Does the resolution of marine magnetic anomalies
affect geomagnetic reversal statistics?
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Key Points:

« Marine magnetic anomalies show a deficit of short polarity intervals relative to a
Poisson process.

» Stochastic models also predict a deficit of short polarity intervals when the time
resolution is 30 kyr or longer.

« High-resolution observations should reveal more short polarity intervals than a com-
parable Poisson process.

Corresponding author: Bruce Buffett, bbuffett@berkeley.edu



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Abstract

Observations of polarity intervals from marine magnetic anomalies suggest that geomag-
netic reversals depart from a Poisson process. A deficit of short polarity intervals favors
a distribution described by a Weibull probability density function with a shape param-
eter k > 1. Polarity intervals from a stochastic model for the paleomagnetic field also
obey a Weibull distribution, but the shape parameter is controlled by the temporal av-
eraging used to approximate the finite resolution of geological observations. Temporal
averaging in excess of 30 kyr yields polarity intervals that are well described with a shape
parameter k > 1. Conversely, a shorter averaging time requires a probability distribu-
tion with £ < 1. This behavior suggests that short polarity intervals are not captured

by marine magnetic anomalies. Instead, these events may be recorded in paleomagnetic
measurements from high-resolution sediment cores. Geomagnetic excursions with changes
in magnetic direction of 180° may be examples of the missing polarity intervals. All of
these short polarity intervals are expected to occur when the dipole field is weak. A cor-
respondence between the duration of these short events and the strength of the dipole
field offers a test of the suggestion that the geodynamo preferentially produces short po-
larity intervals relative to the predictions of a Poisson process.

1 Introduction

Marine magnetic anomalies (MMA) over the past 160 Myr provide a detailed record
geomagnetic polarity transitions. The chronology of these transitions serves the basis of
the geomagnetic polarity timescale (Ogg, 2012). All polarity intervals 30 kyr and longer
are thought to be captured in the MMA record (Gee & Kent, 2015), although shorter,
and previously unrecognized, polarity intervals are occasionally proposed (Krijgsman &
Kent, 2004; Roberts & Lewin-Harris, 2000). Counter arguments usually invoke fluctu-
ations in paleointensity to account for the anomalous paleomagnetic observations (Bowles,
Tauxe, Gee, McMillan, & Cande, 2003; Lanci & Lowrie, 1997). Distinguishing between
these two interpretations is important because it affects our assessment of the statistics
of geomagnetic reversals.

An early investigation of the MMA record represented geomagnetic reversals as a
Poisson process (Cox, 1969). The expected probability distribution for the polarity in-
terval, 7, is governed by an exponential distribution, which requires the occurrence of
short polarity intervals. A subsequent study (Naidu, 1971) favored a gamma distribu-
tion to account for the perceived deficit of short polarity intervals. The gamma distri-
bution,

)\k
k—1_—AT (1)

is specified by two parameters; A defines the average rate of the process and k is a shape
parameter that describes deviations from an exponential distribution. Here I'(k) is the
gamma function. An exponential distribution is recovered by setting k = 1. Fewer short
polarity intervals are expected when k > 1, whereas more short polarity intervals are
predicted when & < 1 (see Figure 1). The current MMA record favors k£ > 1 (Naidu,
1971), and this result is supported by arguments about the finite time required for po-
larity transitions to occur (Merrill & McFadden, 1994). This line of reasoning is taken
as evidence that geomagnetic reversals cannot be strictly a Poisson process.

Use of dynamo models to assess reversal statistics has not yet offered much insight.
Even the most realistic simulations (e.g. Schaeffer, Jault, Nataf, & Fournier, 2017) are
still very far from Earth-like conditions, and these models are presently too computa-
tionally demanding to run for long enough to collect statistics on geomagnetic reversals.
Instead, the numerical models must adopt very high values for fluid viscosity to allow
longer integration, necessary to produce a sufficient sample of polarity transitions (e.g.
Driscoll & Olson, 2009). Such high viscosities restrict the fluid motions to large scales,
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Figure 1. Gamma and Weibull probability density functions. These closely related distri-
butions are specified by a rate parameter, A, and a shape parameter, k. Short polarity intervals

occur more (less) often when £ < 1 (k > 1). An exponential distribution (k = 1) describes the
polarity intervals from a Poisson process.

which raises questions about the capability of these models to produce short polarity in-
tervals. The study of Driscoll and Olson (2009) reported no polarity intervals shorter than
about 2 dipole diffusion times, which corresponds to roughly 100 kyr.

