the cost

of a single box check.We can see that the percentage decreases from

14.4% to 0.9% on average, comparing AICA with MICA, resulting

in a 34.1% increase on the total number of checks. Suppose that

we need to reduce S number of box checks; then, the number of

required ICA checks should be larger than the number S as the

cost, because one Box check demands a substitute of multiple ICA

checks on the expanded children voxels.

However, increasing the number of ICA checks is worthwhile

because doing so reduces the number of box checks and improves

performance, given the inherent difference in costs between the

two types of checks. The remaining percentage of box checks is the

actual ICA efficiency, which is 99% on average, indicating that 99%

of CD tests benefit from the ICA abstraction.

5.3 Overall Performance Results

Varying Object resolution. Figure 16 shows the average execu-

tion time for all 4 models. For PICA, it is 23.9× faster than PBox,

and 4.8× faster than the optimized version on average of the 4

models. That is because CheckICA only needs 2D computations

with the ICA and avoids most of the three computation-intensive

operations that exist in CheckBox. MICA improves the speed by

28.3% on average compared to PICA. The simple parallelization of

the ICA precomputation is faster than the on-the-fly ICA computa-

tion, even though MICA memoizes ICA values for all voxels, while

PICA only applies the calculations on the voxels in the current test.

Note that the cost of the precomputation increases as the number

of the voxels grows. On the 2563 resolution, the improvement is

32.5% while for size 20483, the improvement becomes only 19.3%.

A detailed discussion of the cost on varying the number of voxels

Faster parallel collision detection at high resolution

for CNC milling applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

Figure 18: Time breakdowns under various numbers of lay-

ers in octree, using the head input model in 20483 resolution

with AICA approach. Though the ICA cost increases as the

growth of the layers, the overall performance is improving.

in octree is given in Section 5.4. For AICA, it is 81.1% faster than

MICA on average, indicating that increasing the total number of

the checks can still yield a higher ICA efficiency. A detailed analysis

of this tradeoff is given in Section 5.2.

Varying the resolution of the AM. Increasing the resolution

of the AM leads to a large number of orientations to check. The

object model resolution is fixed to 10243. The 322 resolution requires

1024 threads and 642 needs 4096 threads. The experiments run on

GTX 1080 Ti that has 3548 cores. This number of cores explains why

the increasing ratio of the execution time from 322 to 642 is smaller

than the others. Figure 17 presents the average execution time of

all 4 models. For PICA, it is 20.2× faster than PBox on the average

of the 4 models, and 4.1× better than our optimized CheckBox. For

MICA, it is improved by 39.5% compared to PICA. AICA achieves

84.8% improvement than MICA due to a high ICA efficiency, which

it includes the cost of creating the memoized table.

5.4 Cost Analysis

Calculating ICA affects execution time in the manner shown in

Figure 18. There, the x-axis represents the number of the upper

levels in octree that we calculate the ICA values. If the ICA value is

not precomputed, it will be calculated in runtime. In both subplots,

for the upper 3-4 levels in octree, there is not much time reduction

of CD tests. This is because the execution time is always bounded

by the critical thread. Starting from the 5 upper level, an obvious

reduction of the time appears, and meanwhile, the cost of calcu-

lating ICA increases as the number of voxels grows exponentially.

Taking the cost into account, it is still worth calculating ICA for

the voxels on the uppper 8 levels to speed up the CD tests.

We also explore variations in the object resolution from 2563 to

20483. Figure 19 presents the performance results. The execution

time increases gradually, as the cost of ICA calculation increases

with an exponential growth of the number of voxels. Therefore, we

believe that using a more powerful GPU card can reduce the cost

further, and thus achieve better performance. If we do not have a

new GPU card, we still can gain a decent performance by tuning

the parameter S to control the cost of the parallel ICA calculation.

