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Spatially distributed networks of large size arise in a variety
of science and engineering problems, such as wireless sensor
networks and smart power grids. Most of their features can
be described by properties of their state-space matrices whose
entries have indices in the vertex set of a graph. In this paper,
we introduce novel algebras of Beurling type that contain
matrices on a connected simple graph having polynomial
off-diagonal decay, and we show that they are Banach
subalgebras of B(#”),1 < p < oo, the space of all bounded
operators on the space ¢7 of all p-summable sequences. The
£P-stability of state-space matrices is an essential hypothesis
for the robustness of spatially distributed networks. In this
paper, we establish the equivalence among #P-stabilities of
matrices in Beurling algebras for different exponents 1 <
p < oo, with quantitative analysis for the lower stability
bounds. Admission of norm-control inversion plays a crucial
role in some engineering practice. In this paper, we prove
that matrices in Beurling subalgebras of B(£?) have norm-
controlled inversion and we find a norm-controlled polynomial
with close to optimal degree. Polynomial estimate to powers
of matrices is important for numerical implementation of
spatially distributed networks. In this paper, we apply our
results on norm-controlled inversion to obtain a polynomial
estimate to powers of matrices in Beurling algebras. The
polynomial estimate is a noncommutative extension about
convolution powers of a complex function and is applicable to
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estimate the probability of hopping from one agent to another
agent in a stationary Markov chain on a spatially distributed
network.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A spatially distributed network (SDN) contains a large amount of agents with limited
sensing, data processing, and communication capabilities for information transmission.
It arises in a variety of science and engineering problems ([1,12,27,63]). The topology of
an SDN can be described by a graph

G:=(V.E) (L.1)

of large size, where a vertex in V represents an agent and an edge (A, \') € F between
two vertices A and A € V means that a direct communication link exists [11]. In this
paper, we always assume that G is connected and simple. Here a simple graph means
that it is an unweighted, undirected graph containing no graph loops or multiple edges.
Our motivating examples are 1) circular graphs Zy = (Z/NZ,W) of order N > 3,
where W € Z/NZ and (m,n) € Exy means m —n € NZ £ W: and 2) lattice graphs
Zd .= (74, E?),d > 1, where (m,n) € E? implies that m and n € Z? have distance one.

SDNs could give extraordinary capabilities especially when creating a data exchange
network requires significant efforts or when establishing a centralized facility to process
and store all the information is formidable. A comprehensive mathematical analysis of
SDNs does not appear to exist yet, and there is a huge research gap between mathe-
matical theory and engineering practice [5,11,18,35,38,49]. This inspires us to consider
various properties of state-space matrices

A= (a(A V), ey (1.2)

of SDNs with indices in the vertex set V' of a graph. This work is also motivated by the
emerging field of signal processing on graphs, where matrices of the form (1.2) are used for
linear processing such as filtering, translation, modulation, dilation and downsampling
[10,29,40,44,43,47].

An abundant family of SDNs is spatially decaying linear systems whose state-space
matrices have off-diagonal decay. Examples of such systems include smart power grids
with sparse interconnection topologies, multi-agent systems with nearest-neighbor cou-
pling structures, and (wireless) sensor networks for environment monitoring ([1,11,12,
18,27,35,63]). To describe off-diagonal decay property of matrices of the form (1.2), we
introduce Banach algebras By o(G) of Beurling type for 1 < r < oo and « > 0, see
(3.1) and (3.2) in Section 3. Matrices A = (a(A, AN'))aney i By o(G) have their entries
dominated by a positive decreasing function 4 with polynomial decay,
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a(A, M) < ha(p(X\, X)) forall A, N €V, 1.3
p

where p(A, \') is the geodesic distance between vertices A, A’ € V. For the lattice graph
2% Banach algebras B, ,(Z%) are introduced by Beurling in [8] for r =d = 1 and a = 0,
Jaffard in [28] for » = oo and Sun in [54] for 1 <r < co.

Let £ := (P(V),1 < p < o0, be Banach spaces of p-summable sequences on V' with
standard norm || - [|¢», and B(/?) be the Banach algebra of all bounded operators on #
with norm || - |[p(er). We say that a matrix A € B({?) has (P-stability if there exists a
positive constant A, such that

| Ac|lp, > Apllellp for all ¢ € ¢P. (1.4)

The optimal lower P-stability bound of a matrix A is the maximal number A, for
(1.4) to hold. The fP-stability is an essential hypothesis for some matrices arising in
time—frequency analysis, sampling theory, wavelet analysis and many other applied math-
ematical fields [3,14,20,52,57]. For the robustness against bounded noises, the sensing
matrix arising in the sampling and reconstruction procedure of signals on a SDN is re-
quired in [11] to have £°°-stability, however there are some difficulties to verify fP-stability
of a matrix in a distributed manner for p # 2 [37].

For a finite graph G = (V, F) and a matrix A with indices in its vertex set V, its
(P-stability and /2-stability are equivalent to each other for any 1 < p,q < oo, and its
optimal lower stability bounds satisfy

M—/p=1/4l < Aq < MIt/p=1/4] (1.5)
=, : .

where M = #V is the number of vertices of the graph G. The above estimation on lower
stability bounds is unfavorable for matrices of large size but it cannot be improved if
there is no restriction on the matrix A. Let d be the Beurling dimension of the graph G.
Matrices A € B, (@) with 1 < r < oc and a > d(1 — 1/r) are bounded operators on
P 1 < p< oo, and there exists a positive constant C' such that

[|Allgery < C||A|B,., forall A e B, o(G) and 1 < p < oc.
For their lower stability bounds, it is proved that
A, > 01if and only if A, >0
in [2,54,58] for the infinite lattice graph Z¢, and that
Ay > 01f Ay >0

in [11] for any infinite graph G with finite Beurling dimension and r = oo, where 1 <
p,q < co. In Theorem 4.1 of this paper, we provide a quantitative version of fP-stability
for different 1 < p < o0 and prove the following result,
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A —Dol1/p—1/q
Dl(ll IIBT,C.)

| Al 5, Polt/p—1/dl
A )

< j—z < Dz(A—p (1.6)
for any matrix A € B, ,(G) with 1 <r < oc and o > d(1 — 1/r), where Dy, Dy, Dy are
absolute constants independent of matrices A € B, ,(G), exponents 1 < p,q < oc and
the size M of the graph G, cf. (1.5). The proof of Theorem 4.1 depends on an important
estimate to the commutator between a matrix in the Beurling algebra B, ,(G) and a
truncation operator. Similar estimate has been used by Sjostrand in [48] to establish
invertibility of infinite matrices in the Baskakov—Gohberg—Sjostrand class.

A Banach subalgebra A of B is said to be inverse-closed if an element in A, that is
invertible in B, is also invertible in A. The inverse-closed subalgebras have numerous
applications in time-frequency analysis, sampling theory, numerical analysis and opti-
mization, and it has been established for matrices, integral operators, pseudo-differential
operators satisfying various off-diagonal decay conditions. The reader may refer to [4,
6,16,19,22,21,23,26,28,33,36,48,54,53] and the survey papers [22,32,16] for historical re-
marks and recent advances.

