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Does the resolution of marine magnetic anomalies1

affect geomagnetic reversal statistics?2
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Key Points:5

• Marine magnetic anomalies show a deficit of short polarity intervals relative to a6

Poisson process.7

• Stochastic models also predict a deficit of short polarity intervals when the time8

resolution is 30 kyr or longer.9

• High-resolution observations should reveal more short polarity intervals than a com-10

parable Poisson process.11
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Abstract12

Observations of polarity intervals from marine magnetic anomalies suggest that geomag-13

netic reversals depart from a Poisson process. A deficit of short polarity intervals favors14

a distribution described by a Weibull probability density function with a shape param-15

eter k > 1. Polarity intervals from a stochastic model for the paleomagnetic field also16

obey a Weibull distribution, but the shape parameter is controlled by the temporal av-17

eraging used to approximate the finite resolution of geological observations. Temporal18

averaging in excess of 30 kyr yields polarity intervals that are well described with a shape19

parameter k > 1. Conversely, a shorter averaging time requires a probability distribu-20

tion with k < 1. This behavior suggests that short polarity intervals are not captured21

by marine magnetic anomalies. Instead, these events may be recorded in paleomagnetic22

measurements from high-resolution sediment cores. Geomagnetic excursions with changes23

in magnetic direction of 180◦ may be examples of the missing polarity intervals. All of24

these short polarity intervals are expected to occur when the dipole field is weak. A cor-25

respondence between the duration of these short events and the strength of the dipole26

field offers a test of the suggestion that the geodynamo preferentially produces short po-27

larity intervals relative to the predictions of a Poisson process.28

1 Introduction29

Marine magnetic anomalies (MMA) over the past 160 Myr provide a detailed record30

geomagnetic polarity transitions. The chronology of these transitions serves the basis of31

the geomagnetic polarity timescale (Ogg, 2012). All polarity intervals 30 kyr and longer32

are thought to be captured in the MMA record (Gee & Kent, 2015), although shorter,33

and previously unrecognized, polarity intervals are occasionally proposed (Krijgsman &34

Kent, 2004; Roberts & Lewin-Harris, 2000). Counter arguments usually invoke fluctu-35

ations in paleointensity to account for the anomalous paleomagnetic observations (Bowles,36

Tauxe, Gee, McMillan, & Cande, 2003; Lanci & Lowrie, 1997). Distinguishing between37

these two interpretations is important because it affects our assessment of the statistics38

of geomagnetic reversals.39

An early investigation of the MMA record represented geomagnetic reversals as a40

Poisson process (Cox, 1969). The expected probability distribution for the polarity in-41

terval, τ , is governed by an exponential distribution, which requires the occurrence of42

short polarity intervals. A subsequent study (Naidu, 1971) favored a gamma distribu-43

tion to account for the perceived deficit of short polarity intervals. The gamma distri-44

bution,45

g(τ) =
λk

Γ(k)
τk−1e−λτ , (1)

is specified by two parameters; λ defines the average rate of the process and k is a shape46

parameter that describes deviations from an exponential distribution. Here Γ(k) is the47

gamma function. An exponential distribution is recovered by setting k = 1. Fewer short48

polarity intervals are expected when k > 1, whereas more short polarity intervals are49

predicted when k < 1 (see Figure 1). The current MMA record favors k > 1 (Naidu,50

1971), and this result is supported by arguments about the finite time required for po-51

larity transitions to occur (Merrill & McFadden, 1994). This line of reasoning is taken52

as evidence that geomagnetic reversals cannot be strictly a Poisson process.53

Use of dynamo models to assess reversal statistics has not yet offered much insight.54

Even the most realistic simulations (e.g. Schaeffer, Jault, Nataf, & Fournier, 2017) are55

still very far from Earth-like conditions, and these models are presently too computa-56

tionally demanding to run for long enough to collect statistics on geomagnetic reversals.57

Instead, the numerical models must adopt very high values for fluid viscosity to allow58

longer integration, necessary to produce a sufficient sample of polarity transitions (e.g.59

