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Abstract—In mobile social networks, the mobility and connec-
tivity of nodes are often non-deterministic. Source and destination
nodes may not have a meeting opportunity and the content dis-
semination and delivery most of the time require the cooperation
of nodes. However, this causes nodes spend energy, thus, they
may be reluctant to participate in the dissemination process to
conserve energy. One approach to motivate user participation
is to transfer energy for their service so that their potential
loss is compensated. However, this makes routing problem much
challenging as the source node needs to decide not only the
best relay nodes but also the amount of energy transfer to
them. In this paper, we study this energy sharing based content
delivery problem in mobile social networks. To this end, we
assume that a node is willing to carry the content as long
as the energy received for this delivery lasts, after which it
drops the content (i.e., time-to-live). We utilize optimal stopping
theory and dynamic programming to model the content delivery
problem under this energy sharing paradigm between the nodes.
The simulation results show that energy sharing based content
delivery can potentially increase the routing performance under
certain settings.

Index Terms—Mobile social networks, energy sharing, dynamic
programming, optimal stopping theory.

I. INTRODUCTION

The dynamic mobility and connectivity of the nodes in
opportunistic networks makes the dissemination and the de-
livery of content very challenging. There have been numerous
works [1]–[3] in the literature that look at this problem under
different settings and propose different routing algorithms in
such networks. While the main focus has been to decide
on the selection of the relay nodes to optimize the routing
performance (e.g., better delivery ratio), most of the time it is
assumed that there is already an incentive to carry the others’
messages. Some of the works have studied the incentive
oriented routing through tit-for-tat style [4] or credit-based [5]
solutions. Some others have also considered the problem under
social-selfishness [6] of nodes (i.e., being selfish to strangers
and unselfish to friends) and provided trust management based
solutions. However, such solutions compensate the actual
energy consumption of relay nodes indirectly.

In some recent interesting works [7]–[9], this problem has
been studied through energy sharing to relay nodes, providing
direct compensation for the energy loss of nodes. In other
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Fig. 1: An illustration of energy sharing based content delivery
in opportunistic networks, where energy is used as an incentive
to carry a message copy. Message carrying nodes and their
tracks are shown in blue. Alternative path for node 2 and the
path after node 0 stops carrying the message is shown with
dotted lines.

words, a node with a content to be delivered to a destination
transfers not only the content (e.g., copy of the message) but
also sufficient energy to relay nodes, as an incentive to them to
carry this content to the destination. Note that such an energy
sharing between nodes can be performed in a convenient
way, thanks to the recent advances [10] in wireless power
transfer1 and related developments to integrate them to mobile
devices [11]–[13]. In the previous work, however, the problem
is studied in a limited scenario, in which only the source
node with unlimited energy resources gives the content and
the energy to relay nodes with the goal of minimum energy
consumption for the delivery. In a more general scenario,
source node may have a limited energy budget for the delivery.
Moreover, both the source node and the relay nodes can
distribute the content and energy to other relay nodes met.
However, this makes the problem more challenging as a more
comprehensive approach has to be followed to determine not
only the distribution of the content to relay nodes but also the
amount of energy to be given to each of them.

A. Motivating Example

Consider the example in Fig. 1 with source node 0 having a
message to deliver to destination node 2 and having an initial

1While we do not restrict the proposed solution in this paper to only wireless
power transfer based energy sharing, we also consider the impact of associated
parameters (e.g., transfer efficiency) in the design of the proposed solution.978-1-7281-0270-2/19/$31.00 c©2019 IEEE



energy budget of 10 units to be used in the delivery of this
message (i.e., node’s actual energy may be more). Assume
that each node consumes 1 unit of energy at every time unit
while carrying the message. When node 0 meets node 1 at
time t1, it has a remaining energy budget of 7 units (as it
spent 3 units of energy from t0 to t1). Node 0 predicts that
its energy is more than enough to carry the message until it
meets the destination with a high probability. Thus, to increase
the delivery probability further, it decides to share 5 units of
its energy with node 1 to have a better collaborative delivery
probability than its individual delivery probability. Note that,
due to the transfer efficiency, node 1 can only get 4 units of
energy. After t1, both nodes have a copy of the message and
try to meet with the destination for delivery. Node 1 carries
the message only 4 time units and node 0 carries the message
only 2 times units after t1. The message is delivered to node
2 at time t3 by node 1. However, if node 2 were to follow an
alternative predicted path, node 0 would deliver the message.