An alternative approach relies on stochastic models for the paleomagnetic field (e.g.
Brendel, Kuipers, Barkema, & Hoyng, 2007). These models have a physical basis (Scullard
& Buffett, 2018), and they are capable of reproducing many observed properties of the
paleomagnetic field (Buffett & Puranam, 2017). For this reason we use stochastic mod-
els to the address the question of reversal statistics and to quantify the extent to which
these statistics are affected by the temporal resolution of the geological record.

2 Stochastic Model for the Paleomagnetic Field

Fluctuations in the axial dipole moment, z(t), can be represented conceptually by
the motion of a particle in a double potential well (see Figure 2). The particle settles to-
ward the base of one of the potential wells, but random noise continuously disturbs the
motion. The source of noise is intend to reflect the influence of random convective fluc-
tuations on the dipole moment. Occasionally, a series of random fluctuations push the
particle across the barrier between the two potential wells, causing a polarity transition.
The amplitude of the random noise and the general form of the potential well can be es-
timated from paleomagnetic observations. Here, we adopted the double potential well,
U(x), and the noise amplitude, D(z), recovered by Buffett and Puranam (2017) from
stacks of relative paleointensity measurements from the past 2 Myr (Ziegler, Constable,
Johnson, & Tauxe, 2011), supplemented with higher-resolution measurements from the
past 10 kyr (Constable, Korte, & Panovska, 2016). We treat the noise amplitude as a
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constant, which allows us to recover a representative estimate from the 10-kyr CALS10k2
model. The potential is based on the 2-Myr PADM2M model using the functional form
given in equation (27) from Buffett and Puranam (2017). Realizations of the stochas-

tic model are computed by numerically integrating the stochastic differential equation

do = — (gg) dt + V2D dW 2)

using an Euler-Maruyama method (Risken, 1989) with a discrete time step of At =1
kyr. Here dW represents uncorrelated (white) noise drawn from a normal distribution
with mean of 0 and variance of At.
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Figure 2. Motion of a particle in a double potential well, U(z), is analogous to the stochastic
model for the dipole moment. The particle settles toward the bottom of a potential well, but
random noise continuously disturbs the state x. A sequence of disturbances can occasionally send

the particle over the barrier at x = 0, causing a polarity transition.

We assess the statistics of polarity intervals using the mean, median and standard
deviation of 7 recovered from realizations of the stochastic model. Dividing the median
and standard deviation by the mean yields quantities that are independent of the rate,

A. This choice allows us to focus attention on the shape parameter k. A drawback of in-
terpreting the stochastic model in terms of the gamma distribution is that the median
for g(7) has no closed-form expression. It is preferable to adopt the closely related Weibull
distribution

f(r)= kAR E—1o— (M) , (3)
where A and k are the rate and shape parameters (see Figure 1). Both the Weibull and
gamma distributions revert to the exponential distribution when k = 1. We also note
that the gamma and Weibull distributions have very similar dependence on 7 at short
polarity intervals. The normalized median is
- (In 2)1/*
e Ctin? A
r1+1/k)’
and the normalized standard deviation is

5= [P(1+2/k)/T(1+1/k)2—1]"* .



102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Both of these expressions are independent of the rate parameter \.

Variations in m and & with k for the Weibull distribution are shown in Figure 3.
Higher values of k yield lower 6 and higher m. Conversely, lower values of k give higher
& and lower 7. An exponential distribution (kK = 1) has & = 1 and m = In2. Obser-
vations of the normalized median and standard deviation from the MMA record are su-
perimposed on the predictions for the Weibull distribution in Figure 3. Each point in
Figure 3 is computed from the sample mean, median and standard deviation in a sin-
gle 10-Myr time interval. This interval is shifted back in time in increments of 1 Myr to
produce a set of estimates that extend back to 48 Ma. The scatter of points fall on top
of the Weibull distribution between k£ = 0.9 to 1.2, although the majority of points lie
between 1 < k < 1.2. This preference for £ > 1 is consistent with a deficit of short
polarity intervals.

1.5 T T T T T
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141 # Stochastic model 7
MMA (0 to 48 Ma)
131 10 kyr 1
1.2 7
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111 1 - A
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1+ : ' .
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Figure 3. Normalized median, /m, and standard deviation, &, for a Weibull distribution (red).
Statistics for the observed polarity intervals are computed from 10-Myr intervals of the MMA
record. The cloud of points is generated by shifting the 10-Myr interval back in time at incre-

ments of 1 Myr. Polarity intervals from the stochastic model follow a Weibull distribution, where

the shape parameter, k, is set by the temporal resolution of the realization. The error bars repre-

sent the 1-sigma uncertainty from two hundred 10-Myr realizations.

