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In this paper, a local area influence probabilistic (LAIP) detector for estimating magnetic grain interactions with coded data bits in
two dimensional magnetic recording (TDMR) is combined with a two dimensional Bahl-Cocke-Jelinek-Raviv (BCJR) based detector
for joint removal of intertrack interference (ITI) and intersymbol interference (ISI). The LAIP detector sends log-likelihood-ratio
(LLR) estimates of coded bits and an estimate of the local ISI/ITI convolution mask to a BCJR-based ISI/ITI detector followed by
an irregular-repeat-accumulate (IRA) decoder. Simulation results on a random Voronoi grain media model with ISI and ITI show
that the concatenated LAIP/BCJR system, which detects three tracks simultaneously, achieves user information bit areal densities
competitive or higher than results reported in a previous paper that employed the LAIP detector alone on a Voronoi grain channel
without ISI/ITI. Simulation results on a grain-flipping-probability (GFP) media model based on micromagnetic simulations show
that the proposed detector achieves an 11.3% bit error rate (BER) reduction compared to a recently proposed system with a
two-dimensional linear equalizer followed by a two-track BCJR detector with two-dimensional pattern dependent noise prediction
(2D-PDNP).

Index Terms—Two-dimensional magnetic recording, iterative detection and decoding, local area influence probability, Voronoi

grain model, grain-flipping-probability model

I. INTRODUCTION

HIS paper considers detection strategies for an emerging
Ttechnology called two dimensional magnetic recording
(TDMR) [1]. In TDMR, channel coded bits are read and
written in two dimensions on conventional magnetic hard
disks, which have magnetic grains of different sizes packed
randomly onto the disk surface. In future high-density versions
of TDMR (e.g., between 1 and 4 magnetic grains per coded
bit), the number of channel bits may be larger than the number
of media grains to support them in a given local area. Thus,
occasionally a bit will not be written on any grain, and hence
will effectively be “overwritten” by bits on the surrounding
grains. The correct detection of these overwritten bits is an
important goal in TDMR detector design at high densities. A
comprehensive overview of state-of-the-art signal processing
and coding techniques for TDMR is provided in [2]. In the
following paragraphs, we summarize a number of techniques
described in [2] and elsewhere that are most closely related to
the present paper.

In a previous paper [3], we design a local area influence
probabilistic (LAIP) detector for TDMR with a Voronoi mag-
netic grain model. In an initial offline training step, the LAIP
detector collects grain influences and discretizes their fre-
quencies under different parameters into a multi-dimensional
probability mass function (PMF), organized as a lookup table
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(LUT). In detection mode, the LAIP detector searches the LUT
for estimated grain influences, and compares the readback
signal with estimated overall grain influences to obtain log-
likelihood ratios (LLRs). Then the LAIP detector exchanges
LLRs with an irregular repeat-accumulate (IRA) decoder until
LLR convergence; an IRA code is a type of low-density
parity check (LDPC) code with a simple linear-time encoding
algorithm [4]. The simulations in [3], which were run with
length 32 kbit IRA codewords, achieve 0.5584 user bits per
grain (U/G) on a Voronoi grain model with known boundary
conditions, and 0.4909 U/G under more realistic random
boundary conditions. In a real magnetic read/write process, the
read back bits are subject to ISI from bits on the same track
and inter-track interference (ITI) from bits on adjacent tracks;
we use the term two dimensional intersymbol interference
(2D-ISI) to refer to this combination of ISI/ITI. The grain
model in [3] does not include 2D-ISI, and hence is somewhat
oversimplified compared to a real magnetic read/write process.
In the present paper, we employ a Voronoi grain model with
a more realistic read model that includes 2D-ISI. As before,
the LAIP detector goes through an initial off-line computation
of the grain influence multi-dimensional joint probability mass
functions (PMFs). As the LAIP detector only considers a local
area (typically 3 x 3 to 3 x5 bits), it cannot fully exploit larger-
area 2D correlation induced by the 2D-ISI. Hence, we combine
the LAIP detector and the row-wise 2D-BCJR detector of
[5] to work together with the IRA decoder to estimate bit
polarities.



The magnetic recording assumptions employed in our
Voronoi grain model simulations are summarized as follows,
and are described in more detail in section II: 1) media grains
are modeled using a random Voronoi model; 2) the write head
can magnetize at the grain level, and uses the centroid write
model of [1]; 3) at the center of each square bit cell, the
read head records the area integral (over a 3 X 3 bit area)
of the grain magnetizations (which take values +1) weighted
by a Gaussian impulse response function. We note that these
assumptions are commonly used in other papers employing
the Voronoi model, and are similar to the Voronoi modeling
assumptions described in [2].

This paper also considers design of a LAIP detector to
handle read-head data generated by a much more realistic grain
flipping probability (GFP) model. The GFP model provides
fast and accurate 2D readback waveforms that include effects
captured from micromagnetic simulations and the statistical
effects derived from the granularity of the recording medium
[6]. The GFP model has been validated in previous studies
against both spin-stand [7], [8] and HDD [9] signals, and an
areal density estimate of HDD of that time-period has been
made in [10]. In this paper, we show how the LAIP detector’s
PMF tables can be trained from a special GFP model training
data set, such that good U/G performance is obtained on a
GFP generated test data set.

A. Literature survey: addressing grain-bit interactions

The LAIP detector considered in this paper is a form of
dynamic grain state estimation (DGSE), wherein estimates
(direct or indirect) of the underlying grain pattern are used to
improve estimates of the recorded coded bits. Previous DGSE
papers [11]-[13] employed BCJR-based [14] detectors for the
four-rectangular grain model (FRGM) of [15]; [13] showed
that FRGM information densities greater than 0.5 bits/grain
could be achieved, and that, surprisingly, the FRGM-based
detector could achieve densities of 0.25 bits/grain even on data
generated by the random Voronoi grain model of [16].

There have also been DGSE papers based on generalized
belief propagation (GBP) [17]. GBP passes probability mes-
sages on region graphs; the regions are collections of variable
nodes of interest (e.g., TDMR bit-cells). Starting from a set
of smaller local regions which cover a larger region, GBP
can derive an estimate of the joint PDF of the variables over
the larger region. GBP-based TDMR detection was previously
considered in [18], which employed a microcell model to ac-
count for grains overlapping bit-cell boundaries, under typical
densities of about 9 grains per bit. In [19], authors of the
present paper present a GBP-based TDMR turbo-detector that
employs a random Voronoi model at 1.1 grains per coded
bit (GPB) with known boundary conditions; this detector-
decoder achieves densities of 0.4515 user bits/grain (U/G),
but has high computational complexity compared to the LAIP
detector proposed in [3] or to the combined LAIP/BCJR
detector considered in this paper. GBP has also been applied
in constrained modulation coding for TDMR in [20].

Another important competing approach to the proposed
LAIP detector is pattern dependent noise prediction (PDNP).
In one-dimensional PDNP (1D-PDNP) [21], [22], [23, chapt.

33], used on conventional HDDs with recording on 1D tracks,
an MMSE filter equalizes the read head data to a partial
response (PR) target of finite length I. The MMSE filter
output flows into a trellis-based (Viterbi [24] or BCJR [25])
detector that employs a super-trellis based on the PR target
and the 1D PDNP noise model. The 1D PDNP employs an
Lth order autoregressive (AR) model of the media noise n
[23, chapt. 33]: ng(ug) = Zle a;(ug)ng—;(ug) + ex(ug),
where the a;, ¢ = 1,...,L are the AR coefficients, and the
model error e; is assumed to be time-uncorrelated Gaussian
noise with variance that depends on the coded bit pattern
VECtOr Ug = [UpyA,-- Uk, ..., Up—(14+L1)], Where A is the
predictor’s look-ahead length. The model coefficients a;(uy)
are trained by collecting many instances of the media noise
nk(uy) corresponding to a particular bit pattern uy, and then
using the normal equation solution for the model coefficients
that minimizes the mean squared error E[|ey(uy)|?].

Several papers have proposed generalizations of 1D-PDNP
to the 2D case. Papers [26]-[28] explore variations of a
two-track hybrid 1D/2D PDNP scheme with 2D-BCIJR, in
which 1D-PDNP coefficients on both tracks depend on the
2D patterns defined by the state and input variables on both
tracks. These papers demonstrate that significant SNR gains
(up to 4 dB in [26] and 2.9 dB in [27]) and density gains
(up to 22% in [28], which also employs a novel 2D write-
precompensation scheme) result from the proposed 1D/2D
PDNP scheme. More recently, a Viterbi-algorithm (VA) based
two-track 2D-PDNP scheme is proposed in [29], wherein
the 2D-pattern dependent prediction coefficients are 2 x 2
matrices, and noise prediction and bit estimation are done
simultaneously for both tracks; the proposed scheme gives
4% density gains compared to a 2D-VA without PDNP. The
number of trellis states in the 2D-BCJR or 2D-VA employed
in [26]-[29] grows as 4(A*1+L) which can become large
with increasing PR target length I and AR model order L.
By contrast, the 2D data dependent noise predictive (DDNP)
detection scheme in [30] limits computational complexity by
providing 2D noise-prediction filters only for a finite set of
problematic 2D data patterns; this scheme gives up to 10%
density gains on a Voronoi grain media model near 5 GPB.

B. Literature survey: 2D-ISI detection/equalization

The 2D-BCJR 2D-ISI detector in the proposed LAIP/BCJR
scheme in this paper plays an important role, especially for the
considered Voronoi grain channels. As 2D-ISI detection is a
key part of TDMR detection, we now present a brief time-line
of 2D-ISI and related detection algorithms.