Driscoll & Olson, 2009). Such high viscosities restrict the fluid motions to large scales,60
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Figure 1. Gamma and Weibull probability density functions. These closely related distri-

butions are specified by a rate parameter, λ, and a shape parameter, k. Short polarity intervals

occur more (less) often when k < 1 (k > 1). An exponential distribution (k = 1) describes the

polarity intervals from a Poisson process.

which raises questions about the capability of these models to produce short polarity in-61

tervals. The study of Driscoll and Olson (2009) reported no polarity intervals shorter than62

about 2 dipole diffusion times, which corresponds to roughly 100 kyr.63

An alternative approach relies on stochastic models for the paleomagnetic field (e.g.64

Brendel, Kuipers, Barkema, & Hoyng, 2007). These models have a physical basis (Scullard65

& Buffett, 2018), and they are capable of reproducing many observed properties of the66

paleomagnetic field (Buffett & Puranam, 2017). For this reason we use stochastic mod-67

els to the address the question of reversal statistics and to quantify the extent to which68

these statistics are affected by the temporal resolution of the geological record.69

2 Stochastic Model for the Paleomagnetic Field70

Fluctuations in the axial dipole moment, x(t), can be represented conceptually by71

the motion of a particle in a double potential well (see Figure 2). The particle settles to-72

ward the base of one of the potential wells, but random noise continuously disturbs the73

motion. The source of noise is intend to reflect the influence of random convective fluc-74

tuations on the dipole moment. Occasionally, a series of random fluctuations push the75

particle across the barrier between the two potential wells, causing a polarity transition.76

The amplitude of the random noise and the general form of the potential well can be es-77

timated from paleomagnetic observations. Here, we adopted the double potential well,78

U(x), and the noise amplitude, D(x), recovered by Buffett and Puranam (2017) from79

stacks of relative paleointensity measurements from the past 2 Myr (Ziegler, Constable,80

Johnson, & Tauxe, 2011), supplemented with higher-resolution measurements from the81

past 10 kyr (Constable, Korte, & Panovska, 2016). We treat the noise amplitude as a82
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constant, which allows us to recover a representative estimate from the 10-kyr CALS10k283

model. The potential is based on the 2-Myr PADM2M model using the functional form84

given in equation (27) from Buffett and Puranam (2017). Realizations of the stochas-85

tic model are computed by numerically integrating the stochastic differential equation86

dx = −
(
∂U

∂x

)
dt+

√
2DdW , (2)

using an Euler-Maruyama method (Risken, 1989) with a discrete time step of ∆t = 187

kyr. Here dW represents uncorrelated (white) noise drawn from a normal distribution88

with mean of 0 and variance of ∆t.89
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Figure 2. Motion of a particle in a double potential well, U(x), is analogous to the stochastic

model for the dipole moment. The particle settles toward the bottom of a potential well, but

random noise continuously disturbs the state x. A sequence of disturbances can occasionally send

the particle over the barrier at x = 0, causing a polarity transition.

We assess the statistics of polarity intervals using the mean, median and standard90

deviation of τ recovered from realizations of the stochastic model. Dividing the median91

and standard deviation by the mean yields quantities that are independent of the rate,92

λ. This choice allows us to focus attention on the shape parameter k. A drawback of in-93

terpreting the stochastic model in terms of the gamma distribution is that the median94

for g(τ) has no closed-form expression. It is preferable to adopt the closely related Weibull95

distribution96

f(τ) = kλkτk−1e−(λτ)k , (3)

where λ and k are the rate and shape parameters (see Figure 1). Both the Weibull and97

gamma distributions revert to the exponential distribution when k = 1. We also note98

that the gamma and Weibull distributions have very similar dependence on τ at short99

polarity intervals. The normalized median is100

m̃ =
(ln 2)1/k

Γ(1 + 1/k)
, (4)

and the normalized standard deviation is101

σ̃ =
[
Γ(1 + 2/k)/Γ(1 + 1/k)2 − 1

]1/2
. (5)
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Both of these expressions are independent of the rate parameter λ.102

