Deep Neural Network Based Media Noise Predictors for Use in

High-Density Magnetic Recording Turbo-Detectors
Amirhossein SAYYAFAN', Benjamin J. BELZER', Krishnamoorthy SIVAKUMAR',
Jinlu SHEN', Kheong Sann CHAN? and Ashish JAMES®
1) Washington State University, Pullman, WA, USA, (a.sayyafan, belzer, siva, jinlu.shen)@wsu.edu
2) Nanjing Institute of Technology, Nanjing, China, kheongsann@jieee.org
3) Institute for Infocomm Research (I2R), A*STAR, Singapore, ashish james@i2r.a-star.edu.sg

I. INTRODUCTION

Trellis based detection with pattern dependent noise prediction (PDNP) [1] has become standard practice in
the HDD industry. In a typical single-track signal processing scheme, the received samples from the read head
are first filtered by a linear equalizer with a 1D partial response (PR). The linear filter output flows into a trellis-
based (e.g. BCJR [2]) detector that employs a super-trellis based on the PR mask ISI channel and a 1D pattern
dependent noise prediction (1D PDNP) algorithm. The effective channel model has a media noise term which
models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. The media noise can
influence two or more bit readback values. The trellis detector sends soft estimates of the coded bits to a channel
decoder, which outputs estimates of the user information bits. There are two problems with traditional PDNP.
First, when the number of tracks N, simultaneously processed is greater than one, e.g. in two-dimensional
magnetic recording (TDMR), the number of trellis states can become impractically large; this is the state
explosion problem. Second, the relatively simple autoregressive noise model and linear prediction used in
PDNP is somewhat restrictive and may not accurately represent the media noise, especially at high storage
densities; this is the modeling problem. To address the state explosion problem, we separate the ISI detection
and media noise prediction into two separate detectors and use the turbo-principle to exchange information
between them, thus avoiding use of a super-trellis. To address the modeling problem, we design and train deep
neural network (DNN) based media noise predictors. As DNN [3] models are much more general than
autoregressive models, they give a more accurate model of magnetic media noise than PDNP; this more
accurate modeling results in reduced detector BERs compared to PDNP.

II. SYSTEM MODEL
The BCJR-DNN turbo detector assumes a channel model for the kth linear equalizer filter output y(k):
y() = (h *w) + np(k) + ne(k) (M

where h is the PR target, u are the coded bits on the track, * indicates 1D convolution, n,, (k) is media noise,
n, (k) is reader electronics AWGN, and the ISI channel length 7 = length(h) - 1. The media noise n,, (k) is not
modeled as an AR process; instead a more general model for n,,(k) is learned by the DNN through offline
training. We use grain flipping probabilistic (GFP) model data to train and evaluate our system. The GFP
waveforms are generated based on micro-magnetic simulations [4]. The simulated media has grain density of
11.4 Teragrains/inz. The GFP waveforms correspond to five tracks of coded bits (1), denoted as tracks O
through 4. They are written using shingled writing technology. Fig. 1 shows a cartoon representation of the GFP
model output data. The blue and red stripes represent —1
and +1 coded bits. In our GFP simulations, the track pitch  jaqs )
(TP) is 48 nm, the bit length (BL) is 11 nm, and there are .., zﬂzs W
9.33 grains per coded bit (GPB). Each track in a GFP data | __,, ﬁf:ga:{m S
set corresponds to 41206 coded bits, which is close to the fj"ﬂf*s

sector size of 32768 bits (4K bytes) in a typical HDD. The o]

readings from Track #2 are used as input to the BCJR-DNN

turbo detector, and to a comparison baseline 1D PDNP Fig. 1 Cartoon representation for GFP model
detector. output data.

