
Threshold Logic in a Flash
Ankit Wagle∗, Gian Singh∗, Jinghua Yang∗, Sunil Khatri†, Sarma Vrudhula∗

∗ (awagle1,gsingh58,jinghua.yang,vrudhula)@asu.edu, † sunil.khatri@tamu.edu
∗ School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe AZ 85281

† Dept. of Electrical and Computer Engineering, Texas A&M University, College Station TX

Abstract—This paper describes a novel design of a threshold
logic gate (a binary perceptron) and its implementation as
a standard cell. This new cell structure, referred to as flash
threshold logic (FTL), uses floating gate (flash) transistors to
realize the weights associated with a threshold function. The
threshold voltages of the flash transistors serve as a proxy for the
weights. An FTL cell can be equivalently viewed as a multi-input,
edge-triggered flipflop which computes a threshold function on
a clock edge. Consequently, it can be used in the automatic
synthesis of ASICs. The use of flash transistors in the FTL
cell allows programming of the weights after fabrication, thereby
preventing discovery of its function by a foundry or by reverse
engineering. This paper focuses on the design and characteristics
of the FTL cell. We present a novel method for programming
the weights of an FTL cell for a specified threshold function
using a modified perceptron learning algorithm. The algorithm
is further extended to select weights to maximize the robustness
of the design in the presence of process variations. The FTL
circuit was designed in 40nm technology and simulations with
layout-extracted parasitics included, demonstrate significant im-
provements in the area (79.7%), power (61.1%), and performance
(42.5%) when compared to the equivalent implementations of
the same function in conventional static CMOS design. Weight
selection targeting robustness is demonstrated using Monte Carlo
simulations. The paper also shows how FTL cells can be used
for fixing timing errors after fabrication.

Index Terms—Threshold Logic, Floating Gate, Flash, Low
Power, High Performance, Perceptron

I. INTRODUCTION AND MOTIVATION

Methods to optimize the performance, power and area (PPA)

of static CMOS circuits have continuously improved over

three decades, leaving few opportunities, if any, for further

improvements. This suggests that if there are to be any further

advances in improving PPA at the logic and circuit levels,

the conventional way of computing logic functions has to

be revisited. Although several nanotechnologies are being

investigated as alternatives or enhancements to static CMOS

(e.g. [1]–[4]), they remain at the research stage and large scale

adoption is still far in the future.

This paper introduces a new programmable ASIC primitive,

referred to as a flash threshold logic (FTL) cell, that can

be used to substantially improve all three PPA metrics of

an ASIC. An FTL cell and its use in an ASIC is different

from any other type of ASIC component previously reported.

However, it is designed as a standard cell, so that it is fully

compatible with conventional ASIC design flow, and can be

processed by commercial design tools without any changes.

In other words, it can easily be combined with conventional

CMOS logic during synthesis, technology mapping, and place-

∗The research was supported in part by NSF PFI award 1701241.

and-route. However, it is functionally and structurally very

different from a complex standard cell.

An FTL cell of n inputs can realize any threshold
function of n or fewer variables. A threshold function

f(x1, · · · , xn) [5] is a unate Boolean function whose on-set

and off-set are linearly separable, i.e. there exists a vector of

weights W = (w1, w2, · · · , wn)
1 and a threshold T such that

f(x1, x2, · · · , xn) = 1 ⇔
n∑

i=1

wixi ≥ T, (1)

where
∑

here denotes the arithmetic sum. A threshold

function can be equivalently represented by (W , T) =
(w1, w2, · · · , wn;T).

Fig. 1: FTL Schematic

Figure 1 shows the schematic of

the FTL cell, in which the weights

W are internal parameters of

the cell. The schematic is meant to

convey that the input-output behavior

of an FTL cell may be viewed as an

edge-triggered, multi-input flip-flop,

whose output is a threshold function,

registered at the rising edge of the

clock signal C.

A distinctive characteristic of the FTL cell design is that the

actual threshold function realized by an FTL instance within

an ASIC is programmed after the circuit is manufactured. An

FTL based ASIC integrates flash or floating gate [7] transistors

along with conventional MOSFETs within the FTL cell. Thus,

unlike many of the emerging technologies [2], [3], [8], [9], an

FTL cell employs mature IC technologies (CMOS and Flash)

that can be commercially manufactured and integrated today.

A. FTL in ASIC Design – A Valuable Use Case

The focus of this paper is on the design of the FTL cell.

Before proceeding to that, it will be instructive to understand

its use in ASIC design [10]. The fact that an FTL is a

programmable, multi-input flip-flop provides a unique and

significant new opportunity to improve the PPA of ASICs.

Consider the logic netlist shown in Figure 2a which has

two registered outputs F and G. Suppose that transitive fan in

(TFI) cones of F and G are traversed and two subcircuits A
and B (see Figure 2b) are found that are threshold functions of

their inputs. The remaining subcircuit is labeled as C. Suppose

that subcircuits A and B are each replaced by an FTL cell,

1W.L.O.G, weights can be assumed to be positive integers [6], and for a given
truth table of a threshold function, there is a weight vector whose sum is
minimum [6].

550

2019 IEEE 37th International Conference on Computer Design (ICCD)

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00081

(a) A logic netlist.
(b) Identifying threshold functions in TFI
cones of flip-flops (c) A FTL-CMOS logic hybrid

Fig. 2: Use of FTL in ASIC design

programmed to realize A and B. This replacement is shown

in Figure 2c, where the FTL cells are shown as black boxes.

Now, subcircuit C would be re-synthesized to account for the

changes in the delay of FTL cells and the new loads that they

present to the outputs of C. The circuit in Figure 2c would

substantially improve the PPA of an ASIC for two reasons:

1) Subcircuits A and B and the two flip-flops are each

replaced by an FTL cell which has much few transistors,

resulting in a significant reduction in area and power.

