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Abstract—For the flexibility of implementing any given
Boolean function(s), the FPGA uses re-configurable building
blocks called LUTs. The price for this reconfigurability is a
large number of registers and multiplexers required to construct
the FPGA. While researchers have been working on complex
LUT structures to reduce the area and power for several years,
most of these implementations come at the cost of performance
penalty. This paper demonstrates simultaneous improvement in
area, power, and performance in an FPGA by using special logic
cells called Threshold Logic Cells (TLCs) (also known as binary
perceptrons). The TLCs are capable of implementing a complex
threshold function, which if implemented using conventional
gates would require several levels of logic gates. The TLCs
only require 7 SRAM cells and are significantly faster than
the conventional LUTs. The implementation of the proposed
FPGA architecture has been done using 28nm FDSOI standard
cells and has been evaluated using ISCAS-85, ISCAS-89, and a
few large industrial designs. Experiments demonstrate that the
proposed architecture can be used to get an average reduction of
18.1% in configuration registers, 18.1% reduction in multiplexer
count, 12.3% in Basic Logic Element (BLE) area, 16.3% in BLE
power, 5.9% improvement in operating frequency, with a slight
reduction in track count, routing area and routing power. The
improvements are also demonstrated on the physically designed
version of the architecture.

Index Terms—Threshold Logic, FPGA, Reconfigurable, FD-
SOI, 28nm, PNAND, Low Power, Low Area, High Performance,
Digital Perceptron

I. INTRODUCTION

Traditionally, the attractiveness of FPGAs was primarily
due to their reconfigurability in the field, which provided the
flexibility of software and the high performance and energy-
efficiency of hardware, when compared with microprocessor-
based systems. FPGAs are also ideal for rapid prototyping of
designs [1]. However, when compared to ASICs, FPGAs are
still an order of magnitude inferior in performance, power,
and area (PPA) [2]. Nevertheless, the extremely high costs
of ASICs, especially, in sub-16/14nm technologies [3] [4],
combined with shrinking time-to-market [5], and the more
recent drive to implement compute-intensive applications like
CNNs/DNNs on FPGAs [6]-[9] have all placed added empha-
sis on improving the energy-efficiency of FPGAs.

Improvements in the PPA of FPGAs to date have been
achieved through the use of new design mapping algorithms,
and by modifying the architecture of the basic computational
block of an FPGA - the lookup table (LUT). Advances
in technology mapping [10], [11], have taken place over
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several decades, and have been incorporated into most of the
commercial FPGAs [12]-[14]. Comparatively less has been
done on exploring alternate architectures for the LUT.

The most common approach to examining alternate ar-
chitectures for an LUT is based on varying the size of
their support set and/or changing the set of functions each
can realize. Ahmed et al. [15] suggest the use of LUT4!
maximizes area efficiency whereas an LUT6 results in the
best performance. Feng et al. [16] introduced a new LUT7
structure with reduced functionality, by hard-wiring two LUT4
circuits, to achieve a 9.5% reduction in the area with a 1.6%
reduction in performance. Anderson et al. [17] describe an
extended LUTS structure that resulted in a 9% reduction in
the area with a 5% performance penalty.

Research in new circuit architectures for LUTs and pro-
grammable interconnects employing emerging device tech-
nologies such as RRAMs, STT-MTJs and DWTs have also
been reported [18]-[21]. Although these technologies are still
under development and not yet viable commercially, existing
literature provides compelling evidence that they have the po-
tential for realizing ultra-compact and energy-efficient FPGAs.

In this paper, we describe a new architecture for an FPGA,
referred to as threshold logic FPGA (TLFPGA), that integrates
a conventional LUT with a CMOS digital implementation of a
binary perceptron, also known as a threshold logic cell (TLC).
Kulkarni et al. [22] have reported a design of a 2D array
of similar cells, but their architecture, strictly speaking, is
not a general purpose FPGA, as their array can only realize
combinational netlists, and is practical only for netlists without
feedforward signals. In contrast, the design described herein,
combined with a new logic mapping algorithm that exploits
the presence of both a conventional LUTs and TLCs within
the basic logic element, achieves significant improvements in
all the metrics of PPA.

