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advances have opened up possibilities to deploy spatially distributed networks for
signal sampling and reconstruction. In this paper, we introduce a graph structure for
a distributed sampling and reconstruction system by coupling agents in a spatially
distributed network with innovative positions of signals. A fundamental problem in
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sampling theory is the robustness of signal reconstruction in the presence of sampling
Keywords: noises. For a distributed sampling and reconstruction system, the robustness could
Spatially distributed network be reduced to the stability of its sensing matrix. In this paper, we split a distributed
Distributed sampling and sampling and reconstruction system into a family of overlapping smaller subsystems,
reconstruction system and we show that the stability of the sensing matrix holds if and only if its quasi-
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S . restrictions to those subsystems have uniform stability. This new stability criterion
Distributed algorithm

o N . could be pivotal for the design of a robust distributed sampling and reconstruction

Finite rate of innovation . . .
Beurling dimension system against supplement, replacement and impairment of agents, as we only
Localized matrix need to check the uniform stability of affected subsystems. In this paper, we also
Inverse-closed subalgebra propose an exponentially convergent distributed algorithm for signal reconstruction,
that provides a suboptimal approximation to the original signal in the presence of

bounded sampling noises.
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1. Introduction

Spatially distributed networks (SDNs) have been widely used in (underwater) multivehicle and multi-
robot networks, wireless sensor networks, smart power grids, ete. ([2,19,23,40,45,74,75]). Comparing with
traditional centralized networks that have a powerful central processor and reliable communication between
agents and the central processor, an SDN could give unprecedented capabilities especially when creating a
data exchange network requires significant efforts (due to physical barriers such as interference), or when
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establishing a centralized processor presents the daunting challenge of processing all the information (such
as big-data problems). In this paper, we describe the topology of an SDN by an undirected (in)finite graph

G:=(G,S) (1.1)

of large scale, where a vertex in GG represents an agent and an edge in S between two vertices means that a
direct communication link exists.

To consider signal sampling and reconstruction on an SDN, we equip a sensing device at every agent
A € G, which has with limited sensing, data processing, and communication capabilities. In this paper, we
assume that the sampling procedure

fr— (y(N))rec

on signals f of interest is linear. This implies that the sampling data

y(A) == (f,¥a) (1.2)

acquired by the agent A € GG is a linear functional on f, where the functional 1) reflects the characteristic
of the sensing device of the agent A\ € G. For spatial signals on R?, the above sampling procedure is also
known as average sampling or (non)ideal sampling [8,17,32,60].

Fundamental signal reconstruction problems are whether and how the signal f of interest can be recovered
from its sampling data y(A), A € G. The signal reconstruction problem is ill-posed inherently. For its
well-posedness, the signal f is usually assumed to have additional properties, such as band-limitedness, finite
rate of innovation, smoothness, and sparse expansion in a dictionary ([7,15,26-28,71,72]). The sampling and
reconstruction problem is well studied for spatial signals on R%. The reader may refer to [4,7,8,32,49,58,60,
70-72] and references therein for various sampling procedure and reconstruction scenarios. In this paper,
we consider spatial signals

f=Y_cleil) (1.3)

%

being a bounded superposition of generators ¢;,i € V. Define

V(@) = { 3" cli)i, (cli)),ey € £}, 1<p< 00,

1%

where ® = {p; };cv and 7,1 < p < oo, are Banach spaces of all p-summable sequences with norms denoted
by || - |- Therefore spatial signals f with the parametric representation (1.3) belong to the space Voo (®),
ie.,

f e Ve(P).

The spaces V,(®),1 < p < oo, were introduced in [62] for modeling signals with finite rate of innovation,
which include the classical band-limited signals, wavelet signals and spatial signals in many engineering
applications, see [27,60,72] and references therein. For signals with finite rate of innovation on R%, every
index i in V is associated with an innovative position in R? and the generator ¢; is essentially supported
in a spatial neighborhood of the innovative position of ¢ € V. So in this paper, we follow the terminology in
[62] to call V' the set of innovative positions of spatial signals in (1.3).

In this paper, we associate every innovative position ¢ € V with some anchor agents A € GG, and denote
the set of such associations (i,\) by T. These associations can be easily understood as agents deployed
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Fig. 1. The graph H = (GUV, SUT UT") in (1.4) to describe a DSRS, where vertices in G and V are plotted in red circles and
blue triangles, and edges in S, T and E are in black solid lines, green solid lines and red dashed lines respectively.

within certain (spatial) range of every innovative position. With the above associations, we describe our
distributed sampling and reconstruction system (DSRS) by an undirected (in)finite graph

W= (GUV, SUTUT"), (1.4)

where T* = {(\,i) € G x V, (i,\) € T}, see Fig. 1. The above graph description of a DSRS plays a crucial
role for us to study signal sampling and reconstruction.
Given a DSRS described by the above graph H, set

E:={(i,i) eV xV, i#1i and (i,\),(i’,\) € T for some \ € G}. (1.5)
We then generate a graph structure
V:=(V,E) (1.6)

for signals in (1.3), where an edge between two distinct innovative positions in V' means that a common

anchor agent exists. The above graph structure for signals is different from the conventional one in most of

the literature, where the graph is usually preassigned. The reader may refer to [53,54,57] and Remark 3.6.
Define sensing matrix S of our DSRS by

S := ({¢i, ¥A))aec,icv - (1.7)

The sensing matrix S is stored by agents in a distributed manner. Due to the storage limitation, each agent
in our SDN stores its corresponding row (and perhaps also its neighboring rows) in the sensing matrix S,
but it does not have the whole matrix accessible. Agents in our SDN have limited acquisition ability and
they could essentially catch signals not far from their physical locations. So the sensing matrix S has certain
polynomial off-diagonal decay, i.e., there exist positive constants D and « such that

[{pi, V)| < D1+ ppr (X)) “forall A€ G and i €V, (1.8)

where py is the geodesic distance on the graph H. For most DSRSs in applications, such as multivehicle
and multirobot networks and wireless sensor networks, the signal generated at any innovative position could
be detected by its anchor agents and some of their neighboring agents, but not by agents in the SDN in a
distance. Thus the sensing matrix S may have finite bandwidth s > 0,

(pistha) =0 if pyy(A,i) > s (1.9)

The above global requirements (1.8) and (1.9) could be fulfilled in a distributed manner.
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The sensing matrix S characterizes the sampling procedure (1.2) of signals with the parametric repre-
sentation (1.3). Applying the sensing matrix S, we obtain the sample vector y = ((f,¥x))req of the signal
f from its amplitude vector ¢ := (¢(i));ev, i-e.,

y = Sc. (1.10)

Under the assumptions (1.8) and (1.9), it is shown in Proposition 4.1 that a signal f with bounded amplitude
vector ¢ generates a bounded sample vector y. Thus there exists a positive constant C' such that

I¥]loo < Cic]|oo for all ¢ € £°°.
Here the capital letter C' is an absolute constant which is not necessarily the same at each occurrence.

A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of
sampling noises ([11,32,47-49,52,58]). In this paper, we consider the scenario that the sampling data y = Sc
is corrupted by bounded deterministic/random noise n = (n(A\))req,

z=Sc+1n (1.11)
([67,73]). For the robustness of our DSRS, one desires that the signal reconstructed by some (non)linear
algorithm A is a suboptimal approximation to the original signal, in the sense that the difference between
their corresponding amplitude vectors A(z) and ¢ are bounded by a multiple of noise level § = |||, i-€.,
|A(z) — c|loo < CO (1.12)

for some absolute constant C' ([1,7,17]).

Given the noisy sampling vector z in (1.11), consider the following global optimization problem of maximal

sampling error ([13,14])

A (z) := argmin ||Sd — z|| .- (1.13)
deflee

The above minimization problem can be solved by linear programming

mdint subject to Sd —z <t1 and — Sd+z <11, (1.14)

where 1 = (1,...,1)7 is the vector with one as its entries.

Definition 1.1. For 1 < p < 0o, a matrix A is said to have ¢P-stability if there exist positive constants A and
B such that

Allcll, < |Acll, < Blle|, for all c € ¢. (1.15)

We call the minimal constant B and the maximal constant A for (1.15) to hold the upper and lower
(P-stability bounds respectively.

Observe from (1.11) and (1.13) that

1SAcc(2) = Sclloe < 1SAx(2) — 2l + [Mlloc < (IS¢ = 2[loc + [[Mllcc < 2[[7|oc-
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Thus the solution of the ¢*°-minimization problem (1.13) gives a suboptimal approximation to the true
amplitude vector c¢ if the sensing matrix S of the DSRS has ¢>°-stability ([7,68,71]), cf. Fig. 7. In Theo-
rem 5.2, we show that for a matrix with some polynomial off-diagonal decay if it has ¢?-stability then it has
{>°-stability with the lower £*°-stability bound independent of the size of the DSRS.

Next we consider the problem how to verify ¢2-stability of the sensing matrix S of our DSRS in a
distributed manner. It is well known that a finite-dimensional matrix S has ¢?-stability if and only if STS
is strictly positive, and its upper and lower stability bounds are the same as square roots of largest and
smallest eigenvalues of STS. The above procedure to establish ¢2-stability for the sensing matrix of our
DSRS is not feasible, because the whole sensing matrix S is not available for any agent in the DSRS and
there is no centralized processor to evaluate eigenvalues of S”S. In Theorems 6.1 and 6.2, we introduce
a method to split the DSRS into a family of overlapping subsystems of small size, and we show that the
sensing matrix S with polynomial off-diagonal decay has ¢2-stability if and only if its quasi-restrictions to
those subsystems have uniform ¢2-stability. The new local criterion in Theorems 6.1 and 6.2 provides a
reliable tool for the verification of the £2-stability in a distributed manner. Also the local criterion is pivotal
for the design of a robust DSRS against supplement, replacement and impairment of agents, as it suffices
to verify the uniform stability of affected subsystems.