6 APPLY ICA TO BOUNDING BOX

ICA abstraction is also applicable to bounding box. Bounding box is

a general data structure used to simplify computation by enclosing

a series of arbitrary objects. Similar to the way that a voxel is

Figure 19: Time breakdowns under various resolutions of ob-

ject models with AICA. As the object resolution rises, most

of the increasing portion comes form the ICA cost.

approximated by 2 spheres described in Figure 8, a bounding box

can also be approximated into 2 cylinders. Both cylinders are able

to use ICA for the checking. There should be certain corner cases

that are not covered by ICA, but the percentage should be very

small, similar to our ICA efficiency analysis. Therefore, ICA is a

general geometric abstraction that substantially simplifies CD tests.

We believe that our ICA abstraction will be implemented into a

new standard elementary procedure in many other tests, such as

cylinder-sphere, sphere-box, and box-box CD tests.

7 RELATEDWORK

The problem of efficient CD has been well studied and excellent

surveys are available [6, 13, 31]. In this section, the approaches of

improving the performance of CD are classified into three cate-

gories: acceleration using graphics representations, acceleration

using novel parallelization schemes, and lastly others.

Many graphics techniques including spatial data structure [16,

18–20], culling [7], ray casting [12], visibility query and collision

map, are commonly used for approximation of CD [1, 30, 32]. By

using depth maps store distance values to represent outer shape

of objects, Kolb [14] handles collision detection and reaction of

particles with objects for arbitrary shape in massively parallel sim-

ulations. Sucan [24] describes a collision map data structure, which

uses axis aligned cubes to model the point cloud and to perform

collisions. Bounding sphere is commonly used for CD acceleration

as an encapsulation of the target object [2, 8, 11, 21] with an ap-

proximation. Our proposed approach targets on the performance

improvement of elementary CD tests and preserves accuracy.

Many algorithms [17, 18, 23, 25, 27, 33] have been proposed to

exploit computational capabilities of a multi-core platform. Lauter-

bach [17] presents novel GPU-based algorithms to efficiently per-

form collision and separation distance queries using tight-fitting

bounding volumes. With the goal to compute collision-free paths

for robots in complex environments, Pan [23] presents a novel GPU-

based parallel algorithm to perform collision queries for sample-

based motion planning. A novel hybrid parallel continuous collision

detection is proposed by Kim [10], which utilizes both CPUs and

GPUs to achieve the interactive performance of CD. Instead of focus-

ing a shared-memory test bed, Du [4] targets on high-performance

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc

cluster with a parallel continuous collision detection(CCD) algo-

rithm aiming to accelerate CCD culling by efficiently distributing

workload. Our parallel algorithm can be integrated with these vari-

ous parallel schemes to explore efficient parallelisms.

Pan [22] formulates collision checking as a two-class classifica-

tion problem, applying machine learning to compute the collision

probability for acceleration. Ding [3] conducts the interference de-

tection between the tool oriented bounding boxes and the gray

octants of the surface octree in order to simplify the computation

process of updating tool positions and orientations in 5-axis machin-

ing. Zhiwei [34] proposes an efficient algorithm of CD to generate

tool posture collision-free area for the whole free-form surface

by sampling and cubic B-surface interpolation. Since these tech-

niques still need to process the elementary CD tests, our proposed

abstraction can be embedded to further improve the performance.

8 CONCLUSIONS AND FUTUREWORK

The key ideas of our proposed methods are the ICA concept, which

is a new geometric abstraction for the CD problem, and its parallel

algorithm AICA, including the mitigation of load-imbalance and

the optimization on corner cases. We have prototyped our AICA

algorithm within a real CNC milling tool, SculptPrint [9]. Experi-

mental results on 4 CAD benchmarks demonstrate that AICA is up

to 23× faster than the approach of the traditional approach.