Variations in m̃ and σ̃ with k for the Weibull distribution are shown in Figure 3.103

Higher values of k yield lower σ̃ and higher m̃. Conversely, lower values of k give higher104

σ̃ and lower m̃. An exponential distribution (k = 1) has σ̃ = 1 and m̃ = ln 2. Obser-105

vations of the normalized median and standard deviation from the MMA record are su-106

perimposed on the predictions for the Weibull distribution in Figure 3. Each point in107

Figure 3 is computed from the sample mean, median and standard deviation in a sin-108

gle 10-Myr time interval. This interval is shifted back in time in increments of 1 Myr to109

produce a set of estimates that extend back to 48 Ma. The scatter of points fall on top110

of the Weibull distribution between k = 0.9 to 1.2, although the majority of points lie111

between 1 < k < 1.2. This preference for k > 1 is consistent with a deficit of short112

polarity intervals.113
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Figure 3. Normalized median, m̃, and standard deviation, σ̃, for a Weibull distribution (red).

Statistics for the observed polarity intervals are computed from 10-Myr intervals of the MMA

record. The cloud of points is generated by shifting the 10-Myr interval back in time at incre-

ments of 1 Myr. Polarity intervals from the stochastic model follow a Weibull distribution, where

the shape parameter, k, is set by the temporal resolution of the realization. The error bars repre-

sent the 1-sigma uncertainty from two hundred 10-Myr realizations.

We compare this result with the predictions of the stochastic model by running a114

series of 10-Myr realizations. We recover a single estimate for m̃ and σ̃ from each real-115

ization. Combining the results of 200 realizations gives a reliable sample mean and vari-116

ance. Each realization is filtered in time using a running average to account for the lim-117

ited temporal resolution of the geological observations. Distinct results for the reversal118

statistics are recovered with different choices for averaging time. Calculations with an119

averaging time of 10 kyr, 30 kyr and 60 kyr are shown in Figure 3, together with the 1-120

sigma error bars. The normalized median and standard deviation from the stochastic121

model follow the trend from the Weibull distribution, where the averaging time appears122

to correspond to a particular value of k. An averaging time of 10 kyr corresponds roughly123
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to k ≈ 0.8, whereas an averaging time of 60 kyr corresponds to k ≈ 1.1. Interestingly,124

the stochastic model with a time average of 30 kyr has reversal statistics very close to125

the predictions for an exponential distribution (k = 1).126

It appears that the reversal statistics from the stochastic model approximate a Weibull127

distribution, where the shape parameter can be interpreted as an indication of the tem-128

poral resolution of record. We cannot strictly equate the averaging time to a temporal129

resolution because about 12% of the polarity intervals from the stochastic model are shorter130

than the averaging time. Still, we can expect the temporal resolution to be proportional131

to the averaging time. A longer averaging time yields a deficit of short polarity inter-132

vals relative to a Poisson process, so we might reasonably expect a low resolution record133

to yield statistics with k > 1. This outcome is not entirely surprising, but we can now134

quantitatively assess how the statistics change when the temporal resolution is altered.135

3 Consequences of Temporal Resolution136

The preponderance of short polarity intervals in the stochastic model at low av-137

eraging times (e.g. k < 1) suggests that the geological record is missing short polar-138

ity intervals. The direct influence of averaging time on the rate of polarity transitions139

is shown in Figure 4. We use a large ensemble of 10-Myr realizations to compute the mean140

reversal rate and its uncertainty. The error bars are mainly determined by the duration141

of the record; longer realizations produce smaller error bars. A 10-Myr realization is cho-142

sen to match our analysis of the observed polarity intervals. As we reduce the averag-143

ing time from 80 kyr to 10 kyr there is a steady increase in the rate of reversals. An es-144

timate of the reversal rate from Kramers’ formula (see equation (28) in Buffett & Pu-145