In a more general context, consider that node 0 and node
1 has met and node 0 has a message with some budget of
energy. The options for node 0 are (i) to forward the content
and available energy budget entirely (i.e., without keeping a
copy and potentially with some loss during content/energy
transfer), (ii) to keep the content and energy totally, or (iii)
to give a copy of the content with some energy. The first two
options are exactly similar to the decisions made in single-
copy or forwarding based routing algorithms [14]. However,
the third option is different than multi-copy based routing
algorithms [15]–[19] as it divides the available energy to keep
the content among nodes, thus essentially decreases time-to-
live (TTL) of the messages or the deadline for delivery (on the
contrary, in multi-copy based routing algorithms, the deadline
is not changed). While multiple nodes carrying the content
increase the likelihood for delivery, their smaller TTL values
decrease the delivery chance. Such content and energy sharing
can indeed provide a better cooperative delivery probability
with a careful and thorough decision process. In particular, in
mobile social networks where messages can get lost during
opportunistic content transfers between nodes, the benefit gets
more pronounced.

Consider the network graph in Fig. 2 which shows the mean
intermeeting times of three nodes as the link weights. The
lower chart shows the delivery probability of both node 0 and
node 1 for destination 2 for different TTL values. Note that
for node 0, this represents a comprehensive [15] delivery rate
including both the direct delivery and delivery through node
1, while for node 1 it is the direct delivery rate. We also
assume a link loss rate of 0.1 (i.e., a message is lost with
0.1 probability during transfer from a node to another), thus
the expected delivery rates will only reach 90% at most. If
node 0 meets node 1 and has a remaining TTL budget of 200
time units or less (which could be obtained by dividing energy
budget available by energy consumption rate), the combined
delivery rate (shown in red) suggests that it should forward
both the content and energy entirely as node 1 offers better
delivery rate. However, if it had TTL budget of 300 time units
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Fig. 2: An example opportunistic network with mean inter-
meeting times denoted as the weights of the edges on the
graph. The source node is 0 and the destination node is 2.
The lower graph shows both the individual delivery ratios of
node 0 and node 1 and the cumulative delivery ratio when
they share the total energy and TTL.

at the meeting time, the best strategy would be sharing of
around half of the energy (or the corresponding TTL) with a
copy of the content (assuming energy consumption rates of the
nodes are similar and there is no loss during energy transfer).

B. Contributions

In this paper, we study the optimal content delivery problem
through sharing of both the content and the energy among
the nodes in a mobile social network. The content delivery
in mobile social networks happens through opportunistic non-
deterministic meetings of nodes and the design of most pro-
tocols usually depends on the analysis of historical contact
information [20] with the expectation that the mobility of
nodes shows long-term regularities (e.g., friendship [3]). That
is, for example, if some pairs of nodes meet more frequently
compared to other pairs, the same is in general expected
consistently over time. In this paper, we consider a mobile
social network where the long-term mean intermeeting times
between nodes can be estimated from the contact history of
the nodes. We assume each node has a complete information
about the intermeeting times between all pairs of nodes in the
network. However, in simulations, we relax this assumption
and show the performance of the proposed algorithm with par-
tial available information. Based on the available knowledge
and the source’s limited energy budget, our goal is to find
the optimal policy for both content and energy sharing among
nodes to achieve the best delivery rate. We utilize optimal
stopping theory [21] and dynamic programming [22] to model
and solve this problem under different settings (e.g., link loss
rate, transfer efficiency rate). We also evaluate the performance



of the proposed sharing based solution with simulations and
show its benefit over just forwarding/keeping based strategy.

The rest of the paper is structured as follows. In Section II,
we give a background on the literature utilizing energy sharing
in mobile social networks and provide an overview of optimal
stopping theory. In Section III, we provide the details of the
proposed optimal decision process for content and energy
sharing. Section IV provides the simulation settings and per-
formance evaluation of the proposed approach. Finally, we
provide the concluding remarks and outline the future work in
Section V.