2) The clock-to-Q delay of FTL cells are typically about 30%

to 40% smaller than the delay of standard cell realization

of subcircuits A and B plus the clock-to-Q delay of regular

flip-flops. In the FTL-CMOS hybrid design, this results in

a substantial amount of slack (required time minus arrival

time) on the outputs of subcircuit C, which in turn will

allow synthesis and technology mapping tools to drastically

reduce the logic area of subcircuit C.

FTL based ASICs also offers several other equally signifi-

cant advantages not possible with conventional CMOS logic.

1) IP Protection: A CMOS ASIC with embedded FTL cells

cannot be reverse-engineered by a foundry or any third

party because the functions of the FTL cells are unknown

(black boxes) at manufacturing time, as shown in Figure 2c.

2) Correcting Timing Errors: The fine-grained, post-

manufacture flash threshold voltage programmability

allows precise speed binning, and correction of timing

errors. This is not possible in traditional CMOS design.

3) Mitigating Aging Effects: By re-programming the flash

design in-field, our scheme allows for mitigating the effects

of aging. This is also not possible in CMOS design.

4) High Endurance: Unlike flash memory, the FTL cell does

not suffer from endurance issues. Flash transistors can

endure a finite number of write cycles (1K to 100K) [11],

[12]. In our approach, the flash devices will be programmed

a few times (at most), after fabrication, and then again to

possibly adjust for aging effects (in the field).

B. Main Contributions
The remainder of the paper will focus on the design of

the FTL cell and demonstrate its key characteristics through

extensive and detailed electrical simulations using the state-of-

the-art device and circuit models and commercial tools. The

main contributions of this work are summarized below.

• This paper introduces a novel circuit design of the FTL cell

to realize all threshold functions of n or fewer variables2.

The new design incorporates both flash transistors and

conventional MOSFETs in a unique way to realize highly

robust threshold logic circuits.

• The set of threshold voltages (Vt) of the flash transistors

in the FTL cell serve as a proxy for [W , T] that define a

threshold function realized by an FTL cell. Since the thresh-

old voltages of the flash transistors can be programmed

with high precision [7], an FTL cell can implement weights

with great fidelity. We introduce an algorithm that maps the

weights of a given threshold function f = [W , T] to the

threshold voltages of the flash transistors. This is a complex,

non-linear, multi-valued mapping. That is, several different

Vt(s) may correspond to a given W,T , each determined

by the complex electrical and layout characteristics of the

MOSFETs and flash transistors. Given a layout extracted

netlist of an FTL cell, we present a novel modification of

the classical perceptron learning algorithm (PLA) [13] that

works in concert with HSPICE to determine one Vt of an

FTL cell that computes f = [W , T]. This algorithm ac-

counts for layout parasitics and process variations. Like the

original PLA, the modified PLA is guaranteed to converge,

ensuring that a solution (Vt) for the given layout of an FTL

cell will be found in a finite number of steps if a solution

exists.

• The fine-grained programmability of threshold voltages of

the flash transistors in an FTL cell is exploited to improve

its robustness. Given that the mapping [W , T] ⇒ Vt is

multi-valued, we show how to direct our modified PLA

to find a Vt that will ensure that the FTL cell reliably

computes the given threshold function in the presence of

local and global process and environmental variations. Using

this approach, substantial improvement in the robustness of

the FTL cell is demonstrated using Monte Carlo simulations.

This also shows how post-fabrication tuning of the threshold

voltages can correct failures due to process variations, or

modify the delay to correct timing errors, improve a circuit’s

performance, or improve the performance characteristics of

2In the experimental results, we find that n = 5 is a sufficiently good choice to
demonstrate substantial improvements in PPA, since there are a large number
(117) of threshold functions of n or fewer variables

551

a design to alter the speed binning distribution in a manner

that maximizes profit.

C. Organization of the Paper
Section II gives a very brief overview of threshold logic

and flash transistor technology. Sections III, IV and V contain

the main body of this work. The architecture and operation

of the FTL cell are described in Section III. This is followed

by a description in Section IV of the modified PLA used to

program an FTL to implement a given threshold function.

Section V contains an extensive set of experimental results,

demonstrating the significant improvements in PPA of FTL

cells over their CMOS equivalents, and validating several

of the uses of post-fabrication programming/tuning of the

flash devices. Before concluding the paper in Section VII, we

present a brief and partial review of the prior art related to

this paper in Section VI.

II. BACKGROUND

A. Threshold Logic
Equation (1) defines an n-input threshold function. An ex-

ample of a 5-input threshold function is a 3-out-of-5 majority

function: f(a, b, c, d, e) = abc ∨ abd ∨ abe ∨ acd ∨ ace ∨
ade ∨ bcd ∨ bce ∨ bde ∨ cde ≡ a + b + c + d + e ≥
3 ≡ [wa, wb, wc, wd, we;T] = [1, 1, 1, 1, 1; 3]. An XOR is a

simple example of a non-threshold function. The importance

of threshold logic stems from the fact that many Boolean

functions that require exponential size AND/OR networks

can be realized by polynomial sized, fixed depth threshold

networks [6]. From a practical perspective, nearly 70% of

the functions in standard cell libraries are threshold functions.

We will demonstrate that implementing threshold functions

using conventional CMOS logic primitives is very inefficient,

as compared to the FTL cell. In our approach, Equation (1)

must be translated to the comparison of electrical quantity such

as charge, current or voltage. This is the basis of many other

threshold gate implementations as well [14].

B. Flash Transistors

e eee
e

N+N+

Control
Gate

Drain Source

Floating
Gate

Dielectric

Fig. 3: Flash Transistor Cross

Section

Flash or floating gate tran-

sistors are dual-gate field

effect transistors (DGFETs).