Then we consider signal reconstructions in a distributed manner, under the assumption that the sensing
matrix S of our DSRS has ¢2-stability. For centralized signal reconstruction systems, there are many robust
algorithms, such as the frame algorithm and the approximation—projection algorithm, to approximate signals
from their (non)linear noisy sampling data ([5,17,20,31,34,49,60,67]). In this paper, we develop a distributed
algorithm to find the suboptimal approximation

As(z) := (STS)"187y (1.16)

to the original signal f in (1.3). For the case that our DSRS has finitely many agents (which is the case in
most of practical applications), the suboptimal approximation As(z) in (1.16) is the unique least squares
solution,

Ay(z) = argmin [|Sd — 2|3 = argmin Y _ ©,(d,z), (1.17)
dee? de? reC

where d = (d())iev, z = (2(A))req, and

0:(d,z) = ] 3 (e a)d(i) — 2(N) ‘aea (1.18)

eV

As our SDN has strict constraints in its data processing power and communication bandwidth, we need
develop distributed algorithms to solve the optimization problem

minZ@A(d,z). (1.19)
AEG

For the case that G = V and the sensing matrix S is strictly diagonally dominant, the Jacobi iterative
method

di(\) =0

dnp1(N) = ({22, 90) T ( Xion(0ir ¥)dn (i) — 2(N))
= argmin,cgOx(dpyx,2), AeG=V, n>1,

is a distributed algorithm to solve the minimization problem (1.19), where d,. x is obtained from d,, =
(dn(7))icv by replacing its A-component d,,(\) with ¢. The reader may refer to [10,16,43,46,50] and references



114 C. Cheng et al. / Appl. Comput. Harmon. Anal. 47 (2019) 109-148

therein for historical remarks, motivations, applications and recent advances on distributed algorithms,
especially for the case that G =V.

In our DSRS, the set G of agents is not necessarily the same as the set V' of innovative positions,
and even for the case that the sets G and V are the same, the sensing matrix S need not be strictly
diagonally dominant in general. In this paper, we introduce a distributed algorithm (7.19) and (7.20) to
approximate As(z) in (1.16), when the sensing matrix S has ¢?-stability and satisfies the requirements
(1.7) and (1.8). In the above distributed algorithm for signal reconstruction, each agent in the SDN collects
noisy observations of neighboring agents, then interacts with its neighbors per iteration, and continues the
above recursive procedure until arriving at an accurate approximation to the solution As(z) in (1.16). More
importantly, we show in Theorems 7.1 and 7.2 that the proposed distributed algorithm (7.19) and (7.20)
converges exponentially to the solution As(z) in (1.16). The establishment for the above convergence is
virtually based on Wiener’s lemma for localized matrices ([37,38,41,59,61,66]) and on the observation that
our sensing matrices are quasi-diagonal block dominated.

The paper is organized as follows. In Section 2, we make some basic assumptions on the SDN and we
introduce its Beurling dimension and sampling density. In Section 3, we introduce the graph H to describe
our DSRS and then we define dimension and maximal rate of innovation for signals on the graph V. We show
in Theorem 3.5 that the dimension for signals is the same as the Beurling dimension for the SDN, and the
maximal rate of innovation is approximately proportional to the sampling density of the SDN. In Section 4,
we prove in Proposition 4.1 that sampling a signal with bounded amplitude vector by the procedure (1.2)
produces a bounded sampling data vector when the sensing matrix of the DSRS has certain polynomial
off-diagonal decay. In Section 5, we establish in Theorem 5.2 that if a matrix with certain off-diagonal decay
has ¢2-stability then it has ¢P-stability for all 1 < p < oo, and also in Theorem 5.4 that the solution Ay(z) in
(1.16) is a suboptimal approximation to the true amplitude vector. In Theorems 6.1 and 6.2 of Section 6, we
introduce a criterion for the £2-stability of a sensing matrix, that could be verified in a distributed manner.
In Section 7, we propose a distributed algorithm to solve the minimization problem (1.17). In Section 8, we
present simulations to demonstrate our proposed algorithm for robust signal reconstruction. In Section 9,
we include proofs of all conclusions.

The sampling theory developed in this paper enjoys the advantages of scalability of network sizes and
data privacy preservation. Some results of this paper were announced in [18].

Notation: AT is the transpose of a matrix A; ||c||, is the norm on ¢?; x is the index function on a set
F; [x] is the ceiling of z € R; |z] is the floor of x € R; #F is the cardinality of a set F'; and ||A]|z=2 is the
operator norm of a matrix A on £2.

2. Spatially distributed networks

Let G be the graph in (1.1) to describe our SDN. In this paper, we always assume that G is connected
and simple (i.e., undirected, unweighted, no graph loops nor multiple edges), which can be interpreted as
follows:

e Agents in the SDN can communicate across the entire network, but they have direct communication
links only to adjacent agents.

e Direct communication links between agents are bidirectional.

e Agents have the same communication specification.

e The communication component is not used for data transmission within an agent.

e No multiple direct communication channels between agents exists.

In this section, we recall geodesic distance on the graph G to measure communication cost between
agents. Then we consider doubling and polynomial growth properties of the counting measure on the graph
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G, and we introduce Beurling dimension and sampling density of the SDN. For a discrete sampling set in the
d-dimensional Euclidean space, the reader may refer to [24,30] for its Beurling dimension and to [7,49,60,71]
for its sampling density. Finally, we introduce a special family of balls to cover the graph G, which will be
used in Section 7 for the consensus of our proposed distributed algorithm.

2.1. Geodesic distance and communication cost

For a connected simple graph G := (G, S), let pg(A\,A) = 0 for A € G, and pg(A, ') be the number of
edges in a shortest path connecting two distinct vertices A\, A’ € G. The above function pg on G x G is

known as geodesic distance on the graph G ([21]). It is nonnegative and symmetric:

(i) pg(A,A") >0 for all \, N € G;
(i) pg(A, X)) = pg(N,A) for all \, N € G.

And it satisfies identity of indiscernibles and the triangle inequality:

(iii) pg(A,A') =0 if and only if A = X
(iv) pg(N, X)) < pg(N, A7) + pg (N, X') for all A, N, N € G.

In many real-world applications, the distance pg(A, \') can be used to measure the communication cost

between two distinct agents A and M € G, since communication between them happens by transmitting
information through the chain of intermediate agents connecting them using a shortest path.

2.2. Counting measure, Beurling dimension and sampling density

For a connected simple graph G = (G, 5), denote its counting measure by ug,
ug(F) = #(F) for F C G,
where #I is the cardinality of a set F.

Definition 2.1. The counting measure pg is said to be a doubling measure on G if there exists a positive
number Dy(G) such that

pg(Bg (X, 2r)) < Do(G)ug(Bg(A,r)) forall A€ G and r >0, (2.1)
where
BQ(A,T) = {>‘I €aq, pg()‘v)‘/) < 1"}
is the closed ball with center A and radius r.
The doubling property of the counting measure pg can be interpreted as numbers of agents in
r-neighborhood and (2r)-neighborhood of any agent are comparable. The doubling constant of ug is the
minimal constant Dy(G) > 1 for (2.1) to hold ([22,25]). It dominates the maximal vertex degree of the

graph G,

deg(G) < Do(9), (2.2)
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Fig. 2. A tree with large doubling constant but limited maximal vertex degree.

because
deg(G) = max #{N eqG, \N)esSt< Iileac):(#(Bg(/\, 1)) < Dy(G).

We remark that for a finite graph G, its doubling constant Dy(G) could be much larger than its maximal
vertex degree deg(G). For instance, a tree with one branch for the first L levels and two branches for the
next L levels has 3 as its maximal vertex degree and (24! + L — 1)/(L + 1) as its doubling constant, see
Fig. 2 with L = 3.

The counting measure on an infinite graph is not necessarily a doubling measure. However, the counting
measure on a finite graph is a doubling measure and its doubling constant could depend on the local topology
and size of the graph, cf. the tree in Fig. 2. In this paper, the graph G to describe our SDN is assumed to
have its counting measure with the doubling property (2.1).

Assumption 1. The counting measure pg of the graph G is a doubling measure,
Dy(G) < oo. (2.3)
Therefore the maximal vertex degree of graph G is finite,
deg(g) < oo,

which could be understood as that there are limited direct communication channels for every agent in the
SDN.

Definition 2.2. The counting measure pg is said to have polynomial growth if there exist positive constants
D1(G) and d(G) such that

g (Bg(A\, ) < D1(6)(1 4 )49 for all A € G and 7 > 0. (2.4)

For the graph G associated with an SDN, we may consider minimal constants d(G) and D;(G) in (2.4)
as Beurling dimension and sampling density of the SDN respectively. We remark that

d(G) > 1, (2.5)
because

sup pug(Bg(\, 1)) > 1+ for all 0 < r < diam(G),
AeG

where diameter of the graph G is defined by diam(G) := sup, y g pg(A, ).
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Applying (2.1) repeatedly leads to the following general doubling property:

1g(Bg(X, 7)) < (Do(G)) %2 *1ug (Bg (A, 1)) < Do(G)s'%2 P9 g (Bg (A, )

forall A € G, s > 1 and r > 0. Thus

g (Bg(A.r)) < Do(@)(1+ 1) g (Bg (. =) ) = Do(@)(1 + 1) %9, 1 > .

This shows that a doubling measure has polynomial growth.

Proposition 2.3. If the counting measure pg on a connected simple graph G is a doubling measure, then it
has polynomial growth.

For a connected simple graph G, its maximal vertex degree is finite if the counting measure pg has
polynomial growth, but the converse is not true. We observe that if the maximal vertex degree deg(G) is
finite, then the counting measure pg has exponential growth,

(deg(g))"*' — 1

> 0. .
deg(G) —1 foral A e Gandr >0 (2.6)

pg(Bg(A,r)) <
2.8. Spatially distributed fusion subnetworks

For a connected simple graph G := (G,S) and N > 0, we say that Gy C G is a mazimal N-disjoint
subset of G if

Bg(A\,N) M (U.,.eay Bg(Am,N)) # 0 forall X € G, (2.7)
and
Bg(Am, N) (M Bg(Apr, N) =0 for all Ay, A € G (2.8)

For 0 < N < 1, it follows from (2.7) that Gy = G. For N > 1, there are many subsets G of vertices
satisfying (2.7) and (2.8). For instance, we can construct Gy = {A,}m>1 as follows: take a A\ € G and
define A\,,, m > 2, recursively by

Am = argmin pg (A, A1),
AEA,,

where A, ={A € G, Bg(A\,N)NBg(Ap, N)=0,1 <m’ <m —1}.
For a set Gy satisfying (2.7) and (2.8), the family of balls {Bg(A\p,, N'), A\, € Gy} with N' > 2N
provides a finite covering for G.

Proposition 2.4. Let G := (G, S) be a connected simple graph and ug have the doubling property (2.3) with
constant Do(G). If G satisfies (2.7) and (2.8), then

1 it S5, 0 X008 (V) < SID a0 XBg (0,80 () < (Do(G) =N MHIT - (2.9)
S

for all N' > 2N.
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For N’ > 0, define a family of spatially distributed fusion subnetworks
Gan = (Bg(A, N'), Sx nv)

with fusion agents A € Gy, where (X, \") € Sy y+ if N, A" € Bg(A, N’) and (X', \’) € S. Then the maximal
N-disjoint property of the set G means that the N-neighboring subsystems G\ _n,An € Gy, have no

my

common agent. On the other hand, it follows from Proposition 2.4 that for any N’ > 2N, every agent in our
SDN is in at least one and at most finitely many of the N’-neighboring subsystems Gx,, N7, Am € Gn. The
above idea to split the SDN into subnetworks of small sizes is crucial in our proposed distributed algorithm
in Section 7 for stable signal reconstruction.