The architecture of a TLFPGA favors highly pipelined
circuits, i.e., the improvements in PPA increase with more
pipeline stages — a characteristic that is not generally found
when using conventional logic structures, where increasing
performance is often achieved at the expense of area and/or
power. To ensure an accurate evaluation of the proposed
architecture, the FPGAs and TLFPGAs for different sizes of
LUTs were designed down to the layout level, using the public
domain FPGA design tool VPR [23], OpenFPGA [24], and

'LUTn refers to an LUT whose support set is 7.
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Fig. 1: Sample Tile structure for (a) FPGA and (b) TLFPGA.
of the LUTs in (a) have been replaced with TLCs in (b).

Two

commercial tools from Cadence Inc., including Genus® for
synthesis and Innovus® for placement and routing [25]. All
estimates for performance and power are based on simulation
of netlists with all parasitics extracted from the layouts. The
circuit benchmarks that were mapped on to the FPGAs and
TLFPGAs include the traditional set of ISCAS-85 [26] as well
as larger and more complex function blocks from OpenCores.

The paper is organized as follows: Section II describes the
TLFPGA architecture and compares LUTn for n = 4,5,6,7
with a TLC7 in terms of area, delay and power. Section III
describes the design flow that results in a complete layout of
the FPGA and TLFPGA. Sections IV and V describes logic
mapping algorithm that looks for subcircuits which are thresh-
old functions that can be implemented by a TLC7. Extensive
experimental results using standard benchmark circuits and
large complex function blocks are presented in Section VI
Section VII concludes this paper.

II. TLFPGA ARCHITECTURE

Figure 1 illustrates the structure of a standard FPGA Tile
and the threshold logic tile within a TLFPGA. All the 10
BLEs in an FPGA tile are LUTSs, whereas the 10 BLEs in the
TLFPGA tile consists of 8 LUTs and 2 TLCs. This arrange-
ment will be justified shortly based on empirical evaluations
of various configurations. Each tile has configuration registers
and Muxes which are used to program the BLEs.

A TLC is a digital CMOS circuit implementation of a
binary perceptron, whose function is referred to as a thresh-
old function or a linearly separable function [27], [28]. A
unate Boolean function f(x1, 2, - ,z,) is called a threshold

function if there exist weights w; for ¢ = 1,2,--- 'n and a
threshold 7 such that
n
f(l'l,iEQ,"'xn):l e ZwLleT7 (1)

i=1

where > denotes the arithmetic sum. Thus a threshold

function can be represented as (W, T') = [wy, wa, - -+ , wy; T).
An example of a simple threshold function is
fla,b,e,d) = abe V abd with [wy,wa, w3, wy; T] =
[2,2,1,1;2]. A more complex threshold function is

g(a,b,c,d,e) = ab V acd V bed V ace V bee V ade V bde,
with [wy,ws, ws,wy,x5;T] = [2,2,1,1,1;4]. Although

2 W.L.O.G. the weights w; and threshold 7" can be integers [27].

threshold functions can be implemented as a static CMOS
logic circuits, implementations that are based on evaluating
the defining predicate in Equation 1 by comparing some
physical quantity such as charge or conductance can result in
substantial reductions in gate count, area and power, as well
as improving the performance when compared to standard
logic implementations [28].

Operation of a TLC: Figure 2 depicts the transistor-level
structure of the TLC. It consists of a sense amplifier, a latch,
a left input network, and a right input network. The circuit
operates in two phases. In the reset phase (CLK = 0), N5 and
N6 are discharged, turning off all discharge paths from N1 and
N2 to ground. The outputs N1 and N2 transition to 1 through
M1 and M4.

Evaluation takes place when CLK : 0 — 1. Assuming
that the inputs have arrived, and that the left input network
has higher conductivity than the right input network. In the
evaluation phase, M13 and M14 are turned OFF, and both N5
and N6 will rise to 1. Without the loss of generality, assume
as a result, node N5 rises before node N6, and turns M7 on.
Prior to evaluation, N1 and N2 were both 1. Hence, M5 is
active when M7 turns on. This discharges N1 through M5 and
M7. The discharge of N1 stops the further discharge of N2
by turning off M6 and turning on M3. Consequently, the final
values of the outputs are N1 = 0, N2 = 1, which resets the
output latch. If the right input network had high conductivity,
the result would have been N1 = 1, N2 = 0, which results in
setting the latch. Note the feedback involving M9 and M10.
These are strictly unnecessary but are included to ensure that
once the clock transition completes, further changes on the
inputs will not affect the outputs.
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Fig. 2: Threshold Logic Cell (TLC) Structure. The sense amplifier
detects the difference in conductivity of the left and right input
networks and sets the outputs N1 and N2 accordingly.

