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A spatially distributed network contains a large amount of agents with limited 
sensing, data processing, and communication capabilities. Recent technological 
advances have opened up possibilities to deploy spatially distributed networks for 
signal sampling and reconstruction. In this paper, we introduce a graph structure for 
a distributed sampling and reconstruction system by coupling agents in a spatially 
distributed network with innovative positions of signals. A fundamental problem in 
sampling theory is the robustness of signal reconstruction in the presence of sampling 
noises. For a distributed sampling and reconstruction system, the robustness could 
be reduced to the stability of its sensing matrix. In this paper, we split a distributed 
sampling and reconstruction system into a family of overlapping smaller subsystems, 
and we show that the stability of the sensing matrix holds if and only if its quasi-
restrictions to those subsystems have uniform stability. This new stability criterion 
could be pivotal for the design of a robust distributed sampling and reconstruction 
system against supplement, replacement and impairment of agents, as we only 
need to check the uniform stability of affected subsystems. In this paper, we also 
propose an exponentially convergent distributed algorithm for signal reconstruction, 
that provides a suboptimal approximation to the original signal in the presence of 
bounded sampling noises.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Spatially distributed networks (SDNs) have been widely used in (underwater) multivehicle and multi-
robot networks, wireless sensor networks, smart power grids, etc. ([2,19,23,40,45,74,75]). Comparing with 
traditional centralized networks that have a powerful central processor and reliable communication between 
agents and the central processor, an SDN could give unprecedented capabilities especially when creating a 
data exchange network requires significant efforts (due to physical barriers such as interference), or when 
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establishing a centralized processor presents the daunting challenge of processing all the information (such 
as big-data problems). In this paper, we describe the topology of an SDN by an undirected (in)finite graph

G := (G, S) (1.1)

of large scale, where a vertex in G represents an agent and an edge in S between two vertices means that a 
direct communication link exists.

To consider signal sampling and reconstruction on an SDN, we equip a sensing device at every agent 
λ ∈ G, which has with limited sensing, data processing, and communication capabilities. In this paper, we 
assume that the sampling procedure

f �−→ (y(λ))λ∈G

on signals f of interest is linear. This implies that the sampling data

y(λ) := 〈f, ψλ〉 (1.2)

acquired by the agent λ ∈ G is a linear functional on f , where the functional ψλ reflects the characteristic 
of the sensing device of the agent λ ∈ G. For spatial signals on Rd, the above sampling procedure is also 
known as average sampling or (non)ideal sampling [8,17,32,60].

Fundamental signal reconstruction problems are whether and how the signal f of interest can be recovered 
from its sampling data y(λ), λ ∈ G. The signal reconstruction problem is ill-posed inherently. For its 
well-posedness, the signal f is usually assumed to have additional properties, such as band-limitedness, finite 
rate of innovation, smoothness, and sparse expansion in a dictionary ([7,15,26–28,71,72]). The sampling and 
reconstruction problem is well studied for spatial signals on Rd. The reader may refer to [4,7,8,32,49,58,60,
70–72] and references therein for various sampling procedure and reconstruction scenarios. In this paper, 
we consider spatial signals

f =
∑
i∈V

c(i)ϕi(·) (1.3)

being a bounded superposition of generators ϕi, i ∈ V . Define

Vp(Φ) :=
{ ∑

i∈V

c(i)ϕi,
(
c(i)

)
i∈V

∈ �p
}

, 1 ≤ p ≤ ∞,

where Φ = {ϕi}i∈V and �p, 1 ≤ p ≤ ∞, are Banach spaces of all p-summable sequences with norms denoted 
by ‖ · ‖p. Therefore spatial signals f with the parametric representation (1.3) belong to the space V∞(Φ), 
i.e.,

f ∈ V∞(Φ).

The spaces Vp(Φ), 1 ≤ p ≤ ∞, were introduced in [62] for modeling signals with finite rate of innovation, 
which include the classical band-limited signals, wavelet signals and spatial signals in many engineering 
applications, see [27,60,72] and references therein. For signals with finite rate of innovation on Rd, every 
index i in V is associated with an innovative position in Rd and the generator ϕi is essentially supported 
in a spatial neighborhood of the innovative position of i ∈ V . So in this paper, we follow the terminology in 
[62] to call V the set of innovative positions of spatial signals in (1.3).

In this paper, we associate every innovative position i ∈ V with some anchor agents λ ∈ G, and denote 
the set of such associations (i, λ) by T . These associations can be easily understood as agents deployed 
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Fig. 1. The graph H = (G ∪ V, S ∪ T ∪ T ∗) in (1.4) to describe a DSRS, where vertices in G and V are plotted in red circles and 
blue triangles, and edges in S, T and E are in black solid lines, green solid lines and red dashed lines respectively.

within certain (spatial) range of every innovative position. With the above associations, we describe our 
distributed sampling and reconstruction system (DSRS) by an undirected (in)finite graph

H := (G ∪ V, S ∪ T ∪ T ∗), (1.4)

where T ∗ = {(λ, i) ∈ G × V, (i, λ) ∈ T }, see Fig. 1. The above graph description of a DSRS plays a crucial 
role for us to study signal sampling and reconstruction.

Given a DSRS described by the above graph H, set

E := {(i, i′) ∈ V × V, i �= i′ and (i, λ), (i′, λ) ∈ T for some λ ∈ G}. (1.5)

We then generate a graph structure

V := (V, E) (1.6)

for signals in (1.3), where an edge between two distinct innovative positions in V means that a common 
anchor agent exists. The above graph structure for signals is different from the conventional one in most of 
the literature, where the graph is usually preassigned. The reader may refer to [53,54,57] and Remark 3.6.

Define sensing matrix S of our DSRS by

S := (〈ϕi, ψλ〉)λ∈G,i∈V . (1.7)

The sensing matrix S is stored by agents in a distributed manner. Due to the storage limitation, each agent 
in our SDN stores its corresponding row (and perhaps also its neighboring rows) in the sensing matrix S, 
but it does not have the whole matrix accessible. Agents in our SDN have limited acquisition ability and 
they could essentially catch signals not far from their physical locations. So the sensing matrix S has certain 
polynomial off-diagonal decay, i.e., there exist positive constants D and α such that

|〈ϕi, ψλ〉| ≤ D(1 + ρH(λ, i))−α for all λ ∈ G and i ∈ V, (1.8)

where ρH is the geodesic distance on the graph H. For most DSRSs in applications, such as multivehicle 
and multirobot networks and wireless sensor networks, the signal generated at any innovative position could 
be detected by its anchor agents and some of their neighboring agents, but not by agents in the SDN in a 
distance. Thus the sensing matrix S may have finite bandwidth s ≥ 0,

〈ϕi, ψλ〉 = 0 if ρH(λ, i) > s. (1.9)

The above global requirements (1.8) and (1.9) could be fulfilled in a distributed manner.
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The sensing matrix S characterizes the sampling procedure (1.2) of signals with the parametric repre-
sentation (1.3). Applying the sensing matrix S, we obtain the sample vector y = (〈f, ψλ〉)λ∈G of the signal 
f from its amplitude vector c := (c(i))i∈V , i.e.,

y = Sc. (1.10)

Under the assumptions (1.8) and (1.9), it is shown in Proposition 4.1 that a signal f with bounded amplitude 
vector c generates a bounded sample vector y. Thus there exists a positive constant C such that

‖y‖∞ ≤ C‖c‖∞ for all c ∈ �∞.

Here the capital letter C is an absolute constant which is not necessarily the same at each occurrence.
A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of 

sampling noises ([11,32,47–49,52,58]). In this paper, we consider the scenario that the sampling data y = Sc
is corrupted by bounded deterministic/random noise ηηη = (η(λ))λ∈G,

z = Sc + ηηη (1.11)

([67,73]). For the robustness of our DSRS, one desires that the signal reconstructed by some (non)linear 
algorithm Δ is a suboptimal approximation to the original signal, in the sense that the difference between 
their corresponding amplitude vectors Δ(z) and c are bounded by a multiple of noise level δ = ‖ηηη‖∞, i.e.,

‖Δ(z) − c‖∞ ≤ Cδ (1.12)

for some absolute constant C ([1,7,17]).
Given the noisy sampling vector z in (1.11), consider the following global optimization problem of maximal 

sampling error ([13,14])

Δ∞(z) := argmin
d∈�∞

‖Sd − z‖∞. (1.13)

The above minimization problem can be solved by linear programming

min
d

t subject to Sd − z ≤ t1 and − Sd + z ≤ t1, (1.14)

where 1 = (1, . . . , 1)T is the vector with one as its entries.

Definition 1.1. For 1 ≤ p ≤ ∞, a matrix A is said to have �p-stability if there exist positive constants A and 
B such that

A‖c‖p ≤ ‖Ac‖p ≤ B‖c‖p for all c ∈ �p. (1.15)

We call the minimal constant B and the maximal constant A for (1.15) to hold the upper and lower 
�p-stability bounds respectively.

Observe from (1.11) and (1.13) that

‖SΔ∞(z) − Sc‖∞ ≤ ‖SΔ∞(z) − z‖∞ + ‖ηηη‖∞ ≤ ‖Sc − z‖∞ + ‖ηηη‖∞ ≤ 2‖ηηη‖∞.
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Thus the solution of the �∞-minimization problem (1.13) gives a suboptimal approximation to the true 
amplitude vector c if the sensing matrix S of the DSRS has �∞-stability ([7,68,71]), cf. Fig. 7. In Theo-
rem 5.2, we show that for a matrix with some polynomial off-diagonal decay if it has �2-stability then it has 
�∞-stability with the lower �∞-stability bound independent of the size of the DSRS.

Next we consider the problem how to verify �2-stability of the sensing matrix S of our DSRS in a 
distributed manner. It is well known that a finite-dimensional matrix S has �2-stability if and only if ST S
is strictly positive, and its upper and lower stability bounds are the same as square roots of largest and 
smallest eigenvalues of ST S. The above procedure to establish �2-stability for the sensing matrix of our 
DSRS is not feasible, because the whole sensing matrix S is not available for any agent in the DSRS and 
there is no centralized processor to evaluate eigenvalues of ST S. In Theorems 6.1 and 6.2, we introduce 
a method to split the DSRS into a family of overlapping subsystems of small size, and we show that the 
sensing matrix S with polynomial off-diagonal decay has �2-stability if and only if its quasi-restrictions to 
those subsystems have uniform �2-stability. The new local criterion in Theorems 6.1 and 6.2 provides a 
reliable tool for the verification of the �2-stability in a distributed manner. Also the local criterion is pivotal 
for the design of a robust DSRS against supplement, replacement and impairment of agents, as it suffices 
to verify the uniform stability of affected subsystems.

Then we consider signal reconstructions in a distributed manner, under the assumption that the sensing 
matrix S of our DSRS has �2-stability. For centralized signal reconstruction systems, there are many robust 
algorithms, such as the frame algorithm and the approximation–projection algorithm, to approximate signals 
from their (non)linear noisy sampling data ([5,17,20,31,34,49,60,67]). In this paper, we develop a distributed 
algorithm to find the suboptimal approximation

Δ2(z) := (ST S)−1ST z (1.16)

to the original signal f in (1.3). For the case that our DSRS has finitely many agents (which is the case in 
most of practical applications), the suboptimal approximation Δ2(z) in (1.16) is the unique least squares 
solution,

Δ2(z) = argmin
d∈�2

‖Sd − z‖2
2 = argmin

d∈�2

∑
λ∈G

Θλ(d, z), (1.17)

where d = (d(i))i∈V , z = (z(λ))λ∈G, and

Θλ(d, z) =
∣∣∣ ∑

i∈V

〈ϕi, ψλ〉d(i) − z(λ)
∣∣∣2

, λ ∈ G. (1.18)

As our SDN has strict constraints in its data processing power and communication bandwidth, we need 
develop distributed algorithms to solve the optimization problem

min
∑
λ∈G

Θλ(d, z). (1.19)

For the case that G = V and the sensing matrix S is strictly diagonally dominant, the Jacobi iterative 
method ⎧⎪⎨

⎪⎩
d1(λ) = 0
dn+1(λ) = (〈ϕλ, ψλ〉)−1( ∑

i�=λ〈ϕi, ψλ〉dn(i) − z(λ)
)

= argmint∈R
Θλ(dn;t,λ, z), λ ∈ G = V, n ≥ 1,

is a distributed algorithm to solve the minimization problem (1.19), where dn;t,λ is obtained from dn =
(dn(i))i∈V by replacing its λ-component dn(λ) with t. The reader may refer to [10,16,43,46,50] and references 
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therein for historical remarks, motivations, applications and recent advances on distributed algorithms, 
especially for the case that G = V .