In [31], a separable 2D-ISI channel is assumed, and sepa-
rability is exploited to construct an iterative row-column algo-
rithm in which a non-binary column BCJR detector is followed
by a binary row BCJR detector, followed by an iteration of
an LDPC decoder, etc. In [32], soft information is exchanged
between BCJR row and column detectors; this scheme makes
decisions on multiple rows/columns, and does not assume
channel separability. An iterative row-column soft decision
feedback (SDF) algorithm (IRCSDFA) similar to that of [32]
is reported in [33], in which statistical independence of the
input and feedback pixels is assumed; performance gains over



[32] are achieved by use of LLR weight schedules during row-
column iterations. A generalized belief propagation (GBP)
[17] based 2D-ISI equalizer is developed in [34]. The GBP-
based equalizer uses exact inference over the sub-region of the
image covered by the ISI mask, and passes messages between
adjacent overlapping sub-regions. The GBP equalizer achieves
maximum-likelihood (ML) performance for the cases tested in
[34], but is demonstrated only on small (20 x 20 or smaller)
images with known boundaries that comprise a significant
percentage of the total image pixels. In general, GBP-based
methods suffer from high computational complexity compared
to row-column VA or BCJR-based detection algorithms.

In [5], the row-column algorithm in [33] is generalized by
computing joint non-binary LLRs over the input and feedback
pixels (i.e., independence of those pixels is not assumed); this
approach, while significantly more computationally complex
due to joint LLR BCIJR updates, achieves SNR gains of up
to 1 dB over [33]. In the present paper, we use the rows-only
BCJR from [5]; because the row trellis spans all three input
tracks, there is no need for column iterations.

In [35], a row-column BCJR detector similar to [5], but with
novel feedback pixel configurations and with independence
of input and feedback pixels assumed, is combined with a
soft input self-iterating equalizer (SISE). The SISE is a 2D
MMSE 2D-ISI equalizer that employs self-iterations using
turbo-equalization techniques from [36]. This two-dimensional
equalizer and detector (JTED) exchanges LLRs between BCJR
and SISE, and thereby achieves significant performance gains
over [32] with little additional complexity cost, due to the
SISE’s relatively low complexity. When JTED is combined
with an LDPC code in a turbo equalization scheme, SNR gains
of 8 dB (over uncoded JTED) are achieved.

Finally we point out that timing recovery, while not consid-
ered here, is an important practical issue in TDMR. In [37],
a joint 2D timing recovery and signal detection scheme is
realized by running a 2D soft-output Viterbi algorithm (2D-
SOVA) over a trellis that spans the joint state space of timing
errors and 2D-ISI; to control the 2D-ISI, 2D partial response
equalization (using the scheme in [30]) is done.

C. Novel contributions

The novel contributions of the present paper are as follows:
1) a combined LAIP/BCJR turbo detection architecture that
includes LAIP detector self-loops, LAIP detector loops with
the IRA decoder, and LAIP detector passing of coded bit
LLRs to the 2D-BCJR detector; 2) an improved method for
computing the LAIP conditional PMF tables that accounts for
the influence of diagonally adjacent bits on the target bit; 3) a
scheme for training the LAIP detector to predict the spatially
varying 2D inner products used as branch labels in the BCJR
detector; 4) a scheme for training the LAIP detector with more
realistic GFP media model waveforms; 5) simulation results
on a random Voronoi grain media model with ISI/ITI showing
density gains compared to a previous LAIP detector paper
that employed a very similar media model without ISI/ITT;
6) simulation results with GFP-modeled waveforms at 3.491
GPB that show a 0.11% U/G gain and 3x throughput gain
(assuming three parallel read heads) compared to the more

conventional system in [38] that employs a 3-input/1-output
2D MMSE PR equalizer with a 1D BCJR and IRA decoder,
and that show a detector BER reduction of 11.3% and a 1.5x
throughput gain compared to the 2D-PDNP proposed in [29].
Regarding contribution 6, we note that the present paper does
not employ 2D PR equalization; further performance gains
should be achievable by adding a 3-input/3-output 2D MMSE
PR equalizer as a pre-processing step before the proposed
LAIP detector. Unlike PDNP, which must be used as part
of a trellis based detector, the proposed LAIP detector is a
“stand-alone” soft-input/soft-output detector that outputs LLR
estimates of the coded bits and can accept a priori LLR
estimates of the bits; thus, the LAIP detector can exploit turbo-
iterations with a channel decoder or with another detector to
lower the overall system BER.

This paper is organized as follows. Section II describes the
random Voronoi grain model and the assumed write and read
models. Section III describes the combined LAIP and 2D-
BCJR TDMR turbo-detector, for both the random Voronoi
grain model and the GFP media model. Section IV gives
simulation results, and section V concludes the paper.

II. RANDOM VORONOI GRAIN READ-WRITE MODEL

In order to approximate real magnetic grains, we adopt the
Voronoi grain model from [16] to generate nuclei locations
and grain shapes, such as shown in Fig. 1. In our model, the
coded bits are written row-by-row into a block of bit cells
with 3 rows and N columns, in order to simulate a three track
scenario with IV bits per sector. The block width of three is
chosen to simulate the proposed three reader configuration for
TDMR, with one reader for each of the three tracks.

We define the boundary bits of the 3 x N block as an
extra one bit wide boundary on all four sides of the 3 x N
block. Thus, the entire block including boundary is of size
5 x (N + 2) bits. All the bits within this 5 x (N + 2) block
assume that the Voronoi grain nuclei are randomly placed
and uncorrelated with the bit cell center locations. When
generating grain nuclei, the largest 1/7th of the Voronoi grains
are randomly split into 2 grains and the smallest 1/7th are
removed, in order to keep the ratio o,/u, of the grain area
standard deviation o, to mean fi, at about 25%, close to that
for HDD media grains. This boundary condition is similar to
the random Voronoi grain model (RVGM) in paper [3]. The

Fig. 1. Generated Voronoi grains (outlined in solid red) for 3 x 3 channel
coded bits (indicated by black dotted lines), with approximately one coded bit
per grain. The ‘+” and “*’ indicate the grain nuclei and centroids, respectively.
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Fig. 2. 2D-ISI integration read model: the read back value y(i,j) for the
bit cell at (7, ) is the integral of grain magnetizations weighted by the 2D

read-head impulse response within a block S of 3 x 3 square bit cells; the
read position is assumed to be at the center of bit cell (4, 7).
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only difference is that although the polarities of boundary bits
are randomly assigned to 1, we assume that these polarities
are known at the reader. In an actual HDD the boundary bits
can be cached so that they are known.

We assume a centroid write model [16], where a given
Voronoi grain is magnetized (to a value of £1) by the channel
bit containing the centroid of that grain. Under this model,
overwritten bits (with the possibility of detector error) occur in
bit cells that contain no grain centroids, as the polarities of the
grains within such cells will be determined by the surrounding
bits. For example, bits 1 and 9 in Fig. 1 will be overwritten.

Our previous LAIP detector paper [3] assumes a soft-bit
read model that computes the value y(i,j) read at the center
of the (¢, j)th bit cell as the area integral of magnetizations of
all grains contained within the bit cell. In a physical system,
the read head will not be able to isolate individual bits, but will
suffer 2D-ISI from adjacent bits on the same track (ISI) and on
adjacent tracks (ITI). Therefore, this paper takes 2D-ISI into
consideration by employing a 2D-ISI integration read model,
where the value y(i,j) is the integral of the magnetizations
of all grains contained within the 3 x 3 bit cell block with
(i,7) as the center bit multiplied by the 2D read head impulse
response centered at the (7, j)th bit cell center:

y(i,§) = / /S Wi — torj — 20) M(2e 2a)dzedea. (1)

Here S is the 3 x 3 square bit integration area with reader
position at (,5), M(z.,z4) (which takes values £1) is the
grain magnetization as a function of cross- and down-track po-
sitions . and x4, and h(x.,z4) is a 2D circularly symmetric
Gaussian read-head impulse response function, given in [39]
as

—1.34898% (22 + 22
h(zc, Tq) = exp ( QTE ‘ d)) :
50

where T5¢ is the rise-time from 25% to 75% in the step
response, and is set to the square root of the mean grain area
g. Fig. 2 illustrates the integration method, and Fig. 3 gives
an example describing how input binary bits are written and
read back to noisy analog values.
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III. LOCAL AREA INFLUENCE ESTIMATION
BASED TDMR TURBO-DETECTOR

A. LAIP Detector

Because the read back value y(i,j) of bit cell (i,j) is
the area integral of weighted magnetizations of all grains

contained within the 3 x 3 bit cells surrounding (i, j), the read
back value magnitude |y| has an upper limit, which depends on
the Gaussian kernel parameter 75(. For grain densities from 1
to 3 GPB, y ranges approximately between —2 and +2. This
is similar to but different from [3], because the read back
signal in [3] integrates only over single bit cells with no ISI
kernel function, which makes the y values range from exactly
—1 to +1. As each read back value is influenced by grains
magnetized by its surrounding eight bit cells, we define the
integral of the magnetization weighted by the impulse response
over the area magnetized by a given surrounding bit as the
local area influence (LAI) on target bit U due to that bit.