While our results show ICA can be effective, our experimental

analysis also identifies several new opportunities. For instance,

neighboring pivot points, which were outside the scope of this

paper, are likely to have AM with overlapping values. Therefore,

future work should develop methods to reuse the AM values among

nearby pivots. Another idea is to construct an algorithm that can

intelligently tune the parameter S to adjust the cost of the parallel

ICA calculation. Lastly, to broaden its use in computer graphics, our

AICA should be extended and tested against other spatial volume

structures common in that domain, such as BVH (Section 1) and

kd-trees, among others.

REFERENCES
[1] Jeremy A Carter, Thomas M Tucker, and Thomas R Kurfess. 2008. 3-Axis CNC

path planning using depth buffer and fragment shader. Computer-Aided Design
and Applications 5, 5 (2008), 612–621.

[2] Jung-Woo Chang, Wenping Wang, and Myung-Soo Kim. 2010. Efficient collision
detection using a dual OBB-sphere bounding volume hierarchy. Computer-Aided
Design 42, 1 (2010), 50–57.

[3] S Ding, MAMannan, and Aun Neow Poo. 2004. Oriented bounding box and octree
based global interference detection in 5-axis machining of free-form surfaces.
Computer-Aided Design 36, 13 (2004), 1281–1294.

[4] Peng Du, Elvis S Liu, and Toyotaro Suzumura. 2017. Parallel continuous collision
detection for high-performance GPU cluster. In Proceedings of the 21st ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM, 4.

[5] Peng Du, Jie-Yi Zhao, Wan-Bin Pan, and Yi-Gang Wang. 2015. GPU accelerated
real-time collision handling in virtual disassembly. Journal of Computer Science
and Technology 30, 3 (2015), 511–518.

[6] Christer Ericson. 2004. Real-time collision detection. CRC Press.
[7] Naga K Govindaraju, Stephane Redon, Ming C Lin, and Dinesh Manocha.

2003. CULLIDE: Interactive collision detection between complex models in
large environments using graphics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware. Eurographics Associ-
ation, 25–32.

[8] Philip M Hubbard. 1996. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics (TOG) 15, 3 (1996), 179–210.

[9] Tucker Innovations Inc. [n. d.]. SculptPrint. http://www.sculptprint.com. Ac-
cessed: 2018-09-30.

[10] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, and Sung-eui Yoon. 2009.
HPCCD: Hybrid parallel continuous collision detection using CPUs and GPUs.

In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1791–1800.
[11] Dong-Jin Kim, Leonidas J Guibas, and Sung-Yong Shin. 1998. Fast collision

detection among multiple moving spheres. IEEE Transactions on Visualization
and Computer Graphics 4, 3 (1998), 230–242.

[12] David Knott. 2003. CInDeR: collision and interference detection in real time using
graphics hardware. Ph.D. Dissertation. University of British Columbia.

[13] Sinan Kockara, Tansel Halic, K Iqbal, Coskun Bayrak, and Richard Rowe. 2007.
Collision detection: A survey. In Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on. IEEE, 4046–4051.

[14] Andreas Kolb, Lutz Latta, and Christof Rezk-Salama. 2004. Hardware-based
simulation and collision detection for large particle systems. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. ACM,
123–131.

[15] Dmytro Konobrytskyi. 2013. Automated CNC tool path planning and machining
simulation on highly parallel computing architectures. Ph.D. Dissertation. Clemson
University.

[16] Dmytro Konobrytskyi, Mohammad M Hossain, Thomas M Tucker, Joshua A
Tarbutton, and Thomas R Kurfess. 2018. 5-Axis tool path planning based on
highly parallel discrete volumetric geometry representation: Part I contact point
generation. Computer-Aided Design and Applications 15, 1 (2018), 76–89.

[17] Christian Lauterbach, QiMo, and DineshManocha. 2010. gProximity: hierarchical
GPU-based operations for collision and distance queries. In Computer Graphics
Forum, Vol. 29. Wiley Online Library, 419–428.