The first gate is called a con-
trol gate and the second is a

floating gate (see Figure 3).

The control gate is similar

to the gate of a traditional

MOSFET. The floating gate is

inserted between the substrate

and the control gate, and is

electrically and physically isolated. Hence, current cannot flow

into (out) of the floating gate, unless electrons are forced to

enter (leave) the floating gate from (to) the substrate by a

phenomenon known as Fowler-Nordheim (FN) tunneling [15].

A flash device is programmed by holding its body, source

and drain nodes at the ground and applying a high voltage

(10-20 Volts) to the control gate. The resulting electric field

forces electrons to tunnel from the substrate into the floating

gate, increasing the threshold voltage of the flash transistor.

The resulting threshold voltage depends on the number of

electrons that tunnel into the floating gate, which depends

on the duration of the programming pulse. Significantly, the

threshold voltage of a flash transistor can be adjusted with a

fine granularity [7]. Once electrons are trapped in the floating

gate, they remain trapped for many years [11], [12], or until

removed by an erase operation. A flash transistor can be erased

by holding the control gate to ground, floating the drain and

source nodes, and applying a high voltage at the body node.

Erasing is simultaneously performed on all the transistors

which share a common body node.

III. FLASH THRESHOLD LOGIC (FTL) CELL

Figure 4 shows the architecture of the FTL cell. It has five

main components: the left input network LIN, the right input

network RIN, a sense amplifier (SA), an output latch (LA) and

a flash transistor programming logic (P). The LIN and RIN

consist of two sets of inputs (�1, · · · , �n) and (r1, · · · , rn),
respectively, with each input in series with a flash transistor.

In our implementation, �i = ri for all i. The conductivity of

these two networks is determined by the state of the inputs and

the threshold voltages of the flash transistors. The assignment

of signals to the LIN and RIN is done to ensure sufficient

difference in conductivity across all minterm pairs (mi,mj)

such that f(mi) �= f(mj).
The FTL cell has two differential signals N1 and N2,

which serve as inputs to an SR latch. When [N1, N2] = [0, 1]
([1, 0]), the latch is set (reset) and the output Y = 1(0). The

magnitudes of the two sides of the inequality (1) in the defi-

nition of a threshold function are mapped to the conductance
GL of the LIN and GR of the RIN, such that [N1, N2] =
[0, 1] ⇔ GL > GR and [N1, N2] = [1, 0] ⇔ GL < GR.

As stated earlier, the flash transistor threshold voltages serve

as a proxy to the weights of the threshold function – the

higher the weight, the lower will be the threshold voltage.

For a given threshold function, this non-linear monotonic

relationship is learnt using a modified perceptron learning

algorithm described in Section IV.

The FTL cell has three modes: regular, erase and program-
ming mode. The Vt values of the flash transistors are set in

the programming mode and erased in the erase mode. The

evaluation takes place in regular mode.

FTL Regular Mode: In this mode PROG = ERASE = 0.

Assume that the Vts of the flash transistors have been set

to appropriate values corresponding to the weights of the

threshold function, and their gates are being driven to 1 by

setting HiV to VDD, FCj to 0V and all FTi to 0V. When

CLK = 0, the circuit is reset. In this phase, the nodes

N5 and N6 of LIN and RIN are connected to the supply,

N5 = N6 = 0, and N1 = N2 = 1. Therefore, the output Y
remains unchanged.

Assume now that an on-set minterm is applied to the inputs

in the LIN and RIN. With properly assigned Vt values to

552

Fig. 4: FTL Cell Architecture: Input net-
works LIN and RIN drive the sense am-
plifier with current based on weighted in-
puts. Input weights are implemented by
modulating the conductivity of LIN and
RIN using flash transistors. Sense ampli-
fier evaluates the threshold function and
drives the latch to produce the output Y.
An FTL cell is programmed by sending
high voltage pulses to the flash transistors’
gates via the Programming Logic.

the flash transistors, suppose that GL > GR for the given

minterm. When CLK : 0 → 1, both the LIN and RIN will

conduct, and N5 and N6 will both transition from 0 → 1.

Assuming GL > GR, N5 rises faster than N6, and hence N5
will make M7 active before N6 makes M8 active. This will

start to discharge N1 before N2. When N1 falls below the Vt

of M6, it will stop further discharge of N2, and turn on M3,

resulting in N2 : 0 → 1. Finally, [N1,N2] = [0,1] sets the SR

latch, resulting in Y = 1. For an off-set minterm, GL < GR,

and [N1, N2] = [1, 0] resulting in Y = 0.

The conventional circuit structures used in flash memories

are not suitable for programming an FTL cell because it has to

also perform logic operations. Consequently, we present a new

programming interface for an off-chip programming circuit to

set the Vt values of any FTL cell. During flash-programming,

this interface uses the FCj signal to select the jth FTL cell

and the FTi signal to select the ith flash transistor of the

selected FTL cell.

FTL Programming Mode:(ERASE=0, PROG=1, CLK=0,

FTi=0, FCj=0, HiV=20V). The ERASE and PROG signals

turn on M12 and M13 and turn off M14. In this state, the

source of the flash transistor is floating while the drain and

bulk are connected to the ground. Activating the appropriate

transistors using the FTi and FCj signals, high voltage pulses

are passed on the HiV line through MCj and MTi to the gate

of the flash transistor to set the desired threshold voltage (Vt).

FTL Erase Mode: (ERASE=1, PROG=1, CLK=0, FTi=0,

FCj=0, HiV=-20V). M12 is turned off by the ERASE signal.

Both the source and drain of the flash transistors are floating in

this state, while the bulk is connected to the ground. A negative

HiV pulse at the gate terminal of all the flash transistors in

this state will tunnel the charge from the floating gate, thereby

erasing the flash transistor.

