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Deterministic forecasts for the next geomagnetic reversal are not feasible3

due to large uncertainties in the present-day state of the Earth’s core. A more4

practical approach relies on probabilistic assessments using paleomagnetic5

observations to characterize the amplitude of fluctuations in the geomagnetic6

dipole. We use paleomagnetic observations for the past two million years to7

construct a stochastic model for the axial dipole field and apply well-established8

methods to evaluate the probability of the next geomagnetic reversal as a9

function of time. For a present-day axial dipole moment of 7.6 × 1022 A10

m2, the probability of the dipole entering a reversed state is less than 2% af-11

ter 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomag-12

netic reversal is not supported by paleomagnetic observations. The current13

rate of decline in the dipole moment is unusual, but within the natural vari-14

ability predicted by the stochastic model.15
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1. Introduction

The strength of the geomagnetic dipole has been declining since the first direct mea-16

surements were made in 1832 [Malin, 1987]. The rate of decline greatly exceeds the rate of17

decay by diffusion [Olson, 2002], prompting speculations that the Earth may be entering18

the early stage of a geomagnetic reversal [Hulot et al., 2002]. Much of the present-day19

decline is attributed to transport of magnetic flux from high latitudes toward the equator20

[Finlay et al., 2016]. However, a rearrangement of magnetic flux exclusively at the core-21

mantle boundary is probably insufficient to produce a reversal because the axial dipole22

outside the core reflects the volume-averaged axial magnetic field in the core [Davidson,23

2001, p. 173]. On the other hand, a synchronous reorganization of the internal magnetic24

field cannot be ruled out [Metman et al., 2018]. We currently lack sufficient information25

about the internal configuration of the core to make reliable forecasts using numerical geo-26

dynamo models [Kuang et al., 2009; Aubert and Fournier , 2011; Aubert , 2014]. Forecasts27

are also affected by fundamental limitations in the predictability of complex dynamical28

systems [e.g. Hulot et al., 2010].29

Paleomagnetic observations offer an alternative way to address the question of the next30

geomagnetic reversal because records of past behavior can serve as a basis for making infer-31

ences about the future. In particular, Constable and Korte [2006] found several intervals32

in the last 7 kyr with rates of dipole decline comparable to the present-day observations.33

None of these intervals of rapid decline led to a reversal, suggesting that the present trend34

is simply part of the natural variability of the geomagnetic field. A different approach35

was taken by Morzfeld et al. [2017], who assimilated paleomagnetic data into several low-36
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degree dynamical models. They demonstrated skill in forecasting reversals 4 kyr into the37

future and concluded that a reversal in the next few kyr was unlikely. Extending these38

predictions in time was limited by the use of dynamical models in which one or more of39

the state variables were not directly constrained by observations. Uncertainties in the40

unobserved states were found to adversely affect the reliability of the predictions. In this41

study we extend the time frame for predictions by using several compilations of paleo-42

magnetic observations to construct a stochastic model for fluctuations in the dipole field.43

Once the stochastic model is established, well-known methods offer a rigorous assessment44

of the reversal probability for arbitrary times into the future. It is important to point out45

that these predictions are inherently statistical in that we cannot forecast the outcome46

of a single realization. Instead, we predict the probability of ending up with a magnetic47

field in the opposite polarity after a specified period time.48

Our predictions are contingent on the choice of stochastic model. This dependence49

might be perceived as a drawback, but an advantage of the approach is that the basic50

form of the stochastic model is largely determined by paleomagnetic observations [e.g. Buf-51

fett et al., 2013; Meduri and Wicht , 2016]. More importantly, it is possible to incorporate52

different types of observations into these models to improve the statistical description of53

dipole fluctuations, including properties like the mean rate of geomagnetic reversals [Gee54

and Kent , 2015]. This means that stochastic models offer an extendable strategy for com-55

bining diverse observations into a single quantitative framework for making probabilistic56

assessments of the field behavior.57
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Our assessment of the reversal probability should be interpreted as the average or ex-58

pected number of realizations that enter the reversed state after a specified time, although59

we do not explicitly restore to realizations to assess this probability. Instead, the prob-60

lem is formulated in terms of the adjoint to the Fokker-Planck equation, which is some-61

times called the backward Fokker-Planck equation. Numerical solutions of the backward62

Fokker-Planck equation yield simple and direct estimates for the probability of reversal.63