A quantitative version of inverse-closedness is the norm-controlled inversion [24,25,
39,42,50]. Here an inverse-closed Banach subalgebra A of B is said to admit norm control
in B if there exists a continuous function A from [0, 00) x [0, 00) to [0, 00) such that

1Al < A(lA]La, A ]5) (L.7)

for all A € A with A~! € B. Admission of norm-control inversion plays a crucial role
in [55] to solve nonlinear sampling problems termed with instantaneous compansion and
local identification of signals with finite rate of innovation. Norm-controlled inversion
was first studied by Stafney in [50], where it is shown that B o(Z) does not admit a
norm-controlled inversion in B(#?). The polynomial norm-control inversion is established
in [24] for matrices in differential algebras and [25] for matrices in Besov algebras, Bessel
algebras, Dales—Davie algebras and Jaffard algebra. In Theorem 5.1 of this paper, we
show that Banach algebras B, ,(G) with 1 < r < oo and a > d(1 — 1/r) + 1 admit
norm-controlled inversion in B(¢2), and there exists an absolute constant C such that

A7 5,0 < CIA™ s (1A s | All 5, )4/ (1.8)
hold for all A € By «(G) with A=t € B(£2). Moreover, the above polynomial norm-control
inversion is close to optimal, as shown in Example 5.2 that the exponent a+d/r in (1.8)
cannot be replaced by o +d/r — 1 — € for any € > 0. We remark that a weak version
of the norm-controlled estimate (1.8), with the exponent o + d/r in (5.2) replaced by
a larger exponent 2o + 2 + 2/(a — 2), is established in [25] for the Jaffard algebra
TJo(2) = Boo o(2).

Let A be a Banach subalgebra of B. We say that A is its differential subalgebra of
order ¢ € (0,1] ([9,13,31,55,51]) if there exists a positive constant C' such that
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A 6 B o
|AB||4 < C’A||AB||A((”A||||i) + (IHB”i) ) foral ALBeA  (19)

The differential subalgebras was introduced in [9,31] for # = 1 and [13,55,51] for 0 €
(0,1). In [13,23], it is shown that a C*-subalgebra A of B with a common unit admits
norm controlled inversion if A is also a differential subalgebra. The reader may refer to
[9,13,31,36,46,55,56] and references therein for historical remarks and recent advances
in operator theory, harmonic analysis, non-commutative geometry, numerical analysis
and optimization. The differential norm inequality (1.9) is satisfied by many Banach
subalgebras of B(£?) [23,54,53,51]. For 1 < r < o0 and a > d(1 — 1/r), it is shown in
Proposition 3.6 that Banach algebras By (G) are differential subalgebra of B(¢?) with
order 0,4 = 2(a —d +d/r)/(1 + 2a — 2d + 2d/r). Applying the differential property
(1.9) repeatedly and using the argument in [55, Proposition 2.4], we have the following
subexponential estimate for the norms of powers A™ n > 1, in B, o(G).

L ploga (14+6ra)
1A,

Tica
A" < ||A]|% C—= . n>1,
4%, <] |m( A”W)) EE

where €' is an absolute constant independent of integers n > 1 and matrices A € B, +(G).
In Theorem 6.1 of this paper, we refine the above subexponential estimate to show that
powers of a matrix in B, »(G) with 1 <7 < oo and « > d(1 — 1/r) + 1 have polynomial
growth,

nAlls. .

" g >1 1.10
Tl )™ Al n > 1 o

|4"z,., < Cn(

Moreover, the above estimate is close to optimal, as shown in (6.3) that the exponent
a+d/r in (1.10) cannot be replaced by e + d/r — 1 — € for any € > 0. The polynomial
norm estimate in (1.10) is a noncommutative extension about convolution powers of a
complex function on Z4, cf. [17,41,60,59] and (6.4). The power estimate in (1.10) is also
applicable to estimate the probability Pr(X,, = A\|X; = X) of hopping from one agent A
to another agent A’ in a stationary Markov chain X,,,n > 1, on a spatially distributed
network, see Corollary 6.2.

The paper is organized as follows. In Section 2, we recall some concepts on connected
simple graphs G and we provide two basic estimates on their geometry. In Section 3, we
introduce novel Banach algebra of matrices B, ,(G) with 1 <7 < co and a > 0, and we
prove that they are differential and inverse-closed subalgebra of B(£?). In Section 4, we
establish the equivalence among ¢P-stabilities of matrices in the Beurling algebra B, o(G)
for different exponents 1 < p < oo, and we further show that their lower stability bounds
are controlled by some polynomials. In Section 5, we prove that the Beurling algebra
B, o(G) admit norm-controlled inversion and a polynomial can be selected to be the
norm-controlled function A in (1.7). In Section 6, we consider noncommutative extension
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of convolution powers and show that norms of powers A", n > 1, of a matrix A € B, ,
with 1 <r < oo and a > d(1 — 1/r) are dominated by a polynomial.

Notation: Z, contains all nonnegative integers, for a real number ¢, denote by [t], [t],
ty = max(t,0) and t_ = min(¢,0) its greatest preceding integer, least succeeding inte-
gers, positive part and negative part respectively, and for a set F' denote its cardinality
and characteristic function by #F and yr respectively. In this paper, the capital letter
(' is an absolute constant which is not necessarily the same at each occurrence.

2. Preliminaries on connected simple graphs

In this section, we recall some concepts on connected simple graphs, and we establish
two estimates about geometry of a connected simple graph with finite Beurling dimen-
sion.

In this paper, we assume that the underlying graph G := (V, E) is connected and
simple. For the graph to describe an SDN distributed over a spatial domain with direct
communication between agents via signal broadcasting within a finite range, where each
vertex represents an agent and every edge shows that agents at the two ends of that edge
have their distance in the spatial domain not greater than their communication range.
Therefore the assumptions on its connectivity and simpleness are satisfied if agents in
the SDN can communicate across the entire network either directly or through a chain
of intermediate agents, agents of those SDNs use identical communication modules with
identical communication range, and communication components are not used for internal
data transmission [11].

Denote by p the geodesic distance on G, which is the nonnegative function on V' x V'
such that p(A, A) = 0 for all vertices A € V, and p(A, \') is the number of edges in a
shortest path connecting distinct vertices A, A’ € V' ([15]). For an SDN where two distinct
agents exchange information through a chain of intermediate agents connecting them via
a shortest path, the geodesic distance on the underlying graph is widely used to measure
the communication cost/delay to data transmission.

The geodesic distance p on G is a metric on V. For a circular graph Zy = (Z/NZ, W)
with W = {w;,1 <1 < L} ¢ Z/NZ, one may verify that it is simple and connected if
and only if NZNW = () and any integer in Z/NZ is a linear combination of elements in
W with integer coefficients, and also that the geodesic distance p(m,n) between distinct
integers m,n € Z/NZ is

p(m,n) = min Z kil

mfnfz£=1 klwleNZ,(kl,‘ Lk EZL

The graph Z¢ is simple and connected, and the geodesic distance between m =

(my,...,mg) and n = (nq,...,ng) € Z is given by p(m,n) = S0 [m; — n,|.
With the geodesic distance p on G := (V| E), we denote the closed ball with center

A €V and radius R by
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B(AMR):={XN eV : p(\,XN) <R},

and the counting measure on V by p, where pu(F) is the number of vertices in F for any
F C V. The counting measure p is said to be a doubling measure ([34,62]) if there exists
a positive constant Dy(G) such that

p(B(A2R)) < Do(G)p(B(A R)) forall Ae V and R > 0. (2.1)

The minimal constant Dp(G) in (2.1) is known as the doubling constant of the measure .
Clearly, the doubling constant Dy(G) dominates maximal node degree of the graph G,
i.e., dpax(G) < Do(G). Under the doubling assumption to the measure p, the triple
(V, p, ) is a space of homogeneous type [34,62]. For a communication graph to describe
an SDN, the doubling property for its counting measure means that number of agents in
the R-neighborhood and 2R-neighborhood of each agent are comparable for all R > 0,
and that every agent communicates directly with at most Dy(G) agents in the network.

We say that the counting measure p on the graph G has polynomial growth if there
exist positive constants D1(G) and d := d(G) such that

B\ R) < D1(G)(R+1)* forall A\ eV and R > 0. (2.2)

The minimal constants d and D1(G) in (2.2) are called as the Beurling dimension and
density of the graph G respectively ([11]). The circular graph Zy := (Z/NZ, W) and the
lattice graph Z% have their Beurling dimension being one and the Euclidean dimension
d respectively. We remark that a simple graph G with its counting measure p satisfving
the doubling condition (2.1) has finite Beurling dimension,

p(B(AR)) < Do(G)(R + 1)!°82 D0 for all A e V and R > 0,

where Dg(G) is the doubling constant of the measure p. However, the Beurling dimension
d of the graph G is usually much smaller than log, Dy(G) in the above estimate.