We compare this result with the predictions of the stochastic model by running a
series of 10-Myr realizations. We recover a single estimate for /m and & from each real-
ization. Combining the results of 200 realizations gives a reliable sample mean and vari-
ance. Each realization is filtered in time using a running average to account for the lim-
ited temporal resolution of the geological observations. Distinct results for the reversal
statistics are recovered with different choices for averaging time. Calculations with an
averaging time of 10 kyr, 30 kyr and 60 kyr are shown in Figure 3, together with the 1-
sigma error bars. The normalized median and standard deviation from the stochastic
model follow the trend from the Weibull distribution, where the averaging time appears
to correspond to a particular value of k. An averaging time of 10 kyr corresponds roughly
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to k &~ 0.8, whereas an averaging time of 60 kyr corresponds to k = 1.1. Interestingly,
the stochastic model with a time average of 30 kyr has reversal statistics very close to
the predictions for an exponential distribution (k = 1).

It appears that the reversal statistics from the stochastic model approximate a Weibull
distribution, where the shape parameter can be interpreted as an indication of the tem-
poral resolution of record. We cannot strictly equate the averaging time to a temporal
resolution because about 12% of the polarity intervals from the stochastic model are shorter
than the averaging time. Still, we can expect the temporal resolution to be proportional
to the averaging time. A longer averaging time yields a deficit of short polarity inter-
vals relative to a Poisson process, so we might reasonably expect a low resolution record
to yield statistics with & > 1. This outcome is not entirely surprising, but we can now
quantitatively assess how the statistics change when the temporal resolution is altered.

3 Consequences of Temporal Resolution

The preponderance of short polarity intervals in the stochastic model at low av-
eraging times (e.g. k < 1) suggests that the geological record is missing short polar-
ity intervals. The direct influence of averaging time on the rate of polarity transitions
is shown in Figure 4. We use a large ensemble of 10-Myr realizations to compute the mean
reversal rate and its uncertainty. The error bars are mainly determined by the duration
of the record; longer realizations produce smaller error bars. A 10-Myr realization is cho-
sen to match our analysis of the observed polarity intervals. As we reduce the averag-
ing time from 80 kyr to 10 kyr there is a steady increase in the rate of reversals. An es-
timate of the reversal rate from Kramers’ formula (see equation (28) in Buffett & Pu-
ranam, 2017) is also shown in Figure 4. Kramers’ formula can be interpreted as the mean
time it takes for a particle at the bottom of one potential well to reach the top of the
barrier. The slightest nudge sends this particle sliding down into the second potential
well. The prediction of Kramers’ formula agrees well with the outcome of model real-
izations when the averaging time is roughly 30 to 40 kyr. The reason for this correspon-
dence is related to the typical duration of polarity transitions.

When a particle is placed at the top of the barrier it will eventually make its way
to the bottom of a potential well. We can use the stochastic model to predict how long
this descent takes, at least on average. An estimate can be recovered from a large num-
ber of realizations, or the problem can be formulated in terms of a solution of the Fokker-
Planck equation (Risken, 1989). In either case, we compute a recovery time of about 28
kyr (Buffett & Puranam, 2017), which is in good agreement with the average value in-
ferred from the PADM2M model of Ziegler et al. (2011). In other words, we can expect
the dipole moment to return to its time-averaged amplitude roughly 28 kyr after a re-
versal. At this point the dipole begins its next attempt to cross the barrier from a po-
sition near the bottom of a potential well. More complicated trajectories are possible if
we focus on the evolution of the dipole while it remains near the top of the barrier af-
ter a reversal. For example, a particle might return to the original polarity shortly af-
ter moving into the reversed polarity. Most of the details of these trajectories are sup-
pressed by averaging over a timescale that is comparable to the recovery time (see Fig-
ure 5). We record only the dipole arriving at the bottom of a potential after roughly 30
kyr (on average). Starting the next reversal process from the bottom of a potential well
is precisely the context that Kramers’ formula was intended to approximate.