II. BACKGROUND

A. Energy Sharing in Mobile Social Networks

The concept of (wireless) energy transfer to mobile nodes
has a remarkable literature within the context of wireless
sensor networks. It is assumed that there is a (multiple) mobile
charging vehicle(s) (MCV) that charges the sensor nodes
regularly in order to keep them alive and prolong the network
lifetime [23]–[25]. Often the goal is to find the optimal visiting
schedule of the MCV among the static sensor nodes such that
it will keep them functional and will be back to the charging
station without depleting its energy.

Recently, energy sharing has also been considered in dif-
ferent mobile network applications such as mobile social
networks and vehicular networks [26]–[28]. The ability to
exchange energy between nodes has made researchers re-
think some of the existing solutions and benefit from the
energy sharing concept for further optimization. There are
also new challenging problems defined integrating the energy
sharing concept. Such problems include finding optimal energy
usage [29]–[33] and energy balancing [34]–[37] among the
nodes in the network. In the former, the goal is to take the
advantage of opportunistic interaction of nodes in a mobile
social network to optimize the energy usage at nodes through
sharing of energy between each other. That is, nodes with
higher energy share some of their excessive energy with
others in need of energy and receive back when they need.
In the latter, however, the goal is to reach a certain target
energy distribution among nodes as soon as possible from a
given energy distribution at nodes through energy transfers in
opportunistic meetings.

Energy sharing among nodes has also been considered [7]–
[9] within the existing problem of content delivery in mobile
social networks. Assuming that the relay nodes are only
motivated by the energy they receive for the carrying of the
content, the problem of content delivery is integrated with a
joint energy sharing problem among nodes. A node with a
message transfers not only the content but also some energy to
relay nodes as an incentive to them to carry this content to the
destination as long as the energy lasts. In [7], the problem is
formulated using a Markov decision process (MDP) based on
the contact state of content source to obtain the optimal energy
sharing policy. The content source moves and visits a charger
to receive energy and when it meets with a messenger (e.g.,
relay), asks for the delivery of the content to the destination

node by sharing some energy to the messenger. If the energy
depletes before reaching to the destination, the content is
discarded by the messenger. MDP is used to carefully select
a messenger node and transfer optimal energy so that the
content is delivered to the destination with highest probability.
Extending this study in [38] the authors show that the optimal
strategy obtained by MDP is a threshold policy. In order to
avoid the cumbersome of centralized solutions and achieve a
decentralized decision policy, the problem is also formulated
using a decentralized partially observable Markov decision
process with constraints and a decentralized learning algorithm
is proposed to obtain an optimal local policy at nodes [39]. The
interaction between the source and the messenger nodes has
also been modeled using game theoretical models in several
studies. In [8] the peer-to-peer relations between mobile nodes
are exploited to form a coalition to help one another on deliver-
ing a packet. They also look at the cases when these coalitions
might not be beneficial and some nodes might decide to
deviate away from coalition. The coalition in mobile nodes
only aims to help in message delivery but not in replenishment
of energy. A different approach based on forming a non-
cooperative game model is considered in [9]. The source node,
which is considered as a stable access point, holds an auction
for wireless energy and the nodes send their bids for it. In
return of service, the nodes have to pay certain cost to the
source. A stochastic dynamic response algorithm is presented
to adapt the strategies of nodes to the Nash Equilibrium which
is proved to be the optimal policy.

Different than the focus of the aforementioned works, in this
paper, we consider the problem of both content and energy
sharing in mobile social networks in a general perspective.
We assume all nodes are mobile and the content and energy
sharing can happen between any pair of nodes as long as it
helps for better delivery. To this end, we model the problem
using optimal stopping theory [21] and dynamic program-
ming [22] and show that it can improve the delivery ratio
through simulations.

B. Optimal Stopping Theory

The theory of optimal stopping [21] deals with the problem
of deciding the optimal time to take a given action based
on a set of sequential observations to maximize an expected
reward or to minimize an expected cost. These observations
are usually assumed to be random variables with a known
joint distribution. Well-known problems solved via optimal
stopping theory include secretary hiring problem [40] and
parking problem.