IV. MODIFIED PERCEPTRON LEARNING ALGORITHM

In this section, we describe an algorithm to determine

the vector of flash transistor threshold voltages for a given

threshold function f = [W , T]. The problem is to find a

mapping between the Boolean space Bn, and the conductivity

space (GL, GR) such that GL > GR iff
∑

wixi > T (i.e.

for an on-set minterm), and GL < GR iff
∑

wixi < T (i.e.

for an off-set minterm). This mapping is depicted in Figure 5.

GL and GR are non-linear functions of the flash transistor

Fig. 5: Transformation from Boolean space to conductivity space;
Hyperplane gets converted into a line.

threshold voltages, the time-varying drain and sources voltages

of the input transistors, and the layout parasitics that vary

from instance to instance. To account for these dependencies,

GL and GR, in principle, must be obtained by solving a set

of differential equations – an approach that is not practical.

We next show how to simultaneously solve the differential

equations numerically and perform the binary classification

by a modified version of the classical perceptron learning

algorithm (PLA) [13].

The PLA starts with an initial hyperplane in the Boolean

space and iteratively adjusts it until all the on-set and off-

set minterms fall on opposite sides of the hyperplane. Each

minterm corresponds to some point in the (GL, GR) space.

Our modified PLA iteratively adjusts the Vt(s) of flash transis-

tors such that points in the conductivity space that correspond

to the on-set and off-set minterms fall on the appropriate side

of the line GL = GR (Fig. 5). We use HSPICE to determine

whether any point falls above or below this line.

A description of the modified PLA follows. The threshold

voltages of the flash transistors associated with the input

transistors in the LIN and RIN are labeled V1, V2, · · · , Vn.

The ith transistor in both LIN and RIN has a threshold

voltage Vi. In addition, there are two special flash transistors,

whose threshold voltages are VL and VR associated with

the LIN and RIN, respectively. For a threshold function

f = (w1, w2, · · · , wn;T), the Vi, 1 ≤ i ≤ n, correspond

to the weights wi of a threshold function, whereas only one

of VL or VR is associated with the threshold T of f . If VL

is associated with T , then VR = VDD, effectively turning it

off. If VR is associated with T , then VL = VDD. The use of

additional flash devices on both sides of the FTL cell allows

for extra programming flexibility. The induced symmetry also

553

balances the parasitics of the LIN and the RIN.

For the truth table (TT) of f , the modified PLA applies all

the minterms of f to the FTL cell, and records the HSPICE

response in an array called OT (output table). For a given

minterm mi, if TT (mi) = OT (mi) then the response is

called a correct response, otherwise it is called an incorrect
response. An FTL cell is completely programmed if the

recorded response for every minterm is correct. Until the

FTL cell is completely programmed, at least one minterm

would generate an incorrect response. In the event of an

incorrect response associated with minterm mi, the modified

PLA adjusts the threshold voltages of all flash transistors

associated with the ON input transistors within the interval

[δ, VDD − δ], by a minimum increment δ, using the following

equations (k denotes the iteration number of the algorithm):

V k+1
i =

{
V k
i − δmi mi ·W ≥ T

V k
i + δmi mi ·W < T.

(2)

Equation (2) is quite easy to understand. The term δmi is

simply a vector which has a value δ at all locations where

mi is 1, and zero elsewhere. For instance, δ(1, 0, 1, 1, 0) =
(δ, 0, δ, δ, 0). Suppose mi is an on-set minterm for which the

response was incorrect. This means that GL < GR. Therefore

GL needs to be increased for minterm mi. Hence the threshold

voltages of all flash transistors that are connected to the input

transistors that are ON for minterm mi, should be decreased

by δ. Similarly, if mi is an off-set minterm, then the threshold

voltages of the same flash transistors must be increased by δ.

This is what is expressed in Equation (2).

Since the Vi values are bounded above and below, it might

not be possible to satisfy the truth table using the Vi alone.

In such cases, the algorithm will resort to adjusting VL and

VR using the same principle as in Equation (2). If mi is

a on-set minterm that was incorrect, then GR should be

reduced. Therefore, VR is incremented by δ, until its upper

bound is reached. If this is not sufficient, then GL has to

be increased. Hence, VL is decremented. Given a threshold

function and a sufficiently small δ, the modified PLA will

converge to a feasible threshold voltage set assignment V ∗
t

for the FTL cell [13]. For an n-input threshold function, a

pessimistic upper bound on the number of iterations is given

by kmax = 2n||V ∗
t ||2/δ2. For n = 5 and δ = .02V ,

kmax = 2500||V ∗
t ||2.

A. Training for Robustness
The modified PLA does not consider the relative location

of the points with respect to the metastability region around

the line GL = GR (see Figure 5b). Even though minterms are

classified correctly, they can be arbitrarily close to the line.

The further away a minterm is from the line, the easier (and

faster and more robust) it will be for the sense amplifier to

detect the difference between N5 and N6, and discharge the

appropriate side (N1 or N2) first. Our approach to making the

FTL cell highly robust is to introduce an additional capacitance

C1 on node N1 when classifying an on-set minterm, and

determining the maximum value of C1 for which the modified

PLA converges. This handicaps node N1 and directs the

algorithm to find a solution, which will result in increasing

GL more than increasing GR. Similarly, we add a capacitance

C0 on node N2, when classifying an off-set minterm. The

corresponding threshold voltages found by the modified PLA

algorithm will increase the gap between GL and GR, which

makes it much more robust, and also improves its speed, as

a direct consequence. Note that C0 and C1 are introduced in

the simulations for improving the training solution only, and

are not part of the FTL cell.