We proceed with a brief description of the stochastic model used in this study and outline64

the formulation of the backward Fokker-Planck equation. Quantitative estimates for the65

probability of reversal are given for the next few tens of thousands of years.66

2. Stochastic Model for the Dipole Moment

Time variations in the axial dipole moment, x(t), are governed by a stochastic differen-

tial equation [e.g. Van Kampen, 2007]

dx

dt
= v(x) +

√
D(x) Γ(t) (1)

where the drift term, v(x), describes the deterministic evolution of the dipole moment and

the noise term, D(x), defines the amplitude of random variations. The time dependence

of the random process, Γ(t), is represented by uncorrelated Gaussian noise. The time

average of Γ(t) vanishes

< Γ(t) >= 0 (2)

and the autocorrelation function is defined by a delta function

< Γ(t1)Γ(t2) >= 2δ(t1 − t2) , (3)
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where the factor of two is a common convention. The idealization of the autocorrelation in67

terms of a delta function is intended to approximate a noise source with a short correlation68

time relative to the sampling of x(t). Figure 1 shows estimates for the drift and noise69

terms recovered by Buffett and Puranum [2017] from stacks of relative paleointensity70

measurements from the past two million years [Ziegler et al., 2011], supplemented with71

higher resolution measurements from the past 10 kyr [Constable et al., 2016]. The noise72

term is approximated as a constant, while the drift term is defined by the extended model73

in equation (26) of Buffett and Puranum [2017]74

The random component of the stochastic model in (1) introduces uncertainty into x(t)

as the solution evolves forward in time. The probability of x(t) is commonly specified

in terms of a transitional probability, p(x, t|x′, t′), which describes the probability of the

dipole moment evolving from x′ at some initial time t′ to x at some later time t > t′. When

the initial state is also uncertain (denoted by p(x′, t′) ), the probability of the subsequent

state is

p(x, t) =
∫
p(x, t|x′, t′)p(x′, t′) dx′ , (4)

where we follow the usual custom of using p(x, t) to define the probability density of x at

time t. When the initial state is known (e.g. p(x′, t′) = δ(x′−x0) ), the probability of x(t)

is given by

p(x, t) =
∫
p(x, t, |x′, t′)δ(x′ − x0)dx′ = p(x, t|x0, t

′) . (5)

In other words, the probability of the later state is equivalent to the transitional probability75

for a known initial state.76
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Both the transitional probability p(x, t|x′, t′) and the more general expression for p(x, t)

from (4) evolve with time according to the Fokker-Planck equation [Risken, 1989]

∂p

∂t
= L p , (6)

where

L =

(
− ∂

∂x
v(x) +

∂2

∂x2
D(x)

)
. (7)

Here the drift and noise terms are assumed to be independent of time, although this77

restriction is not essential. In many situations the Fokker-Planck equation provides a78

powerful tool for evaluating the probability of a stochastic process. We adopt this general79

approach here, although similar information can also be inferred from a large number80

of realizations of the stochastic model. We might use these realizations to evaluate the81

mean or variance at some later time. Both of these approaches are commonly used to82

characterize the statistics of the later state, given a description of the initial state.83

The problem of determining the likelihood of a future polarity reversal is different84

because we know the end state (e.g. the dipole moment has reversed) and we seek to85

determine the probability of that event given a particular starting condition. For present86

purposes we denote the reversed state by x(t) < 0 and refer to this subset of states as87

the target set. The machinery needed to estimate probability of entering the target set88

is based on the adjoint equation to the Fokker-Planck equation, which is often called the89

backward Fokker-Planck equation [Gardiner , 2002].90
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3. Application of the Adjoint Equation

The adjoint equation is used to quantify the probability of x(t) being in the target set

(e.g. x < 0), subject to the condition that the dipole moment starts in a prescribed initial

state x′ at time t′. We define a function, f(x), to specify whether x(t) is in the target set.

We let f(x) = 1 when x < 0 and set f(x) = 0 otherwise. The probability that x(t) ends

in the target state at time t is given by

u(x′, t′) =
∫
f(x)p(x, t|x′, t′) dx , (8)

which is equivalent to the expected value of f(x) once x(t) is evolved from the initial state

x′ at t′. Any given realization for x(t) will give either 0 or 1 for the value of f(x), but the

average (or expected) value defines the probability. The future time t of the reversed state

is specified, so the probability u depends solely on x′ and t′. An equivalent estimate of

the expected value could also be obtained from realizations of the stochastic model: each

realization is started at the initial condition x(t′) = x′ and the mean value of f(x) would

be computed from the ensemble of solutions at t. When t′ → t and p(x, t|x′, t′)→ δ(x−x′)

in (8), we find that

u(x′, t) = f(x′) (9)

which serves as an initial condition when the evolution of u(x′, t′) is integrated backward91

in time from t′ = t, the final state of the system.92

The time derivative of u(x′, t′) for backward integration is defined by

−∂u(x′, t′)

∂t′
= −

∫
f(x)