The signals applied to the left and right input networks are
complementary, to ensure that there will always be a difference
of at least one active transistor between the two networks.
A configuration register R; = 0 if input X; is to appear in



positive polarity, and R; = 1 if X, is to be complemented.
The use of complementary signals in the two input networks
ensures a strict inequality between the conductivity of the left
and the right input networks and prevents the sense amplifier
from being in a metastable condition.

For the TLC to properly realize a threshold function, the
predicate shown in Equation 1 has to be converted to a
strict inequality, and the variables in Equation 1 have to
mapped to its inputs. Thus, Equation 1 is replaced with
St 2wiw; > 2T — 1. As the signals driving the input
networks are complementary, to realize this inequality the
same number of literals representing a signal must appear in
both networks. For example, consider f(a,b,c) = a V be =
2a +b+c¢c > 2 = 4a + 2b + 2¢ > 3. This is rewritten as
20+b+c+1>2(1-a)+ (1—>)+ (1—c). Therefore the
signals assigned to left input network in Figure 2 would be
Xlza,nga,Xg,:b,X4:c,X5:1,X6:O,and
X;=0,and R; =1, fori=1,2,---7.

Note that this particular signal assignment only requires
the seven XORs and configuration registers to program the
TLCs and does not require any additional control mechanism.
Furthermore, signal replication does not affect the track count
in the TLFPGA. The configuration registers of a TLC can
be programmed alongside the configuration registers of other
LUTs in the FPGA.

The benefits of the TLC have already been validated using
65nm Technology in Yang et al. [29]. A TLC-based Wallace
multiplier ASIC was compared against a functionally equiv-
alent, conventional standard cell implementation. Using both
simulation and chip measurement results, a 33% improvement
in dynamic power, 24% lower core area, 45% lower wire-
length and 50% lower leakage was reported for a TLC-based
Wallace multiplier, without any performance degradation. Sig-
nificant improvements in other designs, using the TLC, have
also been demonstrated in 65nm in Kulkarni et al. [30].
TLC vs LUT: Table I shows a comparison of a TLC7 with
LUTs of various sizes. Both cells were implemented in 28nm
FDSOI with power and delay estimates obtained from parasitic
extracted netlists. At the individual cell level, a TLC has a
substantially improved delay and power when compared to all
standard size LUTs. In addition, the number of configuration
registers and Muxes are also substantially reduced.

TABLE I: Delay and power for LUTs (with DFFs) and TLC.
Compared to LUT-4, a TLC is 2X faster and 31% lower power.

BLE Type | Config. Regs | MUX/XOR | Delay (ps) | Power (uWW)
LUT-4 16 15 220 332
LUT-5 32 31 226 64.0
LUT-6 64 63 294 125.0
LUT-7 128 127 331 248.0

TLC 7 7 109 22.8

A TLC can only realize a limited set of functions. This
limitation can be overcome by proper logic absorption (see
Figure 3). When a part of the logic cone feeding a flip-flop
happens to be a threshold function that can be realized by a
TLC7, that part along with the flipflop can be replaced by

a single TLC7 cell. Threshold functions occur frequently in
many practical circuits. Thus, a key step in mapping circuits
to a TLFPGA is to identify threshold functions that are part
of the logic cone feeding flipflops.
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Fig. 3: Logic absorbtion. Part of the logic cone driving the DFF is
a threshold function abc V abd. That logic and the DFF are replaced
by a single TLC.

TLC Tile vs LUT Tile: A cluster of 8 LUTs and 2 TLCs was
chosen for a TLFPGA tile because most of the logic cones in
the benchmark circuits had threshold functions with support
set of four variables. This means each feeder circuit output
(see Figure 3) could be mapped to an LUT. Hence, clustering
four LUTs with a single TLC would allow the routing between
the LUTs and the inputs of the TLC to remain within a single
tile, thereby reducing the inter-tile routing. This leads to an
improvement in the overall performance of the circuit. Since
a cluster size of 5 is too small, a cluster size of 10 BLEs was
chosen. Figure 4 depicts a typical cluster.

