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In this paper, we investigate the utilization of peer-to-peer wireless energy sharing to relieve the users
from the burden of cord-based charging. The devices of users can make use of energy available from
other users’ devices based on their meeting patterns so that the battery level of their devices could be
maintained within an acceptable level without the need of charging it through a cable frequently. We first
use dynamic programming-based optimization to find out the minimum number of cord-based charging
sessions to obtain the highest possible mobile charging relief through collaborative charge sharing among
pairs of nearby user devices. Then, we map our problem to roommate matching problem and find out
the best matching among users that will achieve the highest network-wide relief while satisfying all
users with their assigned partners. With an extensive empirical analysis based on real device charging
patterns and meeting patterns between mobile users, we evaluate the charging relief offered to users in
various scenarios. The results show that users can get up to 13-17% relief from their charging burden

using cooperative energy exchanges without changing their existing usage habits.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The increasing computation and communication capabilities
of mobile devices have provided various advanced applications
facilitating our lives. However, this made people highly dependent
on these devices that run on limited batteries and need to be
charged frequently. In its most common form today, users charge
their mobile devices using cables. However, finding a power outlet
may not be an easy task especially when the users are outside or
in dense indoor areas (e.g., airport) with relatively limited number
of outlets.

With the recent integration of wireless charging [1] capability
into mobile devices, the users are provided with some convenience
for the charging without cables. The user device is charged by
placing it on a charging pad or another item such as a desk [2] or
a cup holder in a car [3]| with integrated wireless power trans-
mitter capability. However, the charging pad or equipment still
needs to be connected to a power source. Recently, this somewhat
limited usage of wireless charging has further been extended with
energy transfer between mobile devices [4-6]. Through bidirec-
tional chargers, mobile devices could exchange energy without the
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need of being connected to an outlet. Such a peer-to-peer (P2P)
energy sharing opportunity brings flexibility to users for finding
power ubiquitously and mitigates the risks of facing an emergency
situation with depleted battery [7-9].

In this paper, we investigate the potential benefit of P2P energy
sharing! between mobile devices on reducing the burden of tradi-
tional cord-based charging process (referred to as wall charging in
the rest of the paper). Depending on the meeting schedules with
other users, a user can make use of excessive energy available
from other users’ devices to skip some of the wall chargings while
still maintaining the device’s charge within an acceptable level.
Similarly, it can share its own energy with others to help them
relieve from the wall charging sessions. Our goal is to maximize
the charging relief of users by letting them skip as many wall
charging sessions as possible through utilization of energy shared
by other users in the vicinity. We aim to discover the potential
benefit of P2P energy sharing on the existing charging habits of
users. Hence, we assume that the charging patterns of user devices

1 While this can be achieved via power sharing cables, a more convenient way
will be through wireless power transfer (see some prototypes [5,6] developed by
research community and a recent smartphone [4] with this capability in the mar-
ket). We do not restrict the proposed solution in this paper to only wireless power
transfer based energy sharing, but we discuss impact of parameters (e.g., transfer
efficiency) associated with wireless power transfer on the performance of the pro-
posed solutions.
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as well as the timing and durations of their meetings with other
users (from which shareable energy amounts could be derived)
are known in advance.

The proposed collaborative charging scheme aims to benefit
from the current charging habits of users. Most of the users charge
their devices opportunistically with short charging sessions and
more frequently than they really need [7,10] to keep their devices
with as much power as possible. Thus, in order to understand to
what extent collaborative charging offers relief (i.e., percentage of
reduction in the number of wall chargings) thanks to the charge
sharing among users, we also find out the optimum relief users
could have obtained with conservative charging without depleting
energy in their devices. In conservative charging, we find out the
minimum number of wall charging sessions that could have been
sufficient to maintain power for a user based on the user’s own
charging pattern. In collaborative charging, however, we allow
both sharing and receiving of energy between users and try to
minimize the total number of wall charging sessions for a pair
of users. We exploit dynamic programming approach to find out
the optimal charging schedules for both cases. Then, in order to
find out the highest network-wide charging relief among users,
we map our problem to roommate matching problem and find
the best matching among users while satisfying them with their
assigned partners.

The preliminary version of this study is published in [11] with
initial algorithms for the skipping of user wall charging sessions.
In this paper, we revise and optimize the dynamic programming
approach as well as study the network-wide mobile charging relief
optimization through assignment of charging partners to users. We
also conduct empirical analysis using several real-world datasets
with user meeting and charging patterns and quantify the potential
charging relief in realistic scenarios.

The rest of the paper is organized as follows. We discuss the
related work in Section 2. In Section 3, we define the problem
together with an analysis towards its solution. In Section 4, we
provide the details of dynamic programming based optimiza-
tion algorithms for both conservative and collaborative charging
schemes. Next, in Section 5, we provide a solution for the
network-wide optimization through mapping it to roommate
matching problem. In Section 6, we provide and discuss both
numerical and empirical results for the proposed solutions. Finally,
we conclude the paper and outline future work in Section 7.