In our DSRS, the set G of agents is not necessarily the same as the set V of innovative positions, 
and even for the case that the sets G and V are the same, the sensing matrix S need not be strictly 
diagonally dominant in general. In this paper, we introduce a distributed algorithm (7.19) and (7.20) to 
approximate Δ2(z) in (1.16), when the sensing matrix S has �2-stability and satisfies the requirements 
(1.7) and (1.8). In the above distributed algorithm for signal reconstruction, each agent in the SDN collects 
noisy observations of neighboring agents, then interacts with its neighbors per iteration, and continues the 
above recursive procedure until arriving at an accurate approximation to the solution Δ2(z) in (1.16). More 
importantly, we show in Theorems 7.1 and 7.2 that the proposed distributed algorithm (7.19) and (7.20)
converges exponentially to the solution Δ2(z) in (1.16). The establishment for the above convergence is 
virtually based on Wiener’s lemma for localized matrices ([37,38,41,59,61,66]) and on the observation that 
our sensing matrices are quasi-diagonal block dominated.

The paper is organized as follows. In Section 2, we make some basic assumptions on the SDN and we 
introduce its Beurling dimension and sampling density. In Section 3, we introduce the graph H to describe 
our DSRS and then we define dimension and maximal rate of innovation for signals on the graph V. We show 
in Theorem 3.5 that the dimension for signals is the same as the Beurling dimension for the SDN, and the 
maximal rate of innovation is approximately proportional to the sampling density of the SDN. In Section 4, 
we prove in Proposition 4.1 that sampling a signal with bounded amplitude vector by the procedure (1.2)
produces a bounded sampling data vector when the sensing matrix of the DSRS has certain polynomial 
off-diagonal decay. In Section 5, we establish in Theorem 5.2 that if a matrix with certain off-diagonal decay 
has �2-stability then it has �p-stability for all 1 ≤ p ≤ ∞, and also in Theorem 5.4 that the solution Δ2(z) in 
(1.16) is a suboptimal approximation to the true amplitude vector. In Theorems 6.1 and 6.2 of Section 6, we 
introduce a criterion for the �2-stability of a sensing matrix, that could be verified in a distributed manner. 
In Section 7, we propose a distributed algorithm to solve the minimization problem (1.17). In Section 8, we 
present simulations to demonstrate our proposed algorithm for robust signal reconstruction. In Section 9, 
we include proofs of all conclusions.

The sampling theory developed in this paper enjoys the advantages of scalability of network sizes and 
data privacy preservation. Some results of this paper were announced in [18].

Notation: AT is the transpose of a matrix A; ‖c‖p is the norm on �p; χF is the index function on a set 
F ; 
x� is the ceiling of x ∈ R; �x� is the floor of x ∈ R; #F is the cardinality of a set F ; and ‖A‖B2 is the 
operator norm of a matrix A on �2.

2. Spatially distributed networks

Let G be the graph in (1.1) to describe our SDN. In this paper, we always assume that G is connected
and simple (i.e., undirected, unweighted, no graph loops nor multiple edges), which can be interpreted as 
follows:

• Agents in the SDN can communicate across the entire network, but they have direct communication 
links only to adjacent agents.

• Direct communication links between agents are bidirectional.
• Agents have the same communication specification.
• The communication component is not used for data transmission within an agent.
• No multiple direct communication channels between agents exists.

In this section, we recall geodesic distance on the graph G to measure communication cost between 
agents. Then we consider doubling and polynomial growth properties of the counting measure on the graph 
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G, and we introduce Beurling dimension and sampling density of the SDN. For a discrete sampling set in the 
d-dimensional Euclidean space, the reader may refer to [24,30] for its Beurling dimension and to [7,49,60,71]
for its sampling density. Finally, we introduce a special family of balls to cover the graph G, which will be 
used in Section 7 for the consensus of our proposed distributed algorithm.

2.1. Geodesic distance and communication cost

For a connected simple graph G := (G, S), let ρG(λ, λ) = 0 for λ ∈ G, and ρG(λ, λ′) be the number of 
edges in a shortest path connecting two distinct vertices λ, λ′ ∈ G. The above function ρG on G × G is 
known as geodesic distance on the graph G ([21]). It is nonnegative and symmetric:

(i) ρG(λ, λ′) ≥ 0 for all λ, λ′ ∈ G;
(ii) ρG(λ, λ′) = ρG(λ′, λ) for all λ, λ′ ∈ G.

And it satisfies identity of indiscernibles and the triangle inequality:

(iii) ρG(λ, λ′) = 0 if and only if λ = λ′;
(iv) ρG(λ, λ′) ≤ ρG(λ, λ′′) + ρG(λ′′, λ′) for all λ, λ′, λ′′ ∈ G.

In many real-world applications, the distance ρG(λ, λ′) can be used to measure the communication cost 
between two distinct agents λ and λ′ ∈ G, since communication between them happens by transmitting 
information through the chain of intermediate agents connecting them using a shortest path.

2.2. Counting measure, Beurling dimension and sampling density

For a connected simple graph G = (G, S), denote its counting measure by μG ,

μG(F ) := #(F ) for F ⊂ G,

where #F is the cardinality of a set F .

Definition 2.1. The counting measure μG is said to be a doubling measure on G if there exists a positive 
number D0(G) such that

μG(BG(λ, 2r)) ≤ D0(G)μG(BG(λ, r)) for all λ ∈ G and r ≥ 0, (2.1)

where

BG(λ, r) := {λ′ ∈ G, ρG(λ, λ′) ≤ r}

is the closed ball with center λ and radius r.

The doubling property of the counting measure μG can be interpreted as numbers of agents in 
r-neighborhood and (2r)-neighborhood of any agent are comparable. The doubling constant of μG is the 
minimal constant D0(G) ≥ 1 for (2.1) to hold ([22,25]). It dominates the maximal vertex degree of the 
graph G,

deg(G) ≤ D0(G), (2.2)
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Fig. 2. A tree with large doubling constant but limited maximal vertex degree.

because

deg(G) = max
λ∈G

#{λ′ ∈ G, (λ, λ′) ∈ S} ≤ max
λ∈G

#
(
BG(λ, 1)

)
≤ D0(G).

We remark that for a finite graph G, its doubling constant D0(G) could be much larger than its maximal 
vertex degree deg(G). For instance, a tree with one branch for the first L levels and two branches for the 
next L levels has 3 as its maximal vertex degree and (2L+1 + L − 1)/(L + 1) as its doubling constant, see 
Fig. 2 with L = 3.

The counting measure on an infinite graph is not necessarily a doubling measure. However, the counting 
measure on a finite graph is a doubling measure and its doubling constant could depend on the local topology 
and size of the graph, cf. the tree in Fig. 2. In this paper, the graph G to describe our SDN is assumed to 
have its counting measure with the doubling property (2.1).

Assumption 1. The counting measure μG of the graph G is a doubling measure,

D0(G) < ∞. (2.3)

Therefore the maximal vertex degree of graph G is finite,

deg(G) < ∞,

which could be understood as that there are limited direct communication channels for every agent in the 
SDN.

Definition 2.2. The counting measure μG is said to have polynomial growth if there exist positive constants 
D1(G) and d(G) such that

μG(BG(λ, r)) ≤ D1(G)(1 + r)d(G) for all λ ∈ G and r ≥ 0. (2.4)

For the graph G associated with an SDN, we may consider minimal constants d(G) and D1(G) in (2.4)
as Beurling dimension and sampling density of the SDN respectively. We remark that

d(G) ≥ 1, (2.5)

because

sup
λ∈G

μG(BG(λ, r)) ≥ 1 + r for all 0 ≤ r ≤ diam(G),

where diameter of the graph G is defined by diam(G) := supλ,λ′∈G ρG(λ, λ′).
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Applying (2.1) repeatedly leads to the following general doubling property:

μG(BG(λ, sr)) ≤ (D0(G))�log2 s	μG(BG(λ, r)) ≤ D0(G)slog2 D0(G)μG(BG(λ, r))

for all λ ∈ G, s ≥ 1 and r ≥ 0. Thus

μG(BG(λ, r)) ≤ D0(G)(1 + r)log2 D0(G)μG
(

BG
(

λ,
r

1 + r

))
= D0(G)(1 + r)log2 D0(G), r ≥ 0.

This shows that a doubling measure has polynomial growth.

Proposition 2.3. If the counting measure μG on a connected simple graph G is a doubling measure, then it 
has polynomial growth.

For a connected simple graph G, its maximal vertex degree is finite if the counting measure μG has 
polynomial growth, but the converse is not true. We observe that if the maximal vertex degree deg(G) is 
finite, then the counting measure μG has exponential growth,

μG(BG(λ, r)) ≤ (deg(G))r+1 − 1
deg(G) − 1 for all λ ∈ G and r ≥ 0. (2.6)

2.3. Spatially distributed fusion subnetworks

For a connected simple graph G := (G, S) and N ≥ 0, we say that GN ⊂ G is a maximal N -disjoint 
subset of G if

BG(λ, N) ∩ ( ∪λm∈GN
BG(λm, N)

)
�= ∅ for all λ ∈ G, (2.7)

and

BG(λm, N) ∩ BG(λm′ , N) = ∅ for all λm, λm′ ∈ GN . (2.8)

For 0 ≤ N < 1, it follows from (2.7) that GN = G. For N ≥ 1, there are many subsets GN of vertices 
satisfying (2.7) and (2.8). For instance, we can construct GN = {λm}m≥1 as follows: take a λ1 ∈ G and 
define λm, m ≥ 2, recursively by

λm = argmin
λ∈Am

ρG(λ, λ1),

where Am = {λ ∈ G, BG(λ, N) ∩ BG(λm′ , N) = ∅, 1 ≤ m′ ≤ m − 1}.
For a set GN satisfying (2.7) and (2.8), the family of balls {BG(λm, N ′), λm ∈ GN } with N ′ ≥ 2N

provides a finite covering for G.

Proposition 2.4. Let G := (G, S) be a connected simple graph and μG have the doubling property (2.3) with 
constant D0(G). If GN satisfies (2.7) and (2.8), then

1 ≤ inf
λ∈G

Σλm∈GN
χBG(λm,N ′)(λ) ≤ sup

λ∈G
Σλm∈GN

χBG(λm,N ′)(λ) ≤ (D0(G))�log2(2N ′/N+1)	 (2.9)

for all N ′ ≥ 2N .
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For N ′ ≥ 0, define a family of spatially distributed fusion subnetworks

Gλ,N ′ := (BG(λ, N ′), Sλ,N ′)

with fusion agents λ ∈ GN , where (λ′, λ′′) ∈ Sλ,N ′ if λ′, λ′′ ∈ BG(λ, N ′) and (λ′, λ′′) ∈ S. Then the maximal 
N -disjoint property of the set GN means that the N -neighboring subsystems Gλm,N , λm ∈ GN , have no 
common agent. On the other hand, it follows from Proposition 2.4 that for any N ′ ≥ 2N , every agent in our 
SDN is in at least one and at most finitely many of the N ′-neighboring subsystems Gλm,N ′ , λm ∈ GN . The 
above idea to split the SDN into subnetworks of small sizes is crucial in our proposed distributed algorithm 
in Section 7 for stable signal reconstruction.

3. Distributed sampling and reconstruction systems

Let V be the set of innovative positions of signals f in (1.3), and G = (G, S) be the graph in (1.1)
to represent our SDN. In this section, we introduce a graph H to describe our distributed sampling and 
reconstruction systems, and also a graph V to describe the topology of spatial signals with the parametric 
representation (1.3).

In this paper, we consider DSRS with the following properties.

Assumption 2. There is a direct communication link between distinct anchor agents of an innovative posi-
tion,

(λ1, λ2) ∈ S if (i, λ1) and (i, λ2) ∈ T for some i ∈ V. (3.1)

Assumption 3. There are finitely many innovative positions for any anchor agent,

L := sup
λ∈G

#{i ∈ V, (i, λ) ∈ T} < ∞. (3.2)

Assumption 4. Any agent has an anchor agent within bounded distance,

M := sup
λ∈G

inf{ρG(λ, λ′), (i, λ′) ∈ T for some i ∈ V } < ∞. (3.3)

Under the above assumptions, the graph H in (1.4) is a connected simple graph. Moreover, we have the 
following important properties about shortest paths between different vertices in H.

Proposition 3.1. Let the graph H in (1.4) satisfy (3.1). Then all intermediate vertices in the shortest paths 
in H to connect distinct vertices in H belong to the subgraph G.