The colored areas in Fig. 4 illustrate the grain areas magne-
tized by surrounding bits A and E that affect the read value ys
of central bit U. We denote the integral of the magnetization
weighted by the impulse response over these “affected areas”
as the LAIs a4, ap, ac, ap, ag, ap, ag and ayg, and we
define the total LAI on the given bit U as:

Qotal = @A +ap +ac +ap +ag +afp +ag +ag. (3)

We define o as the part of reading yi; due only to bit U. Thus,
Yu = ay + Qiotal, SO that correct estimation of U amounts
to correct estimation of sign(ay) = sign(yy — @totar). The
key idea is that if y;; is significantly greater (less) than ciotal,
then bit U is most likely +1 (—1). But if yy and ayotar are
approximately equal, then it is likely that bit U is overwritten.

Following this idea, given all the read values, if we can
estimate a1, We can estimate the bit U or its log likelihood
ratio (LLR). In order to estimate oo, We train a pre-
computed table of yota1’s discretized probability mass func-
tion (PMF). The ideal table should have entries corresponding
to all 3 x N read values. However, if we discretize each read
value to 40 bins (with y ranging from around —2 to +2,
the precision should be at least 4/40 = 0.1 to work well
experimentally), then we need to train a PMF with 403*¥ bins,
which is impractical for typical values of N of around 32000.
Therefore, we select a limited number of read back values and
train several different, and much smaller, conditional PMFs.

Define ya, yp, ..., ym, as the read values from bits A
through H adjacent or diagonal to the kth target bit Uy,
as shown in Fig. 4. For brevity, we omit the subscript
k in the following discussion. The following procedure is
used to create and train the conditional PMF of P(aa +
aplya, YE,Yyu,ua, ug, uy) for use with the LAIP detector.
This PMF accounts for the combined influences of bit A and its
adjacent diagonal bit E; in our previous paper [3], the effects of
diagonal bits are ignored. This conditional PMF is not specific
to a particular target bit U; the PMF is computed once and
then used to estimate all bits U that occur in the central track.
Similar PMFs are trained for bits that occur in the two tracks
adjacent to the boundary.

1) Through simulations of writing and reading
the media model, we compute many 4-tuples
(ya,YE, YU, ®a+ag), or similar (and symmetric) tuples
like (ya,yr, yu,aa+ar), (yB,ya,yu, s +ag), etc.
For each gathered 3-tuple (ya,yr,yu), we compute
a4 + ag using (1) with a modified integration region
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Fig. 3. Example of the read write process with 2D-ISI integration. The 3-row-5-column square input bits « (circled in white) are binary and marked red (4-1)
or blue (—1). After being written on random Voronoi grains with the centroid write model, some bits are missing (not written on any grain) and marked with
a black ‘o’. Next, the read back values y are calculated from the 2D-ISI integration read model, and displayed using a gray-scale image of resolution 10 x 10
pixels per bit. Each pixel represents the read back signal as if the reader center is exactly at the pixel location. Numerical readback values at the center of
each bit are provided; the values corresponding to erroneous bits are marked with an ‘e’. Although none of the missing bits have errors in this example, in

practice they are more likely to suffer detection errors.

S that includes all grains with centroids contained in
bit cells A or E.

We create a 40 x40 x 40 grid of bins for the (y 4, Y&, yu)
3-tuples using Lloyd-Max quantization [40], [41]. We
denote the index of the bin corresponding to a given 3-
tuple of readings (y4,yr,yu) as ix3(ya, yr, yu), such
that 0 < ix3(ya,ye,yu) < 63999.

The a4 + ag values corresponding to all the 3-tuples
in each bin ix3(ya,yE,yy) are used to populate bin
counts among 41 equal bins spanning values —2 to 2;
the index of these « bins is denoted ix, (s +ag), with
0 < ixe(aa + ap) < 40.

The counts in the o bins are normalized to sum to
1, thereby creating the conditional PMF P(ix,(ca +
ag)|ixs(ya,ye, yu)). Because this PMF does not use
a priori information, it is used only during the initial
iteration of the turbo-detector.

To incorporate a priori information from the channel
decoder on subsequent turbo-detector iterations, we run
simulations to create conditional PMFs P(ix, (x4 +
agp)|ixz(ya, Ye,yv), ua, ug,uy), where ua,ug,uy
are input bits which take values +1.

2)

3)

4)

5)

After the procedure above, we have 64000 conditional
PMFs of affected area a4 + ap given (ya,yr,yu) tuples
and 512000 conditional PMFs given (ya, g, yu, A, g, uy)
tuples. Each conditional PMF has 41 bins. Sometimes,
we don’t get 4-tuples (ya,ye,yu,xa + ag) or 7-tuples
(ya,YE, YU, ua, Ug, uy,¥a + ag) to fall in all the 64000
or 512000 separate PMFs; we call this the zero-count case. In
this case, we simply assign probability 1 to the middle 21st
bin of the affected area which corresponds to value O, and
probability O to all the other bins.

Due to the assumption that input bits at the boundary are
known but read values at the boundary are unknown, when
target bit U is in the middle row of the last column N (so
that bit E is a known boundary bit), we need to train two

Fig. 4. Areas magnetized by adjacent bits A and E (under the centroid write
model) that affect the central coded bit U. The yellow portion is the affected
area from bit A to bit U, and the green is the affected area from bit E to
bit U. The LAls a4 and o are computed by integrating the magnetization
weighted by the impulse response in (2) over these affected areas. In this
example, there is approximately one coded bit per magnetic grain (1 GPB).

additional conditional PMFs of a4 + ag given (ya,yu,ug),
and given (ya,yu,ua,uy,ug). Similarly, when bit U is in
the top row bits A and E are known boundary bits, so we
train conditional PMF tables given (yy,ua,ug), and given
(yu,uy,ua,up). We choose the number of bins to be 40
and 41 in order to balance simulation time and performance.
It takes time to train the tables, but it’s very fast to use the
tables to do real-time LAIP estimation. Accuracy of the PMF
tables (compared to the true conditional PMFs) improves if we
have sufficient bins and sufficient simulations. We collected at
least 80 million tuples for the conditional PMF tables.

The PMFs should in theory be anti-symmetric
with respect to the conditioning y variables, e.g.,
P(ixo(aa + ap)lixs(ya,ye,yu)) P(ixo(—(aa +
ap))|ixs(—ya, —yr, —yu)). To make the collected PMFs
more anti-symmetric, we use 7 X 7 X 7 symmetric spatial
filters to smooth the PMFs. This smoothing improves the
LAIP detector’s performance, especially when the number
of tuples is not enough to sufficiently populate all bins. The



discretization of the read back values is performed using
Lloyd-Max quantization [40], [41] in order to evenly collect
the tuples in case of too many zero-count cases. The affected
area bins should be odd in number (e.g., our choice of 41)
and evenly spaced, which helps in the zero-count case and
in the convolution calculation below. Example 3D plots of
conditional PMFs trained with random Voronoi data appear in
Figs. 3 and 4 of [3]; these plots do not include the influences
of diagonal bits E, F, G or H.

To compute the discrete PMF P(ix,(ota1)), the LAIP
detector looks up the appropriate PMFs and then computes

P(iXy(Oétotall)) =
P(ixq(aa + ap)lixs(ya, ye, yu))
* P(ixo(ap + am)lixs(yp, ym, yu))
* P(ixq (o + ag)lixs(yo, ya, yu))
* P(ixa (ap + ar)ixs(ys, yr, yu)),
P(ixy(atotam)) = 4)
P(ixo(oa + arp)|ixs(ya, yr, yu))
* P(ixo(ap + ag)ixs(yB, va, yu))
% P(ixq (ac + ap)|ixs(ye, yu, yu))
* P(ixqo (ap + ap)|ixs(yp, ye, yu)),

P(ixy (aotaln)) + Pixy (total2))
2 b

P(iXy (Cttotal)) =

where * indicates discrete 1D convolution of the relevant
conditional PMFs. After the convolution operations, the bin
indices ixy(ovuotalj),j € {1,2} range from O to 160, and
span a nominal range of —8 < oty < 8. All the
eight conditional PMFs are read from the same P(ix,(aa +
ap)|ixs(ya,ye,yu)) table by symmetry. Eq. (4) assumes
statistical independence between the four index variables
iXo(aa + ag), ixq(ap + ag), etc. involved in each of
the two convolution computations for P(ixy(cyota1)) and
P(ixy(atotalg)). These independence assumptions are approx-
imations; they are necessary because full computation and
storage of the PMF table of aiota including the joint influ-
ences of all eight surrounding bits requires excessive memory.
The pairwise statistical independence assumption allows us to
compute P(ix,(cuota1)) by pairwise convolutions that proceed
in clockwise (counter-clockwise) order for P(ix,(ctotar1))
(P(ixy(@totar2))); the final estimation of P(ix,(cttotal)) iS
obtained by averaging P(ix,(ctotair)) and P(ixy(cuotal2))-
Eq. (4) does not make use of a priori information, so it’s only
used in the first iteration of the LAIP detector, when a priori
bit LLRS u,up,...,uy are unavailable.

The PMF convolution computations require that the bin
edge boundaries (defining the range of cvota1; that lies within
each bin) of the convolved pairwise PMFs be equally spaced.
In practice, the convolutions are efficiently computed and
are fast enough for the required real-time estimation of
P(ixy(aotal)). Because the expanded range —8 < votalj < 8
is an artifact of the independence assumption on the index vari-
ables, the equally spaced bin edge boundaries are divided by
4 to remap the oota1; PMFs onto the range —2 < ovotal; < 2
that would occur if the true joint distributions were used.