2. Related work

With the recent development in wireless power transfer tech-
nologies, a number of studies have been conducted on how to
utilize this technology to improve the energy management in
mobile networks. Previous work have mainly focused on applying
these technologies to prolong the lifetime of wireless ad hoc and
sensor networks [12-14| having low energy requirements.

Recently, the wireless charging of smartphones have attracted a
lot of interest. In [15], charging of a device while it is in the user’s
pocket is achieved by using magnetic field beamforming. This has
been extended to the charging of multiple devices in the vicinity
of a power hotspot [16]. It has been shown that with increasing
number of devices, the efficiency of wireless charging at distances
can increase. Besides these studies that focus on uni-directional
but long distance charging, there are several recent studies that
look at the P2P energy sharing among smartphones. In [5,6],
some prototypes are developed to realize actual charge sharing.
In [17], authors exploit P2P wireless energy exchange to balance
the energy within a mobile social network and propose various
algorithms to be used in the sharing protocol. In [18], the impact
of P2P energy sharing on network formation and in [19] its benefit
on group based charging has been studied. In [8] and [20] the

pairwise assignment of users for energy exchanges has been
studied. A more general work can be found in [9], in which
authors focus on enhancing the energy usage of wireless networks
with wireless energy sharing to minimize the chances of ending
up with insufficient energy for their consumption. An energy
sharing based content delivery process is also studied in [21].
While these studies provide an idea on the potential benefit of
wireless energy exchange to users, the concept is studied without
an integrated analysis of charging habits of individual user devices
and meeting patterns between the users that can exchange energy.
In this paper, different from previous work, we define the burden
of charging in terms of the number of charging sessions that the
devices stay plugged to the outlet (i.e.,, wall charging) and discuss
the minimization of that number exploiting the energy shared by
other users without changing the charging and movement patterns
of any user. We also provide a satisfactory network-wide solution
for all users by mapping our problem to roommate matching
problem and assign partners to each user while satisfying all users
with their assignments. The notations used throughout the paper
are given in Table 1.

3. Problem statement

In this section, we define the problem and provide the neces-
sary notation towards its solution. A charging pattern of a user de-
vice consists of alternating charging and discharging sessions. Let
8. and &, denote the set of all charging and discharging sessions
for a user, respectively:

8c = {8c(1),6c(2),...,0:(n)}

84 = {84(1),64(2), ..., 84(n)} where,
84().Is = 8:(1).le,Vie {1...n} and
Sc(i+ 1) =684().L,Yie{l...(n-1)}

We define the time from the start of one wall charging to the start
of next one as a charging cycle. Here, each (§.(i), §4(i)) represents a
charging cycle with one charging and one discharging session. The
attributes Is and I, represent the starting and ending charge levels
(integers in [0-100]) for each of these periods.

We consider that when a mobile user meets another mobile
user, they can exchange energy between each other wirelessly.
Recent studies [5,6] have shown that mobile devices could easily
be equipped with necessary hardware and software support to
realize this. We assume that the users know each other and are
interested in sharing their excessive energy with their friends
non-intrusively. That is, they do not want to change their regu-
lar movement patterns and their own usage of the device. The
amount of energy that could be exchanged depends on several fac-
tors including transfer speed, efficiency, duration of their meeting,
maximum shareable energy by the sender without causing it have
less than an acceptable energy level and the available capacity in
the receiver.

The optimization problem is studied for two different cases;
(i) conservative charging, and (ii) cooperative charging. While the
former looks at the problem from only one user’s perspective by
trying to minimize the number of wall charging sessions while
still keeping the device with sufficient power to operate, in the
latter, we consider both receiving and sharing of energy between
the users and aim to optimize the problem jointly from the
perspective of both users. We formulate these problems using
decision points that occur at the beginning of each cycle. Next, we
discuss the details of the problem within each context.

3.1. Conservative charging

In this case, we study the problem from the perspective of a
single user who aims to skip as many wall chargings as possible.
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Table 1
Notation used in the paper.
Notation Description
8¢(i) ith charging session of user.
§q(0) ith discharging session of user.
8A[t) Total energy gained by user A during wall charging in ¢ decision block.
ég‘[t] Total energy lost by user A during discharging in tth decision block.
Sp-B The energy shared from A to B during the tth decision block.
I Starting charging level attribute of a charging or discharging session.
le Ending charging level attribute of a charging or discharging session.
Iimin Minimum acceptable energy level of user devices.
Lini¢ Initial charge level of the user.
X4 Charging decision variable for user A in tth decision block.
D Matrix that stores the number of wall chargings required for each charge level by every decision block.
T Matrix that stores the index of the D matrix from which the corresponding D matrix entry is derived.
up The total unplugged time of user A in tth decision block.
MAE The meeting event between users A and B in tth decision block.
Ts The speed of energy transfer between users.
Te The efficiency of energy transfer.
na Number of charging sessions of user A.
Ra(B) User A’s charging relief from collaborative charging with user B.
J(Ra(u;))  Energy saving with charging skip pattern associated with R4 (u;).
PLIA] Preference list of user A to be matched with other users for collaborative charging.
Decision Points : Two Users
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Fig. 1. Charging patterns and decision points of two users.