III. BCJR-DNN DETECTOR

Fig. 2 shows the system block diagram for the proposed BCJR-DNN turbo detector. This system is a turbo-
equalization structure that separates the ISI detection and media-noise prediction functions into two detectors
that iteratively exchange LLRs estimates of coded bits and noise samples until convergence to a low BER
occurs. In Fig. 2, the GFP simulated HDD read-head output vector r contains two samples per coded bit. The
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odd samples r'" (the “first samples™ per bit) are first PR Target.

filtered by a linear equalizer designed to minimize Lic.l S0 -

the mean squared error (MMSE) between the filter b =

output y" and the convolution of the coded bits u @ 3 W

with the 1D PR mask h. The filter output y'" is input ﬂ 1?_:::'22?'5 d 1DBCJR | LLRs[ DNN Media

to the BCJR detector, which handles only ISI Equalizer D:Elemlor st cden
equalization based on the PR target h and outputs a LR, |LLR h Trﬂ)
block LLR,, of 41206 coded bit LLRs. In this work, = '"\"Lﬁ',sg .

we designed the PR target h with three taps, so that | Decoder LERI

the BCJR detector has four states and eight total

branches, and the ISI channel length / = 2. The
BCIJR’s coded bit LLRs LLR;, are sent to the DNN,
which provides an estimate fi,,, of the media noise to the next iteration of the BCJR detector in order to improve
the BCJR’s estimate LLR;,. The dotted lines and box in Fig. 2 indicate future work beyond the present paper;
they show how the detector can interface to an LDPC channel decoder.

We employ two methods for interfacing the BCJR detector to the DNN. In the first method, labeled as “1
DNN” in Table I, one DNN estimates the media noise for the kth BCJR trellis stage based on LLR}, (and on y
and even samples r'®) and then passes this estimate fim, to all eight BCJR branches. In the second method,
labeled as “8 DNNs” in Table I, a media noise estimate ﬁmk]. , 0 <j <7, for the jth branch of the kth BCJR trellis
stage is provided by a DNN, denoted DNN;, dedicated to (and trained for) the jth branch. We investigate two
neural network architectures for the noise predictor. The first architecture is the traditional fully connected deep
neural network (FCDNN). The second architecture is the convolutional neural network (CNN), wherein each
CNN layer has a bank of trained finite length filters connected to an output layer.

IV. SIMULATION RESULTS

Fig. 2 Block diagram for the BCJR-DNN turbo detector

Table I summarizes the simulation results for three-tap unit energy (UE) and monic PR masks designed
using the method described in [5]. One turbo-loop between the BCJR and the DNN is performed. The disjoint

training and test data sets have 16 Table I Simulation results for PDNP and BCJR detectors

blocks each. We consider four input PR

scenarios involving some Method Mask BER MSE

combination of the sign of the LLRs PDNP UE 4.37e—4 -

or their corresponding probabilities, Monic 5.3%9e-4 -

the filtered first sample sequence y'”, | DNN Input 8DNNs | 1IDNN | 8 DNNs | 1 DNN

the PR target h, and even samples Sign[LLR], UE 1.08e-3 | 9.06e—4 | 2.12e-3 | 1.87e-3

r® of GFP readings. For 1 DNN, the h, y(l) Monic | 2.70e-4 | 2.79e—-4 | 9.89e—-4 | 9.88e—4

BCJR-CNN detector achieves 0.371x Pr[LLR], UE 7.24e-4 | 6.87e-4 | 3.33e—-3 | 3.74e-3

the BER and 0.116x the per bit run | oo | . y Monic | 2.34e—4 | 2.15e—4 | 9.47e-4 | 9.98e—4

time (PBRT) of a 1D PDNP detector Sign[LLR], UE | 2.96e—4 | 5.76e-4 | 1.38e-3 | 1.40e-3

with ISI channel length 7= 2 and 128 h, y, r® | Monic | 2.25e-4 | 2.78e—4 | 9.73e-4 | 9.85e—4

trellis states; for 8 DNNS, it achieves Pr[LLR], UE | 2.11e-4 | 2.23e—4 | 1.29e-3 | 1.32e-3

0.343x the BER and 0.731x PBRT of h, y, r® | Monic | 2.17e-4 | 2.06e—4 | 9.28e-4 | 9.22¢—4

a 1D PDNP detector. Sign[LLR], UE 1.77e-4 | 2.38e—4 | 5.74e-4 | 7.65e—4

h, y*, r® | Monic | 1.58¢e-4 | 1.67e-4 | 6.22e—4 | 6.69e—4
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