3. Distributed sampling and reconstruction systems

Let V be the set of innovative positions of signals f in (1.3), and G = (G, S) be the graph in (1.1)
to represent our SDN. In this section, we introduce a graph H to describe our distributed sampling and
reconstruction systems, and also a graph V to describe the topology of spatial signals with the parametric
representation (1.3).

In this paper, we consider DSRS with the following properties.

Assumption 2. There is a direct communication link between distinct anchor agents of an innovative posi-
tion,

(M, A2) € S if (i,\1) and (i,A2) € T for some i € V. (3.1)
Assumption 3. There are finitely many innovative positions for any anchor agent,

L:=sup#{ieV, (i,\) e T} < 0. (3.2)
AEG

Assumption 4. Any agent has an anchor agent within bounded distance,

M := sup inf{pg(\,\'), (i,\") €T for some i€V} < . (3.3)
AeG

Under the above assumptions, the graph H in (1.4) is a connected simple graph. Moreover, we have the
following important properties about shortest paths between different vertices in .

Proposition 3.1. Let the graph H in (1.4) satisfy (3.1). Then all intermediate vertices in the shortest paths
in H to connect distinct vertices in H belong to the subgraph G.

By Proposition 3.1,
pr (M N) = pg(A\, X)) forall \, N € G, (3.4)
and

pn(iyi') =2+ N i)\nfG{pg()\7 XY, (i,A), (', \) € T} for all distinct i, € V, (3.5)
A€

where py; is the geodesic distance for the graph H.

Let V be the graph in (1.6), where there is an edge between two distinct innovative positions if they
share a common anchor agent. One may easily verify that the graph V is undirected and its maximal vertex
degree is finite,
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deg(V) < Lsup #{\ € G, (i,\) € T} < L(deg(g) +1) (3.6)
i€

by (2.2), (2.3), (3.1) and (3.2).
We cannot define a geodesic distance on V' as in Subsection 2.1, since the graph V is unconnected in
general. With the help of the graph H to describe our DSRS, we define a distance p on the graph V.

Proposition 3.2. Let H be the graph in (1.4). Define a function p:V x V — R by

. Jo if Q=1
p“’”‘{m(z‘,i')l if i A (3.7)

If the graph H satisfies (3.1), then p is a distance on the graph V:

(i) p(i,¢") >0 for alli,i' € V;
(if) p(i,?") = p(i',3) for all i,i € V;
(iii) p(,4") =0 if and only if i =i'; and
(iv) p(i,7") < p(i,i") + p(i”,4") for alli,i',i" € V.

Clearly, the above distance between two endpoints of an edge in V is one. Denote the closed ball with
center ¢ € V and radius r by

B(i,r) ={i" €V, p(i,i") <r},

and the counting measure on V' by p. Similar to the counting measure pg on an SDN in Definitions 2.1 and
2.2, we say that the measure p on V is a doubling measure if

w(B(i,2r)) < Dou(B(i,r)) for alli € V and r > 0, (3.8)
and it has polynomial growth if
w(B(i,7)) < D1(1+7)% for alli € V and r > 0, (3.9)

where Dy, Dy and d are positive constants. The minimal constant Dg for (3.8) to hold is known as the
doubling constant, and the minimal constants d and D; in (3.9) are called dimension and maximal rate of
innovation for signals on the graph V respectively. The concept of rate of innovation was introduced in [72]
and later extended in [62,68]. The reader may refer to [11,12,29,47,51,56,60,62,68,72] and references therein
for sampling and reconstruction of signals with finite rate of innovation.

In the next two propositions, we show that the counting measure p on V has the doubling property
(respectively, the polynomial growth property) if and only if the counting measure g on G does.

Proposition 3.3. Let G and H satisfy Assumptions 1-/. If ug is a doubling measure with constant Dy(G),
then

(deg(G))*M*3 —1
deg(g) — 1

w(B(i,2r)) < L(D0<g>)2( )M(B(i,r)) foralli € V and r > 0. (3.10)

Conversely, if i is a doubling measure with constant Dy, then

(deg(G))*M** —1
deg(g) — 1

ug(Bg (A, 2r)) < LDS( )2/,Lg(Bg(/\,’/‘)) forall A€ G andr > 0. (3.11)
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Proposition 3.4. Let G and H satisfy Assumptions 1—4. If ug has polynomial growth with Beurling dimension
d(G) and sampling density D1(G), then

w(B(i,r)) < LD1(G)1 + )" for alli eV andr > 0. (3.12)

Conwversely, if p has polynomial growth with dimension d and maximal rate of innovation Dy, then

(deg(@))*M*3 —1
deg(G) — 1

1g(Bg(\ 1)) < 2d( )D1(1 +7)¢ forall A€ G andr > 0. (3.13)

By (2.5), Propositions 3.3 and 3.4, we conclude that signals in (1.3) have their dimension d being the same
as the Beurling dimension d(G), and their maximal rate D; of innovation being approximately proportional
to the sampling density D1 (G).

Theorem 3.5. Let G and H satisfy Assumptions 1—/. Then
dG)=d>1 (3.14)

and

(deg(g))2M+3 — I)Dl. (315)

L7'D; < Dy(G) < Qd( deg(g) — 1

We finish this section with a remark about signals on our graph V, cf. [53,54,57].

Remark 3.6. Signals on the graph V are analog in nature, while signals on graphs in most of the literature
are discrete ([53,54,57]). Let py and p; be the physical positions of the agent A € G and innovative position
i € V, respectively. If there exist positive constants A and B such that

AY L@ <Y1 )P+ D 1@ < BY [e(@)

i€V i€V A€G eV

for all signals f with the parametric representation (1.3), then we can establish a one-to-one correspondence
between the analog signal f and the discrete signal F' on the graph H, where

F(u) = f(pu), ue GUV.

The above family of discrete signals F' forms a linear space, which could be a Paley—Wiener space associated
with some positive-semidefinite operator (such as Laplacian) on the graph #H. Using the above correspon-
dence, our theory for signal sampling and reconstruction applies by assuming that the impulse response 1y
of every agent A € G is supported on p,,u € GUV.

4. Sensing matrices with polynomial off-diagonal decay
Let H be the connected simple graph in (1.4) to describe our DSRS, and the sensing matrix S associated

with the DSRS be as in (1.7). As agents in the DSRS have limited sensing ability, we assume in this paper
that the sensing matrix S in (1.7) satisfies

S € J.(G,V) for some o > d, (4.1)

where
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Ja(G.V) = {A = (a(\i))regiiev, |Alg.gv) < oo} (4.2)
is the Jaffard class J,(G,V) of matrices with polynomial off-diagonal decay, and

[All7.g,v) == sup (1+pu(Ad)*a(A )|, a>0. (4.3)
AEG,ieV

The reader may refer to [37,38,41,59,61,66] for matrices with various off-diagonal decay.
We observe that a matrix in J,(G, V), « > d, defines a bounded operator from (V) to #(G),1 < p < 0.

Proposition 4.1. Let G and H satisfy Assumptions 1-4, V be as in (1.6), and let ug have polynomial growth
with Beurling dimension d and sampling density D1(G). If A € T (G, V) for some a > d, then

D1 (Q)La

A <
lAcll, < =22

A7, e llell, forallce ;1 <p< oo (4.4)

For a DSRS with its sensing matrix in 7, (G, V), we obtain from (1.10) and Proposition 4.1 that a signal
with bounded amplitude vector generates a bounded sampling data vector.
Define band matrix approximations of a matrix A = (a(\,%))xec,icv by

AS = (as()‘ai))/\EGJ'EV) S 2 07 (45)

where

. a(\i) if pu(\i) < s
s )\7 = . .
as(X.1) {0 if py(N i) > s.

We say a matrix A has bandwidth s if A = A,. Clearly, any matrix A with bounded entries and bandwidth
s belongs to Jaffard class J,(G, V),

Al 7. gv) < (s + DAl 7,y forall a>0.

In our DSRS, the sensing matrix S has bandwidth s means that any agent can only detect signals at
innovative positions within their geodesic distance less than or equal to s. In the next proposition, we show
that matrices in the Jaffard class can be well approximated by band matrices.

Proposition 4.2. Let graphs G, H, V, d and D1(G) be as in Proposition J.1. If A € J(G, V) for some o > d,
then

D1 (g)La

(A= Ael, < =25

(s + 1) 7T All 7w llcllp forallee ;1 <p< oo, (4.6)
where Ag, s > 1, are band matrices in (4.5).

The above band matrix approximation property will be used later in the establishment of a local stability
criterion in Section 6 and exponential convergence of a distributed reconstruction algorithm in Section 7.

5. Robustness of distributed sampling and reconstruction systems

Let S be the sensing matrix associated with our DSRS. We say that a reconstruction algorithm A is a
perfect reconstruction in noiseless environment if
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A(Sc) =c for all c € £, (5.1)
In this section, we first study robustness of the DSRS in term of the ¢/*°-stability.

Proposition 5.1. Let G and H satisfy Assumptions 1-4, V be as in (1.6), ug have polynomial growth with
Beurling dimension d, and let S satisfy (4.1). Then there is a reconstruction algorithm A with the suboptimal
approximation property (1.12) and the perfect reconstruction property (5.1) if and only if S has £°°-stability.

The sufficiency in Proposition 5.1 holds by taking A = A, in (1.13), while the necessity follows by
applying (1.12) to n = Sd with d € £*°.

In the next theorem, we reduce /*°-stability of a matrix in Jaffard class to its ¢2-stability, for which a
distributed verifiable criterion will be provided in Section 6.

Theorem 5.2. Let G,H,V and d be as in Proposition 5.1, and let A € T, (G, V) for some a > d. If A has
2-stability, then it has (P-stability for all 1 < p < oo with the lower (P-stability bound independent of the
size of the DSRS.