When a priori information is unavailable from the channel
decoder at the first iteration, a simplified binary output LLR
for the coded bit U can be computed as follows:

P(ixy (aotal) < ixy(yu))
P(ixy(atotal) > IXy(yU)) '

In this expression, ix,(yyr) is computed by dividing the range
—2 < yy < 2into 161 bins of equal width, and then comput-
ing the index of the bin that the given y; reading falls into. The
LLR in (5) is approximately equal to the a posteriori prob-
ability (APP) LLR log[P(U = +1|yu,ya,...,yua)/PU =
—1lyv,ya,---,ym)]- Since the probability Py, that bit U is
overwritten is Poyw = P(ixy(total) = ixy(yr)), the LAIP
detector actually computes the following modified version of
(5) to account for the overwrite case:

P(ixy(atotal) < ixy(yU)) + Poyw/2
P(ixy (atotal) > ixy(yU)) + P()VW/Q.
It is reasonable and beneficial to avoid overflow that half
of the overwritten probability corresponds to P(U =
+1llyu,ya,...,yg) and the other half to P(U =
_1|yU7yA7"°vyH)'

After the first iteration, a priori information is available
from the channel decoder, and the LAIP detector computes
conditional a4 + oo PMFs as

LLR(U) = log 5)

LLR(U) = log (6)

P(ixq(aa + ap)lixs(ya, ye,yu)) =

Z [P(ixa(aa + ap)|ix3(ya, ye, yu), ua, up, uy)
watEmy x P(ua,ug,uy)] (7)

where P(ua,up,uy) = Pn(ua)Pun(up)Pn(uy), and the
incoming a priori probabilities from the channel decoder
are denoted P,,(ua), Pn(ug), and Py (uy). Then we can
reuse (4) and (6) to compute P(ixy(qota1)) and the LLRs
respectively.

B. LAIP and BCJR turbo TDMR Detector

The LAIP detector estimates LLRs for the coded bits by
accounting for local interactions between the target bit U and
grains in its immediate surrounding eight-bit neighborhood.
However, the storage required for the conditional PMF tables
makes it impractical for the LAIP detector to consider longer
range neighborhoods. To account for the effect of longer range
interactions caused by ITI and ISI, we propose to process the
3 X N array of readings y by a 2D-BCJR detector with N
trellis stages, and use LLRs from the LAIP detector as a priori
information for the BCJR. This section describes the combined
LAIP and BCIJR turbo detector, including the interaction of
both LAIP and BCJR detectors with the IRA decoder.

Fig. 5 shows a block diagram of the proposed LAIP/BCJR
TDMR turbo-detector. Information bits are encoded into chan-
nel bits u by an IRA encoder that encodes each of the
three rows into separate code words. After passing through
a row-by-row bit-wise interleaver (denoted 7), the channel
bits u flow into the random Voronoi grain write/read model,
resulting in 3 X N sample array y, which flows into the LAIP
detector. The LAIP detector jointly considers all three rows
and computes LLRs following (6). Then the LAIP detector
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Fig. 5. Block diagram of the LAIP/BCJR TDMR turbo-detector.

output LLRs are fed back as a priori inputs for subsequent
iterations of the LAIP detector. This self-loop process iterates
until the LLRs converge; typically five self-loops are sufficient.
Next, the LLRs flow through a row-wise deinterleaver and
then into the first IRA decoder where they are decoded row-
by-row; several iterations of coded bit LLRs between the first
IRA encoder and the LAIP detector are done. Then the output
LLRs from the first IRA decoder enter the BCJR detector. The
LAIP detector also sends the BCJR local estimates of the 2D
inner products needed to compute the expected trellis branch
outputs at each trellis stage; this accounts for the effect of local
grain-bit interactions on the effective 2D-ISI mask assumed by
the BCJR detector. The BCJR detector exchanges coded bit
LLRs (jointly estimated over all three rows) with the second
row-by-row IRA decoder, and the final decision is made on
the second IRA decoder’s information bit output LLRs. We
note that the first and second IRA decoders use the same code
(corresponding to the IRA encoder).

The multiplicative LLR weights wi,...,wy, 0 < w; < 1,
slow the convergence of the turbo-equalizer, thereby lowering
the final bit error rate (BER). The thresholds T7,...,7T4
restrict the maximum absolute values for LLRs from the IRA
decoders and the LAIP and BCJR detectors in order to prevent
numerical under- or overflow. Subtraction of the incoming
LLRs to the LAIP detector is not done at the detector’s output,
because the processing done in equations (7) and (4) prevents
expressing the input LLRs as a separate additive term in (6).
Similarly, marginalization operations done in the 2D-BCJR
detector also prevent separation of the detector’s output LLRs
into a sum of the input LLRs and extrinsic LLRs [5]; hence,
LLR subtraction is also not done at the BCJR detector output.

The LAIP detector self-loops significantly reduce the BER
of the LAIP output LLRs, which in turn greatly reduces the
BER of the first IRA decoder. We find experimentally that the
proposed architecture works better than an alternative scheme
that iteratively exchanges LLRs directly between the LAIP
and BCJR detectors, because the LAIP detector’s output LLRs
(even with self-loops) are not accurate enough to significantly
lower the BCJR’s BER when used as a priori inputs. The
reason might be that the BCJR’s LLR estimates are based
on the entire 3 x N block of readings, whereas the LAIP
detector’s estimates are based on 3 x 3 neighborhoods. We
also find that the set of erroneous bit positions from the LAIP
detector alone has about 70% overlap with the set of erroneous
positions from the BCJR detector alone (without a priori input

from the LAIP detector); thus, the LAIP can help the BCJR
correct about 30% of its erroneous bits, which helps explain
why the two detectors together outperform either one alone.

C. Inner Product Prediction

Conventional 2D-ISI detectors, such as those in, e.g., [5],
[42], [43], assume that the readings y(m,n) from the 3 x N
array follow the model

®)

where w(m,n) is discrete additive white Gaussian noise
(AWGN) with spatially invariant statistics, and gy(m,n) is
given by the 2D convolution of the coded bit array u(m,n)
with a discrete, finite extent, and spatially invariant mask
h(k,1):

y(m,n) =y(m,n) + w(m,n),

g(m,n) = > h(k,lu(m — k,n —1). ©)
k,l

The convolution mask A(k, 1) is typically a sampled version of
a continuous read-head response such as (2), and is typically
assumed to be rectangular (e.g., —1 < (k,I) < 1fora3x3
mask). In 2D-BCJR detectors such as [5], [43], the gamma
state transition probability P(y(m,n)|U =14, S; = s, Sk—1 =
s') is assumed to be Gaussian distributed with mean 7(m, n)
computed according to (9). For fixed (m, n), (9) can be viewed
as a 2D inner product between the 2D spatially-invariant mask
h and the surrounding neighborhood N, ,, of bits u(m—k,n—
1) defined by the trellis input U and current and previous states
Sk and Skfl.

Most recently proposed TDMR detectors (e.g., [26]-[29])
adopt the modeling convention widely used in 1D MR detec-
tors, i.e., they add a spatially varying media noise term v(m, n)
to the 2D-ISI model of (8) and (9): y(m,n) = y(m,n) +
v(m,n)+ w(m,n). They then integrate noise prediction into
multi-track trellis detectors, so that by predicting v(m,n) and
subtracting it from y(m,n), the resulting corrected reading
closely approximates F(m, n) + w(m,n).

By contrast, the 2D-BCIJR detector proposed here does not
employ integrated media noise prediction. Instead, it relies on
the LAIP detector to provide a priori LLRs that depend on
the local grain geometries around recorded bits. The LAIP
detector employs read back value dependent PMFs to estimate
the expected read value (which is ayota + ). This approach
can be viewed as computing y(m, n) as the 2D inner product



between a spatially varying 2D mask h,, , and the bits in
N n. Thus, the proposed model is

y(m,n) =y(m,n) + w(m,n),

y(m,n) = (hy, , *u)(m,n), (10)

where * indicates 2D convolution, and u is the 3 x [NV array
of coded bits. This model accounts for the spatially varying
media effects through h,, , instead of through an additive
media noise term v(m,n).

To design a 2D-BCJR detector consistent with the model
proposed in (10), we train an inner product prediction table
which stores expected read back values ¥;; conditioned on
surrounding read back values and bits. The 2D-BCJR detector
uses this table to look up ¥;; based on the target bit U’s bit
neighborhood Ay associated with a given trellis branch, and
also on bit U’s reading yy as well as its surrounding readings

(ya,-..,ym). The table training procedure is as follows:
1) Through simulations of writing and reading
the media model, many tuples of length 14

(Yyu,ya,-..,Ym,ua,up,uc, up,uy) are gathered.

2) The eight surrounding read back values (y4, ..., yq) are
quantized on a 3% grid, which is computed by Lloyd-
Max quantization. Thus each surrounding read back
value is quantized to discretized bins of length 3.

3) All the yys collected in the same conditional bin
(ya,---,YH, A, uB, Uc, Up, uy ) are averaged, and the
averaged value is used as the expected value ;.

Above describes how to train a table of expected read back

values ¥;; conditioned on surrounding eight read back values
and five adjacent bits. The discretization precision of three is
chosen to limit the required storage. The total size of this table
is 3% x 2% = 209952, which is less than the LAIP detector’s
conditional LAI PMF tables. Similar to the LAIP detector,
smaller tables are trained to deal with the case that target bit
U is at the border of the 3 x IV bit block; for example, the top
border table stores (G |yB, Yo, YD, YGs YH, WA, - - -, UD, UL ).