We say that the counting measure p on the graph G is normal if there exist D1(G)
and Ds(G) such that

D2(G)(R+1)" < p(B(X, R)) < D1(G)(R +1)" (2.3)

for all A € V and 0 < R < diam(G), the diameter of the graph G. A normal measure has
the doubling property (2.1) and the polynomial growth property (2.2), see [30,34,61,62]
and references therein. We remark that the circular graph Zy := (Z/NZ, W) and the
lattice graph Z¢ have normal counting measures. For SDNs with agents distributed at
7 4 [-1/2,1/2)? and signal broadcasting range not less than 2v/d, one may verify that
eraphs to describe those SDNs have normal counting measures.

We conclude this section with a proposition on geometry of a connected simple graph

with finite Beurling dimension.
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Proposition 2.1. Let G := (V, E) be a connected simple graph with Beurling dimension d,

and h := {h(n)}>L, be a positive decreasing sequence. Then the following statements
hold.

(i) For any vertex X € V and integer s > 0,

Do PAXR(p(AN) < (d -+ 1)D1(G) Z h(n)(n+1)". (24)
p(AAN)<s n=0
(i) If >0 o h(n)(n+ 1)1 < oo, then
3T A N)) < Dl(g)((s +1)%(s) +d Y h(n)(n + 1)d*1) (2.5)
PN 25 n=st1

for any vertex A € V' and integer s > 0.

Proof. (i). Given a vertex A € V' and an integer s > 0, we obtain

ST XA N))

pPAN)<s

n=0
s—1
= sh(s)u(B(A, s)) + Z p(B(\,n))(nh(n) — (n+ 1)h(n + 1))
n=0
ng(g)(sh s+ 1) +Zn h(n +1))(n +1)d)

Zh n)(n(n +1)* — (n — 1)n?),

where the inequality follows from the polynomial growth property (2.2) and the mono-
tonic assumption on the nonnegative sequence {h(n)}>2 . Hence (2.4) follows.
(ii). Take a vertex A € V' and an integer s > 0. Similar to the first argument, we have

> hlp(AN)

pPAN) =8
< lim A(N)u(B(A,N)) + Z (B (n) — h(n +1))
< Dy(G) Jlim_ (h(N)(N +1)%+ i (n+ 1)%(h(n) — h(n + 1)))

n=s
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=Du@)((s+ 1))+ Y h(m)((n+1)" = n?)).
n=s+1

This proves (2.5). 0O
3. Matrices with polynomial off-diagonal decay

Let G be a connected simple graph with Beurling dimension d. For 1 < r < co and
a > 0, define

Br.a(G) = {A= (@A), yop 4], < oo}, (3.1)

where ha(n) = sup, an>n [a(A, N)[;7 > 0, and

1/r

HAHBT,Q = { (ZZO:O ‘hA(n)‘r(n + 1)ar+d71) ifl1<r<oo (3.2)

Sup, o fea(n)(n +1)° if 7= oo,

[7,8,11,28,54]. We will use the abbreviated notation B, o instead of B, (G) if there is no
confusion. The commutative subalgebra

A* = {(a(k’. - k’))k,k’ez : Z sup |a(k)| < oc-} (3.3)

n:OIk\En

of the class B, (G) with r = 1,a = 0 and § = Z was introduced by Beurling to study
contraction of periodic functions [8]. The set By o(G) with r = +00,a > 0 and G = Z is
the Jaffard class J,(Z) of matrices with polynomial off-diagonal decay ([11,28]), since

A4l i= s DI+ i ) = AL, for A= (a(is ), 0
1‘«7 ;
The set By o(G) with 1 < r < 00,0 > 0 and G = Z is defined in [54] to contain all
matrices A = (a(i, j)); jez with the following norm
. > o ) e\ 1/r
1A, = (Z ( sup a(i, j)|(1 + i — j|) ) ) < 0. (3.4)

n=>0 ‘173‘2n

We remark that norms in (3.2) and (3.4) are equivalent to each other,
IAl|s,. < [Allg, . <22V A|g  forall A€ By o(27). (3.5)

The first inequality in (3.5) follows immediately from (3.2) and (3.4), while the second

estimate holds because for any A = (a(4, ) € B;.o(Z2) we have

i,JEL
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(45, )" < sup |a(i, 5)|"(1 + |i — j[)*"
i,jEL

+22( sup |a(i ')\(1+|‘i*j‘)a)7ﬂ

1=0 [i—jl=2!

hA + Z hA Qm 2(m+1)cw'

+22l Z hA Qm))rg(m+1)o¢r
m=l

< (hA(O))r + 22a'r+2 Z (hA(Qm))TQ(mfl)(ar%»l)

m=0

<2272 (|| As,,,)"

Due to the above equivalence (3.5), we follow the terminology in [54] to call B, , as a
Beurling class of matrices with polynomial off-diagonal decay.

Given any 1 < r < oo and «a > 0, one may verify from the definition (3.1) that the
Beurling class B, . with norm || - [|3, , is a solid Banach space. Here solidness of the
Banach space B, , means that

IAlls,. < [Bls,. (3.6)

e —

hold for all matrices A = (a(X, X)) s aev and B = (b(A, X)) s aev satisfying |a(A, X)| <
(A, A)| for all A, N € V.

Banach spaces B, , and B,/ o with different exponents 1 < r,7" < oc and a,a’ > 0
are closely related.

Proposition 3.1. Let 1 < r < 7' < o0 and a,&’ > 0, and G := (V, E) be a connected
simple graph with Beurling dimension d. Then the following statements hold.

(i) If o/ > o+ d(1/r —1/1"), then By o (G) is a Banach subspace of By o(G). and

1Al

(3.7)

T —

o —a—(d—1)(1/r—1/7")\Vr-1/r
( *d(l/?‘*l/'r") ) HAHB

el

hold for all A € B, o (G).
(ii) If o/ <a+d(1/r—1/r"), then By o (G) is a Banach supspace of By o(G). Moreover
for all A € B, o(G) we have

IAll5,. .. <lAlls,.. (3.8)

ol
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ifr' =r, and
|Alls, . < (a7 + )/ A]l,.. (3.9)
if r’ > .

Proof. (i). Take A = (a(A, )\’))AA,EV
obvious for 7 = 7’ = oo. For 1 < r < oo, we have

€ Br o with ¥ = oco. The conclusion (3.7) is

- ' "—ao/ —dfr+1/r
Al < ||AllT 1 (a—a’)r+d—1 o o AllT )
I415,.. < 1415, 0+ e

This proves (3.7) with 1 <r < " = co. We can use similar argument to prove (3.7) with
r<r' <oo.