The reader may refer to [3,55,66] for equivalence of ¢P-stability of localized matrices for different 1 <
p < oo. For finite graphs G = (G, S) and V = (V, E) and a matrix A with row indices in G and column
indices in V, its (P-stability and ¢9-stability are equivalent to each other for any 1 < p,q < oo, and its
optimal lower stability bounds A, and A, satisfy

< MI/p=1/al,

M1/p=1/4l < ﬁ

Ap

where M = max(#G,#V) is the number of vertices of graphs G and V. The above estimation on lower

stability bounds is unfavorable for matrices of large size but it cannot be improved if there is no restriction

on the matrix A. For matrices A in the Jaffard class J,(G,V), we obtain from the proof of Theorem 5.2

that the lower ¢P-stability bound depends only on the ¢?-stability bounds, J,(G,V)-norm of the matrix A,

maximal vertex degree deg(G), the Beurling dimension d, the sampling density D;(G), and the constants

L and M in (3.2) and (3.3). So the sensing matrix of our DSRS may have its lower ¢P-stability bounds
independent of the size of the DSRS.

For the graph V in (1.6) and the distance p in (3.7), define

Ta(V) = {A = (a(i,7))iwev, |Allz.v) < oo}, (5.2)
where

Al 7, v) = ,s}lgv(l + p(i,i")%a(i,i")], a > 0. (5.3)

The proof of Theorem 5.2 depends highly on the following Wiener’s lemma for the matrix algebra 7, (V),
a>d.

Theorem 5.3. Let V be as in (1.6) and its counting measure p satisfy (3.9). If A € Jo(V),a > d, and A~!
is bounded on (%, then A~! € J,(V) too.

Wiener’s lemma has been established for infinite matrices, pseudodifferential operators, and integral
operators satisfying various off-diagonal decay conditions ([9,33,35,37,38,41,59,61,63,66]). It has been shown
to be crucial for well-localization of dual Gabor/wavelet frames, fast implementation in numerical analysis,
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local reconstruction in sampling theory, local features of spatially distributed optimization, etc. The reader
may refer to the survey papers [36,44] for historical remarks, motivation and recent advances.

The Wiener’s lemma (Theorem 5.3) is also used to establish the sub-optimal approximation property
(1.12) for the “least squares” solution As(z) in (1.16), for which a distributed algorithm is proposed in
Section 7.

Theorem 5.4. Let G, H and V be as in Proposition 5.1. Assume that the sensing matriz S satisfies (4.1) and
it has 0?-stability. Then there exists a positive constant C' such that

|1A2(z) — clloc < C|N||oc  for all c,n € £7°, (5.4)
where z = Sc + 1.
6. Stability criterion for distributed sampling and reconstruction systems

In a traditional centralized sampling and reconstruction system, the ¢2-stability of the sensing matrix
could be verified by its central processor, but the above procedure is infeasible in a distributed sampling and
reconstruction system as it is decentralized. In this section, we introduce a stability criterion for matrices
in the Jaffard class that can be verified in a distributed manner.

Let H be the connected simple graph in (1.4) to describe our DSRS. Given A € G and a positive integer
N, define truncation operators Xf\\C,G and Xf\v,y by

X]AV',G 2 P(G) 3 (d(N))rec — (d(A)XBH()\/vN)nG(A))AEG € (@)
and
Xy s (V)3 (e(@)iev — (e(i)xBy v 3V (0)) ;ops € (V)
where 1 < p < oo and
By(u,r) :={ve GUV, pylu,v) <r}

is the closed ball in ‘H with center u € H and radius r > 0.
For any matrix A € 7, (G, V) with £2-stability, we observe that its quasi-main submatrices x3¥ AxY, \ €
G, of size O(N?) have uniform ¢2-stability for large N.

Theorem 6.1. Let G and H satisfy Assumptions 1—4, V be as in (1.6), pg have polynomial growth with
Beurling dimension d and sampling density D1(G), and let A € J,(G,V) for some a > d. If A has
02 -stability with lower bound A||A| 7., (g vy, then

%A el > S1AlLz @ hdvelk, e (6.1

for all A € G and all integers N satisfying
2D, (G)N~**4\/La/(a — d) < A. (6.2)
The above theorem provides a guideline to design a distributed algorithm for signal reconstruction, see

Section 7. Surprisingly, the converse of Theorem 6.1 is true, cf. the stability criterion in [65, Theorem 2.1]
for convolution-dominated matrices.
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Theorem 6.2. Let G, H,V be as in Theorem 6.1, and A € T, (G,V) for some o > d. If there exist a positive
constant Ag and an integer No > 3 such that

. 3(§id) + 2((10(_,121(51_@) if a>d+1
Ag > 4(Do(G))?D1(G) LNy ™74 s & (H0EED 4 9gIn Ng)  if a=d+1 (6.3)
o + i) if a<d+l,

and for oll A € G,

DG ARG cllz = Aol Al 7, @ IR cllz, € 2, (6.4)
then A has (?-stability,
Aol Al 7.c.v)
A > —— =7/ 2. 6.5
|| C||2 = 12(D0(g))2 ||CH2, cc ( )

Observe that the right hand side of (6.3) could be arbitrarily small when Ny is sufficiently large. This
together with Theorem 6.1 implies that the requirements (6.3) and (6.4) are necessary for the £2-stability
property of any matrix in J,(G, V). As shown in the example below, the term N, min(a—d,1)
be replaced by IV, P with high order 8 > 1 even if the matrix A has finite bandwidth.

in (6.3) cannot

Example 6.3. Let Ag = (ao(i — j))i,jez be the bi-infinite Toeplitz matrix with symbol >, _, ao(k)e ¢ =

1 — e, Then Aj belongs to the Jaffard class J,(Z,Z) for all & > 0 and it does not have ¢2-stability. On
the other hand, for any A€ G =V =Z and Ny > 1,

inf 3G AxaYela = inf A el

N
IxxSellz=1 Ix\5ellz=1

VIdi? + |di — da|? + -+ + |dang — dong+1]? + |da2ng+1]2

= inf
|d1\2+“'+\d2N0+1|2:1
T 1
=92sin — > - N !
N, +4 =270

where the last equality follows from [42, Lemma 1 of Chapter 9].

For our DSRS with sensing matrix S having the polynomial off-diagonal decay property (4.1), the uniform
stability property (6.4) could be verified by finding minimal eigenvalues of its quasi-main submatrices
XiV%,STxif\é? Sxi\t‘%/, A € G, of size about O(N§). The above verification could be implemented on agents in
the DSRS via its computing and communication abilities. This provides a practical tool to verify ¢2-stability
of a DSRS and to design a robust (dynamic) DSRS against supplement, replacement and impairment of

agents.
7. Exponential convergence of a distributed reconstruction algorithm

In our DSRS, agents could essentially catch signals not far from their spatial locations. So one may expect
that a signal near any innovative position should substantially be determined by sampling data of neighbor-
ing agents, while data from distant agents should have (almost) no influence in the reconstruction. The most
desirable method to meet the above expectation is local exact reconstruction, which could be implemented
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in a distributed manner without iterations ([6,39,64,69]). In such a linear reconstruction procedure, there is
a left-inverse T of the sensing matrix S with finite bandwidth,

TS =1

For our DSRS, such a left-inverse T with finite bandwidth may not exist and/or it is difficult to find
even it exists. We observe that

St .= (s7s)~ 18T
is a left-inverse well approximated by matrices with finite bandwidth, and
d, =S’z (7.1)

is a suboptimal approximation, where z is given in (1.11). However, it is infeasible to find the pseudo-inverse
St, because the DSRS does not have a central processor and it has huge amounts of agents and large
number of innovative positions. In this section, we introduce a distributed algorithm to find the suboptimal
approximation ds in (7.1).

Let H be the connected simple graph in (1.4) to describe our DSRS, and the sensing matrix S €
Ja(G,V),a > d, have (?-stability. Then dy in (7.1) is the unique solution to the “normal” equation

S7Sd, = S”z. (7.2)
Instead of solving the above equation, we consider localized linear systems
XavSTSxAvdan = xavS'z, A EG, (7.3)

of size O(N?), whose solutions d y are supported in the ball By (A, N) N V. The localized system (7.3)
has unique solution as principal submatrices Xf\v’ VSTSXf\V’ v» N > 1, of the positive definite matrix ST'S are
uniformly stable. One of crucial results of this paper is that for large integer NV, the solution dy y provides
a reasonable approximation of the “least squares” solution ds inside the half ball By (A, N/2)NV, see (7.6)
in Proposition 7.1. However, the above local approximation can not be implemented distributedly in the
DSRS, as only agents on the graph G have computing and telecommunication ability. So we propose to
compute

WA N = X]A\ZGSX%V(XQ[,VSTSXQ{V)ildA,N = Xﬁ\V,GSXﬁV(Xﬁ\v,VSTSXi\CV)izxg,VSTZ (7.4)
instead, which approximates
wrs = S(STS)"1d, (7.5)
inside Bg(A, N/2) N G, see (7.7) in the proposition below.

Proposition 7.1. Let G and H satisfy Assumptions 1-/, V be as in (1.6), and let the sensing matriz S €
Ja(G, V), a > d, have (?-stability with lower stability bound A||S|| 7. (g v)- Take an integer N satisfying (6.2),
and set

200 — 2d A?(a—d)?

= — 1 =1-— .
0 50 4 € (0,1) and 7o 351D, D) (G)a?
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Then
N/2 —a+d
NG (dan — do)lloo < D3(N +1)7|da]| (7.6)
and
N/2 —a+d
XN E (Wan = Wis) e < Da(N +1)7F||dy (7.7)
where Dy = %, Dy = (23aid+3ZL_2le(g)D§ + LDQ)”SH}i(Q,V)’ and
fo%e) 22a+d/2+4D3a2 %’nlog<2279)
Dy= (T )7 ry (7.8)
2 -0 2 0 .
n=0 To (Ol o d)

Take a maximal %—disjoint subset G4 C G satisfying (2.7) and (2.8). We patch wy n,A € G4, in
(7.4) together to generate a linear approximation

wy = Z GA,NXf\\{gW,\,N (7.9)
)\GGN/4

of the bounded vector wrg, where O y is a diagonal matrix with diagonal entries

)\/l
QA,N()\/,) - XBg(,\,N/z)( )

= , N ed.
ZXEGNM XBg(N,N/2) (AH)

The above approximation is well-defined as { Bg(\', N/2), A € G4} is a finite covering of G by (3.4) and
Proposition 2.4. Moreover, we obtain from Proposition 7.1 that

B
=
!
s
&
g
|

= H > 9,\7NX]AV,/G2(WA,N - WLS)H

AEGN /4 o

<sup > vV Ixag Wan —Wis)lse

N'EG
EDY=TEIN

< Dy(N + 1) ||dy| 0o (7.10)

Therefore, the moving consensus wj of wy x, A € G4, provides a good approximation to wrs in (7.5)
for large N. In addition, wj; depends on the observation z linearly,

wiy = RySz (7.11)
for some matrix Ry with bandwidth 2N and

(o — d)2LD?