[18] Orion Sky Lawlor and Laxmikant V Kalée. 2002. A voxel-based parallel colli-
sion detection algorithm. In Proceedings of the 16th international conference on
Supercomputing. ACM, 285–293.

[19] Roby Lynn, Didier Contis, Mohammad Hossain, Nuodi Huang, Tommy Tucker,
and Thomas Kurfess. 2017. Voxel model surface offsetting for computer-aided
manufacturing using virtualized high-performance computing. Journal of Manu-
facturing Systems 43 (2017), 296–304.

[20] Roby Lynn, Mahmoud Dinar, Nuodi Huang, James Collins, Jing Yu, Clayton
Greer, Tommy Tucker, and Thomas Kurfess. 2018. Direct Digital Subtractive
Manufacturing of a Functional Assembly Using Voxel-Based Models. Journal of
Manufacturing Science and Engineering 140, 2 (2018), 021006.

[21] Ian J. Palmer and Richard L. Grimsdale. 1995. Collision detection for animation
using sphere-trees. In Computer Graphics Forum, Vol. 14. Wiley Online Library,
105–116.

[22] Jia Pan, Sachin Chitta, and DineshManocha. 2017. Probabilistic collision detection
between noisy point clouds using robust classification. In Robotics Research.
Springer, 77–94.

[23] Jia Pan and Dinesh Manocha. 2012. GPU-based parallel collision detection for
fast motion planning. The International Journal of Robotics Research 31, 2 (2012),
187–200.

[24] Ioan A Şucan, Mrinal Kalakrishnan, and Sachin Chitta. 2010. Combining plan-
ning techniques for manipulation using realtime perception. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2895–2901.

[25] Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul, and Dinesh
Manocha. 2006. Fast proximity computation among deformable models using
discrete voronoi diagrams. ACM Transactions on Graphics (TOG) 25, 3 (2006),
1144–1153.

[26] Min Tang, DineshManocha, Jiang Lin, and Ruofeng Tong. 2011. Collision-streams:
Fast GPU-based collision detection for deformable models. In Symposium on
interactive 3D graphics and games. ACM, 63–70.

[27] Min Tang, Dinesh Manocha, and Ruofeng Tong. 2009. Multi-core collision de-
tection between deformable models. In 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling. ACM, 355–360.

[28] Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil Heo, and Ruo-Feng
Tong. 2011. VolCCD: Fast continuous collision culling between deforming volume
meshes. ACM Transactions on Graphics (TOG) 30, 5 (2011), 111.

[29] Joshua Tarbutton, Thomas R Kurfess, Tommy Tucker, and Dmytryi Konobrytskyi.
2013. Gouge-free voxel-based machining for parallel processors. The International
Journal of Advanced Manufacturing Technology 69, 9-12 (2013), 1941–1953.

[30] Joshua A Tarbutton, Thomas R Kurfess, and Tommy M Tucker. 2010. Graphics
based path planning for multi-axis machine tools. Computer-Aided Design and
Applications 7, 6 (2010), 835–845.

[31] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. 2017. Handbook of discrete
and computational geometry. Chapman and Hall/CRC.

[32] Sai-KeungWong, Wen-Chieh Lin, Chun-Hung Hung, Yi-Jheng Huang, and Shing-
Yeu Lii. 2013. Radial view based culling for continuous self-collision detection of
skeletal models. ACM Transactions on Graphics (TOG) 32, 4 (2013), 114.

[33] Xinyu Zhang and Young J Kim. 2014. Scalable collision detection using p-partition
fronts on many-core processors. IEEE transactions on visualization and computer
graphics 20, 3 (2014), 447–456.

[34] Lin Zhiwei, Shen Hongyao, Gan Wenfeng, and Fu Jianzhong. 2012. Approximate
tool posture collision-free area generation for five-axis CNC finishing process
using admissible area interpolation. The International Journal of Advanced Man-
ufacturing Technology 62, 9-12 (2012), 1191–1203.