V. EXPERIMENTAL RESULTS

A. Experiment Setup
A 5-input FTL cell was designed and a complete layout

(including the programming devices) was created using the

TSMC 40nm LP library. The flash transistor models were

obtained from [16] and were suitably modified to reflect the

characteristics and variations of the TSMC 40nm library. The

design rules for the flash transistors were obtained from ITRS.

The layout of the FTL cell was created as a standard cell with

an area of 15.6 μm2. For reference, if X represents the drive

strength, an X4 DFF and an X4 NAND gate have an area of

5.6μm2 and 2.8 μm2 respectively, while their delay optimized

X8 counterparts have an area of 14.347 μm2 and 7.3 μm2

respectively. The {setup, C2Q} of a X4 DFF is {67ps, 168ps}.

There are a total of 117 distinct threshold functions of 5

or fewer variables. A numbered list of these is given in [17]

and can also be accessed at [18]. In this section, we use the

same numbering scheme as in [17] to identify the functions.

In the sequel, the FTL cell trained to implement the threshold

function numbered n in [17] will be referred to as FTLn, and

the corresponding CMOS implementation will be denoted as

CMOSn. The threshold function itself will be denoted as Fn.

B. Training Iterations
The modified PLA algorithm was used to train the FTL

cell for robustness (see Section IV-A) for all 117 functions.

Figure 6 shows the number of iterations needed for training for

each of the 117 functions. The actual number of iterations were

about 10X lower than the theoretical upper bound, presented

in Section IV.

Fig. 6: Iteration count for the modified perceptron learning algorithm
for all 117 functions of 5 or fewer variables.

C. Area, Delay and Power Comparison
Each of the 117 functions were implemented as FTL cells,

and also synthesized by Cadence Genus© and placed and

routed using Cadence Innovus© , using the TSMC 40nm

LP standard cells. The total delay (logic delay + setup time

554

+ clock-to-Q delay) and power values were determined by

simulating the circuits at 25◦C at 20% input switching activity.

Figure 7 shows that each of the FTL implementations of

the 117 functions have substantially smaller area, power and

delay when compared to the CMOS equivalent. The averaged

improvements of FTL over CMOS are: area (79.5%), delay
(42.5%) and power (61.1%).

Fig. 7: PPA improvements of FTL over CMOS implementations.

Figure 8 compares the leakage power of the FTL and

CMOS implementations of the 117 functions. The functions

are arranged in ascending order of their CMOS leakage values.

Unlike the CMOS implementations, the leakage power of the

FTL implementations is nearly constant. Also plotted is the

area trend line of CMOS implementations, to illustrate the

strong correlation of leakage power with area. The few FTL

implementations that had higher leakage (shown circled) were

all small logic primitives. Nevertheless, the total power (see

Figure 7) of FTL implementations of even these functions is

far less than the CMOS implementations. These functions can

be avoided if leakage minimization is the primary design goal.

Fig. 8: Leakage power of FTL versus CMOS implementations.

D. Experiments on Training for Robustness

This experiment demonstrates the robust PPA training

method, described in Section IV-A, to improve yield. The test

function chosen was F115 = [W ;T] = [4, 1, 1, 1, 1; 5] =

ab + ac + ad + ae. The experiment consisted of training

multiple versions of FTL115 for various values of the parasitic

capacitances C1 and C0, and for each solution, performing

100K Monte Carlo simulations with local and global process

variations3, and checking if the truth table was correctly

realized. Table I shows the delay and yield for various values

of C1 and C0. The functional yield was improved from 13% to

100% (i.e. truth tables of all 100K instances were verified to be

correct) by increasing the values of C1 and C0. There are two

important observations to be made here. First, even though the

weights of b, c, d, e are equal, the corresponding flash tran-

sistors received different threshold voltages (V2, V3, V4, V5).

This shows that the perceptron learning algorithm, working

in concert with HSPICE, accounts for the layout parasitics.

Second, the delay improves with increasing robustness, due to

the increase in the difference between the voltages at nodes

N5 and N6,(see Section IV).

TABLE I: Multi-Corner Monte Carlo results with 100K simulations
of FTL115, trained for robustness using various capacitor values (fF)

C1, Average Vt Values (V) Yield Delay
C0 (V1, V2, V3, V4, V5;Vl0, Vr0) % (ps)

0.00 0.64, 0.74, 0.72, 0.74, 0.72; 1.00, 0.74 13 244
0.01 0.62, 0.72, 0.7, 0.74, 0.74; 1.00, 0.70 20 220
0.02 0.58, 0.74, 0.72, 0.74, 0.72; 1.00, 0.64 43 204
0.05 0.48, 0.68, 0.66, 0.70, 0.66; 1.00, 0.56 59 162
0.10 0.34, 0.56, 0.54, 0.60, 0.62; 1.00, 0.46 100 138

Fig. 9: Conductivity GL and GR of FTL115 [TT, 0.9V, 25◦C].
In the conductivity space, gap between off-set minterms and on-set
minterms increases, when the training is done for robustness.

In Section IV-A we argued that training an FTL cell with

a handicap in the form a parasitic capacitance on N1 and

N2 will improve the robustness by increasing the smallest

gap in conductance between the LIN and the RIN. Figure 9

demonstrates this very important characteristic of the robust

PPA algorithm for FTL. It is a plot of the conductivity
space, i.e., GR versus GL, of an FTL when trained for the

test function F115, with and without the parasitic (handicap)

capacitances. The blue points (orange points) correspond to

the GL and GR values of the on-set and off-set minterms of

3Several dozen parameters are varied in the HSPICE models provided by the
vendor

555

F115 in the absence (presence) of the parasitic capacitances

C1 and C0 (C1 = C0 = 0.1fF).

Recall that for an on-set minterm GL > GR and for an off-

set minterm, GR > GL. The plot clearly demonstrates that

training with the parasitic capacitances dramatically improves

the robustness in two ways. First, there is a significant increase

(by 21%) in the shortest distance between the two closest on-

set and off-set minterms, as indicated in Figure 9. Second,

the increase in GL is greater than the increase in GR, i.e.

