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X-2 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

Deterministic forecasts for the next geomagnetic reversal are not feasible
due to large uncertainties in the present-day state of the Earth’s core. A more
practical approach relies on probabilistic assessments using paleomagnetic
observations to characterize the amplitude of fluctuations in the geomagnetic
dipole. We use paleomagnetic observations for the past two million years to
construct a stochastic model for the axial dipole field and apply well-established
methods to evaluate the probability of the next geomagnetic reversal as a
function of time. For a present-day axial dipole moment of 7.6 x 10*2 A
m?, the probability of the dipole entering a reversed state is less than 2% af-
ter 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomag-
netic reversal is not supported by paleomagnetic observations. The current
rate of decline in the dipole moment is unusual, but within the natural vari-

ability predicted by the stochastic model.
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BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL X-3

1. Introduction

The strength of the geomagnetic dipole has been declining since the first direct mea-
surements were made in 1832 [Malin, 1987]. The rate of decline greatly exceeds the rate of
decay by diffusion [Olson, 2002], prompting speculations that the Earth may be entering
the early stage of a geomagnetic reversal [Hulot et al., 2002]. Much of the present-day
decline is attributed to transport of magnetic flux from high latitudes toward the equator
[Finlay et al., 2016]. However, a rearrangement of magnetic flux exclusively at the core-
mantle boundary is probably insufficient to produce a reversal because the axial dipole
outside the core reflects the volume-averaged axial magnetic field in the core [Davidson,
2001, p. 173]. On the other hand, a synchronous reorganization of the internal magnetic
field cannot be ruled out [Metman et al., 2018]. We currently lack sufficient information
about the internal configuration of the core to make reliable forecasts using numerical geo-
dynamo models [Kuang et al., 2009; Aubert and Fournier, 2011; Aubert, 2014]. Forecasts
are also affected by fundamental limitations in the predictability of complex dynamical
systems [e.g. Hulot et al., 2010].

Paleomagnetic observations offer an alternative way to address the question of the next
geomagnetic reversal because records of past behavior can serve as a basis for making infer-
ences about the future. In particular, Constable and Korte [2006] found several intervals
in the last 7 kyr with rates of dipole decline comparable to the present-day observations.
None of these intervals of rapid decline led to a reversal, suggesting that the present trend
is simply part of the natural variability of the geomagnetic field. A different approach

was taken by Morzfeld et al. [2017], who assimilated paleomagnetic data into several low-
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X-4 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

degree dynamical models. They demonstrated skill in forecasting reversals 4 kyr into the
future and concluded that a reversal in the next few kyr was unlikely. Extending these
predictions in time was limited by the use of dynamical models in which one or more of
the state variables were not directly constrained by observations. Uncertainties in the
unobserved states were found to adversely affect the reliability of the predictions. In this
study we extend the time frame for predictions by using several compilations of paleo-
magnetic observations to construct a stochastic model for fluctuations in the dipole field.
Once the stochastic model is established, well-known methods offer a rigorous assessment
of the reversal probability for arbitrary times into the future. It is important to point out
that these predictions are inherently statistical in that we cannot forecast the outcome
of a single realization. Instead, we predict the probability of ending up with a magnetic
field in the opposite polarity after a specified period time.

Our predictions are contingent on the choice of stochastic model. This dependence
might be perceived as a drawback, but an advantage of the approach is that the basic
form of the stochastic model is largely determined by paleomagnetic observations [e.g. Buf-
fett et al., 2013; Meduri and Wicht, 2016]. More importantly, it is possible to incorporate
different types of observations into these models to improve the statistical description of
dipole fluctuations, including properties like the mean rate of geomagnetic reversals [Gee
and Kent, 2015]. This means that stochastic models offer an extendable strategy for com-
bining diverse observations into a single quantitative framework for making probabilistic

assessments of the field behavior.
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Our assessment of the reversal probability should be interpreted as the average or ex-
pected number of realizations that enter the reversed state after a specified time, although
we do not explicitly restore to realizations to assess this probability. Instead, the prob-
lem is formulated in terms of the adjoint to the Fokker-Planck equation, which is some-
times called the backward Fokker-Planck equation. Numerical solutions of the backward
Fokker-Planck equation yield simple and direct estimates for the probability of reversal.
We proceed with a brief description of the stochastic model used in this study and outline
the formulation of the backward Fokker-Planck equation. Quantitative estimates for the

probability of reversal are given for the next few tens of thousands of years.