In an optimal stopping rule problem, you may observe a
sequence X1, X2, . . . for as long as you wish, where X1, X2,
. . . are random variables whose joint distribution is assumed to
be known. For each stage t = 1, 2, . . . after observing X1, X2,
. . . Xt, you may stop and receive the known reward yt, or you
may continue and observe Xt+1. The optimal stopping rule is
to stop at some stage t to maximize the expected reward.

An optimal stopping rule problem has a finite horizon if
there is a known upper bound on the number of stages at which



one may stop. In other words, if there are only T observations
possible before making a decision, the problem has a horizon
of T . Such finite horizon optimal stopping problems can be
solved by using backward induction method. That is, as the
last stage to stop is T , optimal rule for the stage T −1 can be
found first, then based on this optimal rule for stage T − 1,
optimal rule at stage T−2 can be found and so on. This process
can be chained until the initial stage 0. As defined in [21], let
V

(T )
t (1 ≤ t ≤ T ) represent the maximum expected reward

one can obtain starting from stage t and let V Tt = yT and then
inductively for t = T − 1, backward to t = 0,

V
(T )
t = max{yt, E(V

(T )
t+1 )}. (1)

That is, we compare the reward (i.e., yt) for stopping at stage t,
with the expected reward E(V

(T )
t+1 ) to get by continuing to the

next stage under the assumption that we will use the optimal
rules for all stages from t+ 1 to T . If the V (T )

t = yt, that is
yt ≥ E(V

(T )
t+1 ), it is better to stop at stage t. Otherwise, we

continue making new observations.

III. SYSTEM MODEL

A. Assumptions

Let N={0, 1, 2 . . . n−1} denote the set of |N | = n nodes in
a mobile social network. Without loss of generality, we assume
that 0 is the source node and n − 1 is the destination node.
The message at the source node has to be delivered to the
destination node. We assume that source node has an initial
energy budget, E , to be used in the delivery of the message.
Note that this energy budget can easily be converted to an
estimated time-to-live (TTL) value for the message by dividing
the energy by the energy consumption rate of the node, as
it will be shown in next section. This also helps modeling
the problem using optimal stopping theory with discrete time
steps. A message is maintained until the TTL value lasts.
When the source node is met with another node, it determines
if it is useful to give a copy of the content and how much of
its energy should be shared.

We assume that all nodes in the network have energy
receiving and transferring capabilities (e.g., Samsung Galaxy
S10, Huawei Mate 20 Pro) and energy sharing could be
achieved via wireless energy transfer with a transfer efficiency
of λ. The encountered node informs the source node or any
other relay who has the content about how different its energy
consumption than the source node’s energy consumption rate,
so that corresponding TTL at the encountered node with a
specific amount of transferred energy could be found. The
meetings of different pairs of nodes are assumed indepen-
dent and the intermeeting times are exponentially distributed.
However, the proposed algorithm can easily be updated under
different distribution assumptions. We assume that the mobility
of nodes exhibits long-term regularities, as it is assumed in
related previous work [7], [15]. Thus, we initially assume
that each node has the knowledge of mean intermeeting time
information, Ii,j , for all pairs of nodes. We then relax this

Notation Description
n Total number of nodes in the network.
Ii,j Mean intermeeting time of nodes i and j.
Mi,j Meeting probability of two nodes i and j at each

time slot.
U The size of each time slot.
E Initial energy budget to be used in the delivery

of the content.
Ei Energy incentive held by node i to be used in

the delivery of the content.
ti TTL of the content carried by node i.
t+i TTL of the content carried by node i in the next

time slot.
Ei→j(ti) The optimal energy that needs to be shared from

node i to node j when it has a TTL of ti.
ei Energy consumption rate of node i at each time

slot.
Pi,d,k,t Probability that the content is delivered from

source i to destination d with remaining TTL
value of t in up to k hops.

K The maximum number of hops that a content
can be forwarded before it reaches destination.

γ Link loss rate (i.e., content drop rate) between
two nodes.

λ Energy transfer efficiency rate.

TABLE I: Notations

assumption and study the performance of the proposed solu-
tion when different levels of partial information is available to
the nodes. We also assume that the links between nodes are
lossy and the content will be dropped with some probability,
denoted by γ, during transfers between nodes. This notion of
link loss rates can be considered as a result of link failures or
faulty relay nodes in the network which accept the incentive
but deviates away from the delivery process. The notations
used throughout the paper are summarized in Table I.