By Proposition 3.1,

ρH(λ, λ′) = ρG(λ, λ′) for all λ, λ′ ∈ G, (3.4)

and

ρH(i, i′) = 2 + inf
λ,λ′∈G

{ρG(λ, λ′), (i, λ), (i′, λ′) ∈ T} for all distinct i, i′ ∈ V, (3.5)

where ρH is the geodesic distance for the graph H.
Let V be the graph in (1.6), where there is an edge between two distinct innovative positions if they 

share a common anchor agent. One may easily verify that the graph V is undirected and its maximal vertex 
degree is finite,
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deg(V) ≤ L sup
i∈V

#{λ ∈ G, (i, λ) ∈ T} ≤ L(deg(G) + 1) (3.6)

by (2.2), (2.3), (3.1) and (3.2).
We cannot define a geodesic distance on V as in Subsection 2.1, since the graph V is unconnected in 

general. With the help of the graph H to describe our DSRS, we define a distance ρ on the graph V.

Proposition 3.2. Let H be the graph in (1.4). Define a function ρ : V × V �−→ R by

ρ(i, i′) =
{

0 if i = i′

ρH(i, i′) − 1 if i �= i′.
(3.7)

If the graph H satisfies (3.1), then ρ is a distance on the graph V:

(i) ρ(i, i′) ≥ 0 for all i, i′ ∈ V ;
(ii) ρ(i, i′) = ρ(i′, i) for all i, i′ ∈ V ;
(iii) ρ(i, i′) = 0 if and only if i = i′; and
(iv) ρ(i, i′) ≤ ρ(i, i′′) + ρ(i′′, i′) for all i, i′, i′′ ∈ V .

Clearly, the above distance between two endpoints of an edge in V is one. Denote the closed ball with 
center i ∈ V and radius r by

B(i, r) = {i′ ∈ V, ρ(i, i′) ≤ r},

and the counting measure on V by μ. Similar to the counting measure μG on an SDN in Definitions 2.1 and 
2.2, we say that the measure μ on V is a doubling measure if

μ(B(i, 2r)) ≤ D0μ(B(i, r)) for all i ∈ V and r ≥ 0, (3.8)

and it has polynomial growth if

μ(B(i, r)) ≤ D1(1 + r)d for all i ∈ V and r ≥ 0, (3.9)

where D0, D1 and d are positive constants. The minimal constant D0 for (3.8) to hold is known as the 
doubling constant, and the minimal constants d and D1 in (3.9) are called dimension and maximal rate of 
innovation for signals on the graph V respectively. The concept of rate of innovation was introduced in [72]
and later extended in [62,68]. The reader may refer to [11,12,29,47,51,56,60,62,68,72] and references therein 
for sampling and reconstruction of signals with finite rate of innovation.

In the next two propositions, we show that the counting measure μ on V has the doubling property 
(respectively, the polynomial growth property) if and only if the counting measure μG on G does.

Proposition 3.3. Let G and H satisfy Assumptions 1–4. If μG is a doubling measure with constant D0(G), 
then

μ(B(i, 2r)) ≤ L(D0(G))2
( (deg(G))2M+3 − 1

deg(G) − 1

)
μ(B(i, r)) for all i ∈ V and r ≥ 0. (3.10)

Conversely, if μ is a doubling measure with constant D0, then

μG(BG(λ, 2r)) ≤ LD2
0

( (deg(G))2M+3 − 1
deg(G) − 1

)2
μG(BG(λ, r)) for all λ ∈ G and r ≥ 0. (3.11)
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Proposition 3.4. Let G and H satisfy Assumptions 1–4. If μG has polynomial growth with Beurling dimension 
d(G) and sampling density D1(G), then

μ(B(i, r)) ≤ LD1(G)(1 + r)d(G) for all i ∈ V and r ≥ 0. (3.12)

Conversely, if μ has polynomial growth with dimension d and maximal rate of innovation D1, then

μG(BG(λ, r)) ≤ 2d
( (deg(G))2M+3 − 1

deg(G) − 1

)
D1(1 + r)d for all λ ∈ G and r ≥ 0. (3.13)

By (2.5), Propositions 3.3 and 3.4, we conclude that signals in (1.3) have their dimension d being the same 
as the Beurling dimension d(G), and their maximal rate D1 of innovation being approximately proportional 
to the sampling density D1(G).

Theorem 3.5. Let G and H satisfy Assumptions 1–4. Then

d(G) = d ≥ 1 (3.14)

and

L−1D1 ≤ D1(G) ≤ 2d
( (deg(G))2M+3 − 1

deg(G) − 1

)
D1. (3.15)

We finish this section with a remark about signals on our graph V, cf. [53,54,57].

Remark 3.6. Signals on the graph V are analog in nature, while signals on graphs in most of the literature 
are discrete ([53,54,57]). Let pλ and pi be the physical positions of the agent λ ∈ G and innovative position 
i ∈ V , respectively. If there exist positive constants A and B such that

A
∑
i∈V

|c(i)|2 ≤
∑
i∈V

|f(pi)|2 +
∑
λ∈G

|f(pλ)|2 ≤ B
∑
i∈V

|c(i)|2

for all signals f with the parametric representation (1.3), then we can establish a one-to-one correspondence 
between the analog signal f and the discrete signal F on the graph H, where

F (u) = f(pu), u ∈ G ∪ V.

The above family of discrete signals F forms a linear space, which could be a Paley–Wiener space associated 
with some positive-semidefinite operator (such as Laplacian) on the graph H. Using the above correspon-
dence, our theory for signal sampling and reconstruction applies by assuming that the impulse response ψλ

of every agent λ ∈ G is supported on pu, u ∈ G ∪ V .

4. Sensing matrices with polynomial off-diagonal decay

Let H be the connected simple graph in (1.4) to describe our DSRS, and the sensing matrix S associated 
with the DSRS be as in (1.7). As agents in the DSRS have limited sensing ability, we assume in this paper 
that the sensing matrix S in (1.7) satisfies

S ∈ Jα(G, V) for some α > d, (4.1)

where
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Jα(G, V) :=
{

A := (a(λ, i))λ∈G,i∈V , ‖A‖Jα(G,V) < ∞
}

(4.2)

is the Jaffard class Jα(G, V) of matrices with polynomial off-diagonal decay, and

‖A‖Jα(G,V) := sup
λ∈G,i∈V

(1 + ρH(λ, i))α|a(λ, i)|, α ≥ 0. (4.3)

The reader may refer to [37,38,41,59,61,66] for matrices with various off-diagonal decay.
We observe that a matrix in Jα(G, V), α > d, defines a bounded operator from �p(V ) to �p(G), 1 ≤ p ≤ ∞.

Proposition 4.1. Let G and H satisfy Assumptions 1–4, V be as in (1.6), and let μG have polynomial growth 
with Beurling dimension d and sampling density D1(G). If A ∈ Jα(G, V) for some α > d, then

‖Ac‖p ≤ D1(G)Lα

α − d
‖A‖Jα(G,V)‖c‖p for all c ∈ �p, 1 ≤ p ≤ ∞. (4.4)

For a DSRS with its sensing matrix in Jα(G, V), we obtain from (1.10) and Proposition 4.1 that a signal 
with bounded amplitude vector generates a bounded sampling data vector.

Define band matrix approximations of a matrix A = (a(λ, i))λ∈G,i∈V by

As := (as(λ, i))λ∈G,i∈V , s ≥ 0, (4.5)

where

as(λ, i) =
{

a(λ, i) if ρH(λ, i) ≤ s

0 if ρH(λ, i) > s.

We say a matrix A has bandwidth s if A = As. Clearly, any matrix A with bounded entries and bandwidth 
s belongs to Jaffard class Jα(G, V),

‖A‖Jα(G,V) ≤ (s + 1)α‖A‖J0(G,V) for all α ≥ 0.

In our DSRS, the sensing matrix S has bandwidth s means that any agent can only detect signals at 
innovative positions within their geodesic distance less than or equal to s. In the next proposition, we show 
that matrices in the Jaffard class can be well approximated by band matrices.

Proposition 4.2. Let graphs G, H, V, d and D1(G) be as in Proposition 4.1. If A ∈ Jα(G, V) for some α > d, 
then

‖(A − As)c‖p ≤ D1(G)Lα

α − d
(s + 1)−α+d‖A‖Jα(G,V)‖c‖p for all c ∈ �p, 1 ≤ p ≤ ∞, (4.6)

where As, s ≥ 1, are band matrices in (4.5).

The above band matrix approximation property will be used later in the establishment of a local stability 
criterion in Section 6 and exponential convergence of a distributed reconstruction algorithm in Section 7.

5. Robustness of distributed sampling and reconstruction systems

Let S be the sensing matrix associated with our DSRS. We say that a reconstruction algorithm Δ is a 
perfect reconstruction in noiseless environment if
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Δ(Sc) = c for all c ∈ �∞. (5.1)

In this section, we first study robustness of the DSRS in term of the �∞-stability.

Proposition 5.1. Let G and H satisfy Assumptions 1–4, V be as in (1.6), μG have polynomial growth with 
Beurling dimension d, and let S satisfy (4.1). Then there is a reconstruction algorithm Δ with the suboptimal 
approximation property (1.12) and the perfect reconstruction property (5.1) if and only if S has �∞-stability.

The sufficiency in Proposition 5.1 holds by taking Δ = Δ∞ in (1.13), while the necessity follows by 
applying (1.12) to ηηη = Sd with d ∈ �∞.

In the next theorem, we reduce �∞-stability of a matrix in Jaffard class to its �2-stability, for which a 
distributed verifiable criterion will be provided in Section 6.

Theorem 5.2. Let G, H, V and d be as in Proposition 5.1, and let A ∈ Jα(G, V) for some α > d. If A has 
�2-stability, then it has �p-stability for all 1 ≤ p ≤ ∞ with the lower �p-stability bound independent of the 
size of the DSRS.

The reader may refer to [3,55,66] for equivalence of �p-stability of localized matrices for different 1 ≤
p ≤ ∞. For finite graphs G = (G, S) and V = (V, E) and a matrix A with row indices in G and column 
indices in V , its �p-stability and �q-stability are equivalent to each other for any 1 ≤ p, q ≤ ∞, and its 
optimal lower stability bounds Ap and Aq satisfy

M−|1/p−1/q| ≤ Aq

Ap
≤ M |1/p−1/q|,

where M = max(#G, #V ) is the number of vertices of graphs G and V. The above estimation on lower 
stability bounds is unfavorable for matrices of large size but it cannot be improved if there is no restriction 
on the matrix A. For matrices A in the Jaffard class Jα(G, V), we obtain from the proof of Theorem 5.2
that the lower �p-stability bound depends only on the �2-stability bounds, Jα(G, V)-norm of the matrix A, 
maximal vertex degree deg(G), the Beurling dimension d, the sampling density D1(G), and the constants 
L and M in (3.2) and (3.3). So the sensing matrix of our DSRS may have its lower �p-stability bounds
independent of the size of the DSRS.

For the graph V in (1.6) and the distance ρ in (3.7), define

Jα(V) :=
{

A := (a(i, i′))i,i′∈V , ‖A‖Jα(V) < ∞
}

, (5.2)

where

‖A‖Jα(V) := sup
i,i′∈V

(1 + ρ(i, i′))α|a(i, i′)|, α ≥ 0. (5.3)

The proof of Theorem 5.2 depends highly on the following Wiener’s lemma for the matrix algebra Jα(V), 
α > d.

Theorem 5.3. Let V be as in (1.6) and its counting measure μ satisfy (3.9). If A ∈ Jα(V), α > d, and A−1

is bounded on �2, then A−1 ∈ Jα(V) too.

Wiener’s lemma has been established for infinite matrices, pseudodifferential operators, and integral 
operators satisfying various off-diagonal decay conditions ([9,33,35,37,38,41,59,61,63,66]). It has been shown 
to be crucial for well-localization of dual Gabor/wavelet frames, fast implementation in numerical analysis, 
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local reconstruction in sampling theory, local features of spatially distributed optimization, etc. The reader 
may refer to the survey papers [36,44] for historical remarks, motivation and recent advances.

The Wiener’s lemma (Theorem 5.3) is also used to establish the sub-optimal approximation property 
(1.12) for the “least squares” solution Δ2(z) in (1.16), for which a distributed algorithm is proposed in 
Section 7.

Theorem 5.4. Let G, H and V be as in Proposition 5.1. Assume that the sensing matrix S satisfies (4.1) and 
it has �2-stability. Then there exists a positive constant C such that

‖Δ2(z) − c‖∞ ≤ C‖ηηη‖∞ for all c, ηηη ∈ �∞, (5.4)

where z = Sc + ηηη.

6. Stability criterion for distributed sampling and reconstruction systems

In a traditional centralized sampling and reconstruction system, the �2-stability of the sensing matrix 
could be verified by its central processor, but the above procedure is infeasible in a distributed sampling and 
reconstruction system as it is decentralized. In this section, we introduce a stability criterion for matrices 
in the Jaffard class that can be verified in a distributed manner.