(ii). The conclusion (3.8) is obvious. Now we prove (3.9). Take A = (a(A, X)) xev €
B, o and set ha(n) = sup,\ s, [a(A A)[;n = 0. Then for " = oo, we obtain from
monotonicity of the nonnegative sequence {ha(n)}yZ, that

1AlE, ., < 1Al5. ..y, = sup (Ra(N)"(N 4 1)07+
' ' N>0
N+1
< (ar +d)(ha(N))" [ rortd=lg
0

N
< (ar+d) Y (ha(m) (n+ 1)1 < (ar +d)|| A5, .. (3.10)

n=0
Similarly for r < " < oo,

o0

HA”E’T’,QJ < ||AHT’7T Z(hA(n))f(ﬂ‘F 1)(('t’7(‘!*(1(1/1’71/T’))r/+[xf‘+d71

Boo,cx+d/r
n=0

o0

Boo D _(ha(n)"(n+ 1)erte

n=0

By (3.11)

< (ar+d)"/ A

= (ar+d)"/"1A

where the second inequality follows from (3.10). Combining (3.10) and (3.11) proves
(3.9). D

A matrix A = (a(A, N))a vev is said to have bandwidth N if

a(A,N) = 0if p(A\, ) > N. (3.12)
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Then a matrix A with finite bandwidth belongs to Beurling families B, ,,1 < r < 00, >
0 if and only if it has bounded entries (i.e., [|A||p._, < 00), since for a matrix A with
bandwidth N,

(N + 1)@ [[Allg, ., < [Alls,. < (N + 1)+ 4]

-y ol

where 1 < r < v < oo and a,¢/ > 0. On the other hand, any matrix A =
(@M N))aney € Bro with 1 < 7 < 00 and @ > 0 is well approximated by their
truncations,

Ax = (A X)X (pN)/N)), e N 20, (3.13)

(and hence by bounded matrices with finite bandwidth), since

N
HA - AN”ET (hA N +1 "' Z cxr+d—1

n=0

+ Z (ha(n))"(n+1)%"
n=N+1
<@ 1) 37 (ha(n) (n+ 1)L 50 (3.14)
n>N/2

as N — oo, where ha(n) = sup,y x>, [a(A, A)[,n > 0, the limit holds by the assump-
tion ||A||5,, < co, and the inequality follows from the monotonicity of {ha(n)}n2, and
the estimate

N
Z(n + l)ar+d—1 E (2(‘!7‘+d _ 1) Z (n + 1)ozr+cl—1'
n=>0 N/2<n<N

This proves the following proposition about well approximation of matrices with finite
bandwidth in Beurling classes of matrices.

Proposition 3.2. Let 1 < r < oo, = 0, and G := (V, E) be a connected simple graph
with Beurling dimension d. Then the set of all matrices in B, o(G) with finite bandwidth
is dense in By ,(G).

We remark that the approximation property in the above proposition does not hold
in general for Beurling classes B,., with r = oo and & > 0. For instance, for the lattice
graph Z9, the matrix A = ((1 + |i — j|)™®); jeza belongs to Bo o(Z7), while it cannot
be approximated by matrices with finite bandwidth in the norm || - |5 ...

The Beurling class By o plays a special role in Beurling family B, .1 <r < oo,a > 0,
of matrices. It is a Banach subalgebra of the Schur algebra § under matrix multiplication.



160 C.E. Shin, Q. Sun / Journal of Functional Analysis 276 (2019) 148182

Here the Schur algebra § := 8(G) contain all matrices A := (a(A, X)), vey With finite
Schur norm

|Al|s = max (;gp Z la(A, A, sup Z la(A, N)] ) (3.15)
Nev Vaev

which is a Banach subalgebra of B(£9),1 < ¢ < cc.

Proposition 3.3. Let 1 < g < o0 and G := (V. E) be a connected simple graph with
Beurling dimension d. Then B o(G) is a Banach subalgebra of the Schur algebra S(G)
and hence also o Banach subalgebra of B(£7),1 < q < oco. Moreover,

[[Allseay < [|Alls < dD1(G)|| A, (3.16)
and
|AB|5, 4(¢) < 27 dD1(G)|| All5, o(0) | Bll5, o(0) (3.17)
for all A, B € B1,0(G).

Proof. The first inequality in (3.16) is well known. Take A := (a(), \)), vey € Bro-
Then it follows from Proposition 2.1 that ’

D T la X)€Y halp(AN)

NeV AeV

< D4(G hA +thA Tl+1 ) Sle(g)HA”Bi,o:

where h(n) = sup,\ \y>n [@(A, A')[,n > 0. This proves the second estimate in (3.16).

We follow the argument in [54] to prove (3.17), where the conclusion with G = Z4
is proved. Take A := (a()\vx)))\,xev and B = (b(\, )\’))A’)\,EV € B, g, and write
AB := (e[, /\’))/\,/\,gv. Then for all A, \" € V' we have

A< D7 JalA M)A, X))
eV

< ha(lp(\X)/2]) Y7 (BN, X))
A'eV

+ha([pAN)/2]) Y fa(h )|
AeV

< |IBllsha(lp(X, 2)/2]) + |l shs(lp(A, X) /2]), (3.18)

where f4(n) = sup,\ xnsn [@(A A)] and hp(n) = sup, sy, [0, A')|;n € Zy. There-
fore
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1ABl5, o < | Blls Y ha(ln/2])(n+ )04
n=0

+||4]ls Z hi([n/2])(n + 1)2td=1

n=>0
< 2Q+d+1dD1(g)”AH51,oHBH51.0= (3‘19)

where the first and second inequality follows from (3.18) and (3.16) respectively. O

In this paper, we mainly consider the Beurling class of matrices B, o with 1 <7 < oo
and a > d(1 — /r). By Propositions 3.1 and 3.3, all of them are Banach subspaces of
By o. In the following proposition, we show that they are Banach subalgebras of By ¢ (and
hence the Schur algebra S and the operator algebra B(£%),1 < ¢ < o0o) under matrix
multiplication.

Proposition 3.4. Let G := (V, E) be a connected simple graph with Beurling dimension d.
Then for any 1 <r < oo and a > d(1 — /r), By o(G) is a Banach algebra. Moreover,

”AB”BT,Q < Qa+1+d/rle(g) (OZ - (d — 1)(1 — 1/7’))1—1/T“AHB

a—d(l—1/r) Bl|s,.. (320

r.a‘

hold for all A, B € By «(G).

Proof. Take A, B € B, ,. Following the argument used in the proof of Proposition 3.3,
we have

|ABlls, . < 277 (|Blsl|Alls... + |4ls|Bls,.)- (3.21)

This together with (3.7) and (3.16) proves (3.20). O

By Propositions 3.1 and 3.2, matrices in By and B, ,,1 < r < 00 are well approxi-
mated by bounded matrices with finite bandwidth in the Schur norm. In the following
proposition, we show that given any matrix in a Banach algebra B, with 1 <r < oo
and a > d(1 — 1/r), the approximation order by matrices with finite bandwidth in
the Schur norm (and hence by the operator norm in B(¢9),1 < ¢ < oo by (3.16)) is
a—d(l—/r)>0.

Proposition 3.5. Let G := (V, E) be a connected simple graph with Beurling dimension
d. Take A € B, o(G) and define Ay, N > 0, as in (3.13), where 1 < r < oo and
a>d(1—/r). Then

dD+(G)

HA — ANHS < (a — d(l _ 1/:”))1,1”

A5, (N + 1)V N >0 (3.22)




162 C.E. Shin, Q. Sun / Journal of Functional Analysis 276 (2019) 148182

Proof. Take 4 := (a(\, X)) € B, . By Proposition 2.1, we have

ANEV

[A—Anls < D1(g)((N+2)dhA(N +1)+d i ha(n)(n + 1)(1—1)’
n=N+2

where ha(n) = sup, ansn [@(A, A')[; 7 = 0. Therefore
|4 = Anlls < dD1(G)[|Alls,.. (N + 1)

if » = 1. Similarly for 1 < r < 0o, we have

- ’ 1/r"
|4 - Alls <dDi(@)Alls,..( Y (n+1)7orFT)
n=N+1
< d(ar’ — d)il/r’Dl(g)HA”Br,a(N + 1)70‘+d/r’ (3.23)

where 1/7'=1—-1/r. O

By (3.7) and (3.16), Banach algebras B, , with 1 <7 < oo and a > d(1 —1/r) are
subalgebras of B(#P),1 < p < o0,

a—(d-1(1—-1/r )
4laeny < 2= : U /7‘)/ LaDy(@)|| Als,... for all A€ Bra(@).  (324)

Moreover, following the argument in [54,51] and applying (2.5), we obtain that B, , are
differential subalgebras of B(¢?).