ranam, 2017) is also shown in Figure 4. Kramers’ formula can be interpreted as the mean146

time it takes for a particle at the bottom of one potential well to reach the top of the147

barrier. The slightest nudge sends this particle sliding down into the second potential148

well. The prediction of Kramers’ formula agrees well with the outcome of model real-149

izations when the averaging time is roughly 30 to 40 kyr. The reason for this correspon-150

dence is related to the typical duration of polarity transitions.151

When a particle is placed at the top of the barrier it will eventually make its way152

to the bottom of a potential well. We can use the stochastic model to predict how long153

this descent takes, at least on average. An estimate can be recovered from a large num-154

ber of realizations, or the problem can be formulated in terms of a solution of the Fokker-155

Planck equation (Risken, 1989). In either case, we compute a recovery time of about 28156

kyr (Buffett & Puranam, 2017), which is in good agreement with the average value in-157

ferred from the PADM2M model of Ziegler et al. (2011). In other words, we can expect158

the dipole moment to return to its time-averaged amplitude roughly 28 kyr after a re-159

versal. At this point the dipole begins its next attempt to cross the barrier from a po-160

sition near the bottom of a potential well. More complicated trajectories are possible if161

we focus on the evolution of the dipole while it remains near the top of the barrier af-162

ter a reversal. For example, a particle might return to the original polarity shortly af-163

ter moving into the reversed polarity. Most of the details of these trajectories are sup-164

pressed by averaging over a timescale that is comparable to the recovery time (see Fig-165

ure 5). We record only the dipole arriving at the bottom of a potential after roughly 30166

kyr (on average). Starting the next reversal process from the bottom of a potential well167

is precisely the context that Kramers’ formula was intended to approximate.168

We now consider the more complicated trajectories that become possible when the169

temporal averaging is reduced. A relatively small fluctuation is sufficient to send the dipole170

back over the barrier when the time after a reversal is too short to allow the dipole to171

settle into a stable polarity. As we decrease the averaging time below the recovery time172

of 28 kyr, we begin to identify reversals in the stochastic model that occur before the173

amplitude of the dipole has fully recovered. Once the averaging time drops below 10 kyr,174
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Figure 4. Average reversal rate, r, from two hundred 10-Myr realizations of the stochastic

model. Changes in temporal averaging cause a systematic trend in r. An estimate of r from

Kramers’ formula (Risken, 1989) corresponds most closely to an averaging time of 30 kyr to 40

kyr. A shorter averaging time causes a marked increase in r.

we have nearly doubled the rate of reversals, and all of these additional reversals occur175

when the geomagnetic field starts in a weak state relative to its long-term average. De-176

tecting these reversals in the geological record would be difficult for two reasons. First,177

we need sufficient temporal resolution to identify short polarity transitions. Second, we178

need to detect these transitions when the amplitude of the dipole field is weak. Contri-179

butions from the non-dipole part of the field become more important when the dipole180

is weak, so short polarity intervals are liable to have a complex geographic expression181

in paleomagnetic observations (Brown, Holme, & Bargery, 2007).182

On strictly theoretical grounds we expect the reversal rate in the stochastic model183

to increase without limit as the averaging time decreases. This surprising outcome is ac-184

tually consistent with the predictions of the Weibull distribution. To understand this be-185

havior we note that the stochastic differential equation in (2) describes a Wiener pro-186

cess near x = 0 because the gradient of the potential vanishes. If we discretize the so-187

lution by taking fixed time steps (say ∆t = 1 kyr), then the number of times x(t) crosses188

zero, on average, is proportional
√
n, where n is the number of 1-kyr time steps through189

the transition (DasGupta & Rubin, 1998). Here the transition duration is taken to mean190

the time needed for the dipole to settle into a stable polarity. Decreasing the time step191

improves the temporal resolution, but this change increases the number of time steps through192

the transition; it also increases the number of zero crossings. All of these additional zero193

crossings occur at the shortest time interval permitted by the refinement in the time step.194