∂

∂t′
p(x, t, |x′, t′) dx (10)
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where the change in the transition probability is taken with respect to the initial time

t′ rather than the final time t (compare with the Fokker-Planck equation in (6)). The

required derivative of the transition probability is defined by the backward Fokker-Planck

equation [Gardiner , 2002]

−∂p(x, t|x
′, t′)

∂t′
= L†p(x, t|x′, t′) (11)

where

L† =

(
v(x′)

∂

∂x′
+D(x′)

∂2

∂x′2

)
(12)

is the adjoint operator of L in (7), subject to the condition p → 0 as x → ±∞. Substi-

tuting (11) into (10) and interchanging the order of differentiation and integration gives

−∂u(x′, t′)

∂t′
= L†

∫
f(x)p(x, t|x′, t′) dx = L†u(x′, t′) . (13)

We use (13) to integrate u(x′, t′) backward in time using (9) as an initial condition.

Reflecting boundary conditions

D(x′)
∂u

∂x′
= 0 (14)

are adopted at the upper and lower limits of the domain in x′. If we view the calculation93

as the outcome of an infinite number of realizations then the boundary condition are94

equivalent to ensuring that no realizations leave the domain. We also adopt a sufficiently95

broad domain (|x| < 12×1022 Am2) so that the probability of reaching the upper or lower96

limits is effectively zero. Additional calculations confirm that an increase the size of the97

domain does not change the result. In summary, numerical solutions of (13) are used to98

predict the probability of a reversed field at t, given the magnitude and sign of the dipole99

field at t′.100
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4. Probability of the Next Polarity Reversal

Figure 2 shows solutions for u(x′, t′) at two time differences τ = t − t′ = 10 kyr and101

20 kyr. When the initial state, x′, is already inside the target set, it is quite likely that102

the dipole remains in the reversed state at 10 kyr and 20 kyr. There is a much smaller103

probability for a field with a positive initial polarity to reverse after 10 or 20 kyr. The104

details depend on the amplitude of the dipole at t′, and there is a general trend for u(x′, t′)105

to decrease at larger values for the initial field. For the present-day axial dipole moment,106

x′ = 7.6 × 1022 A m2 [Gillet et al., 2013], a reversal is expected to occur after 20 kyr107

with a probability of 0.019. Longer integrations of u(x′, t′) for larger time differences τ108

eventually yield a constant probability of 0.5 for all values of x′. This is expected as the109

probability of finding the field in the reversed state at some distant time in the future is110

50%, independent of the initial amplitude of the dipole moment, subject to the assumption111

that the field spends equal time in both polarities. (This assumption is implicit in the112

construction of the stochastic model because the drift term is required to be an odd113

function of x.)114

Shorter time integrations offer more meaningful insights. Figure 3 shows a prediction

for the probability of reversal as a function of the time difference τ when x′ = 7.6×1022 A

m2. Initially, the chance of reversal is very low because the noise term is unable to drive

the dipole moment into the opposite polarity over a few thousand years. The root-mean-

square change in the dipole moment due solely to noise is

< ∆x2 >1/2=
√

2D∆t . (15)
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The expected change (or standard deviation) after 20 kyr is roughly 3.7×1022 A m2 using115

D = 340×1044 A2 m4 Myr−1 [Buffett and Puranum, 2017]. This change in x(t) is less than116

half the distance to the origin x = 0, so the noise term is not expected to drive the solution117

to the point of reversal after 20 kyr. Larger changes are possible, but these are less likely.118

For example, the change in dipole moment required to reach the onset of reversal (x = 0)119

is slightly in excess of two standard deviations. Consequently, we require an unusual120

sequence of events to move the present-day dipole moment to zero. A steady increase in121

probability u(x′, t′) occurs once τ exceeds 15 kyr, although the predicted probability only122

reaches 11% after 50 kyr. Thus the prospects of an imminent geomagnetic reversal is low123

given the paleomagnetic record from PADM2M and CALS10k.2.124

5. Discussion

The stochastic model offers a useful perspective for interpreting the recent historical125

decline in the dipole field. Over a 150-year interval between 1860 and 2010 the dipole126

moment has decreased by ∆x = 0.68× 1022 A m2 [Gillet et al., 2013], compared with the127

standard deviation < ∆x2 >1/2= 0.32× 1022 A m2 from (15). Consequently, the observed128

change exceeds the standard deviation by a factor of 2.13, corresponding to a probability129

of 1.7% for Gaussian distributed noise. While the recent historical decline is unusual, it130

is within the allowable variation of the model. Extending the current linear trend over131

the next 1700 years would bring the dipole moment to zero (i.e. ∆x = 7.6× 1022 A m2),132

whereas the standard deviation for this time interval is only < ∆x2 >1/2= 1.08 × 1022
133