Proposition 3.6. Let G be a connected simple graph with Beurling dimension d, 1 <r <
o0, a > d(1 —1/r), and set

2a—d+d/r)

Bra: .
T T 20 —2d+2d)r

Then there exists an absolute constant C' such that

Al . |Bls, . (L) (1Blseyyrey 5 )

|AB|5,., < C A TR
[Alls.... IBls,..

e —

hold for all A, B € B, o(G).

Applying (3.25) repeatedly and using the argument in [55, Proposition 2.4], we can
find an absolute constant C' such that
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T
[Ar... A5, < (@ggﬂl\%lk\\swz))

Tiga n
e maxi<g<n HAk”Br,cx -
/
maxi<g<n ||Ak||13(52)

logg (1407, a)

(3.26)

for all Ay,..., Ay € Byo,n > 1. This implies that Banach algebras B, , admit norm-
controlled inversions in B(£2).

Corollary 3.7. Let G be a connected simple graph with Beurling dimension d, and let
1 <r <ocand a > d(1—1/r). Then matrices in the Banach algebra B, ,(G) admit
norm-controlled inversions in B((?).

Proof. Take A € By, with A~ € B({?). Set B = I — A*A/||A||?3(32). One may verity
that

1Bllseez) < 1= (6(4)) 7 < Land || Blls,.. <1+ [Allgfee) 14" Alls...., (3.27)

where £(A) = || A]|g2) [|A7 || ge2)- Therefore by (3.20), (3.26) and (3.27), we obtain

1A= 5,0 = (A" AT A5, . < ClA" (|5, o | All58e) D 1B 15,0

T —

n=0

Alls, N Alpgey > (1= (s(A) )"

n=0

<C

Ora plogg(140r,a)

oLt 145Gy 14115, ..\ 750
C 1 (a(A) 7

< 00,

where C' is an absolute constant independent of the matrix A. O
4. fP-stability bound control

In this section, we prove the following result on lower ¢P-stability bounds of matrices
in Beurling algebras for different exponent 1 < p < oo.

Theorem 4.1. Let 1 < p.q,r < oo, ¥ =r/(r — 1), G be a connected simple graph with
Beurling dimension d, the counting measure p on G have the doubling property (2.1),
and let A € By.o(G) for some o > d/r’. If there exists a positive constant A, such that

| Ae|lp, > Aplle]l, for all e € 7, (4.1)
then there exists a positive constant A, such that

| Ad||, > Ag|ld]l, for all d € ¢2. (4.2)
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Moreover, there exists an absolute constant C, independent of matrices A € B, o(G) and
exponents 1 < p,q < oo, such that the lower (1-stability bound A, in (1.2) satisfies

if w£1+d/r

ifao=1+4+d/,

4 (HAHB,-ﬂ ) (1+6(p,q)) ™0
4ls.. ) (5

(4.3)
Aq (HAEM I (1+ ||A\[\£r,i,)

)<1+ecp,q>)"°

where

dli/p—1/4
Komin(aw —d/r', 1) —d[1/p —1/q|

B(p,q) =

and Ky is a positive integer with

d
- min(a —d/r', 1)

To prove Theorem 4.1, we introduce a truncation operator Xf\v and its smooth version
\Ilf by

Xg\v : (C(/\’))A’EV — (X[O,l} (P()\- )\’)/N)C(A’))Alev (44)

and

qu\v : (C(A,))Atev — (@Dg(p()\, X)/N)C()\I)) NeV: (45)

where /g is the trapezoid function given by

1 if [t <1/2
Po(t) =< 2—-2t] f1/2<t <1
0 if [t| > 1.

The truncation operator Xﬂv and its smooth version \I‘iv localize a vector to the
N-neighborhood of the vertex A, and it can also be considered as diagonal matri-
ces with diagonal entries x(o,1)(p(A, A')/N) = xpo,n(A) and o(p(A, N)/N), XN € V,
respectively. Our proof of Theorem 4.1 depends on the estimate (4.19) for the com-
mutator between a matrix in the Beurling algebra and the truncation operator ‘lliv .
Similar estimate has been used by Sjéstrand in [48] to establish inverse-closedness of the
Baskakov—Gohberg-Sjostrand subalgebra in B (32).

To prove Theorem 4.1, we recall mazimal N-disjoint subsets Viy € V., N > 1, which
satisfy

BAN)N (U, evy BOAmN)) £0 forall A eV (4.6)
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and
B(Mu, N)NB(A,, N) = for all distinct vertices A, A, € V. (4.7)

There are many different ways to construct a maximal N-disjoint set. For instance, we
can construct Vi = { Ay, bin>1 as follows: take a Ay € V and define A, m > 2, recursively
such that
Am, A1) = min p(A, A
P( m s 1) )\EAmp( 3 1):
P6(Am, A1) = min{pg (A, A1), A € Ay}
where

Ap={AeV, BAN)NBAp ,N)=0,1<m' <m—1}.

Vertices in a maximal N-disjoint set Vn are known as fusion vertices of the graph
G [11]. For a maximal N-disjoint set Vi, the N-neighborhoods B(Am, N), An € Va,
centered at fusion vertices have no common vertices by (4.7). It is shown in [11] that the
(2N )-neighborhood B(Am,2N), A, € Vi, is a covering of the set V.

?

Proposition 4.2. Let G := (V, E) be a connected simple graph and p have the doubling
property (2.1). If Vx is a mazimal N-disjoint subset of V, then

< i ’
1< inf Y0 xpovn()
AmEVN

<sup Y xB, N () € (Do(G)) B NN (4.8)
AeV AL eV

for all N' > 2N.

To prove Theorem 4.1, we first establish its weak version, the equivalence between ¢
and (9-stabilities of a matrix with small [1/p — 1/¢|.

Lemma 4.3. Let p,r, 7', d, o, G, A be as in Theorem 4.1. If 1 < q < 0o satisfies
d|1/p—1/q] < min(er — d/r', 1), (4.9)
then A has {9-stability, i.e., there exist positive constant A, such that
| Ac||q < Aglle|lq for all e € ¢4,

Furthermore there exists an absolute constant C, independent of matrices A € By o(G)
and exponents 1 < p,q < co, such that the optimal lower (9-stability bound A, of the
matric A satisfies
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IAlls, .. —01(p,9) .
(Ti) if o 2d/r"+1

Aq 2 CAp X —01(p,q)
(e (1 M=) T ita=ap e,

(4.10)

where

B d[1/p—1/q|
61(p,q) = min(a —d/r’,1) —d[1/p—1/q|

Proof. Let N > 2 be a positive integer chosen later, Viy be a maximal N-disjoint set
of fusion vertices satisfying (4.6) and (4.7), and let UV, X\ € V| be the localization
operators in (4.5). Take ¢ = (¢(}))
{B(Am,2N), Am € Vn}, we have

rev € (9. Applying the covering property (4.8) of

llellg < [ (15N e

‘Q))\MEVN Hq

Combining it with the polynomial growth property (2.2) and the norm equivalence be-
tween ||U4N e[|, and @3N ¢l|,, we obtain

lellg < [[((r(Bm, 4N)) =YD+ [ @57 e )

< QN4 /a—1/p)+ || (||‘1’§£6Hp)>\

)\mEVNHq

meVNHq' (4.11)

Here in the proof, the capital letter C' denotes an absolute constant independent of
matrices A, sequences ¢, integers N, and exponents p and g, which is not necessarily the
same at each occurrence.

For A e V, it follows from the ¢P-stability (4.1) for the matrix A that

Ap[[ 3% ellp < [ AT e (4.12)

Let Ay, N = 2, be matrices with finite bandwidth in (3.13). Combining (4.11) and (4.12),
we get
Apllelly < ONADH|(JAV T ellp) e, [l
< ONU/a-1/p)y (H (1(A — An)T4Nel,)
H| (1A~ 3 Teln)

+| (123 Acllp) 5

mEVN”q

+ (13X (An — A)ellp)

mEVNHq mEVNHq

mEVNHq)’ (413)
where [Ap, ‘IJ‘)"\]E = AN\IJfl\fX — \Iljl\f:AN is the commutator between Apx and \Iljlf:: ([48,
54]).