Let H be the connected simple graph in (1.4) to describe our DSRS. Given λ′ ∈ G and a positive integer 
N , define truncation operators χN

λ′,G and χN
λ′,V by

χN
λ′,G : �p(G) � (d(λ))λ∈G �−→

(
d(λ)χBH(λ′,N)∩G(λ)

)
λ∈G

∈ �p(G)

and

χN
λ′,V : �p(V ) � (c(i))i∈V �−→

(
c(i)χBH(λ′,N)∩V (i)

)
i∈V

∈ �p(V ),

where 1 ≤ p ≤ ∞ and

BH(u, r) := {v ∈ G ∪ V, ρH(u, v) ≤ r}

is the closed ball in H with center u ∈ H and radius r ≥ 0.
For any matrix A ∈ Jα(G, V) with �2-stability, we observe that its quasi-main submatrices χ2N

λ AχN
λ , λ ∈

G, of size O(Nd) have uniform �2-stability for large N .

Theorem 6.1. Let G and H satisfy Assumptions 1–4, V be as in (1.6), μG have polynomial growth with 
Beurling dimension d and sampling density D1(G), and let A ∈ Jα(G, V) for some α > d. If A has 
�2-stability with lower bound A‖A‖Jα(G,V), then

‖χ2N
λ,GAχN

λ,V c‖2 ≥ A

2 ‖A‖Jα(G,V)‖χN
λ,V c‖2, c ∈ �2 (6.1)

for all λ ∈ G and all integers N satisfying

2D1(G)N−α+d
√

Lα/(α − d) ≤ A. (6.2)

The above theorem provides a guideline to design a distributed algorithm for signal reconstruction, see 
Section 7. Surprisingly, the converse of Theorem 6.1 is true, cf. the stability criterion in [65, Theorem 2.1]
for convolution-dominated matrices.
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Theorem 6.2. Let G, H, V be as in Theorem 6.1, and A ∈ Jα(G, V) for some α > d. If there exist a positive 
constant A0 and an integer N0 ≥ 3 such that

A0 ≥ 4(D0(G))2D1(G)LN
− min(α−d,1)
0 ×

⎧⎪⎪⎨
⎪⎪⎩

(
4α

3(α−d) + 2(α−1)(α−d)
α−d−1

)
if α > d + 1( 10(d+1)

3 + 2d ln N0
)

if α = d + 1(
4α

3(α−d) + 4d
d+1−α

)
if α < d + 1,

(6.3)

and for all λ ∈ G,

‖χ2N0
λ,G AχN0

λ,V c‖2 ≥ A0‖A‖Jα(G,V)‖χN0
λ,V c‖2, c ∈ �2, (6.4)

then A has �2-stability,

‖Ac‖2 ≥
A0‖A‖Jα(G,V)

12(D0(G))2 ‖c‖2, c ∈ �2. (6.5)

Observe that the right hand side of (6.3) could be arbitrarily small when N0 is sufficiently large. This 
together with Theorem 6.1 implies that the requirements (6.3) and (6.4) are necessary for the �2-stability 
property of any matrix in Jα(G, V). As shown in the example below, the term N− min(α−d,1)

0 in (6.3) cannot 
be replaced by N−β

0 with high order β > 1 even if the matrix A has finite bandwidth.

Example 6.3. Let A0 = (a0(i − j))i,j∈Z be the bi-infinite Toeplitz matrix with symbol 
∑

k∈Z
a0(k)e−ikξ =

1 − e−iξ. Then A0 belongs to the Jaffard class Jα(Z, Z) for all α ≥ 0 and it does not have �2-stability. On 
the other hand, for any λ ∈ G = V = Z and N0 ≥ 1,

inf
‖χ

N0
λ,V c‖2=1

‖χ2N0
λ,G A0χN0

λ,V c‖2 = inf
‖χ

N0
λ,V c‖2=1

‖A0χN0
λ,V c‖2

= inf
|d1|2+···+|d2N0+1|2=1

√
|d1|2 + |d1 − d2|2 + · · · + |d2N0 − d2N0+1|2 + |d2N0+1|2

= 2 sin π

4N0 + 4 ≥ 1
2N−1

0 ,

where the last equality follows from [42, Lemma 1 of Chapter 9].

For our DSRS with sensing matrix S having the polynomial off-diagonal decay property (4.1), the uniform 
stability property (6.4) could be verified by finding minimal eigenvalues of its quasi-main submatrices 
χN0

λ,V ST χ2N0
λ,G SχN0

λ,V , λ ∈ G, of size about O(Nd
0 ). The above verification could be implemented on agents in 

the DSRS via its computing and communication abilities. This provides a practical tool to verify �2-stability 
of a DSRS and to design a robust (dynamic) DSRS against supplement, replacement and impairment of 
agents.

7. Exponential convergence of a distributed reconstruction algorithm

In our DSRS, agents could essentially catch signals not far from their spatial locations. So one may expect 
that a signal near any innovative position should substantially be determined by sampling data of neighbor-
ing agents, while data from distant agents should have (almost) no influence in the reconstruction. The most 
desirable method to meet the above expectation is local exact reconstruction, which could be implemented 
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in a distributed manner without iterations ([6,39,64,69]). In such a linear reconstruction procedure, there is 
a left-inverse T of the sensing matrix S with finite bandwidth,

TS = I.

For our DSRS, such a left-inverse T with finite bandwidth may not exist and/or it is difficult to find 
even it exists. We observe that

S† := (ST S)−1ST

is a left-inverse well approximated by matrices with finite bandwidth, and

d2 = S†z (7.1)

is a suboptimal approximation, where z is given in (1.11). However, it is infeasible to find the pseudo-inverse 
S†, because the DSRS does not have a central processor and it has huge amounts of agents and large 
number of innovative positions. In this section, we introduce a distributed algorithm to find the suboptimal 
approximation d2 in (7.1).

Let H be the connected simple graph in (1.4) to describe our DSRS, and the sensing matrix S ∈
Jα(G, V), α > d, have �2-stability. Then d2 in (7.1) is the unique solution to the “normal” equation

ST Sd2 = ST z. (7.2)

Instead of solving the above equation, we consider localized linear systems

χN
λ,V ST SχN

λ,V dλ,N = χN
λ,V ST z, λ ∈ G, (7.3)

of size O(Nd), whose solutions dλ,N are supported in the ball BH(λ, N) ∩ V . The localized system (7.3)
has unique solution as principal submatrices χN

λ,V ST SχN
λ,V , N ≥ 1, of the positive definite matrix ST S are 

uniformly stable. One of crucial results of this paper is that for large integer N , the solution dλ,N provides 
a reasonable approximation of the “least squares” solution d2 inside the half ball BH(λ, N/2) ∩ V , see (7.6)
in Proposition 7.1. However, the above local approximation can not be implemented distributedly in the 
DSRS, as only agents on the graph G have computing and telecommunication ability. So we propose to 
compute

wλ,N := χN
λ,GSχN

λ,V (χN
λ,V ST SχN

λ,V )−1dλ,N = χN
λ,GSχN

λ,V (χN
λ,V ST SχN

λ,V )−2χN
λ,V ST z (7.4)

instead, which approximates

wLS := S(ST S)−1d2 (7.5)

inside BG(λ, N/2) ∩ G, see (7.7) in the proposition below.

Proposition 7.1. Let G and H satisfy Assumptions 1–4, V be as in (1.6), and let the sensing matrix S ∈
Jα(G, V), α > d, have �2-stability with lower stability bound A‖S‖Jα(G,V). Take an integer N satisfying (6.2), 
and set

θ = 2α − 2d ∈ (0, 1) and r0 = 1 − A2(α − d)2

α+1 2 .
2α − d 2 D1D1(G)α
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Then

‖χ
N/2
λ,V (dλ,N − d2)‖∞ ≤ D3(N + 1)−α+d‖d2‖∞ (7.6)

and

‖χ
N/2
λ,G (wλ,N − wLS)‖∞ ≤ D4(N + 1)−α+d‖d2‖∞, (7.7)

where D3 = 22α−d+1αD1D2
α−d , D4 =

( 23α−d+3αL2D1(G)D2
2

α−d + LD2
)
‖S‖−1

Jα(G,V), and

D2 =
∞∑

n=0

(22α+d/2+4D3
1α2

r1−θ
0 (α − d)2

) 2−θ

(1−θ)2 nlog(2−θ)
2

rn
0 . (7.8)

Take a maximal N
4 -disjoint subset GN/4 ⊂ G satisfying (2.7) and (2.8). We patch wλ,N , λ ∈ GN/4, in 

(7.4) together to generate a linear approximation

w∗
N =

∑
λ∈GN/4

ΘΘΘλ,N χ
N/2
λ,G wλ,N (7.9)

of the bounded vector wLS, where ΘΘΘλ,N is a diagonal matrix with diagonal entries

θλ,N (λ′′) =
χBG(λ,N/2)(λ′′)∑

λ′∈GN/4
χBG(λ′,N/2)(λ′′) , λ′′ ∈ G.

The above approximation is well-defined as {BG(λ′, N/2), λ′ ∈ GN/4} is a finite covering of G by (3.4) and 
Proposition 2.4. Moreover, we obtain from Proposition 7.1 that

‖w∗
N − wLS‖∞ =

∥∥∥ ∑
λ∈GN/4

ΘΘΘλ,N χ
N/2
λ,G (wλ,N − wLS)

∥∥∥
∞

≤ sup
λ′′∈G

∑
λ∈GN/4

θλ,N (λ′′)‖χ
N/2
λ,G (wλ,N − wLS)‖∞

≤ D4(N + 1)−α+d‖d2‖∞. (7.10)

Therefore, the moving consensus w∗
N of wλ,N , λ ∈ GN/4, provides a good approximation to wLS in (7.5)

for large N . In addition, w∗
N depends on the observation z linearly,

w∗
N = RN ST z (7.11)

for some matrix RN with bandwidth 2N and

‖RN ‖Jα(G,V) ≤ D5 := (α − d)2LD2
2

α2D1D1(G)‖S‖3
Jα(G,V)

. (7.12)

Given noisy samples z, we may use w∗
N in (7.11) as the first approximation of wLS,

w1 = RN ST z (7.13)

and recursively define

wn+1 = wn + w1 − RN ST SST wn, n ≥ 1. (7.14)
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In the next theorem, we show that the above sequence wn, n ≥ 1, converges exponentially to some bounded 
vector w, not necessarily wLS , satisfying the consistent condition

ST w = ST wLS = d2. (7.15)

Theorem 7.2. Let G, H and V be as in Proposition 7.1, let GN/4 be a maximal N/4-disjoint subset of G

satisfying (2.7) and (2.8), and let wn, n ≥ 1, be as in (7.13) and (7.14). Suppose that N satisfies (6.2) and

r1 := D1(G)D4Lα

α − d
‖S‖Jα(G,V)(N + 1)−α+d < 1. (7.16)

Set

D6 = 22α+2αL3(D1(G))2D2
2

(α − d)(1 − r1)D1‖S‖Jα(G,V)
.

Then wn and ST wn, n ≥ 1, converge exponentially to a bounded vector w in (7.15) and the “least squares” 
solution d2 in (7.1) respectively,

‖wn − w‖∞ ≤ D6rn
1 ‖d2‖∞ (7.17)

and

‖ST wn − d2‖∞ ≤ D1(G)D6Lα

α − d
‖S‖Jα(G,V)r

n
1 ‖d2‖∞, n ≥ 1. (7.18)

By the above theorem, each agent should have minimal storage, computing, and telecommunication 
capabilities. Furthermore, the algorithm (7.13) and (7.14) will have faster convergence (hence less delay 
for signal reconstruction) by selecting large N when agents have larger storage, more computing power, 
and higher telecommunication capabilities. In addition, no iteration is needed for sufficiently large N , and 
the reconstructed signal is approximately to the one obtained by the finite-section method, cf. [20] and 
simulations in Section 8.

The iterative algorithm (7.13) and (7.14) can be recast as follows:

w1 = RN ST z and e1 = w1 − RN ST SST w1, (7.19)

and {
wn+1 = wn + en

en+1 = en − RN ST SST en, n ≥ 1.
(7.20)

Next, we present a distributed implementation of the algorithm (7.19) and (7.20) when S has bandwidth s. 
Select a threshold ε and an integer N ≥ s satisfying (7.16). Write

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ST = (a(i, λ))i∈V,λ∈G

RN ST = (bN (λ, λ′))λ,λ′∈G

RN ST SST = (cN (λ, λ′))λ,λ′∈G

z = (z(λ))λ∈G,

and

wn = (wn(λ))λ∈G and en = (en(λ))λ∈G, n ≥ 1.
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We assume that any agent λ ∈ G stores vectors a(i, λ′), bN (λ, λ′), cN (λ, λ′) and z(λ′), where (i, λ) ∈ T and 
λ′ ∈ BG(λ, 2N + 3s). The following is the distributed implementation of the algorithm (7.19) and (7.20) for 
an agent λ ∈ G.

