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I. INTRODUCTION 

Trellis based detection with pattern dependent noise prediction (PDNP) [1] has become standard practice in 
the HDD industry. In a typical single-track signal processing scheme, the received samples from the read head 
are first filtered by a linear equalizer with a 1D partial response (PR). The linear filter output flows into a trellis-
based (e.g. BCJR [2]) detector that employs a super-trellis based on the PR mask ISI channel and a 1D pattern 
dependent noise prediction (1D PDNP) algorithm. The effective channel model has a media noise term which 
models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. The media noise can 
influence two or more bit readback values. The trellis detector sends soft estimates of the coded bits to a channel 
decoder, which outputs estimates of the user information bits. There are two problems with traditional PDNP. 
First, when the number of tracks Nt simultaneously processed is greater than one, e.g. in two-dimensional 
magnetic recording (TDMR), the number of trellis states can become impractically large; this is the state 
explosion problem. Second, the relatively simple autoregressive noise model and linear prediction used in 
PDNP is somewhat restrictive and may not accurately represent the media noise, especially at high storage 
densities; this is the modeling problem. To address the state explosion problem, we separate the ISI detection 
and media noise prediction into two separate detectors and use the turbo-principle to exchange information 
between them, thus avoiding use of a super-trellis. To address the modeling problem, we design and train deep 
neural network (DNN) based media noise predictors. As DNN [3] models are much more general than 
autoregressive models, they give a more accurate model of magnetic media noise than PDNP; this more 
accurate modeling results in reduced detector BERs compared to PDNP. 

II. SYSTEM MODEL 

The BCJR-DNN turbo detector assumes a channel model for the kth linear equalizer filter output 𝑦𝑦(𝑘𝑘): 

𝑦𝑦(𝑘𝑘)  =  (𝐡𝐡 ∗  𝐮𝐮)  + 𝑛𝑛𝑚𝑚(𝑘𝑘)  +  𝑛𝑛𝑒𝑒(𝑘𝑘)                                                        (1) 

where 𝐡𝐡 is the PR target, 𝐮𝐮 are the coded bits on the track, ∗ indicates 1D convolution, 𝑛𝑛𝑚𝑚(𝑘𝑘) is media noise, 
𝑛𝑛𝑒𝑒(𝑘𝑘) is reader electronics AWGN, and the ISI channel length I = length(𝐡𝐡) - 1.  The media noise 𝑛𝑛𝑚𝑚(𝑘𝑘) is not 
modeled as an AR process; instead a more general model for 𝑛𝑛𝑚𝑚(𝑘𝑘) is learned by the DNN through offline 
training. We use grain flipping probabilistic (GFP) model data to train and evaluate our system. The GFP 
waveforms are generated based on micro-magnetic simulations [4]. The simulated media has grain density of 
11.4 Teragrains/in2. The GFP waveforms correspond to five tracks of coded bits (±1), denoted as tracks 0 
through 4. They are written using shingled writing technology. Fig. 1 shows a cartoon representation of the GFP 
model output data. The blue and red stripes represent −1 
and +1 coded bits. In our GFP simulations, the track pitch 
(TP) is 48 nm, the bit length (BL) is 11 nm, and there are 
9.33 grains per coded bit (GPB).  Each track in a GFP data 
set corresponds to 41206 coded bits, which is close to the 
sector size of 32768 bits (4K bytes) in a typical HDD. The 
readings from Track #2 are used as input to the BCJR-DNN 
turbo detector, and to a comparison baseline 1D PDNP 
detector.  

III. BCJR-DNN DETECTOR 

Fig. 2 shows the system block diagram for the proposed BCJR-DNN turbo detector. This system is a turbo-
equalization structure that separates the ISI detection and media-noise prediction functions into two detectors 
that iteratively exchange LLRs estimates of coded bits and noise samples until convergence to a low BER 
occurs. In Fig. 2, the GFP simulated HDD read-head output vector r contains two samples per coded bit. The 
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Fig. 1 Cartoon representation for GFP model 
output data. 