Table I displays the performance of inner product prediction

in the system shown in Fig. 5 under several cases. The three
error rates in the BER columns come from the top, middle
and bottom rows of the 3 x N readings array respectively,
and are BCJR detector error rates after the first iteration (and
therefore do not include any a priori information from the
IRA decoder). The table shows that inner product prediction
can decrease the BCJR detector’s BER by about 7% for the
GFP model and 15% for the 2.0 GPB Voronoi model.

D. LAIP Detector for GFP Model

The GFP model of [6] is a more realistic TDMR model
than the Voronoi model. Therefore, this paper also utilizes
GFP waveform data from the Data Storage Institute (DSI)
of Singapore to validate the proposed system’s performance.
Each GFP data block has three tracks with 3 x 41207 input bits
and corresponding read back values; the simulated track pitch
(TP) is 18 nm, the bit length (BL) is 11 nm, and the media
has 3.491 GPB. Each of the three rows (tracks) has a different
set of random input bits (not produced by a channel encoder).
Thus, the initial IRA encoder, interleaver, and write/read model

Read/Write ay = Yy~ Yu2)/2
Ug | Wy Model Ya1 | Yu1
Flip the
polarity ‘
Read/Write
“Ua | Wy Model Yaz | Yuz ‘

Fig. 6. Designed training pattern approach for GFP model. Pairs of bits
(ua,uy) are written, and the sample yg71 for target bit U is read back. Then
(—ua,uy) is written at the exact same location on the simulated media, and
the sample ygro for target bit U is read back again. As the difference between
the two read back values is caused by the change to bit A, the affected area
aa of Aon U can be estimated as (yy1 — yuz)/2.

blocks in Fig. 5 are not used; instead, the 3 x 41207 GFP data
flows directly into the LAIP and BCJR detectors as readback
data y. The deinterleaver and interleaver within the LAIP and
BCIJR turbo loops are used, and the IRA decoder uses coset
decoding to decode its received LLRs.

In the GFP model the bit cell is rectangular instead
of square. Therefore, the symmetry around square bits
assumed by the Voronoi model does not hold, which
means, e.g., that P(ix, (a4 + ag)|ixs(ya, yr, yu)) does not
have the same PMF as P(ix,(ap + ag)lixs(ys,ya,yu))
Due to the shingled writing characteristics, P(ix,(ca +
ag)|ixs(ya,ye,yu)) does not have the same PMF as
P(ixq(0a + ap)|ixs(ya, yr, yu)) either. Hence, the original
conditional PMF table of P(ixs(a4 + ag)|ixs(ya,yE,yv))
is split into 8 separate tables as P(ixq(ca + ag)l|...),
P(ixq(aa + ap)|...), Pixq(as + ap)|...), P(ixqa(ap +
ag)l...)s .., and P(ixo(ap + ag)|...). For the same reason,
the inner product prediction needs to train an extra table for
the conditional inner products at the bottom row, which is
(Wulya,ys, yp,yr Yy, va, - - - up, uy).

1) Designed Patterns for Training

Because the GFP model directly provides read back wave-
forms y and input data bits u and does not provide information
about the underlying grain geometries, the affected area o
cannot be directly computed as it is with the Voronoi model.
Thus, special training patterns are used to collect the as as
shown in Fig. 6.

In practice, 512 different 3 x 3 patterns of input bits for
(ua,...,upm) are designed, ranging from 0 to 511. For each
3 x 3 bit pattern, the pattern plus one 3 x 1 bit random guard
band column (i.e., 3 x 4 bits) repeatedly is written on and
read from the simulated media 10301 times, with two initial
random guard bands and one final guard band, for a total of
3 x 41207 readings on three media tracks per pattern file. The
GFP simulation writes each of the 3 x 41207 input bit pattern
files on exactly the same underlying simulated grain pattern at
exactly the same starting location. There are ten separate 3 x
41207 readings files for each of the 512 bit patterns, in order
to account for the random grain flipping that occurs during the
GFP simulated write process. The guard bands are the same
for each pattern file. The guard bands protect the computed
as from being influenced by adjacent 3 x 3 bit patterns.

The readback signal from the GFP model is noisy as grains
are flipped through the use of a random number generator, thus
multiple affected areas computed as in Fig. 6 are averaged at



TABLE I
BER PERFORMANCE OF BCJR DETECTOR’S INNER PRODUCT PREDICTION ON DATA TRACKS 1, 2 AND 3

Test Case

BER without IP Prediction (Tr1 Tr2 Tr3)

BER with IP Prediction | Improvement Percentage

0.8235 code rate, Voronoi Model at 2.0 GPB

1.73% 2.06% 1.62%

1.51% 1.75% 1.33% 12.97% 15.29% 17.91%

0.7846 code rate, Voronoi Model at 1.7 GPB

3.99% 4.18% 4.08%

3.66% 3.84% 3.79% 8.39% 8.15% 7.00%

0.6971 code rate, GFP model at TP18 BL11

4.28% 4.28% 3.93%

3.92% 3.95% 3.76% 8.59% 1.72% 4.23%

TABLE II
3 X 3 2D-ISI MASKS FOR THE VORONOI AND GFP MODELS ESTIMATED BY AVERAGING THE @ LAIS (FIRST THREE COLUMNS), AND VIA THE LEAST
SQUARES METHOD (LAST COLUMN)

2.0 GPB Voronoi Model
0.0591 0.1985 0.0584
0.1985 0.6589 0.1960
0.0586 0.1970 0.0581

1.7 GPB Voronoi Model
0.0818 0.2371 0.0817
0.2378 0.6854 0.2381
0.0817 0.2384 0.0827

GFP TP18 BL11
0.1995 0.2275 0.0620
0.2810 0.5380 0.1727
0.0291 0.1450 0.0564

GFP TP18 BL11 (LS method)
0.1937 0.2260 0.0530
0.2825 0.5378 0.1659
0.0245 0.1457 0.0627

the same grain locations. For example, 128 a4 + g estimates
from 512 patterns at the same grain location are averaged to
train a conditional frequency table; every a4+« is estimated
by flipping bits A and E and computing (yy1 — yu2)/2 while
keeping the other 7 bits unchanged.

Using the designed patterns, affected area tables for the GFP
model can be trained, and the estimated values of a4, ap, ....
can be averaged over all 3 x 3 bit patterns to create an estimated
2D-ISI mask as in the third column of Table II. The 3 x 3
masks in the first two columns of this table are computed by
averaging as computed for the Voronoi model over all possible
3x 3 input bit combinations, while the last column is estimated
by using the least squares (LS) method on the GFP data set.
In employing the LS method, the GFP readback data is scaled
by dividing by half the maximum reading magnitude, so that
the scaled data is limited to 2. The masks for the Voronoi
models should be symmetric; the slight asymmetries are due
to insufficient training data. The table reveals that low GPB
values lead to higher ISI and ITI in Voronoi grain models,
and that the GFP model has much more ISI and ITI than the
Voronoi model. The LS estimated mask is almost the same as
the LAIP detector trained mask, which verifies experimentally
that the GFP bit-pattern-file training approach is correct. An
important difference between the LAIP and LS methods is
that LAIP computes the influence from one bit to another bit
through the grain state, and so it has physical meaning. The
difference between LAIP and traditional approaches like BCJR
is that LAIP uses conditional frequency tables instead of a
fixed mask.

2) Interleaver

The system in Fig. 5, when tested with the Voronoi
read/write model, proved insensitive to choice of interleaver;
for that reason, the identity interleaver (with same order at
output as input) is used to produce the Voronoi model simu-
lation results in section IV. By contrast, for the GFP model,
experiments show that the IRA decoder is quite sensitive to
error positions at either the LAIP or BCJR detector output,
indicating that significant correlation is present among the GFP

model error patterns. This fact is consistent with the much
higher average level of 2D-ISI present in the GFP data, as seen
in Table II. Experiments also show that the decoded BER is
significantly reduced when the error locations are decorrelated
by an appropriately designed interleaver. For the GFP model
simulation results in section IV, a per row S-interleaver is used
[44], such that bits adjacent at each row’s input are separated
by at least S = 30 positions at the output.

3) Expected Read Back Value E|yy]

In training the conditional affected area PMFs for the GFP
model, we estimate as rather than directly compute them as in
the Voronoi model. In the GFP training we obtain an affected
area that is averaged over the probabilistic grain polarity
flipping, which occurs even when identical bit patterns are
written at the exact same location on the simulated media.
Thus in Fig. 6, the averaged « is obtained by averaging over
the read back values (yp1,yu=2). This suggests that, when
computing LLRs for the GFP data with (6), aiotal computed
from (3) should actually be compared to an expected read
back value E[yy] rather than to the read back value yy for
target bit U. Therefore, we train an additional conditional
PMF P(ixo(E[yv))|ixa(yu), vv,ua, up, uc, up, ur), where
Elyv] and yy are both quantized to 41 bins equally spaced
on the interval [—2,2], and uy,ua,...,up,ur are coded bit
estimates received by the LAIP detector as a priori informa-
tion from the channel decoder. We find experimentally that
conditioning on diagonal bit ur improves the derived LLR
reliability, probably because of the non-symmetrical bit shapes
due to shingled writing. Similar to (6), define LLRy, as

P(ixa ((Xtotal) < k) + Povw,k/z
P(ixa (atotal) > k) + Povw,k/Q’

where Poyw k = P(iXa(Qtotal) = k) and 0 < k < 40. In (11),
the central 41 bin indices (60, ...,100) of the 161 bin PMF
P(ix, (aota1)) are mapped to the range 0 < ixq (Qotal) < 40;
this mapping is done before the range of the PMF computed
in (4) is re-scaled by 1/4, so that the central 41 bins span
the range —2 < aotal < 2. As the area under the central

LLRy, =log (1)



part of the the PMF contains most of the probability, this is a
reasonable approximation.