Note that in this case user is not sharing energy with others nor
receiving energy from them. This case is studied in order to un-
derstand the potential charging relief users could have obtained by
their own scheduling. Moreover, it also forms the base for the for-
mulation of complicated collaborative charging case.

Fig. 1 shows example charging patterns for two different users
for a certain time frame. Depending on the applications that are
running on the device the discharging rate might vary at different
times. Similarly, depending on the equipment used for charging
or due to the active usage while charging, the charging of the
device could happen at different rates. Note that in some charging
sessions there could be some idle charging duration in which the
device stays plugged after being fully charged (e.g., overnight
charging). While such cases could help increase the charging relief
as the charging amount in the previous skipped sessions could
be compensated during those idle charging times, we do not
consider them in this paper for the sake of brevity. However, all
the formulations could be easily adapted to integrate such cases.
Moreover, It has been shown by several studies conducted with
smartphones [22,23] that the battery voltage and state of charge
(SOC) or battery level has almost a linear relation after the first
few battery levels, thus we assume a linear but potentially with
different rate charging and discharging sessions.

The conservative charging problem here is defined as follows.
Given an existing charging pattern of a user, what is the minimum
number of wall charging instances that would be sufficient for
the user device while keeping the same device functionality and

charging habits? In such scenario, the only way a user may try to
skip some of its wall chargings is purely by benefiting from the
unnecessarily frequent charging in its own charging schedule.

We formulate the problem using decision points that occur at
the beginning of each charging cycle. Decision points divide a given
user charging pattern into blocks of time periods known as deci-
sion blocks. Each block starts with the start of a charging session
for a user and ends with the completion of a discharging session.
In this case, since there is a single user, each decision block cor-
responds to an individual charging cycle of the user. For user A’s
charging pattern shown in Fig. 1, there are six decision blocks with
starting times D = {0,4, 7,10, 12, 15}. Similarly, for user B, there
are five decision blocks with starting times D = {2, 5, 8, 10, 13}.

Assume that there are n decision blocks and let §.[t] and §,4[t]
denote the total energy gained (i.e., §c(t).le — &¢(t).Is) during wall
charging and total energy lost (i.e., §4(t).le — &4(t).Is) during dis-
charging throughout the tth decision block. The objective function
in conservative charging is then formally described as:

min )X (M
t=1

subject to D¢.le = (De.ls + 8c[t]Xe — 84[t]D}, Vt €[1,n] (2)

Dt.le = Iyin, Vt €[1,n] (3)
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Dy.ls = 8:(1) I (4)

Deordls = Dede Ve €1, (n=1)] (5)

where, [, is the minimum acceptable level (e.g., 1%) and X; is
the charging decision variable € {0,1}, with 0 meaning the current
charging session is skipped.

3.2. Cooperative charging

In this case, users are allowed to both send and receive energy
between each other. Therefore, the optimal skipping pattern has to
be determined considering the amount of energy that will be ex-
changed between users. The decision points (i.e., start of charging
cycles) coming from both users will form decision blocks with par-
titioned charging cycles of users. Moreover, some decision points
might divide a charging session of a user into two or more parts.

The set of decision points that come from both users in Fig. 1 is
D = {0, 2, 4, 5, 7, 8, 10, 12, 13, 15}, which is D4UDg. When a
decision point causes a split in the charging session of a user, since
we assume skipping of wall chargings completely (i.e., no partial
skipping allowed), the skip decision made for a portion of a wall
charging inside a decision block should match with the decision
made for the remaining portion of the same wall charging in the
next decision points. In order to reach the optimal skipping solu-
tion that maintains this, for every such decision point, both results
(skipping or not) have to be stored until the split of a charging pe-
riod with decision points is over and only the optimal one should
be picked. The splitting of a charging session can create different
types of decision blocks based on which the solution is modeled:

Full(u): The decision block contains the entire charging ses-
sion of the user u.

First_Split(u): The decision block contains only the begin-
ning portion of the split charging session of the user u.
Mid_Split(u): The decision block contains neither the start
nor the end of the user u’s charging session but has a middle
part.

Last_Split(u): The decision block contains only the ending
portion of the split charging session of the user u.

For example, in Fig. 1, the third decision block (i.e., from time
4 to 5) is First_Split(A) and the next one (i.e., from time 5 to 7)
is Last_Split(A) and Full(B). It is possible that a decision block can
only include discharging session for a user (e.g., user B in third
decision block). Such blocks could be considered for users like a
Full split with no charging. Moreover, some of the combinations
of these block types for a pair of users is not possible. For exam-
ple, while there is a First_Split(A), there cannot be a Mid_Split(B).
The valid combinations have to be carefully analyzed towards the
solution.