                     

odd samples r(1) (the “first samples” per bit) are first 
filtered by a linear equalizer designed to minimize 
the mean squared error (MMSE) between the filter 
output y(1) and the convolution of the coded bits u 
with the 1D PR mask h. The filter output y(1) is input 
to the BCJR detector, which handles only ISI 
equalization based on the PR target h and outputs a 
block 𝐋𝐋𝐋𝐋𝐋𝐋𝑏𝑏 of 41206 coded bit LLRs. In this work, 
we designed the PR target h with three taps, so that 
the BCJR detector has four states and eight total 
branches, and the ISI channel length I = 2. The 
BCJR’s coded bit LLRs 𝐋𝐋𝐋𝐋𝐋𝐋𝑏𝑏 are sent to the DNN, 
which provides an estimate 𝐧𝐧�𝑚𝑚 of the media noise to the next iteration of the BCJR detector in order to improve 
the BCJR’s estimate 𝐋𝐋𝐋𝐋𝐋𝐋𝑏𝑏. The dotted lines and box in Fig. 2 indicate future work beyond the present paper; 
they show how the detector can interface to an LDPC channel decoder.  

We employ two methods for interfacing the BCJR detector to the DNN. In the first method, labeled as “1 
DNN” in Table I, one DNN estimates the media noise for the kth BCJR trellis stage based on 𝐋𝐋𝐋𝐋𝐋𝐋𝑏𝑏 (and on y(1) 
and even samples r(2)) and then passes this estimate 𝑛𝑛�𝑚𝑚𝑘𝑘  to all eight BCJR branches. In the second method, 
labeled as “8 DNNs” in Table I, a media noise estimate 𝑛𝑛�𝑚𝑚𝑘𝑘𝑘𝑘 , 0 ≤ j ≤ 7, for the jth branch of the kth BCJR trellis 
stage is provided by a DNN, denoted DNNj, dedicated to (and trained for) the jth branch. We investigate two 
neural network architectures for the noise predictor. The first architecture is the traditional fully connected deep 
neural network (FCDNN). The second architecture is the convolutional neural network (CNN), wherein each 
CNN layer has a bank of trained finite length filters connected to an output layer. 

IV. SIMULATION RESULTS 

Table I summarizes the simulation results for three-tap unit energy (UE) and monic PR masks designed 
using the method described in [5]. One turbo-loop between the BCJR and the DNN is performed. The disjoint 
training and test data sets have 16 
blocks each. We consider four input 
scenarios involving some 
combination of the sign of the LLRs 
or their corresponding probabilities, 
the filtered first sample sequence y(1), 
the PR target h, and even  samples 
r(2) of GFP readings. For 1 DNN, the 
BCJR-CNN detector achieves 0.371× 
the BER and 0.116× the per bit run 
time (PBRT) of a 1D PDNP detector 
with ISI channel length I = 2 and 128 
trellis states; for 8 DNNs, it achieves 
0.343× the BER and 0.731× PBRT of 
a 1D PDNP detector. 
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Method PR 
Mask BER MSE 

PDNP UE 4.37e−4 - 
Monic 5.39e−4 - 

DNN Input   8 DNNs 1 DNN 8 DNNs 1 DNN 

FC 

Sign[LLR], 
h, y(1) 

UE 1.08e−3 9.06e−4 2.12e−3 1.87e−3 
Monic 2.70e−4 2.79e−4 9.89e−4 9.88e−4 

Pr[LLR], 
h, y(1) 

UE 7.24e−4 6.87e−4 3.33e−3 3.74e−3 
Monic 2.34e−4 2.15e−4 9.47e−4 9.98e−4 

Sign[LLR], 
h, y(1), r(2) 

UE 2.96e−4 5.76e−4 1.38e−3 1.40e−3 
Monic 2.25e−4 2.78e−4 9.73e−4 9.85e−4 

Pr[LLR], 
h, y(1), r(2) 

UE 2.11e−4 2.23e−4 1.29e−3 1.32e−3 
Monic 2.17e−4 2.06e−4 9.28e−4 9.22e−4 

CNN 

Sign[LLR], 
h, y(1), r(2) 

UE 1.77e−4 2.38e−4 5.74e−4 7.65e−4 
Monic 1.58e−4 1.67e−4 6.22e−4 6.69e−4 

Pr[LLR], 
h, y(1), r(2) 

UE 1.76e−4 1.68e−4 5.67e−4 5.54e−4 
Monic 1.50e−4 1.62e−4 5.90e−4 5.78e−4 

Table I Simulation results for PDNP and BCJR detectors 

Fig. 2 Block diagram for the BCJR-DNN turbo detector 