RN 7.(g,v) < Ds = . (7.12)
@) a?D1D1(G)1S1%, v
Given noisy samples z, we may use wi in (7.11) as the first approximation of wyg,
w; = RyS7z (7.13)

and recursively define

Wpt1 = Wy + W1 — RySTSSTw,,, n > 1. (7.14)
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In the next theorem, we show that the above sequence w,,,n > 1, converges exponentially to some bounded
vector w, not necessarily wp g, satisfying the consistent condition

STw = STwpg = do. (7.15)

Theorem 7.2. Let G,H and V be as in Proposition 7.1, let G4 be a mazimal N/4-disjoint subset of G
satisfying (2.7) and (2.8), and let wy,n > 1, be as in (7.13) and (7.14). Suppose that N satisfies (6.2) and

D DyLa
T = %”SHJQ(Q,V)(N + 1)7a+d < 1. (716)

Set

22020 3(D1(G))?D3

Dg = .
" (a—d) A —r)Di[Sll 70w

Then w,, and STw,,n > 1, converge exponentially to a bounded vector w in (7.15) and the “least squares”
solution dg in (7.1) respectively,

Hwn = Wl < Dery'||dz[co (7.17)
and
Dl(g)DgLOZ n
87w, — dolloe < PUDPEL gy ey > 1. (7.18)

By the above theorem, each agent should have minimal storage, computing, and telecommunication
capabilities. Furthermore, the algorithm (7.13) and (7.14) will have faster convergence (hence less delay
for signal reconstruction) by selecting large N when agents have larger storage, more computing power,
and higher telecommunication capabilities. In addition, no iteration is needed for sufficiently large N, and
the reconstructed signal is approximately to the one obtained by the finite-section method, cf. [20] and
simulations in Section 8.

The iterative algorithm (7.13) and (7.14) can be recast as follows:

wi; = RySTz and e = w; — RySTSSTwy, (7.19)

and

{ Wntl = Wp + €5 (720)

€nt1 =€y — RySTSSTe,, n> 1.

Next, we present a distributed implementation of the algorithm (7.19) and (7.20) when S has bandwidth s.
Select a threshold € and an integer N > s satisfying (7.16). Write

ST = (a(i, \))ievirea

RnST = (by(A\, X))xvea
RySTSS” = (cn(A\, V))avea
z = (z(\))xrea,

and

W, = (Wn(/\)))\e(; and e, = (en(/\)))\eg, n Z 1.
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We assume that any agent A € G stores vectors a(i, \'), by (A, X),cy (N, N) and z(\'), where (i, A) € T and
X € Bg(A, 2N + 3s). The following is the distributed implementation of the algorithm (7.19) and (7.20) for
an agent A € G.

Distributed algorithm (7.19) and (7.20) for signal reconstruction:

Input a(é, \'), by (A, N),en(A, N) and z()\'), where (i, A) € T and X € Bg(\, 2N + 3s).

Input stop criterion € > 0 and maximal number of iteration steps K.

Compute W(A) =3\ cp,a2n+s) PN (A A)zZ(N).

Communicate with neighboring agents in Bg(\, 2N + 3s) to obtain data w(X\'), A’ € Bg(\, 2N + 3s).

Evaluate the sampling error term e(A) = W(A) = Xy e g, 2n135) N (A A )W(X).

Communicate with neighboring agents in Bg (X, 2N +3s) to obtain error data e(\'), ' € Bg(\, 2N +3s).

for n =2 to K do

7a. Compute 0 = maxy e, (x,2n+3s) [€(N)].

7b. Stop if § < ¢, else do

7c. Update w(A) = w(A) + e(N).

7d. Update e(A) = e(A) = Xy epg(n2n13s) N (A A)e(N).

7e. Communicate with neighboring agents located in Bg(A, 2N + 3s) to obtain error data e(\), X €
Bg (), 2N + 3s).

end

RN o

We conclude this section by discussing the complexity of the distributed algorithm (7.19) and (7.20),
which depends essentially on V. In its implementation, the data storage requirement for each agent is about
(L+3)(2N + 3s+1)%. In each iteration, the computational cost for each agent is about O(N?) mainly used
for updating the error e. The communication cost for each agent is about O(N%*5) if the communication
between distant agents A\, ' € G, processed through their shortest path, has its cost being proportional to
(pg(\, \))? for some B > 1. By Theorem 7.2, the number of iteration steps needed to reach the accuracy
€ is about O(In(1/€)/In N). Therefore the total computational and communication cost for each agent are
about O(In(1/€)N¢/In N) and O(In(1/e) N8 /In N), respectively.

8. Numerical simulations

In this section, we present two simulations to demonstrate the distributed algorithm (7.19) and (7.20)
for stable signal reconstruction.

Agents in the first simulation are almost uniformly deployed on the circle of radius R/5, and their
locations are at

A := —( cos ——,sin , 1<I<R,

5 (o T )

where R > 1 and 6; € 14[—1/4,1/4] are randomly selected. Every agent in the SDN has a direct communica-
tion channel to its two adjacent agents. Then the graph G. = (G, S.) to describe the SDN is a circular graph,
where Gc = {)\17 ce 7AR} and Sc = {(A17A2)7 teey (Ath)‘R)a (ARv)‘l), ()‘laAR)v ()‘RﬂARfl)ﬂ SR (AQ?AI)}'
Take innovative positions
o o
pi = ri(cosg7 sin%), 1<i1<R,

deployed almost uniformly near the circle of radius R/5, where r; € R/5+[—1/4,1/4] are randomly selected.
Given any innovative position p;, 1 < ¢ < R, it has three anchor agents A;, A\;_1 and A;11, where Ag = Ar
and AR+1 = A;. Set
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Fig. 3. The graph H. = (G NV, Sc UT. UT)) to describe the DSRS in the first simulation, where vertices in G¢, edges in S,
vertices in V. and edges in T. U T are plotted in red circles, black lines, blue triangles and green lines, respectively.

Fig. 4. Plotted on the left is the signal f in (8.1) with R = 80. On the right is the difference between the signal f and the
reconstructed signal f, n s in the n-th iteration by applying the distributed algorithm (7.19) and (7.20) with n = 10, N = 6 and
d = 0.05.

Ve=A{pi,1 <i <R} and T, ={(pi,Ai—j),i=1,...,Rand j =0,%1}.

Then H, = (G. NV, S. UT, UT) is the graph to describe the DSRS, see Fig. 3.
Let o(t) := exp(—(t2 +t3)/2) for t = (t1,t2), and the Gaussian signals

c(i)p(t — p;) (8.1)

M:a

i=1

to be sampled and reconstructed have their amplitude components ¢(i) € [0, 1] being randomly chosen, see
the left image of Fig. 4. In the first simulation, we consider ideal sampling procedure. Thus for the agent
A, 1 <1 < R, the noisy sampling data acquired is

R
ys(1) :== f(A) +n(l) ZC = pi) +n(l), (82)

where n(l) € [0, ] are randomly generated with bounded noise level § > 0.

For N > 5, the complexity of the distributed algorithm (7.19) and (7.20) for each agent in G4 is about
O(N). Our first simulation shows that the distributed algorithm (7.19) and (7.20) converges for N > 5 and
the convergence rate is almost independent of the network size R, cf. the upper bound estimate in (7.18).

Let f, ns(t) == Zf;l cn,N,5(1)(t —p;) be the reconstructed signal in the n-th iteration by applying the
distributed algorithm (7.19) and (7.20) from the noisy sampling data in (8.2). Define maximal reconstruction
errors



130 C. Cheng et al. / Appl. Comput. Harmon. Anal. 47 (2019) 109-148

Table 1

Maximal reconstruction errors e(n, N, §) with § = 0.
n\N 5 6 7 8 9 10
0 0.9874 0.9881 0.9878 0.9876 0.9877 0.9884
1 0.9875 0.4463 0.3073 0.1940 0.1055 0.0523
2 0.6626 0.2046 0.0794 0.0271 0.0124 0.0024
3 0.3624 0.0926 0.0240 0.0045 0.0014 0.0001
4 0.2535 0.0443 0.0068 0.0006 0.0001 0.0000
5 0.1742 0.0206 0.0018 0.0001 0.0000 0.0000
6 0.1169 0.0093 0.0005 0.0000 0.0000 0.0000
7 0.0840 0.0042 0.0001 0.0000 0.0000 0.0000
8 0.0579 0.0017 0.0000 0.0000 0.0000 0.0000
9 0.0411 0.0007 0.0000 0.0000 0.0000 0.0000
10 0.0289 0.0003 0.0000 0.0000 0.0000 0.0000

maxi<;<r |c(i)] if n=0,

8.3
maxi<;<R |Cn)N75(’L‘) — C(Z)‘ if n Z 1. ( )

e(n,N,¢) := {

Presented in Table 1 is the average of reconstruction errors e(n, N, §) with 500 trials in noiseless environment
(6 = 0), where the network size R is 80. It indicates that the proposed distributed algorithm (7.19) and
(7.20) has faster convergence rate for larger N > 5, and we only need three iterations to have a nearly
perfect reconstruction from its noiseless samples when N = 10.

The robustness of the proposed algorithm (7.19) and (7.20) against sampling noises is tested and con-
firmed, see Fig. 4. Moreover, it is observed that the maximal reconstruction error e(n, N, ) with large n
depends almost linearly on the noise level d, cf. Theorem 5.4 and Fig. 7.

In the next simulation, agents are uniformly deployed on two concentric circles and each agent has direct
communication channels to its three adjacent agents. Then the graph G, = (G,, S,) to describe our SDN is
a prism graph with vertices having physical locations,

J B (cos 23 sin 470) if 1<i1<% (8.4)
UZ V(2 1) (cos 48 sin470) it B4 1<I<R, '

where R > 2 and 0; € [ 4+ [—1/4,1/4],1 <[ < R, are randomly selected. The innovative positions

-'—r-(cos@ sin@) 1< <
q’L T 1 R? R b — —

i

have four anchor agents g, i1, i+ r/2 and f; 4 g /211, Where po = pr/2, Br1 = fig/2+1, and 7; € £64[%, 3]
are randomly selected. Set

R R R R
v, = {qi,l <i< —} and T, = {(qi,mﬂ-),z’: L., 2 and j :0,1,—,—+1}.
2 2 2°2
Thus the graph H, = (G, NV}, 8, UT, UT}) to describe our DSRS is a connected simple graph, see the
left image of Fig. 5.
Following the first simulation, we consider the ideal sampling procedure of signals

R/2

9(t) = 3 cli)p(t — a), (8.5)

=1

where c(i) € [0,1],1 < i < R/2, are randomly selected, see the top left image of Fig. 6. Then the noisy
sampling data acquired by the agent p;,1 <1 < R, is
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Fig. 5. Plotted on the left is the graph H, = (Gp N V,, Sp UT, UT])) to describe the DSRS, where vertices in G, and V), are in red
circles and blue triangles, and edges in S, and T, U T, are in black solid lines and green solid lines, respectively. On the right is
a subgraph of H,, where some agents are completely dysfunctional and some have communication channels to one or two of their
nearby agents clogged.