Let 54[t] and 84[t] denote the total energy gained by user
A during wall charging and total energy lost by user A during
discharging throughout the t™ decision block. Moreover, let SA~8
denote the energy shared from A to B during the t decision block
and 7¢ denote the efficiency of transfer. The objective function in
cooperative charging is then formally described as:

min zn: (X +xP) (6)
t=1

subject to D{, ;.o = DI + 82[t1X{ — 84[t] + TeSE~A — S48 (7)

DE .l = D.Is + 88[t]XE — 88[t] + TeSp—B — SB~A (8)

DF.le > Lnin, Yt €[1,n],Vk € {A, B} (9)
D¥.I; = 8k(1).I; Vk e {A, B} (10)
D¥, Iy =Df.l. Vt e [1, (n—1)], Vk e {A, B} (11)

where, I, is the minimum acceptable level (e.g., 1%) and X#, and
XB € {0,1} are the charging decision variables for A and B, respec-
tively, with 0 meaning the current charging session is skipped.

4. Dynamic programming based optimization

We use a dynamic programming based approach to find out
the optimal charging pattern in both problems. At each decision
point, the algorithm tries to recursively find the best charging lev-
els that will result in the minimum number of wall chargings for
each user. The solution includes two matrices: D and T. D matrix
stores the integer value that represents the number of wall charg-
ings required for each charge level by every decision block and T
matrix stores the index of the D matrix from which that value is
derived. In the subsequent sections, we provide the details of the
solution for each of these cases.

4.1. Optimization for conservative charging

In this case, a two dimensional D matrix is considered where
the first dimension represents the decision points and the second
dimension represents the charge level for the user of interest. The
algorithm takes the list of wall charging amounts (§.[]), and the
list of discharging amounts (§,4[]) for the user as a parameter. l;;;
is the initial charging level for the given charging pattern. For ex-
ample, for A’s pattern in Fig. 1, Iy is 20%. Values from D[O][lin]
to D[0][0] is initialized to O because it is ensured that each of these
charging levels could be achieved at the beginning without any
wall charging. All other values in D matrix are initialized to some
very high integer value.

Algorithm 1: Conservative charging decision algorithm.

1 Input: §c[]: Charging amounts; 84[]: discharging amounts
2 Output: Number of minimum wall charging sessions for the
user

3 for each decision block D; do

4 for each charging level 0 <1 < 100 do

5 current = D[t][l]

6 for each X; € {0, 1} do

7 Inew = min(100, [ + &c[t]X) - §4[t]
8 if lpew > L then

9 if current+X; < D[t+1][lew] then
10 D[t+1][lnew] = current+X;

n T[t+1][lnew] =1

12 end

13 end

14 end

15 end

16 end

-

7 return min{D[n][!] V] > l,in}

The details of the dynamic programming based solution for the
conservative charging is shown in Algorithm 1. The main principle
on which the algorithm works is, for each charge level (i.e., from
0 to 100) at each decision block (D¢), it finds out what charge
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Fig. 2. Total duration with energy exchange opportunity determined by the inter-
section of user meetings, charging patterns and charging decisions of users.

level could be reached by either decision (skipping (X;=0) or not
(Xt=1)) and updates the number of wall chargings at that level
with the smallest ever seen as long as it is more than the mini-
mum acceptable level and less than 100%. Note that if the smallest
wall charging count is achieved with a skip from previous decision
point, the number of wall chargings from previous decision point is
transferred. On the other hand, if the wall charging in that decision
block is used, the number of wall chargings from previous decision
point is incremented by 1 and used in the update. The same logic
is applied recursively for all charging cycles to find the optimal
skip sequence at the end. The running time of the algorithm is
0(100|D]), while brute force solution has 0(2/Pl) complexity.

Once the algorithm finishes, we apply a general solution read-
out approach to find the actual wall charging sessions used. We
start at the last decision block and get the index with the min-
imum number of charging sessions from D matrix. Each position
in D matrix is associated with its previous cell using T matrix. If
the value in current index of D matrix has increased compared to
its previous value, then the wall charging session at that decision
block is used, otherwise it is skipped.

4.2. Optimization for cooperative charging

In cooperative charging, in order to increase the overall charg-
ing relief for users, they consider exchanging energy between each
other. However, for each energy exchange opportunity within the
decision blocks, the amount of actual energy exchange amounts
should be decided to obtain the optimal charging pattern at the
end. The energy exchange between users can potentially happen
when they actually meet and are not charging. Hence, the amount
of energy that could be shared between these devices will be
determined by their meeting and charging patterns as well as
their charging decisions. In Fig. 2, an example decision block with
a single meeting between two users is illustrated. If both users
decide to skip their charging session in the decision block, the
energy exchange opportunity duration will be equal to the total
meeting duration. However, if one of the users decides to use its
wall charging in that decision block, that portion of their meeting
has to be excluded as we assume it is not practical to exchange
energy for users while being charged.