In other words we are accumulating zero crossings with small τ , consistent with the ex-195

pected correspondence between a small temporal resolution (∆t) and a small shape pa-196

rameter k < 1. In the limit that ∆t and k go to zero, the normalized median in (4) also197

goes to zero. This means that the polarity intervals cluster without limit near τ = 0.198

–7–



manuscript submitted to Geophysical Research Letters

10

8

6

4

2

0

-10

-8

-6

-4

-2

0 100 200 300

Di
po

le 
Mo

me
nt 

 (1
0  

 A 
m 

  )
22

2

Time   (kyr)

realization  (Δt = 1 kyr)

time average  (30 kyr)

Figure 5. Realization of the stochastic model through a polarity transition. A smooth transi-

tion between stable polarities occurs when a time average of 30 kyr is applied to account for the

temporal resolution of the MMA record (black). The actual realization (gray) exhibits several

zero crossing when the time-averaged dipole moment is weak. Fluctuations in the dipole moment

during the transition can reach x = ±3 × 1022 A m2.

In practice we cannot allow the time step in the stochastic model to decrease with-199

out limit because the noise term would no longer be uncorrelated. Numerical dynamo200

models (e.g. Buffett & Matsui, 2015; Olson, Christensen, & Driscoll, 2012) suggest the201

correlation time of convective fluctuations is shorter than the overturn time, L/Vrms =202

140 years, where L = 2260 km is the thickness of the outer core and Vrms = 0.5 mm203

s−1 is an estimate of the convective velocity (Holme, 2015). We can think of the corre-204

lation time as a limit on the temporal resolution of a standard stochastic model. Such205

a model could plausibly permit polarity intervals as short as a few hundred years if there206

were no other restrictions on our ability to record the dipole field. Of course, the am-207

plitude of the dipole field between these transitions would be small, and such events would208

not conform to our usual view of geomagnetic reversals. However, there is no simple way209

to separate the continuum of behavior between low-amplitude and short-period polar-210

ity intervals and the more conventional view of geomagnetic reversals as a transition be-211

tween two states of stable polarity. In fact, our conventional view may be partially shaped212

by the coincidence of dipole recovery time with the temporal resolution of the MMA record.213

Under these conditions the dipole moves smoothly from one polarity to the other with-214

out much complexity during the transition.215

4 Discussion216

Several lines of evidence point to short polarity intervals in the paleomagnetic record.217

Confirmation of new polarity transitions in high-resolution sediment cores, like those pro-218
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posed by Roberts and Lewin-Harris (2000), would shift the statistics of geomagnetic re-219

versals toward lower values for k. Geomagnetic excursions are another type of brief event220

that sometimes exhibit directional changes of approximately 180◦ before returning to the221

direction established prior to the excursion (e.g. Laj, Kissel, & Roberts, 2006). Laj and222

Channell (2015) prefer to describe these events as microchrons because their duration223

is less than 10 kyr, which is too short to be recorded by MMA. Including these events224

in an assessment of reversal statistics would also shift k toward lower values. There are225

also indications of precursors and rebound features in magnetic directions around the226

time of well-established polarity transitions (Valet, Fournier, Courtillot, & Herrero-Bevera,227

2012). Magnetic directions can change by 90◦ or more before and after the main tran-228

sition. It is possible that some of these features represent short-period polarity transi-229

tions during times when the dipole is in a weakened state. It is common for the stochas-230

tic model to exhibit three or more sign changes during a transition from one stable state231

to another (see Figure 5). The main question is whether the amplitude of the dipole field232

between these sign changes is large enough to be detected in magnetic directions.233

A weak dipole field allows magnetic directions to be strongly influenced by the non-234

dipole field. These directions become increasingly aligned with the dipole when the strength235

of the dipole rises above the level of the non-dipole field. The strength required to align236

magnetic directions with the dipole depends on the amplitude of non-dipole components237

and on the geographic location of the observations (Quidelleur, Gillot, Carlut, & Cour-238

tillot, 1999). The study of Brown et al. (2007) used the non-dipole components from the239