A m2. Changing x(t) by seven times the standard deviation is highly unlikely, and this134

assessment is overly optimistic. A full description of the dipole evolution includes the drift135
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term, which is positive once x(t) drops below the time-averaged dipole (< x >= 5.3×1022
136

A m2). A positive drift opposes the steady decline and makes the prospect of a reversal in137

the next 1700 years even more unlikely. By comparison, the drift would contribute to the138

recent historical trend because we expect a negative drift with the current dipole moment139

(see Fig. 1).140

Another point of reference for appraising our prediction is obtained by assuming that

reversals obey a Poisson process [Cox , 1969]. Such a process lacks memory, so the cumu-

lative probability of a reversal within a specified time interval, ∆t, is independent of the

prior history. Instead, the probability is specified by the mean reversal rate, which is ap-

proximately r = 4.4 Myr−1 over the past 5 Myr [Ogg , 2012]. The cumulative probability

of a reversal occurring within the time interval ∆t is given by

P (t < ∆t) = 1− e−r∆t (16)

which yields P = 0.084 for ∆t = 20 kyr. By comparison, the prediction from our stochastic141

model (P = 0.019) is much lower because the noise term limits the rate at which the dipole142

approaches a reversed state. Extending the time interval to ∆t = 50 kyr, increases the143

reversal probability for the Poisson process to 0.197. A similar increase in probability144

(P = 0.11) is predicted using the stochastic model. These two estimates have been145

brought into slightly closer agreement, which can be interpreted as greater agreement in146

the underlying assumptions. A larger value for ∆t lowers the dependence of the stochastic147

model on initial conditions, which makes the statistical description more like a process148

with no memory. However, our predictions over the next 104 years are still strongly149
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dependent on the initial state. On the other hand, there is no dependence on the current150

rate of change in the dipole.151

Strictly speaking, the cumulative probability for a Poisson process differs conceptually152

from the prediction of the backwards Fokker-Planck equation. In former case we predict153

the probability of a chron duration and in the latter we predict the probability of ending154

up in the reversed state. For very large ∆t the Poisson process predicts P → 1, whereas155

the probability of being in the reversed state is P → 0.5. In principle, a realization can156

enter the reversed state and subsequently revert back to the normal state by the end of157

the prescribed time interval. Such a path would be recorded as a realization in the normal158

state (e.g. not in the target set). However, the probability of this event is greatly reduced159

at short ∆t because the actual reversal would need to occur within a shorter time frame.160

As long as the probability of this earlier event is low, it should not affect our interpretion161

reversal probabilities.162

6. Concluding Remarks

Quantitative predictions for the probability of reversal are dependent on the underlying163

stochastic model. The stochastic model used here is constructed from two compilations164

of paleomagnetic measurements. The noise term is inferred from the high-resolution165

CALS10k.2 model [Constable et al., 2016], and the drift term is recovered from the longer166

PADM2M model [Ziegler et al., 2011]. It is encouraging that our stochastic model also167

gives reasonable predictions for the mean reversal rate (r = 4.2 Myr−1), as well as the168

duration of polarity transitions [Buffett and Puranum, 2017], even though this information169

was not used in constructing the model. This consistency lends support to the model.170
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On the other hand, the model is not capable of reproducing systematic features prior171

to a reversal [e.g Valet et al., 2012] because the evolution of the dipole into a reversal is172

driven by random noise. Extensions of the model are required to account for any recurrent173

behavior prior to a reversal. Other sources of information could also be incorporated into174

the model to improve the predictions. A notable example is the evidence for asymmetry175

in the growth and decay of the geomagnetic dipole [Avery et al., 2017], which could176

be related to the shape of the drift term. In summary, the stochastic model provides177

a framework for combining a variety of paleomagnetic observations into a quantitative178

statistical description of the field behavior. Current estimates of the stochastic model179

suggest that the next geomagnetic reversal is improbable in the next 10 to 20 kyr.180
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Figure 1. Drift, v(x), and noise, D(x), terms recovered from paleomagnetic observations (see

text). The units of v(x) and D(x) are 1022 Am2Myr−1 and 1044 A2m4Myr−1, respectively.
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Figure 2. Reversal probability, u(x′, t′), as a function of x′ for two different values of the time

difference τ = t − t′. The probability of moving from positive x′ to the reversed state x < 0

increases with larger time differences.
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Figure 3. Reversal probability as a function of time difference τ = t − t′ for an initial dipole

moment of x′ = 7.6× 1022 A m2. The time difference can be interpreted as the time to the next

reversal from the present-day state. The predicted probability is low during the first 10 kyr, but

increases linearly with τ after 15 kyr and reaches 11% after 50 kyr.
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