Using (11), the modified LLR for coded bit U is com-
puted by taking the expectation of LLRj over the con-
ditional PMF for Elyy] and the a priori probabilities
P(uy), P(up), P(ua),...,P(up) computed from the LLRs
received from the channel decoder:

LLR(U) =
S S LLRyPlisa (Elyw)) = Hisa (). M) POV,
Nu k
(12)
where N, = {uy,ur,ua,...,up}, and the approximation

P(Ny) ~ P(uy)P(up)P(ua) -+ P(up) is used. By using
(12), the LAIP detector’s output BER is slightly reduced when
the LLRs from the channel decoder are not very reliable
(e.g., in early iterations between the LAIP detector and the
IRA decoder), but greatly reduced when the LLRs are highly
reliable (as in later iterations).

E. Summary of the LAIP/BCJR Detection Algorithm

In this subsection, we present a high-level overview of the
LAIP/BCIJR detection algorithm. It is helpful to refer to Fig. 5
for an overview of the real-time processing phase.

1) Offline Training

In this phase, the LAIP PMF tables are trained according
to the procedures outlined in subsections IILA, II.C, and
III.D. A single set of tables is trained, and used to process all
samples during the real-time processing phase. During training
the as for the Voronoi model are computed by numerical
integration as described in step 1 of the training procedure
in subsection III.A; for the GFP model, they are computed
by the procedure illustrated in Fig. 6. The training data for
both models is different than the data used for testing during
real-time processing.

2) Real-Time Processing

We assume that a priori information from the IRA decoder
is available to the LAIP.

LAIP Processing:

1) For each target bit U on each of the three tracks,
readings yy and y4,...,ym are collected; the lettering
convention is shown in Fig. 4.

2) The readings are grouped into four pairs in the clockwise
direction: (ya,yr), (Yp,yu), (yc,va), and (yB,yr).

3) For the (ya,yr) pair, eight conditional PMFs
P(ixo(aa + ag)lixs(ya,ye,yvu),ua, ug,uy) are
looked up in the PMF tables. These PMFs are
marginalized over the values of the U, A, and E bits
using (7), resulting in the pairwise conditional PMF
P(ixa(aA + aE)liXB(yAa Ye, yU))

4) Similar to the previous step, pairwise conditional PMFs
are computed for the other three clockwise reading pairs.

5) The four clockwise pairwise conditional PMFs are con-
volved according to (4), in order to form the clockwise
estimate P(iXy(Oétotall)‘yU7 YA, - YH)-

6) The readings are grouped in the counter-clockwise di-
rection as (ya,yr), (yB,vc), (yo,ym), and (yp,yr),

and similar processing to the preceding three steps is
performed to compute the counter-clockwise estimate
P(ixy(atotaIZ)‘yUa YA, - - 7yH)'

7) The clockwise and counter clockwise estimates are
averaged to form P(ix, (total|Yu, ya, - - -, Yr)-

8) An LLR(U) for bit U is computed using (6) (for the
Voronoi model) or (12) (for the GFP model).

9) The N LLR(U)s for all bits on each of the three tracks
are sent to the IRA decoder, which decodes one NN-bit
codeword per track. The IRA decoder returns a priori
LLRs LLR;(U) to the LAIP detector, and processing
returns to step 3.

10) Once all LAIP/IRA decoder loops are finished, IRA
decoder sends the LLR;(U)s to the 2D-BCJR decoder.

11) For each bit U, using yy and its four surrounding
readings, the LAIP sends 32 inner product predictions
yu corresponding to the possible bit neighborhoods
(uy,ua,up,uc,up) of U to the 2D-BCJR detector.

2D-BCIJR Processing:

1) The BCIR uses the LAIP ;s as the conditional means
for the gamma branch transition probabilities.

2) The BCJR uses the LLR(U)s from the LAIP to com-
pute a priori probabilities which multiply the gamma
probabilities.

3) The BCIR computes LLR estimates of the coded bits
and passes them to the BCJR IRA decoder, which uses
the identical code to the LAIP’s IRA decoder.

4) The BCJR may exchange LLRs several times with its
IRA decoder.

5) After the final BCJR/IRA iteration, final information bit
decisions are made by the IRA decoder.

IV. SIMULATION RESULTS

This section presents Monte Carlo simulation results for
the LAIP/BCJR TDMR turbo-detector system. The simulation
parameters in Fig. 5 are as follows. The multiplicative LLR
weights wy, . . . wy between IRA decoders and LAIP and BCJR
detectors are 0.5, 0.65, 0.65, and 1.0 respectively. The LLR
thresholds 7%,...,74 at the outputs of the detectors and
decoders are 30, 5, 100, and 1.0 respectively. The number
of internal IRA encoder iterations is 30 for the Voronoi
simulations, and 100 for the GFP simulations. Four self loop
iterations of the LAIP detector are done per each of four outer
iterations between the LAIP and the first IRA decoder. Four
iterations between the BCJR and the second IRA decoder are
done in the Voronoi simulations, but no BCJR/IRA iterations
are done for the GFP simulations, as most of the BER
reduction in the GFP case occurs in the LAIP/IRA loop. These
parameters were partially optimized via repeated simulations;
it is likely that further optimization can still be made.

For each fixed value of GPB, the values of U/G reported
for the simulations are arrived at by increasing the channel
code rate r (via puncturing of parity bits) to the highest
value possible such that the decoded BER < 107°, and then
computing U/G = r/GPB. The IRA codes employed in
the simulations are systematic, with each codeword of length
N, = K 4+ N, consisting of K information bits followed by



N, parity bits. N, is selected to be as close as possible to the
block length IV of the readback values, while still maintaining
N. > N; the N, — N excess bits at the end of the codeword
are punctured.

A. Simulation results for the Voronoi grain model

For the random Voronoi grain model, the block of coded
input bits is of size 3 x 32000, and the performance of the
proposed system in Fig. 5 is evaluated at both 1.7 and 2.0
GPB. For all Voronoi model simulations, the boundary bits
are known by the receiver.

The puncturing method employed for the Voronoi model
data is now described. For the Voronoi model, N, punctured
bits are selected randomly from the [N, parity bits. The
punctured bits are not written onto the simulated medium,
and hence the LAIP and BCJR detectors detect only the
N,, = N — N, written bits, and the punctured code rate is
r = K/N,,. For either detector, zero LLRs are inserted in the
positions of the punctured bits so that N, LLRs are sent to
the IRA decoder.

Table III shows the simulation results for the proposed
LAIP/BCJR turbo TDMR equalizer, on both the random
Voronoi grain model (RVGM) and the GFP model. The BERs
inside the parentheses are upper bound estimates with 95%
confidence level, since there are O error counts in these cases.
The BER upper bound is calculated as 3/N,,, where N,, is
the number of code bits transmitted [45].

Rows 3 and 4 of Table IIl are simulation results for a
baseline detector consisting of only the BCJR detector and
second IRA decoder, without the LAIP detector and first IRA
decoder in Fig. 5. The achievable U/G for the RVGM model
LATP/BCIJR system is 19.92% higher than baseline detector at
2.0 GPB, and 15.23% higher at 1.7 GPB. The RVGM achieved
U/G of 0.4334 at 2.0 GPB is higher than the 0.4315 U/G
reported in [3], even though the RVGM in that paper did not
include 2D-ISI, and therefore had a much lower raw channel
BER of 0.0274 compared to the 0.1060 raw BER in Table III.
The improvement is mainly due to expanding the conditional
PMF tables from, e.g., the P(ix,(aa)l|ixa(ya,yu)) used in
[3] to P(ixq(aa + ag)|ixs(ya,ye,yv)), which internally
captures more correlation among bits and read back values.
Applying these enlarged tables should improve the LAIP
detector’s performance on Voronoi grain models without 2D-
ISI as well. If enough memory were available to enlarge the
tables to include more adjacent bits (e.g., all 8 bits surrounding
the target bit), then the performance would likely improve
further.

B. Simulation results for the GFP model

For the GFP model, we evaluate the system’s performance
(with the changes described in section III-D) on two waveform
data sets, both with TP = 18 nm, BL = 11 nm, and GPB =
3.491. The input bits for these sets are of size 5 x 41207, and
the readings are 3 x 41207, corresponding to the middle 3
tracks within the 5 input tracks; the outer two input bit tracks
are considered as boundary tracks without readings. The first
GFP data set corresponds to the special sets of 512 training

patterns that were used to train the conditional PMFs for the
GFP case. The second set is identical to one tested in [38],
where simulation results in Fig. 16 of that paper show that
an information density of 2.4 Tb/in? (corresponding to 0.2105
U/G) can be achieved with this data set by employing a 3-
input/1-output 2D MMSE PR equalizer with a 1D BCJR and
IRA decoder.

For both GFP model data sets, the left and right boundary
bits (a total of six bits) are assumed to be known by the
receiver; this overhead is minimal (.0061%) compared to the
typical block size of three sectors at 4096 bytes per sector.
We evaluate the GFP model data under three assumptions on
the top and bottom boundary tracks: 1) both boundary tracks
are known; 2) only the top boundary track is known; and 3)
neither boundary track is known.