CALS7k.2 model (Korte & Constable, 2005) to show that magnetic directions during a240

polarity transition cluster around the final direction once the dipole moment reaches x =241

2.5×1022 A m2. Some geographic locations have magnetic directions aligned with the242

dipole when axial dipole moment is as small as x = 2 × 1022 A m2 (Brown & Korte,243

2016; Valet & Plenier, 2008). We can use the time required for the dipole to reach to a244

suitable threshold to establish the duration of detectable polarity transitions. An approx-245

imate expression for the average recovery time, τt, is (Buffett, 2015)246

τt =
4x2t
Dπ2

, (6)

where xt is the prescribed threshold and D was previously defined as the amplitude of247

the noise term. This simple expression overestimates τt when the threshold is set at the248

time-averaged magnetic field (i.e. xt = 5.3 × 102 A m2). We obtain 33 kyr from (6)249

compared with 28 kyr from a full solution of the Fokker-Planck equation using D = 0.34×250

1044 A2 m4 kyr−1 (Buffett & Puranam, 2017). However, this error is substantially re-251

duced when the threshold is lowered. For xt = 2.5 × 1022 A m2 we obtain τt = 7.5252

kyr, which is comparable to values commonly cited for the duration of a reversal in mag-253

netic direction (Clement, 2004). More rapid transitions are allowed because τt represents254

an average value. On the other hand, consistently shorter durations would require a lower255

threshold to establish the new magnetic direction. Taking xt = 2 × 1022 A m2 gives256

an average duration of 4.8 kyr. Any specific instance of the stochastic process could plau-257

sibly give durations that were 50% higher or lower. This means that we could establish258

a new magnetic direction on timescales as short as 2.4 kyr if a dipole moment of xt =259

2× 1022 A m2 was sufficient to define the new magnetic direction.260

Detectable polarity intervals with durations shorter than 10 kyr are possible with261

a weak dipole field (nominally x < 3×1022 A m2). Substantially shorter durations are262

possible with even weaker dipole fields, but the paleomagnetic expression of these events263

might be too spatially complex to interpret. A precursor event that shifts magnetic di-264

rections by 90◦ could plausibly be explained by a transient drop of the dipole moment265

below the threshold where the dipole no longer defines the magnetic direction. All of these266

short period events are ultimate associated with a weak dipole field. A testable predic-267

tion of the stochastic model is that the duration of the shortest polarity intervals should268

be correlated with the initial amplitude of the dipole field. Including these events in our269
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discussion of reversals statistics suggests that the short-period intervals are preferentially270

generated by the geodynamo.271

5 Conclusions272

A statistical analysis of the observed polarity intervals in the MMA record supports273

the view that geomagnetic reversals are not represented by a Poisson process. The ob-274

served record reveals a deficit of short polarity intervals relative to the predictions of a275

Poisson process. Instead the observations are better represented by a Weibull probabil-276

ity density with a shape parameter k > 1. Polarity intervals from a stochastic model277

are also found to obey a Weibull distribution. However, the shape parameter is controlled278

by the temporal averaging applied to the stochastic model to represent the finite reso-279

lution of geological observations. Applying an averaging time of 30 kyr to the stochas-280

tic model yields a distribution of polarity intervals that closely follows a Poisson process.281

Adopting a lower time average (higher resolution) produces polarity intervals that fol-282

low a Weibull distribution with a shape parameter k < 1. This result means that short283

polarity intervals are preferentially generated by the stochastic model relative to the pre-284

dictions of a Poisson process. We suggest that these short polarity intervals are not cap-285

tured in the MMA record, but they may be present in paleomagnetic observations from286

high-resolution sediments core. Brief geomagnetic excursions that shift magnetic direc-287

tions through 180◦ may be representative examples of this type of short event. All of these288

short events should occur when the dipole field is weak, and we expect a correspondence289

between the duration of these events and the initial strength of the dipole field before290

the transition.291
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