For any d € ¢4, we obtain from the support property for \Iﬁﬁ: , the equivalence between
two norms || x3Vd||, and [[x3¥ d||4. the polynomial growth property (2.2) and the covering
property in Proposition 4.2 that
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1SN dll,) ., cvlly < 1IN lR) oyl

= H(”X%\‘xd”q p(B Amv4N))(1/p_l/Q)+)/\meVNHq

< ONMPHD|(Ix3T ), evy l, < ONAPZHD5 ]l

A'rnEVvl'\’ q

This together with (3.16) yields the following three estimates:

(11237 Acl,) |, < ONAG/e=t/+ || Ac],, (4.14)

AMEVN| q

[ (A — An) T3 e]|,) < || A— An||s||([[e3Y

AmEVNHq — | Amcllp))\mgVNHq

< ONU/P=Y/D4 | A = Ay [s]lel (4.15)
and

(13 (Ax — A)ell,) |, < CNAR=YD+ | (Ay — A)e,

)\mEVN| q —
< ONUPD A~ Axlslel,  (4.16)

Applying similar argument, we obtain

(AN, T8N Jellp) s, ey,

< (sup [|[An, T3 1s) | (”Xiﬁcup)xmeVNHq
AcV
< CNUP0+ (sup [[Ax, T3] ) el (4.17)
AV
Combining (4.13)(4.17), we get
Aplely < CNPA (4 — s + sup A, T3V [l
+CON/P=1/d| A, (4.18)

For any A € V., we have

881 = o3 0 (22527)

(") (G Dl
< el (s M (557))

< CN‘lzhA(n)(n+1)d, (4.19)

n=0
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where the last inequality follows from (2.4). Therefore for any A € V,

N

, /7
[1Ax, ©3Mlls < CN 7| A, , (D (n+ 1)~ )
n=0
N1 if a>1+d/r
N-YIn(N + )=V ifa=1+d/r (4.20)
N—otd/r if o < 14+d/r'.

For the Schur norm of A — Ay, there exists an absolute constant Cj, independent of
N > 1 and A € B, o, such that

14— Anlls < C((N +2%aV 4 1)+ d Y halu)n 1)77)
n=N-+42

< Col|A|,, N+, (4.21)

where the first inequality follows from (3.14) and the second inequality is true because

N+1 N+2
S (ha(n)"(n+1)° 41 > (hy(N + 1)) [ gar+d—1gy
n=0 0

= (ar +d)"H(ha(N +1))"(N + 2)or+d

and
R /t*“’”’”*dti ! S(N +2)7er e,
n=N-+2 N4 ar -

Combining (4.18), (4.20) and (4.21), we obtain

APHCHQ <Ch
LONAE=) A, (122)

Ndl1/p—1/gl—min(a—d/r",1) ”('Hq

if £ 1+d/r, and

Apllelly < CrllAlls, . NP1/ (1 MYV e
FONUP Al A, (423)

if @ =1+d/r', where C is an absolute constant independent of matrices A, integers N
and sequences c.
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For aw #£ 1+ d/r’, replacing N in (4.22) by
No = [(2C1]|Alls, . /4,) /DT,
we get from (4.9) and (4.23) that

|Als,...\ 10
)T

A
Apllely 5 FFlelly + O (T
This proves (4.10) for a # 1+ d/7r".
For a =1+ d/r, set

U<\ PR
(1—d[1/p—1/q))A, ~
and
—1 —1
j\)’1 — L(CQ IHCQ) (1—d|1/p—1/q]) J 2 %(CQ In 02)(1*‘1“/17*1/?‘) ]
Then
~1/ql-1 _ (L—d[l/p—1/q))A
Collall. Np=1/a-1 v 194
1” HBr,a 1 = 4111 02 ( )
and
N; < (CaIn 02)(1—d|1/p—1/q\)*1 < 03(1—d\1/p—1/q|)*1' (4.25)

Replacing N in (4.23) by N; and applying (4.24) and (4.25), we obtain

(L —d[l/p—1/g)A, . 1-1/r
41In Ch (2(1 d[1/p—1/q]) 111(72) llellq

+C(Cy In Cy)+ P9 A¢,

Ap”CHq =

A 8
< Z2elly + C(Can o)™ el
This proves (4.10) fora=1+4d/r'. O

Having the above technical lemma, we use a bootstrap approach to prove Theorem 4.1,
cf. [28,45,54].

Proof of Theorem 4.1. Let K be a positive integer with

d|l/p—1/q|/K < min(a — d/r",1).
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Then K < Kj. Let {p;} X, be a monotone sequence such that

po=p.px =qand |1/py —1/ppya| = 1/p—1/q|/K,0 <k <K — 1.

Applying Lemma 4.3 repeatedly, we conclude that A has fPr-stability for all 1 <k < K.
Moreover the lower ¢Pk-stability bound A, satisfies

IAlls,.. Ok (p,q) e ,
AApk (Fa) ) ifa#d/rtl (4.26)
- I AllB,. o lAll5, o KA e
Pt (7‘4:& In (1 + 7{5‘:1 )) ifa=d/r+1
forall 0 < k < K — 1, where
dli/p—1
K min(a —d/r', 1) —d|1/p—1/q|
and C' is an absolute constant independent of A € B, ,.
For a # 1+ d/r’, we obtain from (4.26) that
Ap, A 1+ (p.) !
e s of 2 L0<k<K 1. (4.27)
1A]l5,.. (IIAIIBT,C.)

This proves (4.3) for « # 1 +d(1 —1/7).
For a =1+d/7, it follows from (4.26) that

Apif SC(”AiT’“)1+BK(p’Q)(IH (l—l—%))eK(p’Q), 0<k<K-_1.

Applying the above estimate repeatedly, we obtain

Hfi\l\sm - C(\|A||Bm)(1+9x(p,q))’“ (ln (1 . ||A1|J15m ))(1+9K(p,q))k_1

Pk P P

by induction on 1 < k < K. This proves (4.3) fora=1+4+d/r’. O
5. Norm-controlled inversion

By Corollary 3.7, matrices in Banach algebras By o with 1 <r < oo and a > d(1-1/r)
admit norm-controlled inversions in B(£2). In this section, we show that a polynomial
can be selected to be norm-controlled function h in (1.7) if the counting measure p on
the graph G is normal.

Theorem 5.1. Let 1 <r < oo,r’ =r/(r—1), a > d/r', G be a connected simple graph with
Beurling dimension d and normal counting measure [, and let A € B, o(G) be invertible
in B((?). Then there exists an absolute constant C, independent of A, such that
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1A B, < CHAAHB(E?)(HAAHB(P)HAHBT,Q)(QM/T)/min(a*d/r{’l)

T, —

1 ifa#d/r+1 (5.1)
X r 5.
(1n (|4 s |Alls,.. + 1)) ifa=d/ +1.
For invertible matrices A € B, o(G) with o > d/r" + 1, it follows from Theorem 5.1
that

1A s, < ClIA e (1A s 1Alls,,. )"+ (5.2)
A weak version of the above estimate, with the exponent « 4 d/r in (5.2) replaced hy
a larger exponent 2o + 2 + 2/(a — 2), is established in [25] for matrices in the Jaffard
algebra Jo(Z2) = Boo,o(Z).