We now consider the more complicated trajectories that become possible when the
temporal averaging is reduced. A relatively small fluctuation is sufficient to send the dipole
back over the barrier when the time after a reversal is too short to allow the dipole to
settle into a stable polarity. As we decrease the averaging time below the recovery time
of 28 kyr, we begin to identify reversals in the stochastic model that occur before the
amplitude of the dipole has fully recovered. Once the averaging time drops below 10 kyr,
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Figure 4. Average reversal rate, r, from two hundred 10-Myr realizations of the stochastic
model. Changes in temporal averaging cause a systematic trend in r. An estimate of r from
Kramers’ formula (Risken, 1989) corresponds most closely to an averaging time of 30 kyr to 40

kyr. A shorter averaging time causes a marked increase in 7.

we have nearly doubled the rate of reversals, and all of these additional reversals occur
when the geomagnetic field starts in a weak state relative to its long-term average. De-
tecting these reversals in the geological record would be difficult for two reasons. First,
we need sufficient temporal resolution to identify short polarity transitions. Second, we
need to detect these transitions when the amplitude of the dipole field is weak. Contri-
butions from the non-dipole part of the field become more important when the dipole
is weak, so short polarity intervals are liable to have a complex geographic expression
in paleomagnetic observations (Brown, Holme, & Bargery, 2007).

On strictly theoretical grounds we expect the reversal rate in the stochastic model
to increase without limit as the averaging time decreases. This surprising outcome is ac-
tually consistent with the predictions of the Weibull distribution. To understand this be-
havior we note that the stochastic differential equation in (2) describes a Wiener pro-
cess near x = 0 because the gradient of the potential vanishes. If we discretize the so-
lution by taking fixed time steps (say At = 1 kyr), then the number of times x(t) crosses
zero, on average, is proportional \/n, where n is the number of 1-kyr time steps through
the transition (DasGupta & Rubin, 1998). Here the transition duration is taken to mean
the time needed for the dipole to settle into a stable polarity. Decreasing the time step

improves the temporal resolution, but this change increases the number of time steps through

the transition; it also increases the number of zero crossings. All of these additional zero
crossings occur at the shortest time interval permitted by the refinement in the time step.
In other words we are accumulating zero crossings with small 7, consistent with the ex-
pected correspondence between a small temporal resolution (At) and a small shape pa-
rameter k£ < 1. In the limit that At and k go to zero, the normalized median in (4) also
goes to zero. This means that the polarity intervals cluster without limit near 7 = 0.
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Figure 5. Realization of the stochastic model through a polarity transition. A smooth transi-
tion between stable polarities occurs when a time average of 30 kyr is applied to account for the
temporal resolution of the MMA record (black). The actual realization (gray) exhibits several
zero crossing when the time-averaged dipole moment is weak. Fluctuations in the dipole moment

during the transition can reach x = £+3 x 10%2 A m?.

In practice we cannot allow the time step in the stochastic model to decrease with-
out limit because the noise term would no longer be uncorrelated. Numerical dynamo
models (e.g. Buffett & Matsui, 2015; Olson, Christensen, & Driscoll, 2012) suggest the
correlation time of convective fluctuations is shorter than the overturn time, L/V,,s =
140 years, where L = 2260 km is the thickness of the outer core and V,,,s = 0.5 mm
s~! is an estimate of the convective velocity (Holme, 2015). We can think of the corre-
lation time as a limit on the temporal resolution of a standard stochastic model. Such
a model could plausibly permit polarity intervals as short as a few hundred years if there
were no other restrictions on our ability to record the dipole field. Of course, the am-
plitude of the dipole field between these transitions would be small, and such events would
not conform to our usual view of geomagnetic reversals. However, there is no simple way
to separate the continuum of behavior between low-amplitude and short-period polar-
ity intervals and the more conventional view of geomagnetic reversals as a transition be-
tween two states of stable polarity. In fact, our conventional view may be partially shaped
by the coincidence of dipole recovery time with the temporal resolution of the MMA record.
Under these conditions the dipole moves smoothly from one polarity to the other with-
out much complexity during the transition.

4 Discussion

Several lines of evidence point to short polarity intervals in the paleomagnetic record.
Confirmation of new polarity transitions in high-resolution sediment cores, like those pro-
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posed by Roberts and Lewin-Harris (2000), would shift the statistics of geomagnetic re-
versals toward lower values for k. Geomagnetic excursions are another type of brief event
that sometimes exhibit directional changes of approximately 180° before returning to the
direction established prior to the excursion (e.g. Laj, Kissel, & Roberts, 2006). Laj and
Channell (2015) prefer to describe these events as microchrons because their duration

is less than 10 kyr, which is too short to be recorded by MMA. Including these events

in an assessment of reversal statistics would also shift k& toward lower values. There are
also indications of precursors and rebound features in magnetic directions around the
time of well-established polarity transitions (Valet, Fournier, Courtillot, & Herrero-Bevera,
2012). Magnetic directions can change by 90° or more before and after the main tran-
sition. It is possible that some of these features represent short-period polarity transi-
tions during times when the dipole is in a weakened state. It is common for the stochas-
tic model to exhibit three or more sign changes during a transition from one stable state
to another (see Figure 5). The main question is whether the amplitude of the dipole field
between these sign changes is large enough to be detected in magnetic directions.