Let u{‘ denote the total unplugged time of user A in decision
block t € {1, 2, ..., n}. The charging session in a decision block
will always be earlier than the discharging session within the
block by definition of blocks. 2 should be either from the start of

Table 2

(Source, destination) index assignments for D matrix’s fourth di-
mension based on charging decisions of users with different types
of decision blocks.

User A User B

Full/None  First Split ~ Mid-Split  Last Split
Full/None  (0,0) (0, X8) Xt x8)  (X£.0)
First Split (0, X#) N/A N/A (X8, X
Mid-Split (XA, XA) N/A N/A N/A
Last Split ~ (XA,0) (XA, XE)  NJA N/A

charging till the end of discharging or from the start of discharging
till its end depending on the charging decision. More formally:

YA = (841t SA[t1.Le) if XA =1 -
[ (84[t].ts, 84[t].te) otherwise

Here, t; and t. denote the start and end times, respectively.

Let M™B denote the meeting event between users A and B,
Ts denote the speed of wireless energy transfer and 7 denote
the efficiency of transfer. The total amount of energy that can
be exchanged between A and B in decision block ¢, 5{“3, can be
computed by:

&M — TP 4 T5  Tp where, (13)

P = MM up U (14)

Here, If‘B is the intersection of total meeting duration between A
and B and total unplugged times of A and B.

It is also important to remark that & should be considered as
the maximum energy that could be exchanged but the actual en-
ergy exchange between users depends on the current charge level
of each user device. A user device’s charge level cannot exceed
100% and cannot be less than I, by definition. Moreover, note
that in order to reach an optimal solution at the end, the optimal
energy exchange values at each individual decision block could be
less than 8{*’3 even though device capacity restrictions allow it.

In this case, D matrix is defined as a four dimensional matrix.
The first dimension represents the decision points and the second
and third dimensions represent the charge level for each user.
The last dimension is used to keep track of decisions made for
charging sessions split into multiple decision blocks. Due to the
binary decision used for skipping a charging session as a whole,
the charging decision made for all portions of a charging session
at different decision blocks has to match. Consider the example
in Fig. 3. In the first decision block (from t to t+ 1), there is
a First_Split(A) and a Full(B). Thus, updates based on different
charging decisions made for user A on D matrix are written into
different indexes at the fourth dimension. In the second decision
block, as there is a Mid_Split(A), only the updates with consistent
decisions are allowed to be made on D matrix’s corresponding
index at fourth dimension (e.g., there can not be skip (i.e., 0)
after not skipping in previous block). In the next decision block,
there is a Last_Split(A) and a First_Split(B). In this case, optimal
decision for A should be selected and written on the first index
(0) at fourth dimension. However, due to the split of B, the
corresponding fourth dimension index for the updates is found
using the B’s charging decision. In the fourth decision block, as
there is a Last_Split(B) with a Full(A), the final decision for user
B’s charging session is made and written into the first index at
fourth dimension. The fifth block has a Full(A) and a Full(B), thus,
only the first index at fourth dimension is used for the updates.

In Table 2, we provide (source, destination) index assignments
at the fourth dimension of D matrix with different decision block
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Fig. 3. Dynamic programming table cell updates in the fourth dimension on a sample charging pattern of two users with different charging types included in decision

blocks.

type combinations. For example, for the second decision block in
Fig. 3, which has a Mid_Split(A) and a Full(B), if A’s decision is to
skip, source index will be 0 and written to O to keep the consis-
tent decision. Note that some of the combinations are not possible
due to the definition of decision blocks that start with the start of
charging sessions.

The details of the dynamic programming based solution for
cooperative charging is presented in Algorithm 2 . The algorithm
takes the list of all wall charging and discharging events with
amounts, start and end times and finds out the minimum wall
charging sessions needed to keep the both devices always more
than I,;,. The algorithm covers all four possible charging decision
cases for a pair of nodes and finds out the maximum duration that
could be used for energy exchanges. Then, for each possible du-
ration less than this maximum, it finds the corresponding charge
levels that will be reached by each user (lines 10-14). Considering
either direction of energy exchange (i.e., when A sends and B
receives (X, F) or when A receives and B sends ((K, 73))), it then
updates the D matrix values based on previous iteration (lines
15-23). Note that the corresponding (source, destination) index
values at the fourth dimension is determined using the afore-
mentioned principle (line 9). The running time of this algorithm
is 0((100)2|D|(E)), where E is the average shareable energy range.
Brute force solution has 0(4/°!) complexity.