ΔGL/ΔGR > 1 for the on-set minterms, and vice-versa

for the off-set minterms. Both of these effects contribute to

reducing the contention in the sense amplifier in deciding the

function output, which in turn directly improves the speed as

well, resulting in higher robustness and higher performance.

E. Delay Distributions
This experiment compares the distributions of delays of

FTL and CMOS implementations. We show the results for the

function F115 = [W ;T] = [4, 1, 1, 1, 1; 5]. The PVT corner

setting was [P, V, T] = [TT, 0.9V, 25◦C]. 100K Monte Carlo

instances were generated for both FTL115 and CMOS115.

The function of each of the 100K FTL instances was verified

against the truth table for correctness, for both FTL115 and

CMOS115. The histograms of delays are shown in Figure 10.

These clearly demonstrate the delay advantage of the FTL cell

over its CMOS equivalent, even in the presence of process

variations. The difference in standard deviation between the

two is insignificant. Note that the FTL instances with large

delays can be re-programmed to further reduce the delay. This

capability is not possible for the CMOS versions.

Fig. 10: Delay histogram of FTL115 and CMOS115 with 100K
Monte Carlo simulations. PV T = [TT, 0.9V, 25◦C].

TABLE II: Delay, total power and power-delay-product (PDP) of
FTL115, trained at VDD = 0.9V , and C0 = C1 = 0.1fF .

Supply
Voltage (V)

Flash Gate
Voltage (V)

Power (u) Delay (ps) PDP

0.8 0.8 14.3 198.1 2837.1
0.85 0.825 20.5 157.6 3228.7
0.9 0.85 26.1 130.2 3396.9

0.95 0.875 40.3 111.2 4482.7
1 0.9 53.1 97.0 5148.6

1.05 0.925 76.0 86.4 6562.9
1.1 0.95 85.0 78.2 6644.0

F. Dynamic Voltage Scaling
Voltage scaling is a common mechanism to trade off per-

formance against power. Table II shows the results of training

FTL115 at 0.9V . The FTL was programmed with the resulting

set of flash threshold voltages, and then operated over the

voltage range [0.8V, 1.1V]. To ensure proper operation across

all voltages, the gate voltages of the flash transistors were

also scaled in this experiment. This result demonstrates how a

single VT assignment can be used for dynamic voltage scaling.

Note that the delay varies by 2.5X, power varies by 5.9X and

the PDP (energy) varies by 2.3X, as the supply voltage varies

over [0.8V, 1.1V]. This shows that the FTL cells offer a healthy

power, delay, and energy tradeoff by voltage scaling.

G. Post-fabrication Timing Correction
The experiments described in Sections V-D, V-E and V-F all

point to the flexibility of FTL due to its unique characteristic

of allowing for programming of the flash transistor threshold

voltages after fabrication. It should come as no surprise then

that this can also be used to correct timing errors.can also be used to correct timing errors.

Fig. 11: Datapath to demonstrate post-fab timing corrections

Fig. 12: Correcting setup time violation with an FTL cell after
fabrication. C2Q of FTL cell reduced from 180 ps to 142 ps.

Fig. 13: Correcting hold time violation with an FTL cell after
fabrication. C2Q of FTL cell increased from 142 ps to 180 ps.

Figure 11 shows a small datapath that was constructed

to demonstrate how setup time and hold time violations

can be corrected after fabrication in an FTL design. The

556

datapath consists of clock-to-Q (C2Q) delay, combinational

delay (D2D) and DFF specifications for setup (DFF setup)

and hold (DFF hold) times. The clock is skewed by an

appropriate amount Δ, to generate either a setup time or a hold

time violation. The violations are corrected by reprogramming

the FTL cell to produce different C2Q values.

Figure 12 shows how the data launched from FTL X misses

the target clock edge at DFF Y, thereby violating setup time. To

fix the setup time, the C2Q of FTL X is decreased. Similarly,

Figure 13 shows how the data launched at FTL X gets captured

by DFF Y one cycle early, thereby overwriting the old value

at DFF Y. By increasing the C2Q value of the FTL X, the

old value at the input of Y is retained for a longer time,

which satisfies the hold time condition. Since the FTL cells are

programmed post-fabrication, the delay can also be modified

after fabrication. Using the same idea of post-fabrication VT

adjustment, an FTL cell can be reprogrammed to mitigate

delay increases due to aging.

H. Chip-level programming architecture
Although the full architecture for programming the FTL

cells in an ASIC is not presented here, this section describes

the programming architecture in brief. An on-chip decoder

architecture is used to address the flash transistors of the FTL

cells, during programming. The address for the decoder is

sent into the chip using a serial communication protocol along

with a programming clock. The high voltage line needed for

sending programming pulses to flash transistors is generated

and sent into the chip using an off-chip voltage source. The

pin count overhead for programming is low (only 3 pins are

needed). When the address is received, the decoder activates a

specific flash transistor of a specific FTL cell for programming.

VI. RELATED WORK

A. Threshold Logic
The study of threshold functions and the development of

threshold gates date back to the 1960s culminating in the

authoritative book by Muroga [17]. Since then, an extensive

body of theoretical work, new circuit architectures and im-

plementations have been published. References [24] and [25]

provide a detailed survey of work prior to 2003.

One of the earliest reported works that demonstrated the

operation of threshold logic gates using flash transistors was

reported in [26], [27]. It was an analog design of a single

cell to demonstrate proof of concept. The focus has shifted

to exploring the use of emerging devices such as RRAMs,

STT-MTJs, and others, to implement threshold gates [9], [28],

[29]. Several recent works have devised efficient algorithms for

determining weights aimed at robust threshold gates [29], [30].