Boundary assumption 1 is mainly of theoretical interest, as
no practical TDMR system will waste 25% of disk tracks in
order to ensure known boundaries adjacent to every group
of three tracks. However, boundary assumptions 2 and 3 are
consistent with applying the proposed LAIP/BCJR detector
to a disk where all tracks (except the outermost track in the
case of boundary assumption 2) contain user data. Boundary
assumption 2 might apply, e.g., in a streaming application
where the disk is read sequentially from the first to last track,
and there is a single known track just before the first data
track (which would involve minimal overhead). Assumption 3
would apply to a random access scenario where there are no
known tracks on the disk. Thus, under assumptions 2 and 3 for
detection on an actual hard disk, the term “boundary” implies
only the location of the two tracks adjacent to the three data
tracks — it does not imply that the boundary tracks contain
known data, or that they are wasted tracks on the disk.

The GFP model data is processed with a different punc-
turing method than the Voronoi model data. The GFP model
method also selects IV, random punctured bits, and then reads
only N, = N — N, readback y values from the waveform
file for each of the three rows, corresponding to N, bits from
each row’s pre-determined (but randomly generated) channel
input bit file. For each row, the coset encoder computes a
coset parity word as the mod-2 sum of the N, IRA encoder
parity bits (computed by encoding the first K deinterleaved
input bits) and the parity bits in the deinterleaved input bit
file with zeros inserted at the punctured positions. After the
N,, LAIP or BCJR output LLRs are deinterleaved, zero LLRs
are inserted at the punctured positions, and the N, LLRs are
sent to the IRA coset decoder, along with the computed coset
parity word. The punctured code rate is r = K/N,,. This
coset decoding based puncturing scheme exactly simulates
the puncturing process that would occur if the channel input
bits were output from a channel encoder, instead of randomly
generated and stored in a file.

The fifth through tenth rows of Table III are for the GFP
model. The GFP test data set #1 used for the fifth through
ninth rows has media and read/write parameters identical to
those of the designed pattern training data set. When the
system with 2D MMSE filter, 1D BCJR with IRA decoder
in [38] is tested with a simple 1D PR target of 1 + 2D on
the fifth row’s GFP data, and an interleaver is used between



TABLE III
AREAL DENSITY PERFORMANCE OF THE LAIP/BCJR TURBO TDMR DETECTOR IN USER BITS PER GRAIN, FOR DECODED BER < 10~°

Grain Grains per User Bits Code Channel Decoded Decoded | Throughput

Turbo Detectors Model | Coded Bit | per Grain | Rate BER BER FER Multiplier
LAIP/BCIJR RVGM 2.0 0.4334 0.8668 0.1060 0 (1.0925¢-5) 0 x3
LAIP/BCJR RVGM 1.7 0.4525 0.7692 0.1427 0 (8.257e-6) 0 x3
BCJR RVGM 2.0 0.3614 0.7228 0.1060 0 (3.2308¢-5) 0 x3
BCIJR RVGM 1.7 0.3927 0.6676 0.1427 0 (2.6149¢-6) 0 x3
LAIP/BCJR GFP #1 3.491 0.1807 0.6308 0.1850 5.5083e-6 0 x3
LAIP/BCJR 1 boundary GFP #1 3.491 0.1724 0.6017 0.1850 0 (2.5201e-7) 0 X3
LAIP/BCJR 1 boundary GFP #1 3.491 0.1805 0.6300 0.1850 0 (3.7010e-7) 0 X2
LAIP/BCIR No boundaries | GFP #l 3.491 0.1681 0.5867 0.1850 0 (2.6325¢-7) 0 x3
LAIP/BCIR No boundaries | GFP #1 3.491 0.1740 0.6075 0.1850 0 (3.9487e-7) 0 X2
LAIP/BCJR GFP #2 3.491 0.1858 0.6485 0.1637 0 (8.4941e-6) 0 X3

the BCJR and IRA decoder, it achieves 0.1805 U/G. Thus, the
LAIP/BCIJR turbo-equalization system provides a U/G gain of
0.11% over the system in [38]; in addition, it provides a factor
of three throughput gain, since the system in [38] processes
one track at a time, whereas the proposed system processes
three. We note that the 0.11% U/G gain occurs without pre-
equalization to a 2D PR target before the LAIP detector; it is
likely that such pre-equalization, by greatly reducing the ISI
along tracks, would significantly lower the LAIP detector’s
BER and thereby allow increased IRA code rates, which would
increase the achieved U/G of the LAIP/BCJR turbo detector.

In order to investigate the effect of having one or both of
the boundary tracks unknown (under boundary assumptions 2
and 3), we propose to estimate the unknown boundary tracks
on an actual hard disk by pre-processing them with a simple
1D BCIJR detector with four trellis states that employs a three
tap 1D ISI mask h, where h is estimated offline from training
data by minimizing the MSE between the readings and the
filtered data bits. Testing of this 1D BCIJR on individual GFP
data tracks shows that it gives a BER of 17.59%.

Under the scenario where the bottom boundary track is
unknown (boundary assumption 2), we assume a decision
feedback architecture where the top boundary track of the cur-
rent three-track block has a BER of 10~ (due to LAIP/BCJR
processing of the previous block of three tracks), and the
unknown bottom boundary has a BER of 17.59% due to
pre-processing by the simple 4-state 1D BCJR algorithm. To
simulate this decision feedback process, before the three-track
LAIP/BCIJR detector GFP simulation is run, random bit errors
are inserted into the top and bottom GFP boundary tracks at
BERs of 10~ and 17.59% respectively.

In the case where both boundaries are unknown (boundary
assumption 3), we assume that both boundaries are pre-
processed by the 4-state 1D BCJR algorithm before the three-
track LAIP/BCJR detector is run, and we simulate that pre-
processing step by inserting bit errors into both top and
bottom GFP boundary tracks at a BER of 17.59%. Because the
LAIP/BCIJR detector gives higher BERs on the tracks adjacent
to the unknown boundary tracks, we assign different channel

coding rates to the three tracks, and find the highest channel
coding rates such that a BER of < 10~5 is achieved on each
track.

The LAIP/BCIR turbo detector results with one or two
unknown boundaries are shown in rows 6-9 of Table III
In rows 6 and 8, the reported densities and code rates are
an average over all three data tracks, and the throughput
multiplier of x3 is in comparison with a 1D detection scheme
(e.g., 1D-PDNP). In rows 7 and 9, the densities and code
rates are averaged only over the first two tracks, under a
scenario where the LAIP/BCJR detector releases only two
tracks at a time, and the throughput multiplier is x2. When
only the top boundary track is known, the code rates for
tracks 1, 2 and 3 are {0.635,0.625,0.545}, and the densities
are {0.1819,0.1790,0.1561}; it is seen that the rate for track
three (adjacent to the unknown boundary) must decrease sig-
nificantly, as the unknown boundary causes a higher detector
BER. (The detector BERSs for all three tracks for one and two
unknown boundaries are shown in Table IV in subsection IV-C
below.) When only one boundary is known, there is an average
density reduction of 4.6% compared to the case when both
boundaries are known; however the density reduction reduces
to 0.1% if only two tracks are released, thus demonstrating
a trade-off between density and throughput. When neither
boundary is known, the code rates and densities for tracks 1, 2,
and 3 are {0.595, 0.620,0.545} and {0.1704,0.1776,0.1561}
respectively; there is an average density reduction of 7.0%
compared to the case where both boundaries are known, which
reduces to 3.7% when only two tracks are released.

The GFP test data set #2 in the tenth row also has TP =
18 nm and BL = 11 nm, but the GFP simulation reader and
writer parameters for this test set were different than those for
the fifth row, resulting in a lower BER; the fifth row data’s
raw BER of 0.1850 is about 13% higher than that of the
tenth row. Also, the tenth row’s ISI mask (calculated using
the LS method) shows significantly less 2D-ISI than that seen
in the fifth row’s mask shown in the third column of Table
II. This means that the LAIP detector’s trained PMF tables
are based on very different data than the tenth row GFP data.



TABLE IV
DETECTOR BER COMPARISON BETWEEN LAIP/BCJR AND THE 2D-PDNP DETECTOR FROM [29], ON DATA TRACKS 1, 2, AND 3

Nc Np 1 J Trellis BER BER BER
Detector States | Track 1 | Track 2 | Track 3
LAIP/BCJR NA NA NA NA 64 8.67% 8.85% 8.66%
LAIP/BCIR 1 boundary NA | NA | NA | NA 64 8.69% 9.23% 11.63%
LAIP/BCJR No boundaries | NA NA NA NA 64 9.81% 9.24% 11.69%
2D-PDNP 11 1 1 1 64 10.60% 12.57% NA
2D-PDNP 23 1 1 1 64 10.60% 12.57% NA
2D-PDNP 11 2 1 1 256 10.63% 12.48% NA

Our achieved density of 0.1858 user bits per grain is about
14% lower than the .2105 U/G achieved by the system in [38]
on the same TP 18 data set; the density loss is due to model
mismatch between the PMF tables and the actual test data.
While the loss is significant, it is relatively reasonable given
the degree of model mismatch, and suggests that the LAIP
detector approach has a certain degree of robustness to model
mismatch.

C. Comparison with 2D-PDNP

In order to compare our proposed LAIP/BCJR system to a
state-of-the-art 2D-PDNP detector, we implemented a BCJR
algorithm that employs the 2D-PDNP of [29] and tested it
on GFP data set #1 mentioned in the description of Table III
above. We now give a brief description of the detector in [29].