5. Network-wise optimization

The previous section finds out the optimal collaborative charg-
ing decision patterns for a pair of nodes. In a network of smart-
phone users, each user can potentially consider exchanging energy
with all other users. The Algorithm 2 could be extended with ad-
ditional dimensions to find out an optimal solution for every size
of group of users at the expense of increased complexity. On the
other hand, sharing energy with multiple other users may not be
practical and users may have concerns about their privacy. To this
end, in this section, we focus on grouping of users into pairs and
let them exchange energy with only one other user. A centralized
graph based matching solution could provide the highest network-
wide mobile charging relief among users. However, in reality, this
may not address the individual preferences of users and may result
in users not satisfied with their assignments. To address this issue,
we map our problem to stable roommate matching problem (SRP).
The goal is to find a stable matching among a group of users such
that there will not exist a pair of nodes which are not assigned to
each other and both prefer each other to their assigned partners

Algorithm 2: Cooperative charging decision pattern algorithm.

1 Input: 5.[]/84[]: Charging/discharging amounts; M][]: meeting
patterns

2 Output: Number of minimum total charging sessions for both
users.
for each decision block D; do

3

4 (ca, cg) < Decide the charging types for both users

5 for each charging level 0 < 14 < 100 do

6 for each charging level 0 < lg < 100 do

7 for each (X!, XB) case do

8 I{w < Max duration for energy exchange with
(ca, cB)

9 (sc,dt) <« Fourth dimension indexes based on
current case

10 for each 0 < k < 7B do

1 A = min(100, I + SA[LIX;) - K*Ts - 84]¢]

12 B - min(100, I + 85[t]X;) + (K*Ts *Tg) - SdB[t]

3 A = min(100, Iy + SA[E]X:) + (K*Ts* Tg) -

i{?[t]

14 B = min(100, Iz + 8B[t]X;) - kK*7Ts - Sg[t]

15 for each (I, Is) € {(A, B), (A, B)} do

16 if lA > lmin and lB > lmin then

17 new = D[t][l4][Ig][sc]+X? + XB

18 if new < D[t+1][l4][Iz][dt] then

19 D[t+1][l4][I5][dt] = new

20 T[t+1][l14]1[lg] = (la, I, sc, k)

21 end

22 end

23 end

24 end

25 end

26 end

27 end

28 end

o return min{D[n][l4][z1[0]¥la. lg = lnin}

N

under the current matching. Note that this problem is distinct
from the stable-marriage problem as the stable-roommates prob-
lem allows matches between any pair of nodes, not just between
two disjoint classes such as men and women [24].
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To this end, we first run the collaborative charging algorithm
for every pair of nodes in the network. Then, for a given node, say
A, we calculate the relieves obtained from each other user. Let ng
denote the total number of charging sessions of user A. The charg-
ing relief that user A obtains from a collaborative charging, R 4, is
defined as the ratio of skipped charging sessions to the total num-
ber of charging sessions. That is:

oy X

na

Denoting R4 (B) as the user A’s relief from collaborative charging
with the user B, we then form a preference list for user A, PL[A],
in the descending order of obtained relief. In some cases, however,
there may be more than one user that provide the same relief to
the user. To break such tie situations, we use reduction in the en-
ergy amount obtained due to the skipped charging sessions.

PLIA] ={uy,uy, ..., Uy |
Ra(uj) > Ra(ujy1) or
Ra(ui) = Ra(uir1) and J(Ra(u;)) > J(Ra(uiz1))} (16)

Here, J(R4(u;)) represents the energy saving with skipped pattern
associated with R,4(u;). Once each user forms its preference list
as described, we then adapt Irving’s algorithm [25] to find out
a stable matching among users, if it exists. Note that since the
matchings will be mutual, we assume that there are even number
of users in the network.

Algorithm 3  shows the details of the proposed matching
process. For each free user not assigned a partner, the first user
in the preference list is proposed. If the proposed user has not
been matched with any other user yet, it immediately accepts
the proposal and a pending matching is assigned. On the other
hand, if the proposed user has already been matched with some
other user, it checks if the new proposer has better rank in its
preference list than the current matched user. If that is the case,
previous proposer is set free and it is matched with this new
proposer. Otherwise, both users remove each other from their
preference lists mutually. Once a user is assigned a partner, it also
deletes all other users in its preference list with ranking more than
the assigned user. In some rare cases, this process may end up
with some users having still more than 1 users in their preference
lists. In that case, a further elimination is conducted with some
special cycles of users described in lines 25-29. At the end, if each
user has only one other user in their preference lists, the stable
matching is obtained.

na —

Ra = (15)

6. Evaluation

In this section, we first provide results of running conservative
and cooperative charging on an example pattern of two users.
Then, we conduct an empirical analysis using various mobile
datasets with user meeting and charging patterns and find out the
potential charging relief in realistic scenarios.?

6.1. Numerical example

We have used the charging patterns for two users shown in
Fig. 1 and run the optimization algorithms for both cases. Table 3
shows the optimal charging decision results for both cases. In
conservative case, decision blocks consist of charging cycles but in
collaborative charging the number of decision blocks is more than
the actual charging cycles. Thus, in Table 4, we show the actual
decisions made for each decision block in collaborative charging.

2 The Java codes developed to generate the results in this section are
available at https://github.com/aashish33128/Mobile-Charging-Relief/tree/master/
EnergySharing.