2. Stochastic Model for the Dipole Moment
Time variations in the axial dipole moment, x(t), are governed by a stochastic differen-

tial equation [e.g. Van Kampen, 2007]

X — v(@) + /D) () (1)

where the drift term, v(z), describes the deterministic evolution of the dipole moment and
the noise term, D(z), defines the amplitude of random variations. The time dependence
of the random process, I'(t), is represented by uncorrelated Gaussian noise. The time

average of I'(t) vanishes
<I'(t) >=0 (2)
and the autocorrelation function is defined by a delta function
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X-6 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

where the factor of two is a common convention. The idealization of the autocorrelation in
terms of a delta function is intended to approximate a noise source with a short correlation
time relative to the sampling of z(¢). Figure 1 shows estimates for the drift and noise
terms recovered by Buffett and Puranum [2017] from stacks of relative paleointensity
measurements from the past two million years [Ziegler et al., 2011], supplemented with
higher resolution measurements from the past 10 kyr [Constable et al., 2016]. The noise
term is approximated as a constant, while the drift term is defined by the extended model
in equation (26) of Buffett and Puranum [2017]

The random component of the stochastic model in (1) introduces uncertainty into z(t)
as the solution evolves forward in time. The probability of z(¢) is commonly specified
in terms of a transitional probability, p(z,t|z’,t’), which describes the probability of the
dipole moment evolving from z’" at some initial time ¢’ to x at some later time ¢ > ¢'. When
the initial state is also uncertain (denoted by p(a’,t') ), the probability of the subsequent

state is

plat) = [ platla, (', ¥) da', (4)

where we follow the usual custom of using p(z,t) to define the probability density of x at
time ¢. When the initial state is known (e.g. p(z’,t') = §(2’ — ) ), the probability of x(t)

is given by

(e, t) = / plz, b, |2, 8)8(x — mo)de’ = p(z, t|zo, ). (5)

In other words, the probability of the later state is equivalent to the transitional probability

for a known initial state.
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BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL X-7

Both the transitional probability p(z,t|2’,t") and the more general expression for p(x,t)

from (4) evolve with time according to the Fokker-Planck equation [Risken, 1989]

dp
where
0 0?
L= (—axv(x) + 8m2D(x>> : (7)

Here the drift and noise terms are assumed to be independent of time, although this
restriction is not essential. In many situations the Fokker-Planck equation provides a
powerful tool for evaluating the probability of a stochastic process. We adopt this general
approach here, although similar information can also be inferred from a large number
of realizations of the stochastic model. We might use these realizations to evaluate the
mean or variance at some later time. Both of these approaches are commonly used to
characterize the statistics of the later state, given a description of the initial state.

The problem of determining the likelihood of a future polarity reversal is different
because we know the end state (e.g. the dipole moment has reversed) and we seek to
determine the probability of that event given a particular starting condition. For present
purposes we denote the reversed state by z(¢) < 0 and refer to this subset of states as
the target set. The machinery needed to estimate probability of entering the target set
is based on the adjoint equation to the Fokker-Planck equation, which is often called the

backward Fokker-Planck equation [Gardiner, 2002].
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3. Application of the Adjoint Equation

The adjoint equation is used to quantify the probability of z(¢) being in the target set
(e.g. < 0), subject to the condition that the dipole moment starts in a prescribed initial
state 2’ at time ¢'. We define a function, f(z), to specify whether x(¢) is in the target set.
We let f(x) =1 when x < 0 and set f(x) = 0 otherwise. The probability that x(¢) ends

in the target state at time ¢ is given by

1) = [ f@pla, ) da, (8)

which is equivalent to the expected value of f(x) once x(t) is evolved from the initial state
x" at t'. Any given realization for x(t) will give either 0 or 1 for the value of f(z), but the
average (or expected) value defines the probability. The future time ¢ of the reversed state
is specified, so the probability u depends solely on ' and #’. An equivalent estimate of
the expected value could also be obtained from realizations of the stochastic model: each
realization is started at the initial condition z(#') = 2’ and the mean value of f(z) would
be computed from the ensemble of solutions at t. When ' — ¢ and p(x, t|2',t') — §(x—2')

in (8), we find that

u(e',t) = f(2) (9)

o which serves as an initial condition when the evolution of u(z’, ") is integrated backward
« in time from ¢’ = ¢, the final state of the system.