Distributed algorithm (7.19) and (7.20) for signal reconstruction:

1. Input a(i, λ′), bN (λ, λ′), cN (λ, λ′) and z(λ′), where (i, λ) ∈ T and λ′ ∈ BG(λ, 2N + 3s).
2. Input stop criterion ε > 0 and maximal number of iteration steps K.
3. Compute w(λ) =

∑
λ′∈BG(λ,2N+s) bN (λ, λ′)z(λ′).

4. Communicate with neighboring agents in BG(λ, 2N + 3s) to obtain data w(λ′), λ′ ∈ BG(λ, 2N + 3s).
5. Evaluate the sampling error term e(λ) = w(λ) −

∑
λ′∈BG(λ,2N+3s) cN (λ, λ′)w(λ′).

6. Communicate with neighboring agents in BG(λ, 2N +3s) to obtain error data e(λ′), λ′ ∈ BG(λ, 2N +3s).
7. for n = 2 to K do

7a. Compute δ = maxλ′∈BG(λ,2N+3s) |e(λ′)|.
7b. Stop if δ ≤ ε, else do
7c. Update w(λ) = w(λ) + e(λ).
7d. Update e(λ) = e(λ) −

∑
λ′∈BG(λ,2N+3s) cN (λ, λ′)e(λ′).

7e. Communicate with neighboring agents located in BG(λ, 2N + 3s) to obtain error data e(λ′), λ′ ∈
BG(λ, 2N + 3s).

end

We conclude this section by discussing the complexity of the distributed algorithm (7.19) and (7.20), 
which depends essentially on N . In its implementation, the data storage requirement for each agent is about 
(L + 3)(2N + 3s + 1)d. In each iteration, the computational cost for each agent is about O(Nd) mainly used 
for updating the error e. The communication cost for each agent is about O(Nd+β) if the communication 
between distant agents λ, λ′ ∈ G, processed through their shortest path, has its cost being proportional to 
(ρG(λ, λ′))β for some β ≥ 1. By Theorem 7.2, the number of iteration steps needed to reach the accuracy 
ε is about O(ln(1/ε)/ ln N). Therefore the total computational and communication cost for each agent are 
about O(ln(1/ε)Nd/ ln N) and O(ln(1/ε)Nd+β/ ln N), respectively.

8. Numerical simulations

In this section, we present two simulations to demonstrate the distributed algorithm (7.19) and (7.20)
for stable signal reconstruction.

Agents in the first simulation are almost uniformly deployed on the circle of radius R/5, and their 
locations are at

λλλl := R

5

(
cos 2πθl

R
, sin 2πθl

R

)
, 1 ≤ l ≤ R,

where R ≥ 1 and θl ∈ l+[−1/4, 1/4] are randomly selected. Every agent in the SDN has a direct communica-
tion channel to its two adjacent agents. Then the graph Gc = (Gc, Sc) to describe the SDN is a circular graph, 
where Gc = {λλλ1, . . . , λλλR} and Sc =

{
(λλλ1, λλλ2), . . . , (λλλR−1, λλλR), (λλλR, λλλ1), (λλλ1, λλλR), (λλλR, λλλR−1), . . . , (λλλ2, λλλ1)

}
. 

Take innovative positions

pi := ri

(
cos 2πi

R
, sin 2πi

R

)
, 1 ≤ i ≤ R,

deployed almost uniformly near the circle of radius R/5, where ri ∈ R/5 +[−1/4, 1/4] are randomly selected. 
Given any innovative position pi, 1 ≤ i ≤ R, it has three anchor agents λλλi, λλλi−1 and λλλi+1, where λλλ0 = λλλR

and λλλR+1 = λλλ1. Set
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Fig. 3. The graph Hc = (Gc ∩ Vc, Sc ∪ Tc ∪ T ∗
c ) to describe the DSRS in the first simulation, where vertices in Gc, edges in Sc, 

vertices in Vc and edges in Tc ∪ T ∗
c are plotted in red circles, black lines, blue triangles and green lines, respectively.

Fig. 4. Plotted on the left is the signal f in (8.1) with R = 80. On the right is the difference between the signal f and the 
reconstructed signal fn,N,δ in the n-th iteration by applying the distributed algorithm (7.19) and (7.20) with n = 10, N = 6 and 
δ = 0.05.

Vc = {pi, 1 ≤ i ≤ R} and Tc = {(pi,λλλi−j), i = 1, . . . , R and j = 0, ±1}.

Then Hc = (Gc ∩ Vc, Sc ∪ Tc ∪ T ∗
c ) is the graph to describe the DSRS, see Fig. 3.

Let ϕ(t) := exp(−(t2
1 + t2

2)/2) for t = (t1, t2), and the Gaussian signals

f(t) =
R∑

i=1
c(i)ϕ(t − pi) (8.1)

to be sampled and reconstructed have their amplitude components c(i) ∈ [0, 1] being randomly chosen, see 
the left image of Fig. 4. In the first simulation, we consider ideal sampling procedure. Thus for the agent 
λλλl, 1 ≤ l ≤ R, the noisy sampling data acquired is

yδ(l) := f(λλλl) + η(l) =
R∑

i=1
c(i)ϕ(λλλl − pi) + η(l), (8.2)

where η(l) ∈ [−δ, δ] are randomly generated with bounded noise level δ ≥ 0.
For N ≥ 5, the complexity of the distributed algorithm (7.19) and (7.20) for each agent in GN/4 is about 

O(N). Our first simulation shows that the distributed algorithm (7.19) and (7.20) converges for N ≥ 5 and 
the convergence rate is almost independent of the network size R, cf. the upper bound estimate in (7.18).

Let fn,N,δ(t) :=
∑R

i=1 cn,N,δ(i)ϕ(t − pi) be the reconstructed signal in the n-th iteration by applying the 
distributed algorithm (7.19) and (7.20) from the noisy sampling data in (8.2). Define maximal reconstruction 
errors
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Table 1
Maximal reconstruction errors ε(n, N, δ) with δ = 0.

n\N 5 6 7 8 9 10
0 0.9874 0.9881 0.9878 0.9876 0.9877 0.9884
1 0.9875 0.4463 0.3073 0.1940 0.1055 0.0523
2 0.6626 0.2046 0.0794 0.0271 0.0124 0.0024
3 0.3624 0.0926 0.0240 0.0045 0.0014 0.0001
4 0.2535 0.0443 0.0068 0.0006 0.0001 0.0000
5 0.1742 0.0206 0.0018 0.0001 0.0000 0.0000
6 0.1169 0.0093 0.0005 0.0000 0.0000 0.0000
7 0.0840 0.0042 0.0001 0.0000 0.0000 0.0000
8 0.0579 0.0017 0.0000 0.0000 0.0000 0.0000
9 0.0411 0.0007 0.0000 0.0000 0.0000 0.0000
10 0.0289 0.0003 0.0000 0.0000 0.0000 0.0000

ε(n, N, δ) :=
{

max1≤i≤R |c(i)| if n = 0,

max1≤i≤R |cn,N,δ(i) − c(i)| if n ≥ 1.
(8.3)

Presented in Table 1 is the average of reconstruction errors ε(n, N, δ) with 500 trials in noiseless environment 
(δ = 0), where the network size R is 80. It indicates that the proposed distributed algorithm (7.19) and 
(7.20) has faster convergence rate for larger N ≥ 5, and we only need three iterations to have a nearly 
perfect reconstruction from its noiseless samples when N = 10.

The robustness of the proposed algorithm (7.19) and (7.20) against sampling noises is tested and con-
firmed, see Fig. 4. Moreover, it is observed that the maximal reconstruction error ε(n, N, δ) with large n
depends almost linearly on the noise level δ, cf. Theorem 5.4 and Fig. 7.

In the next simulation, agents are uniformly deployed on two concentric circles and each agent has direct 
communication channels to its three adjacent agents. Then the graph Gp = (Gp, Sp) to describe our SDN is 
a prism graph with vertices having physical locations,

μμμl :=
{

R
10

(
cos 4πθl

R , sin 4πθl

R

)
if 1 ≤ l ≤ R

2(
R
10 + 1

)(
cos 4πθl

R , sin 4πθl

R

)
if R

2 + 1 ≤ l ≤ R,
(8.4)

where R ≥ 2 and θl ∈ l + [−1/4, 1/4], 1 ≤ l ≤ R, are randomly selected. The innovative positions

qi := ri

(
cos 4πi

R
, sin 4πi

R

)
, 1 ≤ i ≤ R

2 ,

have four anchor agents μμμi, μμμi+1, μμμi+R/2 and μμμi+R/2+1, where μμμ0 = μμμR/2, μμμR+1 = μμμR/2+1, and ri ∈ R
10 +[ 1

4 , 34 ]
are randomly selected. Set

Vp =
{

qi, 1 ≤ i ≤ R

2

}
and Tp =

{
(qi,μμμi+j), i = 1, . . . ,

R

2 and j = 0, 1,
R

2 ,
R

2 + 1
}

.

Thus the graph Hp = (Gp ∩ Vp, Sp ∪ Tp ∪ T ∗
p ) to describe our DSRS is a connected simple graph, see the 

left image of Fig. 5.
Following the first simulation, we consider the ideal sampling procedure of signals

g(t) =
R/2∑
i=1

c(i)ϕ(t − qi), (8.5)

where c(i) ∈ [0, 1], 1 ≤ i ≤ R/2, are randomly selected, see the top left image of Fig. 6. Then the noisy 
sampling data acquired by the agent μμμl, 1 ≤ l ≤ R, is
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Fig. 5. Plotted on the left is the graph Hp = (Gp ∩ Vp, Sp ∪ Tp ∪ T ∗
p ) to describe the DSRS, where vertices in Gp and Vp are in red 

circles and blue triangles, and edges in Sp and Tp ∪ T ∗
p are in black solid lines and green solid lines, respectively. On the right is 

a subgraph of Hp, where some agents are completely dysfunctional and some have communication channels to one or two of their 
nearby agents clogged.

Fig. 6. Plotted on the left and right are the signal g in (8.5) with R = 160 and the difference g − gn,N,δ between the original signal g
and its approximation gn,N,δ in (8.7) with n = 4, N = 6 and δ = 0.05, where all agents in (8.4) are functional except those located 
at μμμ1, μμμ87 being completely dysfunctional and partial communication channels located at μμμ11, μμμ51, μμμ91 clogged. The reconstruction 
error ε(n, N, δ) in (8.3) in this simulation is 0.1802.

yδ(l) := g(μμμl) + η(l) =
R/2∑
i=1

c(i)ϕ(μμμl − qi) + η(l), (8.6)

where η(l) ∈ [−δ, δ] are randomly selected with bounded noise level δ ≥ 0. Applying the distributed 
algorithm (7.19) and (7.20), we obtain approximations

gn,N,δ(t) =
R/2∑
i=1

cn,N,δ(i)ϕ(t − qi), n ≥ 1, (8.7)

of the signal g in (8.5). Our simulations illustrate that the distributed algorithm (7.19) and (7.20) converges 
for N ≥ 3 and the signal g can be reconstructed near perfectly from its noiseless samples in 12 steps for 
N = 3, 7 steps for N = 4, 5 steps for N = 5, 4 steps for N = 6, and 3 steps for N = 7, cf. Table 1 in the 
first simulation. The robustness of the proposed distributed algorithm (7.19) and (7.20) against sampling 
noises in the DSRS is test and confirmed, see Fig. 7.

The robustness of the proposed distributed algorithm (7.19) and (7.20) against sampling noises and 
dysfunctions of agents in the DSRS is tested and confirmed, see the right graph of Fig. 5 and the right 
image of Fig. 6.

We finish this section with the performance comparison between the global �∞-optimization (1.13) and 
the proposed distributed algorithm (7.19) and (7.20) for signal reconstruction. For the signal sampling 
procedure in (8.5) and (8.6), we define the reconstruction error of the global optimization problem (1.13)
by
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Fig. 7. Presented on the top is average of the reconstruction errors ε∞(δ) and ε2(δ) of the global �∞-optimization (1.13) and the 
proposed distributed algorithm (7.19) and (7.20) over 1000 trials. Plotted on the bottom left and right are the difference between 
the original signal g in Fig. 6 and the signals reconstructed by the global algorithm and by the distributed algorithm with N = 6
respectively, where δ = 0.05. In this simulation, the reconstruction errors ε(δ) and εN (δ) are 0.1933 and 0.1320 respectively.