TYPICAL SIZED LOGIC CONES FOR PRACTICAL CIRCUITS (TLC GETS INPUT FROM 4 LUT(S))
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Fig. 4: Cluster size of 10 for TLFPGA; A TLC typically gets inputs
from four variables. The number of LUTS in each TLC is set to four
to ensure sufficient LUTs to feed the TLCs within a single tile.

TLFPGA tiles with 4, 5, 6, and 7-input LUTs were designed
to examine the effect of LUT size on area, power, and
performance. Note that a threshold logic tile contains fewer
BLE configuration registers and BLE Muxes as compared to
a standard LUT tile, and is therefore significantly smaller than
a standard LUT tile. The area comparison between an FPGA
and a TLFPGA tile is shown in Table II. At the individual
cell level and at the tile level, the TLFPGA shows substantial
improvement in the area. Later in Section VI, it is shown
that the use of the TLFPGA architecture improves the overall
PPA by reducing both the logic and routing resources during
technology mapping.

III. Tor FLOW FOR TLFPGA

Figure 5 shows a modified version of the design steps in
OpenFPGA [24] that is used to generate the bit-stream file for
the TLFPGA. The main modifications made to this flow for
designing with a TLFPGA are threshold cell mapping (TCM)



TABLE II: Tile area of FPGA vs. TLFPGA. Replacement of a large
LUT with a small TLC helps shrink the tile size. NOTE: These
numbers do not include the area of inter-tile routing resources, as
they are subject to change based on the number of tiles.

K | LUT-K FPGA (um?) | LUT-K TLFPGA (um?) | Improvement (%)
4 192 176 8.3%
5 272 236 13.2%
6 428 353 17.5%
7 780 617 20.9%

algorithm and the post-TCM improvements which are shown
in yellow boxes and explained in the following two sections.
The OpenFPGA’s bit-stream generator was updated to sup-
port programming for TLCs. The FPGA generator was also
modified to generate the Verilog output for TLFPGA. The
input to this flow is a given behavioral description of a
circuit. This netlist is synthesized to generate a gate-level
netlist. The TCM is then performed on the flattened gate-
level netlist (section IV) followed by LUT mapping using
ABC [31]. The TCM is TLFPGA-specific and is not included
in a conventional FPGA Flow [32]. The resulting circuit is
passed to the VPR [23] tool (Versatile Packing, Placement
and Routing) for placement and routing. The routing and
placement information generated by VPR is used by the
modified OpenFPGA to generate the final TLFPGA Verilog.
Open-FPGA also uses this information to generate a bit-stream
configuration file, required to program the TLFPGA.
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Fig. 5: Modified OpenFPGA Flow for TLFPGA

IV. THRESHOLD CELL MAPPING

This section describes the algorithm required to map a
circuit to the TLFPGA architecture. The algorithm takes a
synthesized netlist and replaces selected parts of the circuit
with TLCs to create a netlist with a combination of TLCs
and logic cells. Kulkarni et al. [30] describe an algorithm for
incorporating threshold logic gates in ASICs but their algo-
rithm is not applicable here due to the additional constraints

imposed by the architecture of the TLFPGA. The distinction
is similar to the distinction between technology mapping for
ASICs versus FPGAs. In the following, we present a brief
outline of the threshold cell mapping algorithm (TCM).

The key step in TCM, referred to as TLextract, is to identify
a subcircuit whose function is threshold within a logic cone
driving a given flip-flop. We employ a simple heuristic to
perform TLextract.

First, the set of all threshold functions that can be realized
by a TLC7 are enumerated based on the restrictions placed by
the signal assignment method described in Sec. II.

There are 22 such functions with a support set of at most
5. This allows the logic cone starting from the input of the
flip-flop to be searched for the cut size of at most five,
extracted and then tested whether the function of the circuit
is a threshold function among those that can be realized by
a TLC7. Because the size is limited and the search is limited
to unate subcircuits, exact testing by verifying the definition
in Equation 1 is feasible and fast. Note that the TLextract is
guaranteed to return a valid result. The trivial case would be
a single logic gate that drives the input of the flip-flop.