The time derivative of u(a’,t") for backward integration is defined by

a““/ = — [ () s pla .12 ) d (10)
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BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL X-9

where the change in the transition probability is taken with respect to the initial time
t" rather than the final time ¢ (compare with the Fokker-Planck equation in (6)). The
required derivative of the transition probability is defined by the backward Fokker-Planck

equation [Gardiner, 2002]

op(z, t|z',t')

— 1oyl
o L'p(x, tl2",t) (11)

where

L= (v(a:’);i/ + D(z) 8?;2) (12)

is the adjoint operator of £ in (7), subject to the condition p — 0 as # — +o00. Substi-

tuting (11) into (10) and interchanging the order of differentiation and integration gives
8 t’
U@ ET/f e, b, ) de = Llu(e,t'). (13)

We use (13) to integrate wu(z’,t) backward in time using (9) as an initial condition.

Reflecting boundary conditions

ou

D(xl)% =

(14)

are adopted at the upper and lower limits of the domain in 2’. If we view the calculation
as the outcome of an infinite number of realizations then the boundary condition are
equivalent to ensuring that no realizations leave the domain. We also adopt a sufficiently
broad domain (|z| < 12 x 10?2 Am?) so that the probability of reaching the upper or lower
limits is effectively zero. Additional calculations confirm that an increase the size of the
domain does not change the result. In summary, numerical solutions of (13) are used to
predict the probability of a reversed field at ¢, given the magnitude and sign of the dipole

field at t'.
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X-10 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

4. Probability of the Next Polarity Reversal

Figure 2 shows solutions for u(2’,t') at two time differences 7 = ¢ — ¢’ = 10 kyr and
20 kyr. When the initial state, 2/, is already inside the target set, it is quite likely that
the dipole remains in the reversed state at 10 kyr and 20 kyr. There is a much smaller
probability for a field with a positive initial polarity to reverse after 10 or 20 kyr. The
details depend on the amplitude of the dipole at ¢’, and there is a general trend for u(z’,t’)
to decrease at larger values for the initial field. For the present-day axial dipole moment,
¥ = 7.6 x 10*> A m? [Gillet et al., 2013], a reversal is expected to occur after 20 kyr
with a probability of 0.019. Longer integrations of u(x’,t’) for larger time differences 7
eventually yield a constant probability of 0.5 for all values of z’. This is expected as the
probability of finding the field in the reversed state at some distant time in the future is
50%, independent of the initial amplitude of the dipole moment, subject to the assumption
that the field spends equal time in both polarities. (This assumption is implicit in the
construction of the stochastic model because the drift term is required to be an odd
function of z.)

Shorter time integrations offer more meaningful insights. Figure 3 shows a prediction
for the probability of reversal as a function of the time difference 7 when 2’ = 7.6 x 10?2 A
m?. Initially, the chance of reversal is very low because the noise term is unable to drive
the dipole moment into the opposite polarity over a few thousand years. The root-mean-

square change in the dipole moment due solely to noise is

< A2? >'2=/2DAt. (15)
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BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL X-11

The expected change (or standard deviation) after 20 kyr is roughly 3.7 x 10?2 A m? using
D = 340 x 10" A% m* Myr~! [Buffett and Puranum, 2017]. This change in x(t) is less than
half the distance to the origin « = 0, so the noise term is not expected to drive the solution
to the point of reversal after 20 kyr. Larger changes are possible, but these are less likely.
For example, the change in dipole moment required to reach the onset of reversal (x = 0)
is slightly in excess of two standard deviations. Consequently, we require an unusual
sequence of events to move the present-day dipole moment to zero. A steady increase in
probability u(x’,t) occurs once 7 exceeds 15 kyr, although the predicted probability only
reaches 11% after 50 kyr. Thus the prospects of an imminent geomagnetic reversal is low

given the paleomagnetic record from PADM2M and CALS10k.2.

5. Discussion

The stochastic model offers a useful perspective for interpreting the recent historical
decline in the dipole field. Over a 150-year interval between 1860 and 2010 the dipole
moment has decreased by Az = 0.68 x 10*> A m? [Gillet et al., 2013], compared with the
standard deviation < Az? >/2= 0.32 x 10> A m? from (15). Consequently, the observed
change exceeds the standard deviation by a factor of 2.13, corresponding to a probability
of 1.7% for Gaussian distributed noise. While the recent historical decline is unusual, it
is within the allowable variation of the model. Extending the current linear trend over
the next 1700 years would bring the dipole moment to zero (i.e. Az = 7.6 x 10 A m?),
whereas the standard deviation for this time interval is only < Az? >2= 1.08 x 10%?