ε∞(δ) := max
1≤i≤R/2

|cδ(i) − c(i)|,

where cδ := (cδ(1), . . . , cδ(R/2))T is the reconstructed amplitude vector. Similarly for the same signal 
sampling procedure, our numerical simulation indicates that the proposed distributed algorithm (7.19) and 
(7.20) leads to the least square solution (d2,δ(1), . . . , d2,δ(R/2))T := argmind∈�2 ‖Sd − z‖2 for all N ≥ 3, cf. 
(7.18). Hence the corresponding reconstruction error

ε2(δ) := max
1≤i≤R/2

|d2,δ(i) − c(i)|

is independent on N ≥ 3, cf. Table 1. Our simulations, see Fig. 7, indicate that both the global optimization 
problem (1.13) and the proposed distributed algorithm (7.19) and (7.20) provide suboptimal approximation 
to the original signal in the presence of bounded noises, and the distributed algorithm has better performance 
for signal reconstruction than the global optimization does.

9. Proofs

In this section, we include proofs of Propositions 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 7.1, and Theorems 5.2, 
5.3, 5.4, 6.1, 6.2, 7.2.
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9.1. Proof of Proposition 2.4

For any λ ∈ G, take λm ∈ GN with BG(λ, N) ∩ BG(λm, N) �= ∅. Then

ρG(λ, λm) ≤ ρG(λ, λ′) + ρG(λ′, λm) ≤ 2N,

where λ′ is a vertex in BG(λ, N) ∩ BG(λm, N). This proves that for any N ′ ≥ 2N , balls {BG(λm, N ′), λm ∈
GN } provide a covering for G,

G ⊂
⋃

λm∈GN

BG(λm, N ′), (9.1)

and hence the first inequality in (2.9) follows.
Now we prove the last inequality in (2.9). Take λ ∈ G. For any λm, λm′ ∈ GN ∩ BG(λ, N ′),

ρG(λ′, λm′) ≤ ρG(λ′, λm) + ρG(λm, λ) + ρG(λ, λm′) ≤ 2N ′ + N

for all λ′ ∈ B(λm, N), which implies that

BG(λm, N) ⊂ BG(λm′ , 2N ′ + N). (9.2)

Hence

∑
λm∈GN

χBG(λm,N ′)(λ) ≤
μG(∪λm∈GN ∩BG(λ,N ′)BG(λm, N))

infλm∈GN ∩BG(λ,N ′) μG(BG(λm, N))

≤ sup
λm∈GN ∩BG(λ,N ′)

μG(BG(λm, 2N ′ + N))
μG(BG(λm, N)) ≤ (D0(G))�log2(2N ′/N+1)	, (9.3)

where the first inequality holds as BG(λm, N), λm ∈ VN , are disjoint, the second one is true by (9.2), and 
the third inequality follows from the doubling assumption (2.1).

9.2. Proof of Proposition 3.1

By the structure of the graph H, it suffices to show that the shortest path in H to connect distinct vertices 
λ, λ′ ∈ G must be a path in its subgraph G. Suppose on the contrary that λu1 · · · uk−1ukuk+1 · · · unλ′ is a 
shortest path in H of length ρH(λ, λ′) with vertex uk along the path belonging to V . Then uk−1 and uk+1
are anchor agents of uk in G.

For the case that uk−1 and uk+1 are distinct anchor agents of the innovative position uk, (uk−1, uk+1) ∈ S

by (3.1). Hence λu1 · · · uk−1uk+1 · · · unλ′ is a path of length ρH(λ, λ′) −1 to connect vertices λ and λ′, which 
is a contradiction.

Similarly for the case that uk−1 and uk+1 are the same, λu1 · · · uk−1uk+2 · · · unλ′ is a path of length 
ρH(λ, λ′) − 2 to connect vertices λ and λ′. This is a contradiction.

9.3. Proof of Proposition 3.2

The non-negativity and symmetry is obvious, while the identity of indiscernibles holds since there is no 
edge assigned in H between two distinct vertices in V .

Now we prove the triangle inequality

ρ(i, i′) ≤ ρ(i, i′′) + ρ(i′′, i′) for distinct vertices i, i′, i′′ ∈ V. (9.4)
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Let m = ρ(i, i′′) and n = ρ(i′′, i′). Take a path iv1 . . . vmi′′ of length m + 1 to connect i and i′′, and another 
path i′′u1 . . . uni′ of length n + 1 to connect i′′ and i′. If vm = u1, then iv1 . . . vmu2 · · · uni′ is a path of 
length m + n to connect vertices i and i′, which implies that

ρ(i, i′) ≤ m + n − 1 < ρ(i, i′′) + ρ(i′′, i′). (9.5)

If vm �= u1, then (vm, u1) is an edge in the graph G (and then also in the graph H) by (3.1). Thus 
iv1 . . . vmu1u2 · · · uni′ is a path of length m + n + 1 to connect vertices i and i′, and

ρ(i, i′) ≤ m + n = ρ(i, i′′) + ρ(i′′, i′). (9.6)

Combining (9.5) and (9.6) proves (9.4).

9.4. Proof of Proposition 3.3

To prove Proposition 3.3, we need two lemmas comparing measures of balls in graphs G and V.

Lemma 9.1. If H satisfies (3.1) and (3.2), then

μ(B(i, r)) ≤ LμG(BG(λ, r)) for any λ ∈ G with (i, λ) ∈ T. (9.7)

Proof. Let i′ ∈ B(i, r) with i′ �= i. By Proposition 3.1, there exists a path λ1 . . . λn of length ρ(i, i′) − 1 in 
the graph G such that (i, λ1), (i′, λn) ∈ T . Then

ρG(λ, λn) ≤ ρG(λ, λ1) + ρG(λ1, λn) ≤ ρ(i, i′) ≤ r

as either λ1 = λ or (λ, λ1) is an edge in G by (3.1). This shows that for any innovative position i′ ∈ B(i, r)
there exists an anchor agent λn in the ball BG(λ, r). This observation together with (3.2) proves (9.7). �
Lemma 9.2. If H satisfies (2.3), (3.1) and (3.3), then

μG(BG(λ, r)) ≤
(

sup
λ′∈G

μG(BG(λ′, 2M + 2))
)

μ(B(i, r + M + 1)) (9.8)

for any λ ∈ G and r ≥ M + 1, where (i, λ′) ∈ T and λ′ ∈ BG(λ, M).

Proof. Let λ1 = λ and take Λ = {λm}m≥1 such that (i) BG(λm, M + 1) ⊂ BG(λ, r) for all 
λm ∈ Λ; (ii) BG(λm, M + 1) 

⋂
BG(λm′ , M + 1) = ∅ for all distinct vertices λm, λm′ ∈ Λ; and (iii) 

BG(λ̃, M + 1) 
⋂ ( ⋃

λm∈Λ BG(λm, M + 1)
)

�= ∅ for all λ̃ ∈ BG(λ, r). The set Λ could be considered as a 
maximal (M + 1)-disjoint subset of BG(λ, r). Following the argument used in the proof of Proposition 2.4, 
{BG(λm, 2(M + 1))}λm∈Λ forms a covering of the ball B(λ, r), which implies that

μG(BG(λ, r)) ≤
(

sup
λm∈Λ

μG(BG(λm, 2M + 2))
)

#Λ ≤
(

sup
λ′∈G

μG(BG(λ′, 2M + 2))
)

#Λ. (9.9)

For λm ∈ Λ, define

Vλm
= {i′ ∈ V, (i′, λ̃) ∈ T for some λ̃ ∈ BG(λm, M)}.

Then it follows from (3.3) that

#Vλm
≥ 1 for all λm ∈ Λ. (9.10)
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Observe that the distance of anchor agents associated with innovative positions in distinct Vλm
is at least 

2 by the second requirement (ii) for the set Λ. This together with the assumption (3.1) implies that

Vλm
∩ Vλm′ = ∅ for distinct λm, λm′ ∈ Λ. (9.11)

Combining (9.9), (9.10) and (9.11) leads to

μG(BG(λ, r)) ≤
(

sup
λ′∈G

μG(BG(λ′, 2M + 2))
)

#
(

∪λm∈Λ Vλm

)
. (9.12)

Take i ∈ V with (i, λ′) ∈ T for some λ′ ∈ BG(λ, M), and i′ ∈ Vλm
, λm ∈ Λ. Then

ρH(i, λ) ≤ ρH(i, λ′) + ρH(λ′, λ) ≤ M + 1,

and

ρH(i′, λ) ≤ ρH(i′, λ̃) + ρH(λ̃, λ) ≤ r + 1,

where λ̃ ∈ BG(λm, M) and (i′, ̃λ) ∈ T . Thus

ρ(i, i′) ≤ r + M + 1. (9.13)

Then the desired estimate (9.8) follows from (9.12) and (9.13). �
We are ready to prove Proposition 3.3.

Proof of Proposition 3.3. First we prove the doubling property (3.10) for the measure μ. Take i ∈ V . Then 
for r ≥ 2(M + 1) it follows from Lemmas 9.1 and 9.2 that

μ(B(i, 2r)) ≤ LμG(BG(λ, 2r)) ≤ L(D0(G))2μG(BG(λ, r/2))

≤ KL(D0(G))2μ(B(i, r/2 + M + 1)) ≤ KL(D0(G))2μ(B(i, r)), (9.14)

where λ ∈ G is a vertex with (i, λ) ∈ T and

K := sup
λ′∈G

μG(BG(λ′, 2M + 2)) ≤ ((deg(G))2M+3 − 1
deg(G) − 1 (9.15)

by (2.6). From the doubling property (2.1) for the measure μG , we obtain

μ(B(i, 2r)) ≤ KLD0(G) ≤ KLD0(G)μ(B(i, r)) for 0 ≤ r ≤ 2(M + 1). (9.16)

Then the doubling property (3.10) follows from (9.14), (9.15) and (9.16).
Next we prove the doubling property (3.11) for the measure μG . Let λ′ ∈ BG(λ, M) with (i, λ′) ∈ T for 

some i ∈ V . The existence of such λ′ follows from assumption (3.3). From Lemmas 9.1 and 9.2, we obtain

μG(BG(λ, 2r)) ≤ Kμ(B(i, 2r + M + 1)) ≤ D2
0Kμ

(
B

(
i,

r

2 + (M + 1)
4

))

≤ D2
0LKμG

(
BG

(
λ′,

r

2 + M + 1
4

))

≤ D2
0LKμG

(
BG

(
λ,

r + M + 1 + M
))

≤ D2
0LKμG(BG(λ, r)) (9.17)
2 4
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for r ≥ 3M , and

μG(BG(λ, 2r)) ≤ Kμ(B(i, 7M)) ≤ D2
0Kμ(B(i, 2M))

≤ D2
0LKμG(BG(λ′, 2M)) ≤ D2

0LK2μG(BG(λ, r)) (9.18)

for 0 ≤ r ≤ 3M − 1. Combining (9.15), (9.17) and (9.18) proves (3.11). �
9.5. Proof of Proposition 3.4

The polynomial growth property (3.12) for the measure μ follows immediately from Lemma 9.1.
The polynomial growth property (3.13) for the measure μG holds because

μG(BG(λ, r)) ≤ (deg(G))M − 1
deg(G) − 1 , 0 ≤ r ≤ M − 1

by (2.6), and

μG(BG(λ, r)) ≤ D1

( (deg(G))2M+3 − 1
deg(G) − 1

)
(r + M + 2)d

≤ 2dD1

( (deg(G))2M+3 − 1
deg(G) − 1

)
(r + 1)d, r ≥ M,

by (9.15) and Lemma 9.2.

9.6. Proof of Proposition 4.1

To prove Proposition 4.1, we need a lemma.

Lemma 9.3. Let G be a connected simple graph. If its counting measure has polynomial growth (2.4), then

sup
λ∈G

∑
ρG(λ,λ′)≥s

(1 + ρG(λ, λ′))−α ≤ D1(G)α
α − d

(s + 1)−α+d (9.19)

for all α > d and nonnegative integers s, where d and D1(G) are the Beurling dimension and sampling 
density respectively.

Proof. Take λ ∈ G and α > d. Then∑
ρG(λ,λ′)≥s

(1 + ρG(λ, λ′))−α =
∑
n≥s

(n + 1)−α
( ∑

ρG(λ,λ′)=n

1
)

≤
∑
n≥s

μG(BG(λ, n))((n + 1)−α − (n + 2)−α
)

≤ D1(G)
∞∑

n=s

(n + 1)d((n + 1)−α − (n + 2)−α
)

= D1(G)
(

(s + 1)−α+d +
∞∑

n=s+1
(n + 1)−α

(
(n + 1)d − nd

))

≤ D1(G)
(

(s + 1)−α+d + d

∞∫
td−α−1dt

)
= D1(G)α

α − d
(s + 1)−α+d, (9.20)
s+1
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where the second inequality follows from (2.4), and the third one is true as (n + 1)d − nd ≤ d(n + 1)d−1 for 
n ≥ 1 and d ≥ 1. �

Now we prove Proposition 4.1.