The 2D-PDNP VA in [29] processes two tracks of data
simultaneously, and performs 2D autoregressive pattern-
dependent noise prediction as [29]

N,

n;, = Z P;(Ag)ng_; + A(Ag)wy.
=0

13)

In (13), ng is the 2 x 1 vector of predicted noise samples from
tracks 1 and 2 at downtrack position k, N, is the predictor
memory, the P, are the 2 X 2 matrix coefficients of the 2D
autoregressive model, and the A are the 2D pattern matrices
of size 2 x (I + J + 1), which consider all 4/+7+1) possible
bit patterns on the two tracks that span the downtrack samples
(k—=J,...,k,...,k+1I). The 2x 2 diagonal matrix A(A}) has
pattern dependent standard deviations o1 (Ay) and o3(Ay) on
its diagonal, and wy, is a 2 x 1 vector of 0 mean unit variance
ii.d. Gaussian random variables. The number of trellis states
in the VA (or BCJR) with 2D-PDNP is 4(Np+1+7)

A method for joint design of an MMSE equalizer and
2D PR target is also given in [29], and used to design a
fractionally spaced equalizer of length N, = 22 for use on
a micromagnetic data set from Ehime University with two
samples per bit [46]; the MMSE equalizer pre-processes the
micromagnetic data samples before they are sent to the 2D-
PDNP VA. Since our LAIP/BCJR system uses only 1 sample
per bit from the GFP data sets, we design an MMSE equalizer
of length N, = 11 according to the method in [29] for use
with our BCJR/2D-PDNP implementation. Following [29], we
estimate the 2D target s(A) associated with the bit pattern A

by averaging the MMSE filter output readings yj associated
with pattern A.

Table IV compares the BER of the LAIP/BCJR detector
proposed here with that of our implementation of a BCJR that
employs the 2D-PDNP proposed in [29], when both algorithms
are run on GFP data set #1 mentioned in the description
of Table III above. The BERs reported in Table IV are
detector-only BERs without channel decoding. The 2D-PDNP
algorithm’s prediction coefficients, sigmas, and estimated tar-
gets are trained with forty 41K blocks of GFP readings and
associated known input bits on each of the two tracks; the
2D-PDNP training readings are first pre-filtered by the 2D-
MMSE of down-track length N, designed according to the
method in [29]. The LAIP PMF tables are trained according to
the procedures described in subsections III.A, III.C and IIL.D.
Table IV gives LAIP/BCJR BER results for all three tracks,
and 2D-PDNP BERs for the two tracks that it processes.

Rows 4 through 6 of Table IV summarize the performance
of the 2D-PDNP BCIJR for several different parameter settings:
inrtow 4, N, = I = J = 1, as in the simulation results
presented in [29]. The row 5 detector is identical to that in row
4, except that an increased length N, = 23 MMSE equalizer
is designed and deployed before the 2D-PDNP BCJR. The
row 6 detector is identical to that in row 4, except that the
predictor memory N, is increased to 2. All parameter settings
of the 2D-PDNP give about 10.6% BER on track 1, but setting
N, = 2 gives the lowest BER of 12.48% on track 2.

Table IV row 1 shows that, with two known boundaries,
the LAIP/BCIJR detector’s BER is relatively constant: between
8.60% and 8.85% on all tracks. When the bottom boundary
adjacent to track 3 is unknown, track 3’s BER increases from
8.66% to 11.63% (34.3% increase), and the track 2 and track
1 BERs increase by 4.3% and 0.2%, respectively. The track 2
and 1 BER increases occur because the LAIP jointly estimates
all three tracks, so that errors in track 3 affect the other
two tracks. When both boundaries are unknown, tracks 1-3
suffer BER increases of 13.2%, 4.4%, and 35.0% respectively
relative to the known boundaries case. The track 1 BER
increase is less than the track 3 increase because, due to the
shingled writing process that produces the GFP data, track
1 overwrites the top boundary track O, whereas track 3 is
overwritten by the bottom boundary track 4. Because boundary
track 4 is not overwritten by another track, it has a larger



effective track pitch and a higher SNR than boundary track 0,
leading to a higher ITI between track 4 and track 3 than that
between track O and track 1; thus, the 17.59% BERs in tracks
4 and 0 lead to a higher BER in track 3 than in track 1.

The 2D-PDNP does not assume anything about its adjacent
boundary tracks. Hence, a fair comparison with 2D-PDNP
requires considering the LAIP/BCJR with no boundary in-
formation. The best 2D-PDNP performance is achieved by
the row 6 case, which has an average BER of 11.555% over
two tracks, whereas the unknown-boundary LAIP/BCJR has
an average BER of 10.247% over three tracks, which is 11.3%
lower than the 2D-PDNP. The lower BER of the LAIP/BCJR
is probably due at least in part to the LAIP/BCJR processing
three tracks at a time rather than two, enabling it to take into
account ITI from both adjacent tracks to any given track,
and also giving it 1.5x the throughput of the 2D-PDNP
method. The LAIP detector’s ability to form a more general
probabilistic model of grain-bit effects than the 2D-PDNP’s
autoregressive model may also partially explain its lower BER.

D. Computational Complexity

We end this section by summarizing the computational
and storage resources required by the proposed LAIP/BCJR
detection system, and drawing comparisons to some other
recently published TDMR detectors. When the versions of the
LAIP and 2D-BCIJR that simultaneously process three tracks
of GFP data are run on a 2.4 GHz Intel Xeon CPU with 25
MB cache, the LAIP (coded in MATLAB) requires 0.75 ms per
coded bit, and the 64-state 2D-BCJR (coded in C++) requires
0.26 ms per bit. By comparison, the system in [38] processes
one track at a time and employs a four-state BCJR detector.
Thus, the proposed system has about (16 + 3 x 16) = 64x
the computational complexity of the system in [38]. If both
boundaries are unknown, the boundary pre-processing by
the 4-state 1D BCJR would cause the total complexity of
the LAIP/BCJR system to be about 66x the computational
complexity of the system in [38]. The complexity increase to
achieve 3x throughput (at approximately the same U/G as
[38]) is significant. We note, however, that both the one-track
BCIJR detector in [38] and the two-track 2D-PDNP detector
in [29] employ 2D MMSE linear PR equalizers before their
trellis detectors, whereas no MMSE PR equalizer is used in
the present paper. We believe that significant additional density
gains are achievable if an appropriately designed 3-input/3-
output 2D-MMSE PR equalizer is used as a pre-processor
before the LAIP/BCJR detector proposed in this paper; design
of such a system will be the topic of a future publication.

The number of states shown for the LAIP/BCJR detector in
Table IV is the number of states in the BCJR detector. Because
(per run-time measurements) the LAIP detector has about
3x the computational complexity of the 64-state BCJR, the
equivalent number of trellis states of the LAIP/BCJR system
is about 256, which is equal to the 2D-PDNP with N, = 2
and I = J = 1 considered in Table IV row 6. Thus, the
LAIP/BCIJR detector has roughly equal complexity to the 2D-
PDNP detector in [29], when N, =2 and [ = J = 1.

The final complexity comparison is with the GBP based
TDMR detector in [19]. Run-time measurements reported in

[3] show that the GBP based detector in [19] has about
10000 the computational complexity of the LAIP detector
considered in [3], which is somewhat less complex than the
LAIP detector considered in this paper, as it uses a simpler
structure for its joint PMF tables, and does not employ self
loops. Considering the four self loops of the current paper’s
LAIP detector, and conservatively estimating about a factor of
2x greater complexity for one pass through this paper’s LAIP
detector due to the larger joint PMF tables, the LAIP/BCJR
detector in the present paper has about 11 x the complexity of
that in [3]. It follows that the GBP detector of [19] has about
900x the complexity of the combined LAIP/BCJR detector
considered in this paper.

The storage requirements of the LAIP detector are now
considered. The LAIP uses a number of pre-trained PMF
tables. The tables are trained offline once and stored. The PMF
tables use a 4-byte floating point representation, and require
about 0.78 GB of storage, which is quite modest compared to
modern HDDs with typically > 1 TB of storage.

V. CONCLUSION

The LAIP detector approach trains conditional PMFs of the
influences of adjacent bits on target bits, and compares the
read value of the target bit to the estimated total influence of
its surrounding bits. The influences of adjacent bits can be
viewed as the coefficients in a traditional 2D-ISI convolution
mask. Because the influences are conditioned on read values,
the LAIP detector can be viewed as estimating the coded
bits based on a spatially varying 2D-ISI mask. This paper
has demonstrated that the LAIP detector can be trained to
handle both grain/bit interactions as well as 2D-ISI effects, and
that the proposed combination of the LAIP and BCJR turbo
detectors can provide significant performance gains compared
to the BCJR turbo detector alone, and can also compare
favorably to previously proposed detection schemes on the
considered Voronoi and GFP grain models.

We also note that the the LAIP detector is computationally
efficient; since the component PMF tables are pre-computed,
the LAIP detector’s main computational task consists of vector
convolution, which can be optimized for speed in several ways
(e.g., by frequency domain methods). In addition, the LAIP’s
conditional PMF tables give the detector a high degree of
robustness to different media models: they can be trained on
geometrically well defined grain models like the Voronoi grain
model, or even on more complex models such as the GFP
where details of the underlying grain geometry may not be
available. The storage requirements of the LAIP PMF tables
are somewhat high but not unreasonable; in fact, the LAIP
essentially trades off PMF table storage requirements for im-
proved estimation performance and computational efficiency.
Moreover, the LAIP detector’s performance can be improved
as memory storage resources increase in the future, thereby
allowing training and storage of joint conditional PMFs of
groups of 5, 6 or more influences, because this could give
a more accurate statistical model of the spatial dependencies
between the bits and the readings in a local area around the
target bit. However, expanding the size of the joint influence



regions would require larger training sets to ensure reliable
estimates of the LAIs.
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