B. Energy and Residual Time-to-Live relation

Let Ei denote the energy budget of the node i to be used in
the delivery of the message, and ei denote its average energy
consumption rate. The discrete remaining time-to-live (TTL)
value that it will keep the message using that energy, ti, will
be:

ti = Ei/ei (2)

When this node meets with another node j, it can either
keep, forward or share the content/energy with j if it estimates
that the likelihood of the message delivery will increase.
Let Ei→j(ti) denote the optimal energy that needs to be
shared from node i to node j when it has a TTL of ti. The
corresponding remaining TTL values of each node after this
exchange (i.e., in the next time unit) will be:

t+i =
Ei − Ei→j(ti)

ei
− 1 (3)

t+j =

{
λEi→j(ti)

ej
, if r[0, 1] ≤ γ

0, otherwise
(4)

Here, r[0, 1] is a random number between 0 and 1. Note that
the TTL value of node j should be estimated by taking into



TTL Decision with forwarding
t Pi,d,k,t

t− 1
Not
Forward

Forward

Pi,d,k,t−1 Pj,d,k−1,t−1 × (1− γ)
TTL Decision with sharing
t Pi,d,k,t

t− 1
Not Share Share
Pi,d,k,t−1 (1-γ) × [1-(1-Pi,d,k∗i ,t

∗
i

)× (1-Pj,d,k∗j ,t
∗
j

)] +
(γ)× Pi,d,k∗i ,t

∗
i

TABLE II: Decisions with forwarding and sharing.

account the energy consumption rate of node j as well as
the energy transfer efficiency, λ. For node i, it also needs to
consider the energy consumption at the current time (hence
the -1 in (3)). If the content transfer is not successful due to
the link loss rate, the TTL value of node j, will be assigned
to 0, as having energy incentive for a message not received
will be nonsense.

C. Optimal Content and Energy Sharing

We divide the time into equal size slots and assume that
in each time slot, a node can either meet or not meet with
another node. The intermeeting times of two nodes i and j are
assumed to follow an exponential distribution with a mean of
Ii,j . Then, the meeting probability of two nodes i and j in
each time slot of size U , denoted as Mi,j , can be computed
by

Mi,j = 1− e−U/Ii,j . (5)

We adopt exponential distribution for intermeeting time dis-
tributions between nodes since it is a relatively general
model [15]–[18], however, the proposed solution can be
adapted to other distributions.

In our model, we follow a similar terminology introduced
in [15] and adopt a hop count limited opportunistic forwarding
protocol. That is, there is a hop count limit of K indicating
the maximum number of hops a message can be forwarded
before it reaches destination. Such a forwarding scheme also
helps achieve scalability as it can limit the forwarding cost
per message delivery which is usually assumed to be the
major cost for routing in mobile social networks. When a
message with a hop limit of k is forwarded to another node,
its remaining hop count limit becomes k−1. When a node has
a message with k = 0, it can no longer forward the message
to another node but still can deliver it to the destination.

Let Pi,d,k,t denote the delivery probability of a message at
node i for destination d with a remaining hop count of k and
a remaining time-to-live (TTL) value of t. The direct delivery
probability of the message, with k = 0, can be estimated by,

Pi,d,0,t =
(
1− e−tU/Ii,d

)
× (1− γ) (6)

The first part defines the meeting probability of node i with
node d during t time slots and the second part considers the
likelihood that the content will be lost during transfer, hence
it will not be delivered.

Algorithm 1: Pi,d,k,t calculation with optimal forwarding

1 Pi,d,k,t ←Mi,d × (1− γ)
2 Rp ← 1−Mi,d

3 for ∀j ∈ N s.t. j 6= i and j 6= d and Mi,j > 0 do
4 Pj ← Pj,d,k−1,t−1 × (1− γ)
5 if Pj > Pi,d,k,t−1 then
6 Pi,d,k,t = Pi,d,k,t +Rp ×Mi,j × Pj × (1− γ)
7 Rp = Rp −Rp ×Mi,j