Whether or not the threshold subcircuit is replaced by a
TLC7 is determined by a trial-mapping. For a given flip-flop,
this procedure creates two copies of the subcircuit containing
the flip-flop and its input logic cone. In the first copy, trial-
mapping replaces the flip-flop, and the cone that was returned
by TLextract with a TLC7. The part of the circuit which was
not replaced with a TLC7, is mapped to the LUTs. In the
second copy, all the cells from the original netlist are mapped
to the LUTs. These two alternatives are compared based on
logic depth and LUT count.

TLextract can be performed independently on flip-flops
whose logic cones do not intersect. Two flip-flops whose logic
cones intersect are said to be dependent. This is viewed as
a transitive relation, and therefore is an equivalence relation.
Hence the flip-flops are easily partitioned into groups, each
group consisting of dependent flip-flops and distinct groups
being independent. Within a group, TLextract is performed
iteratively, in the descending order of their timing criticality.

Given a TLFPGA architecture with a limited number of
LUTs, TLCs and routing resources, the mapping algorithm
performs the trial mapping against the following constraints
to enhance the resource utilization of the TLFPGA:
Architecture based mapping constraint: The synthesis algo-
rithm tries to maintain the ratio 4 LUTs to 1 TLC during TCM
using this constraint. This constraint is applied to maximize
the BLE utilization in the mapped tiles. Given a circuit with
a requirement of N LUTs, if the TLC7 can be mapped to S
flip-flops and if S > N/4, then this constraint allows only the
top N/4 timing critical flip-flops to be mapped to TLC7(s) in
the final circuit. By matching the TLC/LUT ratio of the file
with the circuit’s ratio, the tiles can be packed with a higher
density such that there are no unused BLEs in the mapped
tiles.

Area and power reduction constraint: Reduction in the
number of mapped LUTSs reduces the required logic area and



power. If the number of mapped LUT-K(s) drop by X, when
we map Y number of TLC(s), then the change in the number of
configuration registers is given using the following equation:
Config_Reg_New = Config_Reg_Old—X*(2K)+Y*7
In the example shown in Figure 6, the original LUT
mapping requires 3 * (2/) configuration registers, but after
TCM, this requirement drops to 2 * (25) + 7. This constraint
allows the TCM to map the TLC7 to a flip-flop only if the
mapping leads to a reduction in the number of LUTs.
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Fig. 6: Reduction in circuit implementation cost in a TLFPGA as
compared to an FPGA. The cost of mapping the circuit to a TLFPGA
is lower than the cost of mapping the same circuit to an FPGA.
Performance constraint: To ensure that the performance is
not degraded after the TCM, the performance constraint allows
flip-flops and their input logic cones to be replaced with TLCs
only if it does not increase the logic depth.

Cell fanout constraint: Any cell in the given circuit, with an
output net having a fanout of 2 or more needs to be mapped
to the output of an LUT/TLC. Logic-replication helps remove
this mapping requirement by dropping the cell’s effective
fanout to 1. However, logic-replication, when performed in
excess can significantly increase the LUT count. Therefore,
the cell fanout constraint allows the logic replication only for
cells with a fanout of 2.

Complex cell constraint: A complex cell (e.g. Half-adder)
can be decomposed into simpler threshold functions, but the
decomposed structure might contain cells which have a fanout
of 2 or more. To avoid generating unnecessary fanouts during
TCM, the complex cell constraint blocks the decomposition
of complex cells during TCM, so that they can be directly
mapped to the LUTs.

V. POST-TCM IMPROVEMENTS

This section discusses how the results from TCM are
improved after the initial set of mapping and placement
information is collected.

Once VPR performs an initial placement of the design, a
timing-based simulated annealing algorithm is used to rear-

range the TLCs in the TLFPGA. TLCs on the timing-critical
paths are given a higher priority for favorable placement
locations on the TLFPGA.

Most heterogeneous FPGA architectures face the congestion
problem. Over-use of a particular type of LUT/TLC leads to
its scarcity. This makes it harder for the technology-mapper to
find the necessary resources. This is an undesirable effect as
it makes the design spread over a larger area. This problem is
observed less in the TLFPGA due to two reasons. First, TLCs
are small and require very less area overhead, in case the TLCs
are not used. Second, the registers that the TLCs are mapped
to, are chosen based on the placement congestion. In a TLF-
PGA region with scarcity of TLCs, there is a choice to map the
threshold function directly to an existing LUT resource. This
feature helps the placer find enough TLCs during placement
without compromising on the placement locations. This is
an extremely important feature as it significantly reduces the
negative impacts of having a heterogeneous architecture. In
typical heterogeneous FPGAs, under/over-use of a particular
type of LUT/TLC leads to PPA penalties. For the TLFPGA,
since the input count of an LUT and a TLC is similar, the
mapping can be performed in a way such that the LUTs and
the TLCs can be used interchangeably, without affecting the
PPA much.