Proof of Proposition 4.1. Take A ∈ Jα(G, V) and c := (c(i))i∈V ∈ �p, 1 < p < ∞. Then

‖Ac‖p
p ≤ ‖A‖p

Jα(G,V)

∑
λ∈G

( ∑
i∈V

(1 + ρH(λ, i))−α|c(i)|
)p

≤ ‖A‖p
Jα(G,V)‖c‖p

p

(
sup

λ′∈G

∑
i′∈V

(1 + ρH(λ′, i′))−α
)p−1(

sup
i′∈V

∑
λ′∈G

(1 + ρH(λ′, i′))−α
)

. (9.21)

For any λ′ ∈ G and i′ ∈ V , it follows from Proposition 3.1 that

ρG(λ′, λ′′) + 1 ≥ ρH(λ′, i′) ≥ ρG(λ′, λ′′) for all λ′′ ∈ G with (i′, λ′′) ∈ T. (9.22)

By (3.2), (3.14), (9.22) and Lemma 9.3, we obtain

∑
i′∈V

(1 + ρH(λ′, i′))−α ≤
∑

λ′′∈G

( ∑
(i′,λ′′)∈T

1
)

(1 + ρG(λ′, λ′′))−α

≤ L
∑

λ′′∈G

(1 + ρG(λ′, λ′′))−α ≤ LD1(G)α
α − d

for any λ′ ∈ G, (9.23)

and

∑
λ′∈G

(1 + ρH(λ′, i′))−α ≤
∑

λ′∈G

(1 + ρG(λ′, λ′′))−α ≤ D1(G)α
α − d

for any i′ ∈ V, (9.24)

where λ′′ ∈ G satisfies (i′, λ′′) ∈ T . Combining (9.21), (9.23) and (9.24) proves (4.4) for 1 < p < ∞.
We can use similar argument to prove (4.4) for p = 1, ∞. �

9.7. Proof of Proposition 4.2

Following the proof of Proposition 4.1, we obtain

‖(A − As)c‖p ≤ ‖A‖Jα(G,V)

(
sup

λ′∈G

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α
)1−1/p

×
(

sup
i′∈V

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α
)1/p

‖c‖p, (9.25)

where c ∈ �p, 1 ≤ p ≤ ∞. Applying similar argument used to prove (9.19), (9.23) and (9.24), we have

sup
λ′∈G

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α ≤ L sup
λ′∈G

∑
ρG(λ′,λ′′)≥s

(1 + ρG(λ′, λ′′))−α ≤ D1(G)Lα

α − d
(s + 1)−α+d (9.26)

and
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sup
i′∈V

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α ≤ D1(G)α
α − d

(s + 1)−α+d. (9.27)

Then the approximation error estimate (4.6) follows from (9.25), (9.26) and (9.27).

9.8. Proof of Theorem 5.3

To prove Wiener’s lemma (Theorem 5.3) for Jα(V), α > d, we first show that it is a Banach algebra of 
matrices.

Proposition 9.4. Let V be an undirected graph with the counting measure μ having polynomial growth (3.9). 
Then for any α > d, Jα(V) is a Banach algebra of matrices:

(i) ‖βC‖Jα(V) = |β|‖C‖Jα(V),
(ii) ‖C + D‖Jα(V) ≤ ‖C‖Jα(V) + ‖D‖Jα(V),
(iii) ‖CD‖Jα(V) ≤ 2α+1D1α

α−d ‖C‖Jα(V)‖D‖Jα(V), and
(iv) ‖Dc‖2 ≤ D1α

α−d ‖D‖Jα(V)‖c‖2

for any scalar β, vector c ∈ �2 and matrices C, D ∈ Jα(V).

Proof. The first two conclusions follow immediately from (5.2) and (5.3).
Now we prove the third conclusion. Take C, D ∈ Jα(V). Then

‖CD‖Jα(V) ≤ 2α‖C‖Jα(V)‖D‖Jα(V) sup
i,i′∈V

( ∑
ρ(i,i′′)≥ρ(i,i′)/2

(1 + ρ(i′′, i′))−α

+
∑

ρ(i′′,i′)≥ρ(i,i′)/2

(1 + ρ(i, i′′))−α
)

. (9.28)

Following the argument used in the proof of Lemma 9.3, we have

sup
i∈V

∑
ρ(i,i′)≥s

(1 + ρ(i, i′))−α ≤ D1α

α − d
(s + 1)−α+d, 0 ≤ s ∈ Z. (9.29)

Combining (9.28) and (9.29) proves the third conclusion.
Following the proof of Proposition 4.1 and applying (9.29) instead of (9.23) and (9.24), we obtain the 

fourth conclusion. �
Now, we prove Theorem 5.3.

Proof of Theorem 5.3. Following the argument in [59], it suffices to establish the following differential norm 
inequality:

‖C2‖Jα(V) ≤ 2α+d/2+2D
1/2
1 (D1α/(α − d))1−θ(‖C‖Jα(V))2−θ(‖C‖B2)θ (9.30)

holds for all C ∈ Jα(V), where θ = (2α − 2d)/(2α − d) ∈ (0, 1).
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Write C = (c(i, i′))i,i′∈V . Then

‖C2‖Jα(V) ≤ 2α‖C‖Jα(V)

(
sup

i,i′∈V

∑
ρ(i,i′′)≥ρ(i,i′)/2

|c(i′′, i′)| + sup
i,i′∈V

∑
ρ(i′′,i′)≥ρ(i,i′)/2

|c(i, i′′)|
)

≤ 2α‖C‖Jα(V)

(
sup
i′∈V

∑
i′′∈V

|c(i′′, i′)| + sup
i∈V

∑
i′′∈V

|c(i, i′′)|
)

. (9.31)

Set

τ :=
(D1α‖C‖Jα(V)

(α − d)‖C‖B2

)2/(2α−d)
≥ 1 (9.32)

by Proposition 9.4. For i′ ∈ V , we obtain

∑
i′′∈V

|c(i′′, i′)| ≤
( ∑

ρ(i′′,i′)≤τ

|c(i′′, i′)|2
)1/2( ∑

ρ(i′′,i′)≤τ

1
)1/2

+ ‖C‖Jα(V)
∑

ρ(i′′,i′)>τ

(1 + ρ(i′′, i′))−α

≤ D
1/2
1 ‖C‖B2(1 + �τ�)d/2 + D1α(α − d)−1‖C‖Jα(V)(1 + �τ�)−α+d

≤ 2d/2+1D
1/2
1 (D1α/(α − d))d/(2α−d)(‖C‖Jα(V))1−θ(‖C‖B2)θ, (9.33)

where the second inequality holds by (9.29) and the last inequality follows from (9.32). Similarly, for i ∈ V

we have
∑

i′′∈V

|c(i′, i′′)| ≤ 2d/2+1D
1/2
1 (D1α/(α − d))d/(2α−d)(‖C‖Jα(V))1−θ(‖C‖B2)θ. (9.34)

Combining (9.31), (9.33) and (9.34) proves (9.30). This completes the proof of Theorem 5.3. �
9.9. Proof of Theorem 5.2

To prove Theorem 5.2, we need Theorem 5.3 and the following lemma about families Jα(G, V) and Jα(V)
of matrices.

Lemma 9.5. Let G, H, V and d be as in Proposition 5.1. Then

(i) ‖AC‖Jα(G,V) ≤ 2α+1LD1(G)α
α−d ‖A‖Jα(G,V)‖C‖Jα(V) for all A ∈ Jα(G, V) and C ∈ Jα(V).

(ii) ‖AT B‖Jα(V) ≤ 2α+1D1(G)α
α−d ‖A‖Jα(G,V)‖B‖Jα(G,V) for all A, B ∈ Jα(G, V).

Proof. Take A ∈ Jα(G, V) and C ∈ Jα(V). Observe from (3.1) that

ρH(λ, i) ≤ ρH(λ, i′) + ρ(i′, i) for all λ ∈ G and i, i′ ∈ V.

Similar to the argument used in the proof of Proposition 9.4, we obtain

‖AC‖Jα(G,V) ≤ 2α‖A‖Jα(G,V)‖C‖Jα(V)

(
sup
i∈V

∑
i′∈V

(1 + ρ(i′, i))−α + sup
λ∈G

∑
i′∈V

(1 + ρH(λ, i′))−α
)

.

This together with (3.15), (9.26) and (9.29) proves the first conclusion.
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Recall that

ρ(i, i′) ≤ ρH(λ, i) + ρH(λ, i′) for all λ ∈ G and i, i′ ∈ V. (9.35)

Then for A, B ∈ Jα(G, V), we obtain from (9.27) and (9.35) that

‖AT B‖Jα(V) ≤ 2α+1‖A‖Jα(G,V)‖B‖Jα(G,V) sup
i∈V

∑
λ∈G

(1 + ρH(λ, i))−α

≤ 2α+1D1(G)α
α − d

‖A‖Jα(G,V)‖B‖Jα(G,V).

This completes the proof of the second conclusion. �
Now we prove Theorem 5.2.

Proof of Theorem 5.2. Take A ∈ Jα(G, V) that has �2-stability. Then AT A has bounded inverse on �2. 
Observe that AT A ∈ Jα(V) by Lemma 9.5. Therefore (AT A)−1 ∈ Jα(V) and A(AT A)−1 ∈ Jα(G, V) by 
Theorem 5.3 and Lemma 9.5. Hence for any c ∈ �p,

‖c‖p = ‖(AT A)−1AT Ac‖p ≤ D1(G)Lα

α − d
‖A(AT A)−1‖Jα(G,V)‖Ac‖p

and

‖Ac‖p ≤ D1(G)Lα

α − d
‖A‖Jα(G,V)‖c‖p

by Proposition 4.1 and the dual property between sequences �p and �p/(p−1). The �p-stability for the matrix 
A then follows. �
9.10. Proof of Theorem 5.4

The conclusion (5.4) follows immediately from Proposition 4.1, Theorem 5.3 and Lemma 9.5.

9.11. Proof of Theorem 6.1

Observe from Proposition 3.1 that

BH(γ, r) ∩ G = {γ′ ∈ G, ρG(γ, γ′) ≤ r}, γ ∈ G

and

BH(i, r) ∩ V = {i′ ∈ V, ρ(i, i′) ≤ max(r − 1, 0)}, i ∈ V.

Take c = (c(i))i∈V supported in BH(λ, N) ∩ V and write Ac = (d(λ′))λ′∈G. Then

‖Ac‖2 ≥ A‖A‖Jα(G,V)‖c‖2 (9.36)

and



C. Cheng et al. / Appl. Comput. Harmon. Anal. 47 (2019) 109–148 141
∑
ρH(λ′,λ)>2N

|d(λ′)|2 ≤ LD1(G)N−α+d‖A‖2
Jα(G,V)

×
∑

ρH(λ′,λ)>2N

∑
i∈BH(λ,N)∩V

(1 + ρH(λ′, i))−α|c(i)|2

≤
(
D1(G)

)2
LN−2α+2dα(α − d)−1‖A‖2

Jα(G,V)‖c‖2
2, (9.37)

where the first inequality holds as

ρH(λ′, i′) ≥ ρH(λ′, λ) − ρH(i′, λ) > N

for all λ′ /∈ BH(λ, 2N) and i′ ∈ BH(λ, N), and the last inequality follows from (9.27). Combining (9.36)
and (9.37) proves (6.1).

9.12. Proof of Theorem 6.2

In this subsection, we will prove the following strong version of Theorem 6.2.

Theorem 9.6. Let G, H, V and A be as in Theorem 6.2. If there exists a positive constant A0, an integer 
N0 ≥ 3, and a maximal N0

4 -disjoint subset GN0/4 such that (6.3) is true and (6.4) hold for all λm ∈ GN0/4, 
then A satisfies (6.5).

Proof. Let ψ0 be the trapezoid function,

ψ0(t) =

⎧⎪⎨
⎪⎩

1 if |t| ≤ 1/2
2 − 2|t| if 1/2 < |t| ≤ 1
0 if |t| > 1.

(9.38)

For λ ∈ G, define multiplication operators ΨN
λ,V and ΨN

λ,G by

ΨN
λ,V : (c(i))i∈V �−→

(
ψ0(ρH(λ, i)/N)c(i)

)
i∈V

, (9.39)

ΨN
λ,G : (d(λ′))λ′∈G �−→

(
ψ0(ρH(λ, λ′)/N)d(λ′)

)
λ′∈G

. (9.40)

Observe that

AN ΨN
λ,V = AN χN

λ,V ΨN
λ,V = χ2N

λ,GAN χN
λ,V ΨN

λ,V , N ≥ 0,

where AN is a band approximation of the matrix A in (4.5). Then for all λm ∈ GN0/4, it follows from 
Proposition 4.2 and our local stability assumption (6.4) that

‖AN0ΨN0
λm,V c‖2 ≥ ‖χ2N0

λm,GAχN0
λm,V ΨN0

λm,V c‖2 − ‖χ2N0
λm,G(A − AN0)ΨN0

λm,V c‖2

≥
(

A0 − D1(G)Lα

α − d
N−α+d

0

)
‖A‖Jα(G,V)‖ΨN0

λm,V c‖2, c ∈ �2.