Algorithm 3: Collaborative charging partner matching algo-
rithm.

1 Input: a set of users A, and their preference lists PL

2 Output: Matched collaborative charging partner for all, if
exists.

3 [[step 1
for each free user i € [1, N'] as proposer do

4

5 if PL[proposer] is not empty then

6 u <« PL[proposer].first()

7 if u is not proposed earlier then

8 | Match (u, proposer)

9 else

10 current <« u.hasProposalsFrom()

1 if u prefers current over proposer then

12 Remove u fromPL[proposer] andproposer from

PLu]

13 else

14 current.setFree()

15 Remove u fromPL[current] andcurrent from

PLIu]

16 Match (u, proposer)

17 end

18 end

19 end

20 end

21 for each user i matched to a user m do

22 Remove i fromPL[r] andr from PL[i], Vr with rank(r) >
rank(m)

23 end

24 [[step 2

25 for each user p; with |PL[p;]| > 1 do

26 | Find a cycle (p;, gi, Pit1, Gig1s - -Gs—1. Ps = D;), Where

27 q; = second preference in PL[p;] andp;,; = last preference
in PL[g;]

28 | Remove q; fromPL[p;,1] andp;, 1 from PL[q;]Vi

29 end

30 return matching if 3 a user i with [PL[i]| > 1

Table 3
Optimal charging decisions in each charging scenario.
Scenario Charging sessions 1 2 3 4 5 6
Conservative A’s decisions 1 1 1 0o 1 o0
B’s decisions 0 1 1 0 1 N/A
Cooperative A’s decisions 1 1 0 1 0 0
B’s decisions 0 1 0 1 1 N/A
Table 4
Charging decisions for each decision block in cooperative case.
Decision blocks 1 2 5 6 7 8 9 10
Energy3 -A) O 19 0 0 O O O O O O
A’s decisions 1 0 1 1 0 0 1 0O 0 O
Energy (A —- B) 0 O 0O 0o 0O 5 0 0 o0 4
B’s decisions 0 0 0 1 0 0 1 0 1 0

In conservative scenario, the results show that node A could
have skipped 4th and 6th charging blocks, while node B could have
skipped its 1st and 4th blocks (skipping 1st and 3rd would also be
optimal). This results in a total of 4 skips for both nodes.

In cooperative charging scenario, out of 10 decision blocks, user
A is able to skip 6 of them. However, not all of these are inde-
pendent decisions as well as some of these decision blocks with
skip decisions have only discharging. Thus, there is no skipping of
actual charging. Similarly, for user B, 7 of them can be skipped.
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Fig. 4. Charging patterns and skips after cooperative charging. Arrows show the direction and the amount of energy shared between the users.

Note that there are multiple energy exchanges between users in
order to get to the optimal point. As the decision blocks do not
correspond to the actual individual charging cycles of users, the
skipping decisions for each decision block have to be converted to
the skipping pattern for charging cycles. From Fig. 4 and Table 4,
we can deduce the original charging decision sequence for user
A and user B shown in Table 3. This results in a total of 5 skips
for both nodes, showing the advantage of cooperative P2P sharing
over conservative case. To achieve that both node A and B share
energy between each other and receive energy from each other.
Fig. 4 shows the charging patterns after the optimal skips are
done. Here, we assume that when a user skips a wall charging,
a minimal/zero discharge happens during that duration in this
example, however, a discharge could have been applied with an
average discharging rate during a skipped charging sessions and
algorithms could be updated accordingly.

6.2. Empirical results

6.2.1. Datasets

Mobile devices should be in close proximity to be able to trans-
fer power. In order to see the potential benefit of the proposed
P2P energy sharing for charging relief of users in real settings,
we have used several mobile network datasets with meeting
patterns of user devices. These datasets mainly contain the logs of
device-to-device (D2D) interactions of different types of wireless
devices carried by people. While the D2D communication range is
in the order of several meters, such interactions could be consid-
ered as an indication of users seeing each other and potentially
asking for energy exchange from each other. Each of these datasets
represents a different environment with a different number of
users and durations [26]:

- Haggle dataset: [27] These are the Bluetooth sightings
recorded between the iMotes carried by 41 attendants of In-
focom Conference held in Miami in 2005. It spans a four day
period.

Cambridge dataset: [28] These are the Bluetooth recordings
among 36 students with iMotes from Cambridge University
for a duration of almost two months.

MIT Reality dataset: [29] It consists of the mobility traces
of 97 Nokia 6600 smart phones carried by MIT students and
staff during an academic year. We used data from the three
month period of Spring semester.

While the above datasets provide information about the meet-
ing patterns of users, they do not include battery charge level in-
formation of the devices. Assuming that the battery energy levels
of the devices are independent from the contact patterns of their

users, we use another dataset to extract that information and com-
bine charging and meetings patterns of user devices using the time
domain of these datasets.