VI. EXPERIMENTAL RESULTS

This section compares the design metrics of the TLFPGA
with conventional FPGA architectures using VPR as well as
the layout extracted netlists.

A. Benchmark Setup

The TLFPGA architecture was evaluated using ISCAS-
85 and Open-Cores [33] benchmark circuits using the ST
28nm FDSOI Technology at Slow/Slow 0.9V VDD 125°C
simulation corner. In order to map the circuits to the TLCs,
the benchmark circuits need to be sequential.

For studying the effects of uniform pipelining on the TLF-
PGA, registers were added to the ISCAS-85 circuits using re-
timing. Ranging from a single pipeline stage to nine pipeline
stages, the 10 combinational ISCAS-85 circuits were modified
to generate a total of 90 sequential circuits. For the Open-Cores
circuits, the number of pipeline stages was increased with the
help of re-timing, until the logic depth of the critical paths
reached a value between 8 and 12.

B. VPR Results for ISCAS-85 Circuits

The results extracted using VPR contain fully placed and
routed circuits, based on the model parasitics of the FPGA
and the TLFPGA. Models used for VPR are based on the tile
structures placed and routed using Cadence Innovus®.

Figure 7 shows the percentage improvement in the BLE-
parameters of a TLFPGA as compared to an FPGA. Im-
provements in technology-independent parameters, such as
configuration registers and Muxes (Figures 7(a) and 7(b))
indicate that the TLFPGA can potentially offer benefits at
other technology nodes as well. As the number of pipeline
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Fig. 7: Average percentage reduction in the number of (a) BLE
configuration registers, (b) multiplexers, (c) area and (d) power in
TLFPGA as compared to FPGA for ISCAS-85 circuits (higher is
better).

stages increases, improvements in area and power of the BLEs
used in the TLFPGA increase when compared to an FPGA.
Increasing the number of stages increases the number of flip-
flops, providing a greater opportunity for replacement with
TLCs and logic absorption, and leading to greater improve-
ments. These experiments clearly indicate that the TLFPGA
gets the best results when used for deeply pipelined circuits.

Figure 7 also shows that for a fixed number of pipeline
stages, the advantages in the BLE parameters in a TLFPGA
increases with larger sizes of LUTs as compared to an FPGA.
This is because there is an exponential rise in the number of
configuration registers and Muxes as the LUT size increases,
whereas the number of configuration registers and XORs in a
TLC are unchanged. Hence, reducing the larger LUTs during
technology mapping drastically drops the area and power
requirements, resulting in significantly higher improvements
when the TLFPGA is used.

Figure 8 shows the performance improvement as well as the
improvement in the track count. Simultaneous improvement
in performance and track count over the benchmark circuits
is also shown in this figure. While 54% of the circuits
demonstrated an improvement in both the performance and
the track count, only 4% of the circuits had a degradation in
both of these parameters. 41% of the circuits traded off one
parameter for the other.

Figure 9 shows the count of ISCAS-85 circuits for which
the BLE-parameters improved in TLFPGA as compared to
FPGA. As the number of pipeline stages increases, it can be
seen that the number of circuits benefiting from the TLFPGA
architecture increases as well. As the number of pipeline stages
increases, the number of flip-flops in the design increases,
which creates more opportunities to map the TLCs, that
eventually leads to better parameter improvements.

Figure 10 also shows that the routing area and power slightly
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Fig. 8: Improvements in performance and track count for LUT-

6 TLFPGA over LUT-6 FPGA for all circuits (higher is better).
Circuits are arranged in the ascending order of their improvements.
Color coding indicates improvement in:: Blue: Both performance and
track count, Black: Either performance or track count, Red: Neither
performance nor track count.
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Fig. 9: Fraction of circuits that showed improvements in the number
of (a) BLE configuration registers, (b) multiplexers, (c) area and (d)
power in TLFPGA as compared to FPGA for ISCAS-85 circuits
(higher is better).

improve when TLFPGA is used. This is because a reduction
in the total number of BLEs reduces the routing requirements.