Fig. 6. Plotted on the left and right are the signal g in (8.5) with R = 160 and the difference g — gn,n,5 between the original signal g
and its approximation g, n,s in (8.7) with n =4, N = 6 and § = 0.05, where all agents in (8.4) are functional except those located
at p1, ps7 being completely dysfunctional and partial communication channels located at p11, 51, o1 clogged. The reconstruction
error €(n, N, §) in (8.3) in this simulation is 0.1802.

R/2
ys(l) = g(m) +n(l) =Y (i)l — ai) + (D), (8.6)

i=1

where n(l) € [—6,0] are randomly selected with bounded noise level 6 > 0. Applying the distributed
algorithm (7.19) and (7.20), we obtain approximations

R/2
Inns(t) =D cans(i)olt —ai), n>1, (8.7)
=1

of the signal g in (8.5). Our simulations illustrate that the distributed algorithm (7.19) and (7.20) converges
for N > 3 and the signal g can be reconstructed near perfectly from its noiseless samples in 12 steps for
N =3, 7 steps for N =4, 5 steps for N = 5, 4 steps for N = 6, and 3 steps for N = 7, cf. Table 1 in the
first simulation. The robustness of the proposed distributed algorithm (7.19) and (7.20) against sampling
noises in the DSRS is test and confirmed, see Fig. 7.

The robustness of the proposed distributed algorithm (7.19) and (7.20) against sampling noises and
dysfunctions of agents in the DSRS is tested and confirmed, see the right graph of Fig. 5 and the right
image of Fig. 6.

We finish this section with the performance comparison between the global ¢*°-optimization (1.13) and
the proposed distributed algorithm (7.19) and (7.20) for signal reconstruction. For the signal sampling
procedure in (8.5) and (8.6), we define the reconstruction error of the global optimization problem (1.13)
by
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Fig. 7. Presented on the top is average of the reconstruction errors e (6) and e2(8) of the global £°°-optimization (1.13) and the
proposed distributed algorithm (7.19) and (7.20) over 1000 trials. Plotted on the bottom left and right are the difference between
the original signal g in Fig. 6 and the signals reconstructed by the global algorithm and by the distributed algorithm with N =6
respectively, where § = 0.05. In this simulation, the reconstruction errors €(§) and en () are 0.1933 and 0.1320 respectively.

o(0) = i) — c(i)],
cnc(8) i= o [es(i) — ()
where c; = (c5(1),...,cs5(R/2))T is the reconstructed amplitude vector. Similarly for the same signal

sampling procedure, our numerical simulation indicates that the proposed distributed algorithm (7.19) and
(7.20) leads to the least square solution (d2,5(1),...,dss(R/2))T := argmingc,» ||Sd — zl|2 for all N > 3, cf.
(7.18). Hence the corresponding reconstruction error

6) = da s(i) — c(i
a(8) 1= e [da s(i) = c(i)
is independent on N > 3, cf. Table 1. Our simulations, see Fig. 7, indicate that both the global optimization
problem (1.13) and the proposed distributed algorithm (7.19) and (7.20) provide suboptimal approximation
to the original signal in the presence of bounded noises, and the distributed algorithm has better performance
for signal reconstruction than the global optimization does.

9. Proofs

In this section, we include proofs of Propositions 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 7.1, and Theorems 5.2,
5.3,5.4,6.1, 6.2, 7.2.
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9.1. Proof of Proposition 2.}
For any \ € G, take A, € Gn with Bg(A, N) N Bg(Ap,, N) # 0. Then
PG (A, Am) < pg (N N) + pg (N, Am) < 2N,

where X is a vertex in Bg(A, N) N Bg(Am, N). This proves that for any N’ > 2N, balls {Bg(Am, N'), A, €
Gn} provide a covering for G,

Gc | Bs(Am,N'), (9.1)
Am €GN

and hence the first inequality in (2.9) follows.
Now we prove the last inequality in (2.9). Take A € G. For any A\, Ay € Gy N Bg(A\, N'),

Po N ) < p6 (N, M) + 96 (s A) + g (A Ar) < 2N + N
for all ' € B(Ay,, N), which implies that
Bg(Am, N) C Bg(Aps, 2N’ + N). (9.2)
Hence

pg(Un,, eannBs (AN Bg(Am, N))
infy caynBor,N7) g (Bg(Am, N))

Bo(M\m,2N'+ N
< sup pg(Bg( +N))
Am €GNNBg(A,N’) MG(BQO‘maN))

Z XBg(Am. N (A) <

AmEGN

< (Do(g))[logQ(QN//N+1ﬂ7 (93)

where the first inequality holds as Bg(Am, N), A € Vi, are disjoint, the second one is true by (9.2), and
the third inequality follows from the doubling assumption (2.1).

9.2. Proof of Proposition 3.1

By the structure of the graph #, it suffices to show that the shortest path in H to connect distinct vertices
A, N € G must be a path in its subgraph G. Suppose on the contrary that Auj -« - ug_1uptpsy - - up N is a
shortest path in H of length py (A, \') with vertex uy along the path belonging to V. Then w1 and uj11
are anchor agents of ug in G.

For the case that u;_1 and ug41 are distinct anchor agents of the innovative position ug, (ug—1,ug+1) € S
by (3.1). Hence Auj - - - ug—1ugy1 - - - up, N is a path of length pg (A, \') —1 to connect vertices A and X', which
is a contradiction.

Similarly for the case that ug_1 and ugy; are the same, Auj - --up_1uri2---u, X\ is a path of length
pr (A, N) — 2 to connect vertices A and . This is a contradiction.

9.3. Proof of Proposition 3.2

The non-negativity and symmetry is obvious, while the identity of indiscernibles holds since there is no
edge assigned in H between two distinct vertices in V.
Now we prove the triangle inequality

p(i,i") < p(i,i") + p(i",i") for distinct vertices i,i’,7" € V. (9.4)
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Let m = p(i,i") and n = p(i”,4"). Take a path ivy ... v,¢" of length m + 1 to connect ¢ and ", and another
path ¢"uy ... uy,i of length n + 1 to connect ¢ and ¢'. If v,, = uy, then ivy...vpus - uyi is a path of
length m + n to connect vertices ¢ and 4’, which implies that

pliyi') <m+n—1< p(i,i") + pli", 7). (9.5)

If v, # uy, then (v,,u;) is an edge in the graph G (and then also in the graph H) by (3.1). Thus
W1 ... UpUils - - Uyt 1S a path of length m + n + 1 to connect vertices ¢ and ¢/, and

p(i,i") <m+n=p(i,i") + pi", ). (9.6)
Combining (9.5) and (9.6) proves (9.4).
9.4. Proof of Proposition 3.3
To prove Proposition 3.3, we need two lemmas comparing measures of balls in graphs G and V.
Lemma 9.1. If H satisfies (3.1) and (3.2), then
w(B(i,r)) < Lug(Bg(\,r)) for any A\ € G with (i, \) € T. (9.7)

Proof. Let i’ € B(i,r) with i’ # i. By Proposition 3.1, there exists a path A; ...\, of length p(i,) — 1 in
the graph G such that (i, A1), (', A,) € T. Then

pg (A An) < pg (X A1) + pg (A, An) < p(ii') <

as either Ay = A or (A, A1) is an edge in G by (3.1). This shows that for any innovative position i’ € B(,r)
there exists an anchor agent A, in the ball Bg(A,r). This observation together with (3.2) proves (9.7). O

Lemma 9.2. If H satisfies (2.3), (3.1) and (3.3), then

(B3 (7)) < ( sup 1g(Bg(X. 20 +2)))u(Bli.r + M + 1) (9.8)

for any A € G and r > M + 1, where (i,\) € T and N € Bg(A\, M).

Proof. Let Ay = X and take A = {\,}m>1 such that (i) Bg(Am,M + 1) C Bg(A,r) for all
Am € A; (i) Bg(Am, M + 1)\ Bg(Am/, M + 1) = 0 for all distinct vertices Ap, Ay € A; and (iii)
Bg(\M M + 1) (U/\,neA Bg(Am, M + 1)) # 0 for all A € Bg(\,r). The set A could be considered as a

maximal (M + 1)-disjoint subset of Bg(A,r). Following the argument used in the proof of Proposition 2.4,
{Bg(Am,2(M 4 1))}, ea forms a covering of the ball B(A,r), which implies that

1o (Bg(A,r)) < (SBEA Hg(Bg (A, 2M +2))#A < ( sup ng(Bg(N,2M +2)))#A. (99)
For A\, € A, define
Vi, =1{i’' € V,(i’,\) € T for some A € Bg(Am, M)}.
Then it follows from (3.3) that

#Vy >1forall A, € A. (9.10)
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Observe that the distance of anchor agents associated with innovative positions in distinct V), is at least
2 by the second requirement (ii) for the set A. This together with the assumption (3.1) implies that

Va, NV, =0 for distinct Ap,, Ay € A. (9.11)

m

Combining (9.9), (9.10) and (9.11) leads to

1g(Bg(A, 1)) < (f,i% 1g(Bg(X,2M +2)))#( Un,en Ta, )- (9.12)

Take i € V with (i, \') € T for some X € Bg(A\, M), and i’ € V), A, € A. Then
pr (i, A) < pr(i, N) + p(N,A) < M +1,
and
pu (i, 0) < puli,N) + pu(WA) <7+ 1,
where A € Bg(Am, M) and (i/,\) € T. Thus
p(i,i') <r+M+1. (9.13)
Then the desired estimate (9.8) follows from (9.12) and (9.13). O
We are ready to prove Proposition 3.3.