Therefore

( ∑
λ ∈G

‖AN0ΨN0
λm,V c‖2

2

)1/2
m N0/4
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≥
(

A0 − D1(G)Lα

α − d
N−α+d

0

)
‖A‖Jα(G,V)

( ∑
λm∈GN0/4

‖ΨN0
λm,V c‖2

2

)1/2

≥
(A0

3 − D1(G)Lα

3(α − d) N−α+d
0

)
‖A‖Jα(G,V)‖c‖2, (9.41)

where the last inequality holds because for all i ∈ V ,

∑
λm∈GN0/4

|ψ0(ρH(λm, i)/N0)|2 ≥
(N0 − 2

N0

)2 ∑
λm∈GN0/4

χBH(λm,N0/2+1)(i) ≥ 1
9

by (9.38), Proposition 2.4 and the assumption that N0 ≥ 3.
Next, we estimate commutators

AN0ΨN0
λm,V − ΨN0

λm,GAN0 = (AN0ΨN0
λm,V − ΨN0

λm,GAN0)χ2N0
λm,V , λm ∈ GN0/4.

Take c = (c(i))i∈V ∈ �2. Then
∑

λm∈GN0/4

‖(AN0ΨN0
λm,V − ΨN0

λm,GAN0)c‖2
2

≤ ‖A‖2
Jα(G,V)

∑
λm∈GN0/4

∑
λ∈G

{ ∑
ρH(λ,i)≤N0

(1 + ρH(λ, i))−α

×
∣∣∣ψ0

(ρH(λ, λm)
N0

)
− ψ0

(ρH(i, λm)
N0

)∣∣∣χBH(λm,2N0)∩V (i)|c(i)|
}2

≤ 4(D0(G))4N−2
0 ‖A‖2

Jα(G,V)

(
sup
i∈V

∑
λ∈BH(i,N0)∩G

(1 + ρH(λ, i))−αρH(λ, i)
)

×
(

sup
λ∈G

∑
i∈BH(λ,N0)∩V

(1 + ρH(λ, i))−αρH(λ, i)
)

‖c‖2
2, (9.42)

where the last inequality follows from Propositions 2.4 and 3.1, and

|ψ0(t) − ψ0(t′)| ≤ 2|t − t′| for all t, t′ ∈ R.

Following the argument used in (9.19), we have

sup
i∈V

∑
λ∈BH(i,N0)∩G

(1 + ρH(λ, i))−αρH(λ, i)

≤ sup
λ′∈G

∑
ρG(λ,λ′)≤N0

(1 + ρG(λ, λ′))−α+1

≤ D1(G)(N0 + 1)−α+d+1 + (α − 1)D1(G)
N0−1∑
n=0

(n + 1)−α+d

≤ D1(G)(N0 + 1)−α+d+1 + D1(G)(α − 1)
(

1 +
N0∫
1

t−α+ddt
)

≤

⎧⎪⎪⎨
⎪⎪⎩

D1(G)(α−1)(α−d)
α−d−1 if α > d + 1

D1(G)(1 + d + d ln N0) if α = d + 1
2d+1−αD1(G)dNd+1−α if α < d + 1,

(9.43)
d+1−α 0
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and

sup
λ∈G

∑
i∈BH(λ,N0)∩V

(1 + ρH(λ, i))−αρH(λ, i)

≤ L sup
λ∈G

∑
λ′∈BG(λ,N0)

(1 + ρG(λ, λ′))−α+1

≤

⎧⎪⎪⎨
⎪⎪⎩

D1(G)L(α−1)(α−d)
α−d−1 if α > d + 1

D1(G)L(1 + d + d ln N0) if α = d + 1
2d+1−αD1(G)dL

d+1−α Nd+1−α
0 if α < d + 1.

(9.44)

Therefore,

(D0(G))2‖AN0c‖2 ≥
( ∑

λm∈GN0/4

‖ΨN0
λm,GAN0c‖2

2

)1/2

≥
( ∑

λm∈GN0/4

‖AN0ΨN0
λm,V c‖2

2

)1/2
−

( ∑
λm∈GN0/4

‖(AN0ΨN0
λm,V − ΨN0

λm,GAN0)c‖2
2

)1/2

≥
A0‖A‖Jα(G,V)

3 ‖c‖2 − D1(G)L‖A‖Jα(G,V)N
− min(α−d,1)
0 ‖c‖2

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
α

3(α−d) + 2(D0(G))2(α−1)(α−d)
α−d−1

)
if α > d + 1(

d+1
3 + 2(D0(G))2(1 + d + d ln N0)

)
if α = d + 1(

α
3(α−d) + 4(D0(G))2d

d+1−α

)
if α < d + 1,

where the first inequality holds by Proposition 2.4, and the third inequality follows from (9.41) and (9.42). 
This together with Proposition 4.2 completes the proof. �
9.13. Proof of Proposition 7.1

To prove Proposition 7.1, we need the following critical estimate.

Proposition 9.7. Let G, H, V and S be as in Proposition 7.1. Then

‖(χN
λ,V ST SχN

λ,V )−1‖Jα(V) ≤ 2−α−1(α − d)2D2

α2D1D1(G)‖S‖2
Jα(G,V)

, (9.45)

where D2 is the constant in (7.8).

Proof. Let Jλ,N := χN
λ,V ST SχN

λ,V . By Lemma 9.5, we have

‖Jλ,N ‖Jα(V) ≤ 2α+1D1(G)α
α − d

‖S‖2
Jα(G,V). (9.46)

This together with Propositions 9.4 implies that

A2‖S‖2
Jα(G,V)‖χN

λ,V x‖2
2 ≤ ‖SχN

λ,V x‖2
2 = 〈Jλ,N x, x〉 ≤ 2α+1α2D1D1(G)

2 ‖S‖2
Jα(G,V)‖χN

λ,V x‖2
2
(α − d)
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for all x ∈ �2. Hence

Jλ,N = 2α+1α2D1D1(G)
(α − d)2 ‖S‖2

Jα(G,V)(IBH(λ,N)∩V − Bλ,N ) (9.47)

for some Bλ,N satisfying

‖Bλ,N ‖B2 ≤ r0 (9.48)

and

‖Bλ,N ‖Jα(V) ≤ ‖IBH(λ,N)∩V ‖Jα(V) +
2−α−1(α − d)2‖Jλ,N ‖Jα(V)

α2D1D1(G)‖S‖2
Jα(G,V)

≤ 1 + α − d

αD1
≤ 2, (9.49)

where IBH(λ,N)∩V is the identity matrix on BH(λ, N) ∩V . Then following the argument in [59] and applying 
(9.30) with C replaced by Bλ,N and V by BH(λ, N) ∩ V , we obtain the following estimate

‖(Bλ,N )n‖Jα(V) ≤
(D

1
1−θ ‖Bλ,N ‖Jα(V)

‖Bλ,N ‖B2

) 2−θ
1−θ nlog2(2−θ)

‖Bλ,N ‖n
B2 for all n ≥ 1,

where D = 22α+d/2+3D
1/2
1 (D1α/(α − d))2−θ. This together with (9.48) and (9.49) leads to

‖(Bk,N )n‖Jα(V) ≤ (2D
1

1−θ /r0)
2−θ
1−θ nlog2(2−θ)

rn
0 for all n ≥ 1. (9.50)

Observe that

‖(Jλ,N )−1‖Jα(V) ≤ 2−α−1(α − d)2

α2D1D1(G)‖S‖2
Jα(G,V)

(
1 +

∞∑
n=1

‖(Bλ,N )n‖Jα(V)

)
(9.51)

by (9.47). Combining (9.50) and (9.51) completes the proof. �
Proof of Proposition 7.1. Observe from (7.2) and (7.3) that

χ
N/2
λ,V (dλ,N − d2) = χ

N/2
λ,V (χN

λ,V ST SχN
λ,V )−1χN

λ,V ST S(I − χN
λ,V )d2.

This together with (9.29), Lemma 9.5, and Propositions 9.4 and 9.7 implies that

‖χ
N/2
λ,V (dλ,N − d2)‖∞ ≤ ‖(χN

λ,V ST SχN
λ,V )−1χN

λ,V ST S‖Jα(V) ×(
sup

i∈BH(λ,N/2)∩V

∑
j /∈BH(λ,N)∩V

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D1α

α − d
‖(χN

λ,V ST SχN
λ,V )−1‖Jα(V)‖ST S‖Jα(V) ×

(
sup
i∈V

∑
ρH(i,j)>N/2

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D2
(

sup
i∈V

∑
ρH(i,j)>N/2

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D1D2α

α − d

(N

2 + 1
)−α+d

‖d2‖∞ ≤ D3(N + 1)−α+d‖d2‖∞.

This proves the estimate (7.6).
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Now we prove (7.7). Set yLS = (ST S)−1d2. By (9.29),

‖yLS‖∞ ≤ D1α

α − d
‖(ST S)−1‖Jα(V)‖d2‖∞. (9.52)

Moreover, following the proof of Proposition 9.7 gives

‖(ST S)−1‖Jα(V) ≤ 2−α−1(α − d)2D2

α2D1D1(G)‖S‖2
Jα(G,V)

. (9.53)

Write

χ
N/2
λ,G (wλ,N − wLS) = χ

N/2
λ,G (χN

λ,GSχN
λ,V )(χN

λ,V ST SχN
λ,V )−2χN

λ,V ST S(I − χN
λ,V )d2

+χ
N/2
λ,G (χN

λ,GSχN
λ,V )(χN

λ,V ST SχN
λ,V )−1χN

λ,V ST S(I − χN
λ,V )yLS

−χ
N/2
λ,G S(I − χN

λ,V )yLS

=: I + II + III . (9.54)

Using (9.26), (9.52), (9.53), Lemma 9.5, and Propositions 9.4 and 9.7, we obtain

‖I‖∞ ≤ ‖(χN
λ,GSχN

λ,V )(χN
λ,V ST SχN

λ,V )−2χN
λ,V ST S‖Jα(G,V) ×(

sup
λ′∈BH(λ,N/2)∩G

∑
i/∈BH(λ,N)∩V

(1 + ρH(λ′, i))−α
)
‖d2‖∞

≤ 22α+2LD2
2

‖S‖Jα(G,V)

(
sup

λ′∈G

∑
ρH(λ′,i)>N/2

(1 + ρH(λ′, i))−α
)
‖d2‖∞

≤ 23α−d+2αL2D1(G)D2
2

(α − d)‖S‖Jα(G,V)
(N + 1)−α+d‖d2‖∞,

‖II ‖∞ ≤ 23α−d+2α2L2(D1(G))2D2

(α − d)2 ‖S‖Jα(G,V)(N + 1)−α+d‖yLS‖∞

≤ 22α−d+1αL2D1(G)D2
2

(α − d)‖S‖Jα(G,V)
(N + 1)−α+d‖d2‖∞,

and

‖III ‖∞ ≤ LD2

‖S‖Jα(G,V)
(N + 1)−α+d‖d2‖∞.

These together with (9.54) prove (7.7). �
9.14. Proof of Theorem 7.2

Let

un = ST (wn − wLS) = ST wn − d2 and vn = Sun, n ≥ 1. (9.55)

Then,

un+1 = un − ST RN ST Sun = ST
(
S(ST S)−2ST vn − RN ST vn

)
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by (7.13), (7.14) and (9.55). Therefore,

‖un+1‖∞ ≤ D1(G)Lα

α − d
‖S‖Jα(G,V)‖RN ST vn − S(ST S)−2ST vn‖∞

≤ D1(G)D4Lα

α − d
‖S‖Jα(G,V)(N + 1)−α+d‖(ST S)−1ST vn‖∞

= r1‖un‖∞ ≤ · · · ≤ rn
1 ‖ST (RN ST S − S(ST S)−1)d2‖∞

≤ rn+1
1 ‖d2‖∞, (9.56)

where the second inequality follows from (7.10) with d2 replaced by (ST S)−1ST vn, and the last inequality 
holds by (7.10) and Proposition 4.1.

Observe that

wn+1 − wn = −RN ST Sun. (9.57)

Using (7.12), Proposition 4.1 and Lemma 9.5 gives

‖wn+1 − wn‖∞ ≤ 22α+2αL3(D1(G))2D2
2

(α − d)D1‖S‖Jα(G,V)
‖un‖∞. (9.58)

This together with (9.56) proves the exponential convergence (7.17).
The conclusion (7.15) follows from (9.55) by taking limit n → ∞.
The error estimate (7.18) between the “least squares” solution d2 and its sub-optimal approximation 

ST wn, n ≥ 1, follows from (7.17) and Proposition 4.1.
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