C. VPR Results for OpenCores Circuits

The ISCAS-85 circuits were chosen for the experiments be-
cause it is easy to add uniform pipeline stages to these circuits.
However, the ISCAS-85 circuits may not best represent the
industrial designs presently available. Therefore, for further
evaluation of the TLFPGA architecture, the benchmark circuits
from OpenCores were used. These circuits were deeply-
pipelined to boost the improvements gained from using the
TLFPGA. The typical logic depth for these circuits is 8-



TABLE III:

Improvements in TLFPGA as compared to standard FPGA for OpenCores circuits for LUT-6 50x50 TLFPGA; Results are

extracted using VPR. Models used for VPR are based on the tile structures placed and routed using Cadence Innovus®.

Circuit LUT | Config. registers | Mux Count | Area | Power | Critical Path | Freq | Track count
64 bit Adder 18.1% 15.2% 15.1% 98% | 13.1% 8.3% 9.0% 0.0%
64 bit Comparator | 3.5% 3.0% 3.0% 2.1% 2.7% 15.2% 17.9% 0.0%
32 bit Multiplier | 44.9% 40.1% 40.0% 31.5% | 36.7% 22.9% 29.7% 0.0%
Hartley FFT 12.1% 10.9% 10.9% 87% | 10.0% 7.8% 8.5% 0.0%
Mod-3 Calculator | 12.7% 11.2% 11.2% 85% | 10.1% 10.9% 12.3% 0.0%
16 bit Divider 20.6% 18.3% 18.2% 14.0% | 16.6% 4.4% 4.6% 0.0%
32 bit Filter 5.6% 4.8% 4.7% 3.3% 4.2% 17.3% 21.0% 3.1%

TABLE IV: Comparison of power (mW) for the physical layout of 8x8 LUT-7 FPGA vs. LUT-7 TLFPGA with a track-width of 96 in X
and Y directions. Using TCM, additional power reduction is expected. However, this is not included during the static power analysis.

FPGA TLFPGA Drop %
Internal | Switching | Leak | Total Internal | Switching | Leak | Total | Internal | Switching | Leak Total
CLB 1.72 5.47 0.75 7.94 1.32 4.73 0.62 | 6.67 23.4% 13.4% 17.9% | 16.0%
Switchbox 1.12 3.56 0.50 | 5.19 1.08 3.44 0.50 | 5.02 3.9% 3.5% 0.1% 3.3%
Crossbar 5.00 279 238 | 10.17 4.99 2.68 2.38 | 10.06 0.1% 3.9% 0.0% 1.1%
IO Config 0.02 0.06 0.01 0.10 0.02 0.06 0.01 0.10 3.7% -2.5% -5.6% | -1.4%
Total 7.87 11.88 3.65 | 2341 7.42 10.92 352 | 21.85 5.7% 8.1% 3.7% 6.6%
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Fig. 10: Improvements in the routing area and power for LUT-6
TLFPGA over LUT-6 FPGA for all circuits (higher is better). Circuits
are arranged in the ascending order of their improvements.
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12 logic gates. Table III shows the improvements in various
parameters for the OpenCores circuits.

TABLE V: Comparison of area and power of a tile in 8x8 LUT-7
FPGA vs. a tile in LUT-7 TLFPGA tile with a track-width of 96 in
X and Y directions. Power is reported using static power analysis.
Physical layout of tiles include the cells required for intra-tile routing.

Parameter FPGA Tile | TLFPGA Tile | % Reduction
Area 1054.6p4m” 870.5um” 17.5%
Internal power 13.7uW 11.23uW 18.0%
Switching power 8.821uW 7.418uW 15.9%
Leakage power 10.43uW 8.701uW 16.6%
Total power 32.95uW 27.35uW 17.0%

D. Results from fully extracted layouts with parasitics

The results in this subsection are generated using the
parasitic-extracted netlists from Cadence Innovus®. With a
fixed track count of 96 and a cluster size of 10, the physical
layouts of an 8x8 FPGA and TLFPGA (see Figure 11a) were
generated. The synthesis and layout of the required blocks
were done using Cadence Genus®and Innovus®.