Proof of Proposition 3.3. First we prove the doubling property (3.10) for the measure u. Take i € V. Then
for r > 2(M + 1) it follows from Lemmas 9.1 and 9.2 that

1(B(i,2r)) < Lpg(Bg (A, 2r)) < L(Do(G))*ug(Bg (A, 7/2))
< KL(Do(9))*u(B(i,r/2+ M + 1)) < KL(Do(G))*u(B(i,r)), (9.14)

where A € G is a vertex with (4, \) € T and

((deg(g))M*% — 1

K = su Bg(\,2M +2)) < 9.15
sup 116 (B ) deg(0) —1 (9.15)

by (2.6). From the doubling property (2.1) for the measure ug, we obtain
w(B(i,2r)) < KLDo(G) < KLDy(G)u(B(i,7)) for 0 <r < 2(M +1). (9.16)

Then the doubling property (3.10) follows from (9.14), (9.15) and (9.16).
Next we prove the doubling property (3.11) for the measure ug. Let A’ € Bg(A, M) with (i, \') € T for
some i € V. The existence of such A’ follows from assumption (3.3). From Lemmas 9.1 and 9.2, we obtain

n (M+1)>>

ng(Bg(A,2r)) < Ku(B(i,2r + M +1)) < DgKu(B(L g -

< i+ 1))

M+1
< DiLKpg (Bo (A 5+

+ M)) < D2LK g (Bg (A, 1)) (9.17)
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for r > 3M, and

1g(Bg (X, 2r)) < Ku(B(i,TM)) < DgK u(B(i,2M))
< DSLE pg(Bg(N',2M)) < D§LK?ug(Bg(A, 7)) (9.18)

for 0 <r <3M — 1. Combining (9.15), (9.17) and (9.18) proves (3.11). O
9.5. Proof of Proposition 3.4

The polynomial growth property (3.12) for the measure p follows immediately from Lemma 9.1.
The polynomial growth property (3.13) for the measure ug holds because

(deg(9))™ —
pg(Bg(A,1)) < W 0<r<M-1
by (2.6), and
2M
pg(Bg (A1) < Dl((degd(eg)() G) - + )(7"+M+2>d
(deg(g ))2M+3
<21, (LB )+ 1 r 2

by (9.15) and Lemma 9.2.
9.6. Proof of Proposition 4.1

To prove Proposition 4.1, we need a lemma.

Lemma 9.3. Let G be a connected simple graph. If its counting measure has polynomial growth (2.4), then

sup > (L4 pg(A X)) < Dal(_gzla(s +1)7erd (9.19)

AEC pe (AN s

for all & > d and nonnegative integers s, where d and D1(G) are the Beurling dimension and sampling
density respectively.

Proof. Take A € G and a > d. Then

> Gt =Y (> 1)

pg (AN N)>s n>s pg (AN N)=n
<D ug(BgAn)((n+1)"" = (n+2)7%)
n>s

< Dy(G Zn—l—l n+1)7a—(n+2)7°‘)

(9.20)

N
S
S
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where the second inequality follows from (2.4), and the third one is true as (n+ 1)¢ —n? < d(n+ 1)¢-1 for
n>landd>1. 0O

Now we prove Proposition 4.1.

Proof of Proposition 4.1. Take A € J,(G,V) and ¢ := (c(i))iev € 7,1 < p < co. Then

lAcl? < AN, v 3 (S0 +on0i)2le))”

XEG i€V
p—1 o
<IALY, gwlels( s D0+, 7)7)" (sup 32 (4o, (9:21)
ANeG ] eV
eV NEG
For any ' € G and ' € V, it follows from Proposition 3.1 that
pg N N+ 1> py(N,i') > pg (N, N') for all \' € G with (', \") € (9.22)

By (3.2), (3.14), (9.22) and Lemma 9.3, we obtain

> (4 pu(X,i) “<Z( > )1+ngX’))

eV N'EG (i N)ET
LD
<L Z (1+pg(N,AN")~* < id)a for any \ € G, (9.23)
A//EG a -
and
D
Z (14 pu (A Z (T4 pg(N,N")™* < 1(_92101 for any i’ €V, (9.24)
NeG NeG

where M € G satisfies (i',\') € T. Combining (9.21), (9.23) and (9.24) proves (4.4) for 1 < p < oo.
We can use similar argument to prove (4.4) for p=1,00. O

9.7. Proof of Proposition 4.2

Following the proof of Proposition 4.1, we obtain

g LT/

1A = Aely < Al (s 30 1+ pu(Xi))
Nea —

pr (N i')>s

(s Y @ o)) el (9.25)

il
YEY p (i) >

where ¢ € /P, 1 < p < co. Applying similar argument used to prove (9.19), (9.23) and (9.24), we have

D1 (Q)La

o (s+ 1)@t (9.26)

sup > (L4pu(N,i) " <Lsup Y (I+pg(NN) <
NEC b (Vi)>s NEG (M) >s

and
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D1 (g)a

p— (54 1)7Fd, (9.27)

sup Y (L4 pu (Vi) <

>l
VeV (V)5

Then the approximation error estimate (4.6) follows from (9.25), (9.26) and (9.27).
9.8. Proof of Theorem 5.3

To prove Wiener’s lemma (Theorem 5.3) for J,(V),a > d, we first show that it is a Banach algebra of
matrices.

Proposition 9.4. Let V be an undirected graph with the counting measure u having polynomial growth (3.9).
Then for any o > d, J,(V) is a Banach algebra of matrices:

1) 18Cll7.0v) = IBIICll 7. v

(i) [C+Dllgz, v §+HIC||JC,(V) + D7, v

(iii) |CD|z, vy < 2552(Cll 7.0 Dl 7. (v, and
)

a—d
IDellz < 251Dl 7. v llcll2

(iV — a—d

for any scalar 3, vector ¢ € €2 and matrices C,D € J, (V).

Proof. The first two conclusions follow immediately from (5.2) and (5.3).
Now we prove the third conclusion. Take C,D € J,(V). Then

ICD|| 7, vy < 2%Cll7,(»[IDll7.(v) sup ( E (14 p(a", "))~
i,1'eV .. ..
p(i,i")>p(i,i") /2

+ > (1+ p(i,i”))“’)- (9.28)

p(i",i")2p(iyi') /2

Following the argument used in the proof of Lemma 9.3, we have

Dla
a—d

sup > (14 p(i, i) < (s+1)"°t 0<seZ (9.29)

Y pi,i)zs
Combining (9.28) and (9.29) proves the third conclusion.

Following the proof of Proposition 4.1 and applying (9.29) instead of (9.23) and (9.24), we obtain the
fourth conclusion. O

Now, we prove Theorem 5.3

Proof of Theorem 5.3. Following the argument in [59], it suffices to establish the following differential norm
inequality:

1C? 7wy < 2722Dy2 (D1 /(0 = )~ (|Cll 7.0 (ICl| ) (9-30)

holds for all C € J,(V), where 6 = (2a — 2d)/(2a. — d) € (0,1).
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Write C = (C(i,il))i7i/ev. Then

IC 700 < 2 €z (sup D @+ s DD felini)])
SV p(ii) 2 p(isit) /2 BEEV pir i) 2 p(ii7) )2
<27l 7 (sup D 1e@”, )] +sup D el ")) (9-31)
z’EVi,,eV 1€Vi,,ev
Set
Dia|C 2/(2a—d)
- ( 1| ”JQ(V)) > (9.32)
(o = d)[|C]| 2
by Proposition 9.4. For ¢/ € V', we obtain
1/2 1/2
Z |C(i//,i/)| < ( Z |c(7;”’i/)‘2> ( Z 1) + HC||g7(¥(V) Z (1+,O(i”,i’))_o‘
eV p(i’ i<t p(i”,i')ST p(i”,i')>7’
< D2|Clls=(1 + |7 + Dra(a = d) 7Y Cll g, (1 + 7))~
< 2921 DI2(Dya/(a — )Y =D (|[C 7, 0) ' (IC]12)’, (9.33)

where the second inequality holds by (9.29) and the last inequality follows from (9.32). Similarly, for i € V'

we have

>l i) < 22 Dy (Dra/ (@ = d) 2D (|[C| 7, 0) (I Clls2)’ (9.34)
i'eV

Combining (9.31), (9.33) and (9.34) proves (9.30). This completes the proof of Theorem 5.3. O

9.9. Proof of Theorem 5.2

To prove Theorem 5.2, we need Theorem 5.3 and the following lemma about families 7, (G, V) and J, (V)
of matrices.

Lemma 9.5. Let G, H,V and d be as in Proposition 5.1. Then

. a+1 o
(i) AC| 7. < ZEBG Al 1 o) ICl| 7. vy for all A € Jo(G,V) and C € Ja(V).
.o o+l 6%
(ii) |ATB 7. v < 22U A 7 60)IBllgugy) for all A,B € Ju(G, V).

Proof. Take A € J,(G,V) and C € J,(V). Observe from (3.1) that
pr (N 3) < pr (N, i) + p(¢',4) for all A € G and 4,7 € V.

Similar to the argument used in the proof of Proposition 9.4, we obtain

1AC] 2.0 < 21 All7.6. [Cll v (50 D0 (140 0)7 4+ sup 3= (14 pw(A 1)),

€V ey AEG ey

This together with (3.15), (9.26) and (9.29) proves the first conclusion.
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Recall that
p(i,i") < pu (N, i) + pr (N, ') for all X € G and i, € V. (9.35)

Then for A, B € J,(G,V), we obtain from (9.27) and (9.35) that

IATB| 7, v) < 2" All 7,61 IBll 7. 6.1 sup > A+ pu(A\i)
'SV aea

2a+1D1 (g)a
g Alz@wIBll.gy):

IN

This completes the proof of the second conclusion. O

Now we prove Theorem 5.2.
Proof of Theorem 5.2. Take A € 7,(G,V) that has 02-stability. Then AT A has bounded inverse on ¢2.

Observe that ATA € J,(V) by Lemma 9.5. Therefore (ATA)™! € 7,(V) and A(ATA)~! € 7,(G,V) by
Theorem 5.3 and Lemma 9.5. Hence for any ¢ € /P,

lell, = [I(ATA) T AT Acl|, < (ATA) 7.6 | Aclly

Dl(g)LOL
=20 A

and

D1(9)

1 Lo
[Acll, < ﬁ”A”Ja(g,V)HCHP

by Proposition 4.1 and the dual property between sequences 7 and £°/(P=1)_ The ¢P-stability for the matrix
A then follows. O

9.10. Proof of Theorem 5.4
The conclusion (5.4) follows immediately from Proposition 4.1, Theorem 5.3 and Lemma 9.5.
9.11. Proof of Theorem 6.1

Observe from Proposition 3.1 that

Bu(y,1)NG ={y €G, pg(v,7)<r}, veq
and
By (i,r)NV ={i' €V, p(i,i') <max(r —1,0)}, i € V.
Take ¢ = (¢(4))iev supported in By (A, N) NV and write Ac = (d(\))xeg. Then
|Acl > Az, @.vlclz (9.36)

and
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> V)P < LDyGIN AN, g0
o1 (M A)>2N

Y Yo AN ) e

pr (N A)>2N i€ By (A, N)NV

2. _on _
< (D1(9)) LN 2+ 2da(a — d) A, g v llell3, (9.37)
where the first inequality holds as
p?‘l(/\/7i/) > p’H(A/a A) - p?‘[(i/7)\) >N

for all N ¢ By (A 2N) and i € By (A, N), and the last inequality follows from (9.27). Combining (9.36)
and (9.37) proves (6.1).