However until recently, due to the lack of designs tools and

incompatibility with existing design methodologies, threshold

logic remained outside mainstream VLSI design.

Recently, [10] reported an architecture of a threshold gate

and showed how it can be integrated with the standard-

cell ASIC design methodology using commercial tools. In

addition, they reported significant improvements in PPA of

an actual silicon implementation of ASIC with threshold

gates [31]. Their architecture, however, severely limits the

number of threshold functions that can be implemented. This is

because the weight wi associated with input xi is implemented

by using wi transistors each driven by signal xi. Hence, their

circuit has severe fan in limitations. For instance, the design

in [10] can only realize 11 of the 5-input threshold functions,

whereas, as demonstrated here, the FTL-5 cell can realize all

117 functions In addition, representing weights using multiple

transistors significantly reduces the robustness and prevents

it from scaling to lower geometries. Finally, the FTL cell

is programmed after fabrication, preventing copying by a

foundry, and numerous opportunities to correct failures and

tune for high performance and aging effects.

B. Flash Technology
Many research efforts have studied flash devices and their

use in memory. A short list includes [32], [33]. These papers

report details of flash devices and their characterization. How-

ever, they do not describe the use of flash transistors for logic

circuits. A good deal of work in flash has been reported in

the area of architectural techniques to increase flash memory

endurance. Some representative works include wear leveling

techniques, which are used in flash-based memory blocks [34],

to compensate for the fact that flash transistors typically have

a finite (10k - 100k) number of times they can be written [11],

[12]. In traditional flash memory, wear leveling is performed

at the architectural level to spread the wear of the cells.

The authors of [35] present a design flow to implement

flash-based digital circuits at the block level. These efforts

present results for a programmable logic array style cell design

and illustrate its use in a modified standard-cell style VLSI

design flow. In contrast, the work of this paper focuses on

threshold logic and is envisioned for use in a traditional

standard-cell based flow. An FTL cell can replace a D flip-

flop and some or part of its logic cone in any CMOS netlist.

To the best of our knowledge, there has been no work prior

to this paper which describes the synthesis, detailed electrical

characterization of sequential flash-based threshold logic cells.

VII. CONCLUSION

In this paper, we proposed a novel threshold logic cell

(FTL) using flash transistors. A modified perceptron learning

algorithm was also proposed to program the FTL cell. Sub-

stantial area (79.7%), power (61.1%) and performance 42.5%)

improvement of the FTL cells was demonstrated against their

conventional 40nm standard-cell based designs of the same

functions. By adding a capacitor to introduce a handicap in the

FTL cell during simulation, this paper shows that the learning

algorithm counters the effect of the handicap by generating

more robust solutions. Robustness against PVT variations was

demonstrated using 100K Monte Carlo simulations, demon-

strating a 100% yield. We also demonstrated that FTL cells are

amenable to dynamic voltage scaling, and post-silicon tuning

of setup and hold time violations.

557

REFERENCES

[1] M.J. Avedillo and J.M Quintana. A Threshold Logic Synthesis Tool
for RTD Circuits. In Euromicro Symposium on Digital System Design,
DSD ’04, pages 624–627, Washington, DC, USA, 2004. IEEE Computer
Society.

[2] Krzysztof Berezowski and Sarma Vrudhula. Automatic design of binary
multiple-valued logic gates on the rtd series. In Eight Euromicro Conf.
on Digital System Design, Porto, Portugal, Aug. 2005.

[3] P. Gupta and N.K. Jha. An algorithm for nanopipelining of rtd-based
circuits and architectures. Nanotechnology, IEEE Transactions on,
4(2):159–167, March 2005.

[4] R. Zhang, P. Gupta, and N. K. Jha. Synthesis of Majority and
Minority Networks and Its Applications to QCA, TPL and SET Based
Nanotechnologies. International Conference on VLSI Design, 0:229–
234, 2005.

[5] S. Muroga. Threshold Logic and its Applications. 1971.

[6] K. Siu, V. Roychowdhury, and T. Kailath. Discrete Neural Computation:
A Theoretical Foundation. Prentice-Hall, Inc., 1995.

[7] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling. In IEEE DATE, March 2013.

[8] R. Perricone, I. Ahmed, Z. Liang, M. G. Mankalale, X. S. Hu, C. H.
Kim, M. Niemier, S. S. Sapatnekar, and J. Wang. Advanced spintronic
memory and logic for non-volatile processors. In DATE, 2017, March
2017.

[9] J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula. Integration of threshold
logic gates with RRAM devices for energy efficient and robust operation.
In IEEE/ACM NANOARCH, July 2014.

[10] N. Kulkarni, J. Yang, J. S. Seo, and S. Vrudhula. Reducing Power,
Leakage, and Area of Standard-Cell ASICs Using Threshold Logic Flip-
Flops. IEEE TVLSI, 24(9), Sept 2016.

[11] D. Jung et al. A Group-based Wear-leveling Algorithm for Large-
capacity Flash Memory Storage Systems. In ACM CASES, 2007.

[12] S. Boboila and P. Desnoyers. Write Endurance in Flash Drives:
Measurements and Analysis. In ACM FAST, 02 2010.

[13] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 1958.

[14] Y. Beiu, J.M. Quinfana, M.J. Avedilo, and R. Andonie. Differential
Implementations of Threshold Logic Gates. In Proceedings of the IEEE
International Symposium on Signals, Circuits and Systems, 2003.

[15] R. Fowler and L. Nordheim. Electron Emission in Intense Electric
Fields. Proc. Royal Soc. of London. Series A, 119(781), May 1928.

[16] M. Abusultan and S.P. Khatri. Implementing Low Power Digital Circuits
using Flash Devices. In IEEE/ACM ICCD, October 2016.