A m?. Changing x(t) by seven times the standard deviation is highly unlikely, and this

assessment is overly optimistic. A full description of the dipole evolution includes the drift
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X-12 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

term, which is positive once z(t) drops below the time-averaged dipole (< z >= 5.3 x 10?2
A m?). A positive drift opposes the steady decline and makes the prospect of a reversal in
the next 1700 years even more unlikely. By comparison, the drift would contribute to the
recent historical trend because we expect a negative drift with the current dipole moment
(see Fig. 1).

Another point of reference for appraising our prediction is obtained by assuming that
reversals obey a Poisson process [Coz, 1969]. Such a process lacks memory, so the cumu-
lative probability of a reversal within a specified time interval, At, is independent of the
prior history. Instead, the probability is specified by the mean reversal rate, which is ap-
proximately r = 4.4 Myr~! over the past 5 Myr [Ogg, 2012]. The cumulative probability

of a reversal occurring within the time interval At is given by
Pt <At)=1—¢ "8 (16)

which yields P = 0.084 for At = 20 kyr. By comparison, the prediction from our stochastic
model (P = 0.019) is much lower because the noise term limits the rate at which the dipole
approaches a reversed state. Extending the time interval to At = 50 kyr, increases the
reversal probability for the Poisson process to 0.197. A similar increase in probability
(P = 0.11) is predicted using the stochastic model. These two estimates have been
brought into slightly closer agreement, which can be interpreted as greater agreement in
the underlying assumptions. A larger value for At lowers the dependence of the stochastic
model on initial conditions, which makes the statistical description more like a process

with no memory. However, our predictions over the next 10? years are still strongly
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BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL X-13

dependent on the initial state. On the other hand, there is no dependence on the current
rate of change in the dipole.

Strictly speaking, the cumulative probability for a Poisson process differs conceptually
from the prediction of the backwards Fokker-Planck equation. In former case we predict
the probability of a chron duration and in the latter we predict the probability of ending
up in the reversed state. For very large At the Poisson process predicts P — 1, whereas
the probability of being in the reversed state is P — 0.5. In principle, a realization can
enter the reversed state and subsequently revert back to the normal state by the end of
the prescribed time interval. Such a path would be recorded as a realization in the normal
state (e.g. not in the target set). However, the probability of this event is greatly reduced
at short At because the actual reversal would need to occur within a shorter time frame.
As long as the probability of this earlier event is low, it should not affect our interpretion

reversal probabilities.

6. Concluding Remarks

Quantitative predictions for the probability of reversal are dependent on the underlying
stochastic model. The stochastic model used here is constructed from two compilations
of paleomagnetic measurements. The noise term is inferred from the high-resolution
CALS10k.2 model [Constable et al., 2016], and the drift term is recovered from the longer
PADM2M model [Ziegler et al., 2011]. It is encouraging that our stochastic model also
gives reasonable predictions for the mean reversal rate (r = 4.2 Myr—'), as well as the
duration of polarity transitions [Buffett and Puranum, 2017], even though this information

was not used in constructing the model. This consistency lends support to the model.
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X-14 BUFFETT AND DAVIS: NEXT GEOMAGNETIC REVERSAL

On the other hand, the model is not capable of reproducing systematic features prior
to a reversal [e.g Valet et al., 2012] because the evolution of the dipole into a reversal is
driven by random noise. Extensions of the model are required to account for any recurrent
behavior prior to a reversal. Other sources of information could also be incorporated into
the model to improve the predictions. A notable example is the evidence for asymmetry
in the growth and decay of the geomagnetic dipole [Avery et al., 2017], which could
be related to the shape of the drift term. In summary, the stochastic model provides
a framework for combining a variety of paleomagnetic observations into a quantitative
statistical description of the field behavior. Current estimates of the stochastic model

suggest that the next geomagnetic reversal is improbable in the next 10 to 20 kyr.
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Figure 1. Drift, v(x), and noise, D(x), terms recovered from paleomagnetic observations (see

text). The units of v(z) and D(z) are 1022 Am?Myr~! and 10* A?m*Myr~?, respectively.
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Figure 2. Reversal probability, u(2’,t'), as a function of 2’ for two different values of the time
difference 7 = t — /. The probability of moving from positive ' to the reversed state z < 0

increases with larger time differences.
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Figure 3. Reversal probability as a function of time difference 7 =t — ¢ for an initial dipole
moment of 2’ = 7.6 x 10?2 A m?. The time difference can be interpreted as the time to the next
reversal from the present-day state. The predicted probability is low during the first 10 kyr, but

increases linearly with 7 after 15 kyr and reaches 11% after 50 kyr.
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