9.12. Proof of Theorem 6.2

In this subsection, we will prove the following strong version of Theorem 6.2.
Theorem 9.6. Let G, H,V and A be as in Theorem 6.2. If there exists a positive constant Ay, an integer
Ng > 3, and a mazximal %-disjoint subset Gy, /4 such that (6.3) is true and (6.4) hold for all Ay, € G N, /4,

then A satisfies (6.5).

Proof. Let ¢y be the trapezoid function,

1 if [t <1/2
Yo(t) =< 2—=2J¢] if 1/2<t| <1 (9.38)
0 if |t > 1.

For )\ € G, define multiplication operators \Ilgv v and \I/f\v a by
Uy o (e@)iev — (Yolpr(X ) /N)e(i)), oy (9-39)
Ve ([@dN)vea — (Yolpu(AX)/N)YAN)), cq- (9.40)
Observe that
AN‘I’]AV,V = ANX]AV,V‘I’]AV,V = Xg\],\é‘ANXiV,V\Ijiv,Va N >0,

where Ay is a band approximation of the matrix A in (4.5). Then for all A, € Gy, /4, it follows from
Proposition 4.2 and our local stability assumption (6.4) that

N N N N N N
HANO\IJ)\::“VCHQ > ||X§M?GAX,\7:JV\I/>\SL,VCH2 - HXim?G(A - ANo)\I/Af“VC||2

_ D1 (Q)La
«Q

Z(Ao —J

—a+d N
NG ) Al 7@ 190 pella, € 2

Therefore

1/2
S IAn R pel?)
Am EGNO/AL
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Dy(G)La . _,, 1/2
> (40— ZEZENG ) Ao (X 190 vel)
)\mGGNO/4

Ay Di(G)L

«
S A S A a+d |
- ( 3 3(a — d) N )”A“ja g, V)||C||27 (9 41)

where the last inequality holds because for all ¢ € V,

O =

Ny — 22
> ‘wO(pH(AM7i)/NO)|2Z( 3\]0 ) Y XBuOwNo/2n) (D) =

Am €GN, /4 Am €GNy /4

by (9.38), Proposition 2.4 and the assumption that Ny > 3.

Next, we estimate commutators
ANo‘I’f\V,Z,V - \ij\\i:,GANo = (ANo‘I’f\V,Z,V - \Ijivi,GANo)Xii\i?V’ Am € GNy/a-
Take ¢ = (c(i))iev € £*. Then

N,
Z ||(AN0‘II>\m v ‘PA,Z,GANU)CI@
Am,EGNO/Al

<Az enm > Y { X Qe

AmE€G Ny 4 AEG  pa(A,i)<No

e Y e | N O 2]}

SADo@) N IAIG g (sup D0 (L i) o0 )

AEBy (i,No)NG

(s ST (D) oA ) el (9.42)

AEG e Ba (W No)NV
where the last inequality follows from Propositions 2.4 and 3.1, and
[tho(t) — o(t")] < 2|t —¢| for all t,t' € R.

Following the argument used in (9.19), we have
sup S (4 o) pu(N i)
1€V \eBa (i,No)NG

< su 14 pg(\,\))~att
o Y ()

pg(AA)<No
Nop—1
< Di(G)(No+ 1)~ 4 (a = 1)D1(G) D (n+1)"*H
n=0
No

< D1(G)(No + 1)~ 4 Dy (G)(ar — 1) (1 n /t—a+ddt)

W if a>d+1
<{ Di(G)(1+d+dmNo) if a=d+1 94

d+1—a
TP @dydime i g < d 1,
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and
sup Z (1 +PH()\,Z))7QPH()‘aZ)
ACE e By (A No)NV
<Lsup Y (14pg(A X))~
MG N\1eBg (A No)
W if a>d+1
<{ DG L +d+dinNy) if a=d+1 (9-44)
2UDUGML NdtIe i o < 1.
Therefore,

1/2
(Do(@) ANl = (3 19N cAnel)

AmGGN0/4
1/2 1/2
> (0 A el) - (D IAnRY  — e pAN)el3)
Am €GN /a Am €GNy /4
AOHA”Ja g,V) min d,1
> 0 ez — DyG)LIA] g6y Ng T el
(g + LRl e ) it o>d+1
x{ (45 +2(Do(G)*(1+d+dInNy)) if a=d+1
(s + 42220%)

where the first inequality holds by Proposition 2.4, and the third inequality follows from (9.41) and (9.42).
This together with Proposition 4.2 completes the proof. O

9.18. Proof of Proposition 7.1
To prove Proposition 7.1, we need the following critical estimate.
Proposition 9.7. Let G, H, V and S be as in Proposition 7.1. Then

270‘71(05 — d)2D2

N qTgq,N y-1
S°S < , 9.45
||(X>\,V XA,V) HJQ(V) = aleDl(g)”S”?Zl(g,v) ( )
where Dy is the constant in (7.8).
Proof. Let Jy y := Xﬁ\V’VSTSXﬁ\V’V. By Lemma 9.5, we have
291Dy (G)a
s~z € ———7— 817,61 (9.46)

This together with Propositions 9.4 implies that

2a+106 D Dl( )
Aﬂﬁ”ixgvﬂxﬁvxngﬁ”SXQVXH§:<JXNX%X>S‘——ngzﬁ———ﬂsuzgngXAvxm
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for all x € /2. Hence

a*D1D
Jan = —11<) ”SHJQ gy Ipy vy — Baw) (9.47)
(o —d)?
for some B, y satisfying
[Banll52 <70 (9.48)
and
27 Ha—d)?| Iz Nl 7.0 a—d
B < |1 + NITaW) 4 22 <9, 9.49
|| )\,NHJQ(V) || BH()\,N)I"WVHJQ(V) a2D1D1(g)|‘S||?7a(g7v) OéDl ( )

where I, (x n)nv is the identity matrix on By (A, N)NV. Then following the argument in [59] and applying
(9.30) with C replaced by By y and V' by By (A, N) NV, we obtain the following estimate
DT By 7, v) ) s=gnsa =0

B~ 52

1B lzuo < ( IBage foralln>1,

where D = 220+4/243D1/2(D o /(a — d))?~?. This together with (9.48) and (9.49) leads to

2—0 logo(2—6)

|(Br,N)"[l 7. vy < (2D7=7 H/TO)W” rg forall n>1. (9.50)
Observe that

272 L(a —d)?
J -1 <
(Ian) " llzam < a2D1D;(G)

s (1 1B o) (9.51)
Ja(G,V) n=1

by (9.47). Combining (9.50) and (9.51) completes the proof. O

Proof of Proposition 7.1. Observe from (7.2) and (7.3) that

N N _
b (day = da) = X3 O V8T8 ) Ty ST — 1Yy )da.

This together with (9.29), Lemma 9.5, and Propositions 9.4 and 9.7 implies that

N/2 -
AR (day = d2)lso < 08T SxN ) ™A 8", v)

sup St on(id) ) e

€BHAN/DNOV jop S0y

2a+1D10[

< T”(XA vSTSxY V) 7o 1878l 7. vy X

(sup > (L4 pulir ) ™) dallo

Y paid)>N/2
< 20‘+1D2($up Z (14 pa(i,5)) ") 1d2| oo
€V palig)>N/2
20‘+1D1D2a N
< LRt(s

+ o d Ds3(N + otd||q
1) o0 < 1)~ oo
d 9 || 2” = 3( ) || 2”

This proves the estimate (7.6).
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Now we prove (7.7). Set yrs = (STS)~'d,. By (9.29),

DlOz
a—d

lyLslleo < 1(878) |7 ) 12l .- (9-52)

Moreover, following the proof of Proposition 9.7 gives

270&71(04 — d)2D2

18"S) "l 7o) < : (9.53)
= a2DiDy(9)[SIZ, 6.1,
Write
N/2 N/2 _
g wWan = wis) = xre 0N S ) O v STSx ) v STS (1 — XYy )de
e O S O STS Y ) Iy STS(E - Yy )y s
_X]AV,/GQS(I - Xi\f,\/)}’Ls
= T+ IT + ITI. (9.54)
Using (9.26), (9.52), (9.53), Lemma 9.5, and Propositions 9.4 and 9.7, we obtain
[lo < H(Xf\\CGSXf\V,V)(Xf\V,VSTSXIAV,V)72X£\\CVSTS||.7Q(G,V) X
sup Yo (M puN,)) ) ldall
NEBH(AN/DNG iy p ' N)v
22a+2LD2 o
S B on e > A eu(X,9)7) sl
Ja(G:V) NEG . (N i)>N/2
23a=d+2, 12D, (G)D? (N + 1)+ dyo,
— (a=d)[Slz.g.v
23a7d+2a2L2(D1(g))2D2 W
[0 < (@ a2 181l 7 (@) (N + 1)~ |y Ls oo
22a—d+1 L2D D2
< o 1(g) 2(N+1)_a+d||d2”oo,
(a = d)[ISll7.g,v
and
LD
111 < S (N + 1) d o
181l 7..g.v)
These together with (9.54) prove (7.7). O
9.14. Proof of Theorem 7.2
Let
u, = ST(Wn —wrg) = STw, —dy and v, =Su,, n>1. (9.55)
Then,

U,41 = u, — STRyS"Su, =87 (S(8"S)?S"v,, — RnS"v,,)
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by (7.13), (7.14) and (9.55). Therefore,

D1(G)

Lo _
[tntilloe < 7d”S”Ja(Q,V)”RNSTVH —8(878) 7?8Vl

Dl(g)D4LOé
a—d
riflunflee <o < rT[ST(RNSTS — S(STS) ™) dall

|zl (9.56)

IA

ISll7. 0.y (N + 1)F[(STS) 'S8 Vi |

IN

where the second inequality follows from (7.10) with ds replaced by (STS)~!STv,,, and the last inequality
holds by (7.10) and Proposition 4.1.
Observe that

Wni1 — W, = —RySTSu,. (9.57)
Using (7.12), Proposition 4.1 and Lemma 9.5 gives

22a+2aL3 D (g 2D2
e I (9.58)
(a —d)D1[S|| 7.6,

||Wn+1 - Wn”oo S

This together with (9.56) proves the exponential convergence (7.17).

The conclusion (7.15) follows from (9.55) by taking limit n — oco.

The error estimate (7.18) between the “least squares” solution ds and its sub-optimal approximation
STw,,,n > 1, follows from (7.17) and Proposition 4.1.
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