[17] Saburo Muroga. Threshold Logic and its Applications . Wiley-
Interscience New York, 1971.

[18] https://sites.google.com/view/5-input-threshold-functions/ .

[19] A. Neutzling, J. M. Matos, A. I. Reis, R. P. Ribas, and A. Mishchenko.
Threshold logic synthesis based on cut pruning. In IEEE/ACM ICCAD,
Nov 2015.

[20] Dimitri Kagaris and Spyros Tragoudas. Maximum Weighted Indepen-
dent Sets on Transitive Graphs and Applications. Integr. VLSI J., 27:77–
86, January 1999.

[21] Sandeep Dechu, Manoj Kumar Goparaju, and Spyros Tragoudas. A
metric of tolerance for the manufacturing defects of threshold logic
gates. 21st IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT’06), pages 318–326, October 2006.

[22] Manoj Kumar Goparaju and Spyros Tragoudas. An atpg methodology
using parametric fault model for defects in threshold logic gate networks.
WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS, 5(8):1206–
1211, August 2006.

[23] A. Neutzling, J. M. Matos, A. Mishchenko, A. Reis, and R. P. Ribas.
Effective logic synthesis for threshold logic circuit design. IEEE TCAD,
2018.

[24] V. Beiu. A survey of perceptron circuit complexity results. In IEEE
IJCNN, volume 2, pages 989–994 vol.2, July 2003.

[25] P. Celinski, S. D. Cotofana, J. F. Lopez, S. F. Al-Sarawi, and D. Abbott.
State of the art in CMOS threshold logic VLSI gate implementations
and systems. In IEEE VCAL, April 2003.

[26] V. Bohossian, P. Hasler, and J. Bruck. Programmable neural logic. In
IEEE ISIS, Oct 1997.

[27] E. Rodriguez-Villegas, J. M. Quintana, M. J. Avedillo, and A. Rueda.
High-speed low-power logic gates using floating gates. In IEEE ISCAS,
volume 5, May 2002.

[28] S. Savas, H. Hesham, T. Darwin, and C. Gregory. Reconfigurable
threshold logic gates with nanoscale DG-MOSFETs. Elsevier Solid-
State Electronics, 51(10), 2007.

[29] S. N. Mozaffari and S. Tragoudas. Maximizing the number of threshold
logic functions using resistive memory. IEEE TNANO, 17(5), Sep. 2018.

[30] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis. A Generalized Ap-
proach to Implement Efficient CMOS-Based Threshold Logic Functions.
IEEE TCSI, 65(3), March 2018.

[31] Jinghua Yang, Joseph Davis, Niranjan Kulkarni, Jae sun Seo, and Sarma
Vrudhula. Dynamic and Leakage Power Reduction of ASICs Using
Configurable Threshold Logic Gates. In Proc. IEEE Custom Integrated
Circuits Conf. (CICC), San Jose, CA, Sept. 2015.

[32] H. An, K. Kim, S. Jung, H. Yang, K. Kim, and Y. Song. The threshold
voltage fluctuation of one memory cell for the scaling-down NOR flash.
In IEEE ICNIDC, Sep. 2010.

[33] E. Choi and S. Park. Device considerations for high density and highly
reliable 3D NAND flash cell in near future. In IEEE IEDM, Dec 2012.

[34] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of PCM-based Main
Memory with Start-Gap Wear Leveling. In IEEE/ACM MICRO, Dec
2009.

[35] M. Abusultan and S.P. Khatri. A Flash-based Digital Circuit Design
Flow. In IEEE/ACM ICCAD, Nov 2016.

[36] J. Rajendran, H. Manem, R. Karri, and G. S. Rose. Memristor based
programmable threshold logic array. In 2010 IEEE/ACM International
Symposium on Nanoscale Architectures, June 2010.

[37] G. S. Rose, J. Rajendran, H. Manem, R. Karri, and R. E. Pino.
Leveraging memristive systems in the construction of digital logic
circuits. Proceedings of the IEEE, 100(6):2033–2049, June 2012.

[38] M. Soltiz, D. Kudithipudi, C. Merkel, G. S. Rose, and R. E. Pino.
Memristor-based neural logic blocks for nonlinearly separable functions.
IEEE Transactions on Computers, 62(8):1597–1606, Aug 2013.

[39] M. Soltiz, C. Merkel, D. Kudithipudi, and G. S. Rose. Rram-based
adaptive neural logic block for implementing non-linearly separable
functions in a single layer. In 2012 IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), July 2012.

[40] Georgios Detorakis, Sadique Sheik, Charles Augustine, Somnath Paul,
Bruno U. Pedroni, Nikil D. Dutt, Jeffrey L. Krichmar, Gert Cauwen-
berghs, and Emre Neftci. Neural and synaptic array transceiver: A
brain-inspired computing framework for embedded learning. In Front.
Neurosci., 2017.

[41] M. Uddin and G. Rose. A practical sense amplifier design for memristive
crossbar circuits (puf). 2018.

[42] S. Sayyaparaju, G. Chakma, S. Amer, and G. S. Rose. Circuit techniques
for online learning of memristive synapses in cmos-memristor neuromor-
phic systems. In Proceedings of the on Great Lakes Symposium on VLSI
2017, GLSVLSI ’17, 2017.

[43] X. Yao, J. Harms, A. Lyle, F. Ebrahimi, Y. Zhang, and J. Wang. Magnetic
tunnel junction-based spintronic logic units operated by spin transfer
torque. IEEE Transactions on Nanotechnology, Jan.

[44] S. Patil, A. Lyle, J. Harms, D. J. Lilja, and J. Wang. Spintronic logic
gates for spintronic data using magnetic tunnel junctions. In 2010 IEEE
International Conference on Computer Design, Oct 2010.

558