Fig. 11: (a) Physical layout of an 8x8 prototype TLFPA generated us-
ing Cadence Innovus®; Verilog generated using modified OpenFPGA
flow (b) Dynamic power reduction in small designs, when mapped
to the physical post-layout version of FPGA and TLFPGA.

Tables IV and V show the power and area comparison
of a LUT-7 FPGA tile versus LUT-7 TLFPGA tile. These
tables report the area and power numbers of the full tile, which
includes inter-tile and intra-tile routing resources as well. It
can be seen that both the area and power of the TLFPGA tile
are lower than the FPGA tile.

Tables VI and VII show the instance count and area
comparison of a LUT-7 FPGA tile versus LUT-7 TLFPGA
tile. The area of the physical layout is dependent on both
the cell type and the drive strengths of the cells. For eval-
uation purposes, the combinational loops that arise from the
FPGA’s and TLFPGA’s routing paths are set to false paths and
the place-and-route tool adds minimum drive-strength buffers
against signal slew-rate constraints. Although this method is
not ideal for a real FPGA design, it lets us generate and
evaluate the FPGA architectures using a fully automated flow
very quickly (Kim et al. [34]). Due to the lack of accurate
timing constraints on the inter-tile timing in the OpenFPGA
flow, we limit the size of the TLFPGA to 8x8, to avoid major
timing violations. The area of the FPGA and TLFPGA are
almost the same at the end of the place-and-route flow, due
to the lack of timing constraints for the global routing blocks,
which makes it harder for the tools to set the drive strength
of all the gates. Based on the static power analysis, a power




drop is observed in the TLFPGA as compared to the FPGA.
This is because the components in the tiles used in a TLFPGA
consume lower power, as compared to the components of a
standard FPGA. Additional power drops come from the TCM
algorithm described in Sec. IV. These results are not meant
to show the final area and power results, but instead to show
the potential improvements that we can gain from using the
TLFPGA architecture in a real environment. Depending on the
implementation, the overall benefits are subject to change. For
example, if the routing architecture is implemented differently,
then the overall PPA improvements will change.

TABLE VI: Comparison of instance count for 8x8 LUT-7 FPGA
vs. LUT-7 TLFPGA physical layout with a track-width of 96 in X
and Y directions.

FPGA TLFPGA
Count | Weight Count Weight | Drop
CLB 51968 15.5% 40576 125% | 21.9%
IO Config 2688 0.8% 2688 0.8% 0.0%
Crossbar | 216896 | 64.5% 216896 66.8% 0.0%
Switchbox | 64507 19.2% 64478 19.9% 0.0%
Total 336059 | 100.0% | 324638 100.0% | 3.4%

TABLE VII: Comparison of area for 8x8 LUT-7 FPGA vs. LUT-
7 TLFPGA physical layout with a track-width of 96 in X and Y
directions.

FPGA TLFPGA

Area Weight Area Weight | Drop
(um?) (um?)

CLB 66658 17.2% 53728 143% | 19.4%
10 Config 9651 2.5% 9651 2.6% 0.0%
Crossbar | 253620 | 65.4% 253620 67.6% 0.0%
Switchbox | 57985 14.9% 57966 15.5% 0.0%
Total 387916 | 100.0% | 374966 100.0% | 3.3%

Post-PnR Verilog of a small 8x8 FPGA and TLFPGA is
used to map a few small circuits and compare the differences
in the various parameters discussed above. Using a 300MHz
clock frequency, Table 11b demonstrates that all the three test
circuits show an improvement in overall dynamic power.

VII. CONCLUSION

This paper describes a new architecture for an FPGA,
referred to as threshold logic FPGA (TLFPGA), that integrates
a conventional LUT with a CMOS digital implementation of
a binary perceptron, also known as a threshold logic cell
(TLC). We show that by using the TLFPGA architecture,
especially for deeply pipelined circuits, it is possible to gain
significant area, power and performance improvements, by
strategically mapping the circuits to the TLCs. Evaluation was
done using the ISCAS circuits, as well as larger benchmarks
from Open-Cores. The benefits of using the TLFPGA are also
demonstrated, by mapping circuits to the physically designed
versions of an FPGA and a TLFPGA. Since the TLCs are
binary perceptrons, this architecture is well suited for Binary
and Quantized Neural Networks.
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