The estimate (5.2) on norm-controlled inversion is almost optimal, as shown in the
following example that for any € > 0 there does not exist an absolute constant C, such
that

1A ls,,. < C-

o —

A e (1A s [ Alls, )1 (5.3)

Example 5.2. Tet 1 <7 < oo,a > 1 —1/r and G = Z? with d = 1. For sufficiently small
7 €(0,1), define Ay = (a4(4,7))i ez by

1 if j =4
ay(i,j)=q —e 7 ifj=i+1 (5.4)
0 elsewhere.
Then
1445, = (1 +277e=m) U7 & 2071, e+, 55)

Observe that A, is invertible in B(¢?) and its inverse is given by By, = (by(i, )i jez.
where

U077 if >4
. e ifj>i
b ] =
1(0:) { 0 elsewhere.
Therefore for sufficiently small v € (0,1), we have

(A ey = (1 —e ) e [y 297 (5.6)

and
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it e ) i < < oo
ne Sup,sq(n + 1)%e™™ if r=o00

7‘*“*1/7"@((17" + 1))1” fl1<r<oo
(/€)™ it r = o0,

€y~ Y"1, 2] x { (5.7)

where T'(s) = [, 2*~'e="dz is the Gamma function. Hence for sufficiently small v, the
left hand side of (5.3) is of order y~®~'/7 and the right hand side of (5.3) is of order
ymaml/r+e for o > 1+ d/r'. This proves (5.3).

To prove Theorem 5.1, we need a distribution property for fusion vertices of a maximal
N-disjoint set.

Proposition 5.3. Let G := (V, E) be a connected simple graph with Beurling dimension d
and normal counting measure p, and let Vi, 1 < N < diam(G), be mazimal N -disjoint
sets of fusion vertices. Then for all A €V,

D Jiz
{0 € Vi p(Am. A) < NR) < D;% (R+1)4, 0<R< % 11, (5.8)
and
Dy(G) fR—2\d | diam(G) .
£ € Viv, p(Ams \) < NRY > 0 (T) 3SR (59)

Proof. Take a vertex A € V and a nonnegative integer 1. Set
E={\neVn: p(An,A) < NR}.
Then
U, e B(Am, N) C B(A,N(R+1)).
This, together with (2.2), (2.3) and (4.7), implies that

Da(G)(N+ ) #E < 3 u(B(Am, N))
Am€eE

= p(Un,er B(Am,N)) < D1(G)(N(R+ 1)+ 1)“

Hence the upper bound estimate in (5.8) follows.
Take a vertex A € V and an integer R > 3. Applying the covering property (4.8), we
have

?

B(A, (R—2)N) C Uy, exB(An, 2N).
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This together with (2.2) and (2.3) implies that

Da(G)((R—2)N +1)% < D1(G)(2N + 1) 4#E.
Hence the lower bound estimate in (5.9) follows. O

Let Vi, N > 1, be maximal N-disjoint sets of fusion vertices. Let B, . contain
all matrices B = (b(Am, Am’))amA, vy With ||B||s...x < oo, where hpn(n) =
SUDP (A, A )3 N [6( Ay Amr )|, m = 0, and

(Yomo(hB N ()" (n+ 1)“7’+d_1)1/r if1<r<oo

B —
1B, { SUpy,>o he N (n)(n + 1)° if r = oo,

cf. the Beurling class B, (G) in (3.2). Clearly | - |5,y is a norm. The next proposition
states that B, o.n are Banach algebras.

Proposition 5.4. Let G,r,«v be as in Theorem 5.1, and let Vg, N > 1, be a maximal
N-disjoint set of fusion vertices. Then there exists an absolute constant C', independent
of integers N > 1, such that

||AB||BT,D(;N S C”A”Br.c\(;f\’ HBHBP,Q:N for all A7 B € BT;D‘;N' (5'10)
The above lemma can be proved by following the argument used in Proposition 3.4.

We omit the detailed proof here.
To prove Theorem 5.1, we also need a technical lemma.

Lemma 5.5. Let G, A,r,r",a be as in Theorem 5.1, and let Vi, N > 2, be maximal
N-disjoint sets of fusion vertices. Then there exists an absolute constant Cy independent
of A such that

18 ell2 < 247 ey (H@‘iﬁAcHga

+ 20 NN, ANEY, s[4 el (5.11)

A'm’ EVN
for all vertices A, € Vi, sequences ¢ € £ and integers N satisfying
N > 2Co | A e Al ... (5.12)

where (U3 Al = OV A— AT and Co is the constant in (4.21). Moreover, there exists
an absolute constant C' independent of A € B, o(G) such that
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= 1/r ) ,
(o thanm)) (ot )44 ) 7 < A, N om0

1 if o #14d/r

/ 5.13
{ (In NV if a=14+d/r' (5-13)

if 1 <r < oo, and

_ min(a— 1 ifatd+1
‘ h N (n 4+ 1) N min(a—d,1) 5.14
sup tan(n)(n+1) o MN ffa—dil (5.14)
if r = 0o, where

hanm= s YA, s, 0> 0 (5.19)

P(Am A, )=Nn

Proof. We follow the argument in [48,54] where G = Z% with d = 1. Take A,,, € Vv, ¢ :=
(e(N)aev € €2, and let Ay be as in (3.13). By the invertibility on A, we have

[T ella < A ey | ALY ¢

< AT ez RN Acll2 + | A ey 123, Ale2. (5.16)
By the covering property in Proposition 4.2, U4V .= 37 WiV s a diagonal

matrix with bounded inverse, and

1T lseezy < 1. (5.17)
Therefore
TSN, Alella < DAY @AY, Alella + (T = X3 AT T3 ¢l
< 3 IR TR, ADAY, e 1(0*Y) 7| eny [[3Y el
At €EVN
HI = X3 AN s E3Y ¢]2
< >0 ANy 2
A, EVi
+A = Axlls[ W8N ell2, (5.18)

where the last inequality follows from (5.17) and Proposition 3.3, cf. [48,54]. Combining
(5.16) and (5.18), and then using (4.21) and (5.12), we complete the proof of the upper
bound estimate (5.11) for T4 ¢|,.

Wiite A = (a(A, A))avev and define ha(n) = sup,\ xysp [a(A, X)[. For Ay, A €
Viy with p(A,, Ap) = 16N, we obtain from (2.2) and the supporting property for \Ififx
that
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DAY TN, ADGY, s = 103N ASY, lls < Cha(p(Ams A ) /2)N . (5.19)

For Am, A € Vv with p(Am, Amr) < 16N,

S

= “ (X[O,SN](p(Av Am))a(A, )‘,)X[O,A‘N}(P()\’v Amr))

<((557) = (7)) s

DAY Y, AlGY,

25N
<CN~! Z ha(n)(n+ 1)
n=0
Nt ifa>14+d/r
< C|Als,.{ N Y N)Y" if a=1+d/r (5.20)
N—-atd/r’ if @ <1+4d/r,

where the first inequality follows from (2.4), and the last estimate is obtained by applying
a Holder inequality, cf. (4.20). Combining (5.19) and (5.20) proves (5.13) and (5.14). O

Now we start the proof of Theorem 5.1.