A weak dipole field allows magnetic directions to be strongly influenced by the non-
dipole field. These directions become increasingly aligned with the dipole when the strength
of the dipole rises above the level of the non-dipole field. The strength required to align
magnetic directions with the dipole depends on the amplitude of non-dipole components
and on the geographic location of the observations (Quidelleur, Gillot, Carlut, & Cour-
tillot, 1999). The study of Brown et al. (2007) used the non-dipole components from the
CALS7k.2 model (Korte & Constable, 2005) to show that magnetic directions during a
polarity transition cluster around the final direction once the dipole moment reaches x =
2.5x10%2 A m?. Some geographic locations have magnetic directions aligned with the
dipole when axial dipole moment is as small as z = 2 x 10?2 A m? (Brown & Korte,
2016; Valet & Plenier, 2008). We can use the time required for the dipole to reach to a
suitable threshold to establish the duration of detectable polarity transitions. An approx-
imate expression for the average recovery time, 7, is (Buffett, 2015)

427
Drn?’ (6)

Tt =

where x4 is the prescribed threshold and D was previously defined as the amplitude of
the noise term. This simple expression overestimates 7, when the threshold is set at the
time-averaged magnetic field (i.e. ; = 5.3 x 102 A m?). We obtain 33 kyr from (6)
compared with 28 kyr from a full solution of the Fokker-Planck equation using D = 0.34 %
10%* A% m* kyr—! (Buffett & Puranam, 2017). However, this error is substantially re-
duced when the threshold is lowered. For z; = 2.5 x 10*2 A m? we obtain 7, = 7.5

kyr, which is comparable to values commonly cited for the duration of a reversal in mag-
netic direction (Clement, 2004). More rapid transitions are allowed because 7 represents
an average value. On the other hand, consistently shorter durations would require a lower
threshold to establish the new magnetic direction. Taking z; = 2 x 10?2 A m? gives

an average duration of 4.8 kyr. Any specific instance of the stochastic process could plau-
sibly give durations that were 50% higher or lower. This means that we could establish

a new magnetic direction on timescales as short as 2.4 kyr if a dipole moment of z; =

2 x 10?2 A m? was sufficient to define the new magnetic direction.

Detectable polarity intervals with durations shorter than 10 kyr are possible with
a weak dipole field (nominally z < 3x10?2 A m?). Substantially shorter durations are
possible with even weaker dipole fields, but the paleomagnetic expression of these events
might be too spatially complex to interpret. A precursor event that shifts magnetic di-
rections by 90° could plausibly be explained by a transient drop of the dipole moment
below the threshold where the dipole no longer defines the magnetic direction. All of these
short period events are ultimate associated with a weak dipole field. A testable predic-
tion of the stochastic model is that the duration of the shortest polarity intervals should
be correlated with the initial amplitude of the dipole field. Including these events in our
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discussion of reversals statistics suggests that the short-period intervals are preferentially
generated by the geodynamo.

5 Conclusions

A statistical analysis of the observed polarity intervals in the MMA record supports
the view that geomagnetic reversals are not represented by a Poisson process. The ob-
served record reveals a deficit of short polarity intervals relative to the predictions of a
Poisson process. Instead the observations are better represented by a Weibull probabil-
ity density with a shape parameter £ > 1. Polarity intervals from a stochastic model
are also found to obey a Weibull distribution. However, the shape parameter is controlled
by the temporal averaging applied to the stochastic model to represent the finite reso-
lution of geological observations. Applying an averaging time of 30 kyr to the stochas-
tic model yields a distribution of polarity intervals that closely follows a Poisson process.
Adopting a lower time average (higher resolution) produces polarity intervals that fol-
low a Weibull distribution with a shape parameter & < 1. This result means that short
polarity intervals are preferentially generated by the stochastic model relative to the pre-
dictions of a Poisson process. We suggest that these short polarity intervals are not cap-
tured in the MMA record, but they may be present in paleomagnetic observations from
high-resolution sediments core. Brief geomagnetic excursions that shift magnetic direc-
tions through 180° may be representative examples of this type of short event. All of these
short events should occur when the dipole field is weak, and we expect a correspondence
between the duration of these events and the initial strength of the dipole field before
the transition.
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