- DeviceAnalyzer dataset [30]: It includes all kinds of logs of
Android users who downloaded the app worldwide. For the
experiment, we have extracted 9 days of battery charging
status information from 40 users.

Having these datasets, we have used the following method-
ology to merge the charging and meeting patterns of users from
different datasets. We first extract the meeting count distribution
among pairs (Fig. 5a), the hourly meeting time distribution in
a day (Fig. 5b) and the meeting duration distribution among all
meetings (Fig. 5¢). Then using the 40 users data from DeviceAna-
lyzer [30] with charging patterns, we assign them meetings from
the aforementioned meeting count, time and duration distribu-
tions. Note that the user meeting patterns from different datasets
are different from each other. In general, users in Haggle dataset
have the highest number of daily meetings with the shortest
durations. However, as expected naturally, the meeting time distri-
butions are similar (e.g., with the highest frequency around lunch
time).

6.2.2. Simulation results

We first run the conservative charging algorithm for each of
the 40 users and collaborative charging algorithm for each of the
780 pairs of nodes to obtain the mobile charging relief in each
case (with 75 = 1%/min and 7¢ = 1). Each of the results here is
the average of 10 different runs. Fig. 6 shows the CDF of the relief
among all users and pairs for conservative and collaborative charg-
ing, respectively. Note that each cooperative charging result with
different dataset used for meeting pattern generation is shown
with a legend of the corresponding dataset. The results show that
almost half of the users can not have any charging relief with
conservative charging, while there are some users who can obtain
up to 50% relief. In collaborative case, only in a few of the pairs,
users cannot experience any relief. Moreover, the number of users
that can experience high relief increases remarkably thanks to the
power of sharing. Comparing the collaborative charging results
obtained with different datasets, we observe that users obtain
the highest relief with Haggle dataset while the lowest relief is
obtained with MIT dataset. This is because in Haggle dataset users
have more meeting than in others, which then provides more
energy exchange opportunity to users yielding higher charging
relief. MIT data has the smallest number of meetings. Even though
the durations are longer than in other datasets, due to the fewer
number of meetings, the lowest relief is obtained. However, it is
still more than the relief users can achieve by conservative charg-
ing. Cambridge dataset has characteristics in between the other
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two datasets. Thus, a performance in between their performance
is obtained.

In Fig. 7, we show the average mobile charging relief obtained
for users in the network with conservative and collaborative charg-
ing. For collaborative charging, the results show the average relief
obtained by users assigned after running optimal charging partner
assignments in Algorithm 3. Results with Haggle dataset shows the
highest average relief due to the aforementioned reasons. This is
also the double of the relief users could experience with conserva-
tive charging only.

Next, to understand the impact of data size on the results, we
obtain average charging relief with fewer than 9 days of Device-
Analyzer dataset. Fig. 8 shows these results. Here, each data point
indicates the cumulative usage of dataset. For example, results at
point 5 shows the results obtained with 5 days of data from the
beginning. The results show that the average user charging relief
remains somewhat constant after a few days, given the same meet-
ing patterns. The jump on the last day and the small savings in the
first 3 days are due to the impact of partial charging/discharging
sessions included in these end cases. We also observe that most
of the users have discharging only sessions during the first day,
which reduces the average charging relief for all users in the net-
work. Similarly, for the last charging cycle, most of these cycles
have only the portion of their charging session without any dis-
charging. Thus, most of these last charging sessions are skipped
easily increasing the average relief for the 9 day result.

Fig. 9 shows the impact of transfer efficiency and speed on
average mobile charging relief in Haggle dataset. As expected,
the results clearly show that the relief will increase if the wire-
less energy sharing between devices is more efficient (when
Ts = 1%/min). The figure also shows that when the transfer speed
is 0, it is equal to the conservative case results but when the trans-
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fer speed increases, there is a significant gain in charging relief
(when 7g = 1). However, the result is not increasing linearly be-
cause contact duration becomes dominant and optimal energy that
is exchanged within the decision block does not change much. A
slower but efficient transfer also performs well.

7. Conclusion

In this paper, motivated by the recent technologies enabling
wireless energy sharing between mobile devices, we investigate
to what extent the burden of charging process on users could be
released. We develop a dynamic programming based optimization
model and find out the minimum number of charging sessions
that would be sufficient for users to keep their devices with the
power they need through utilization of excessive energy from
other users in the vicinity. We first study both conservative and
collaborative charging. Then, in order to achieve a network-wide
charging relief among a group of users, we map our problem
to roommate matching problem and find out the best matching
among users that will achieve the highest network-wide relief
while satisfying all users with their assigned partners. With the
empirical results based on different datasets of user meetings and
charging patterns, we observe that users can achieve up to 13-17%
relief without affecting their existing usage habits of mobile de-
vices. In our future work, we will embed an online charge sharing
algorithm among peers using the predictions of charging and
meeting patterns in mobile social networks [31,32]. Moreover, we
will study a market mechanism and pricing for energy exchanges
for the environments with users that do not know each other.
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