Proof of Theorem 5.1. Let N > 2 be chosen later. Define Vi n = (Van(Ap,
M) amnevy and write (Vi n)! = (VIQ’N(Am,/\m/)),\ A eV, Where

Va,n (s ) = 20| A7 ey SN TN, AAY, |15

Then we obtain from Proposition 5.4 and Lemma 5.5 that

IVa s, .n < Dsl A s | Alls,, N~ mine4/0

g N =

1 if o £ 14d/r
/ 5.21
X{(IDN)I/’" if o =14d/r, (5:21)
and
I(Van) 15w < D HI(Van) s, (5:22)

where D3, Dy are absolute constants independent of matrices A and integers N and [.
Let N3 > 2 be the minimal integer satisfying (5.12) and

1 > 4D3Dy|| A7 (e | Al 5, Ny ™00

y 1 if £ 1+d/r
(In No)V™"if o= 1 +d/r".
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Then
No < C (A7 agen 4], ) ™
{ 1 ) " %f a#1+d/r (5.24)
(1n (1A ey Al + 1) if @ =1+ d/r".
Let Wan, =312, (Van,)'. By (5.21), (5.22) and (5.23), we have

[(Vane) 1By, < €275 121, (5.25)

which implies that
[Wan, B, any <C- (5.26)

For any A, € Vi, and ¢ € £2(@), applying (5.11) repeatedly we obtain

I3z el < 2l A e U502 Aclla + - Vv (A, )57 ¢|2
Am,eVNg
S “ee
<2 A e 1R Aclla + Y VAR, A, A ) 1232
)\m’EVNg

k
‘|‘2HA71 HB(EQ) Z Z VA,NQ ()‘mv )‘m’)
=1 A1 €VNy

U2 Acly, k> 2. (5.27)

Using the argument used to prove Proposition 3.3, we have

Z Vj:’—Nl? (/\m-, )\m’)

A€V,

S Z V:,Jr]\é (/\m-, /\m’)

)\mr EVVN2

AN,
‘I’Am, |2

ca <C

(VA,NQ)k+1HBr,Q:NQ HC”Q (6'28)

Taking limit in (5.27), we obtain from (5.25) and (5.28) that

0Nz f|y < 2| A |mgeny || U2V Ac

F2A sy Y. Wane (Am, Ame)
Am'EVNQ

Ui Acla,  (5.29)

where Wa n, = (Wa n, (A, Am’))Am,AmJEVNQ'
Write A1 = (d(N,\)) v aev and set dy = (d(N, X)) yev, A € V. Take A\, N € V and
let A, € Vi, be so chosen that

p(N, Am) < 2Ny, (5.30)
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The existence of such a fusion vertex A, follows from the covering property in Proposi-
tion 4.2. Applying (5.29) with ¢ replaced by dx, we obtain

4N:. — P(Amv )\)
AN )] < [0l < 24 e | (P57 )
_ )\m’a)\ -
A sy 3 Wans o A wo(%) RNCED
A Vg 2
Therefore
sup |d(N, \)| < QHAAHB(EQ)(l + ( sup  [Wa, Ny (Am, Amr) )
ALAEV )\m,)«m:EVNz
X ( sup Z XB(,\m,,LlNg)()\)))
AEV/\MIGVNQ
< CllA Y |se), (5.32)

where the last inequality follows from (5.26) and Proposition 4.2. For n > 12, it follows
from (5.30) and (5.31) that

sup |d(AX)] < 247 sy gan, (n/2) sup YT XBonan (V)
p(A" . A)>nNo AEV Al EViNy

< O A Y Is2)ga,n: (n/2), (5.33)

where ga n, (7) = sUp,a,. A 5N (Wans (A, A -
Observe that

r 1/r
[ s, < ONT* (30 ( swp (AN (m 1))
m=0 p(AN)>mNa

for 1 <r < oo, and

|A s, < ONgsp ( sup [ X)) (m o+ 1)°

T m>0 (P(/\,)\')ZmNz

for r = oo. Combining the above two estimates with (5.26), (5.32) and (5.33), we obtain
|47 . < ClAT e N5 (5:31)

Hence the desired estimate (5.1) follows from (5.24) and (5.34). O
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6. Norm-controlled powers

By (3.26), norms of powers A", n > 1, of a matrix 4 € B, , with 1 < r < oo and
a > d(1—1/r) are dominated by a subexponential function. In this section, we show that
norms of powers A™,n > 1, are controlled by a polynomial when the counting measure
is normal.

Theorem 6.1. Let 1 < r < oo,r’ =r/(r—1), G be a connected simple graph with Beurling
dimension d and normal counting measure i, and let A € B, o(G) with o > d/r’. Then
there exists an absolute positive constant C', independent of matrices A and integers
n > 1, such that

An 1A (a+d/r)/ min(a—d/r' 1)
4" |5, SC,(WH HBr,a)

M Al n|{———
HAHE‘(W) HA||B(£2)
1 if #d/r+1
g wAls, N\ (6.1)
(IH(W+1)) ifa=d/r+1

hold for all integers n > 1.
For matrices A € B, , with a > d/r’ 4+ 1, we obtain from Theorem 6.1 that

A5, )‘Hd/’"

A" B, . < Of P
47, < ([ 7

”'QM/TH”AHg(e?): n =1 (6.2)

As shown in (6.3) below, the estimate (6.2) on powers of matrices in the Beurling algebra
B, o is almost optimal. Let 4 be the delta function with 6(0) = 1 and (k) # 0 for
all nonzero integers k. Then for the matrix Ay = (6(i — j — 1))ijez, we have that
(A1)" = (a(i—j —n))ijez,n = 1, and hence

n ar 1/r .
(A1)"]5,. = (Zk:o(k+1) ) if 1 <r<oo
) (n+1)* if r=o00
HA1||13T:C, )a+d/7’

= N sy ot Ar By, m 2 1, 6.3
a (HAIHB(EQ) I 1”13(52), > (6.3)

where C' is an absolute constant.
Let a(€) = 3z alk)e ™ satisty |a(¢)| < 1forall £ € R and supyez [a(k)|(1+[k])> <
oo for some a > 1, and write

@(€)" = an(k)e™™, n > 1.

keZ

Then there exists a positive constant C' independent of n > 1 such that
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jan (k)| < CnO*H (1 + (k)7 k€ Z
by Theorem 6.1. Therefore for any € > 0, there exists a positive constant C, such that

Z lan(k)| < CnlTe, n>1, (6.4)
kEZ

cf. [17,41,60,59] and references therein for various estimates. We remark that the above
estimate for the Wiener norm of (a(£))",n > 1, was established in [59], with the poly-
nomial exponent 1+ € replaced hy a smaller exponent (1 — p1/v)/2, when

G(€) = e—taETE A€ —E" (Lto(L))

near the origin for some real polynomial ¢ with ¢(0) # 0.

Let random variables X,,,n > 1, be a stationary Markov chain on a spatially dis-
tributed network, which is deseribed by a connected simple graph G = (V, E). Then the
probabilities Pr(X,+1 = A | X;, = A') of going from one vertex A" at time n to another
vertex A at time n + 1 is independent of n > 1,

Pr(X, 1=A|X,=XN)=pA,N), \ NV eVandn > 1.

Define the transition matrix of the above stationary Markov chain by P = (p(A, X)) xev.
Then by Theorem 6.1, we have the following estimate on the probability Pr(X,, =
A X, = X),m >n > 1, with the input vertex A" and output vertex A € V.

Corollary 6.2. Let G := (V| E) be a connected simple graph with Beurling dimension d
and normal counting measure p, and let X,,,n > 1, be a stationary Markov chain on
the graph G with transition matric P € Bo o for some a > d + 1. Then there exists a
positive constant C,, such that

Pr(X,, = A\ X, = ) < min (Co(m —n)* T (p(A, X)), 1) (6.5)
forall A, N €V and m >n > 1.
We finish this section with the proof of Theorem 6.1.

Proof of Theorem 6.1. Let A € B, ,, and write

At = — 2™ (2] — A)7ldz.
e .
l2l=(1+1/m) | All 5 2,

Then

A" |5, < CllAll5ee2) | dz|.

T, —

(21— A)7 |3,

(6.6)

‘Z‘:(1+1/")“A|‘5(32)
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Observe that for |z| = || A2y (14 1/n), we have

(21 = A) Mgy < 12171

1=0

“Alseey < nllAllsee) (6.7)

Z

and

21 = Alls,.. < [2[+ [[Alls,.. <C[Alls (6.8)

o)

where the last inequality holds by (3.24). By (6.7), (6.8) and Theorem 5.1, we get

roa —

n||Al|s, . ) (a-+d/r)/ min(a—d/r’ 1)

(=1 — A)~ s, <Cn(]|Allsee) ™
“ (”AHB(EQ)

1 ifa£d/ir+1

” nllAlls, o @ns (6.9)
(m ( TATge2, 1)) foa=d/r"+1.

This together with (6.6) proves (6.1). O
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