8 end
9 end

10 Pi,d,k,t = Pi,d,k,t +Rp × Pi,d,k,t−1

When node i meets with another node j, the optimal for-
warding decision can be made by simply comparing Pi,d,k,t−1
with Pj,d,k−1,t−1 × (1 − γ) (as shown in Table II). That is,
within the same remaining time of t − 1, if node i has a
higher expected delivery rate with k hops than the delivery rate
node j can achieve with k − 1 hops given that the content is
successfully transferred to node j with probability (1−γ), the
optimal decision becomes not to forward the content to node j.
Otherwise, forwarding the content to node j will be better on
average. Note that this is different than the optimal forwarding
strategy presented in [15], [20] as it considers keeping a copy
of the content at node i even it will be forwarded to node
j, thus, it determines the optimal strategy through cumulative
delivery probability of both copies and determines the optimal
strategy accordingly. The likelihood of unsuccessful transfer
of the content due to link failures is also not considered.

In order to calculate the expected delivery probability,
Pi,d,k,t, for each node pair (i, d) and different k and t values,
the problem can be modeled as a finite horizon optimal stop-
ping problem and can be estimated using backward induction
method. That is, we first calculate Pi,d,k,2 based on Pi,j,k−1,1,
∀j 6= i, d and Pi,d,k,1, which can be calculated using (6). Then,
we continue calculating Pi,d,k,3, Pi,d,k,4, and so on.

The calculation of delivery probability Pi,d,k,t under op-
timal forwarding strategy is shown in Algorithm 1. It is
first initialized to direct meeting probability with a potential
loss (line 1) and for each node, j, that is different than
destination, if forwarding to j is considered better in terms of
delivery probability (line 5), the expected increase in delivery
probability through node j is added to Pi,d,k,t. Note that due
to the sparse nature of mobile social networks similar to delay
tolerant networks, it is assumed that each node meets one
another node at each time slot. Thus, the remaining probability,
denoted by Rp, is calculated for each node j, by excluding the
meeting probabilities with other nodes considered. Once the
estimated probability increase is added from all other nodes,
finally, with remaining probability, the probability of delivery
from current node with one less remaining TTL value is added
(line 10).

In optimal forwarding strategy, as the message is either
forwarded or kept entirely, the associated strategy for energy
sharing becomes either transfer or keep the entire energy,



Algorithm 2: Pi,d,k,t calculation with optimal sharing

1 Pi,d,k,t ←Mi,d × (1− γ)
2 Rp ← 1−Mi,d

3 for ∀j ∈M s.t. j 6= i and j 6= d and Mi,j > 0 do
4 P ∗j = 0
5 (t∗i , t

∗
j ) = (t− 1, 0)

6 (k∗i , k
∗
j ) = (k, 0)

7 for ∀ti ∈ [0, t− 1) do
8 tj = (ti − 1)× ei/ej × λ
9 for ∀ki ∈ [0, k − 1] do

10 kj = k − 1− ki
11 Pj = (1− γ) × [1− (1− Pi,d,ki,ti) ×

(1− Pj,d,kj ,tj )] + (γ)× Pi,d,ki,ti
12 if P ∗j < Pj then
13 P ∗j = Pj
14 (t∗i , t

∗
j ) = (ti, tj)

15 (k∗i , k
∗
j ) = (ki, kj)

16 end
17 end
18 end
19 if P ∗j > Pi,d,k,t−1 then
20 Pi,d,k,t = Pi,d,k,t +Rp ×Mi,j × P ∗j × (1− γ)
21 Rp = Rp −Rp ×Mi,j

22 end
23 end
24 Pi,d,k,t = Pi,d,k,t +Rp × Pi,d,k,t−1

respectively. However, as sharing can potentially increase the
delivery probability, as shown in Fig. 2, the calculation of
delivery probability Pi,d,k,t under optimal sharing strategy
should consider the split of energy and hop counts with each
met node j that can achieve the best delivery probability
increase. Algorithm 2 shows this calculation. Lines 7-18 show
the process of finding the best TTL split (t∗i , t

∗
j ) and hop split

(k∗i , k
∗
j ) between node i and a met node j that achieves the

highest delivery probability, P ∗j . Note that each Pj calculation
needs to consider potential loss during transfer thus, with
probability γ, Pj is equal to node i’s own delivery probability
with ti, ki pair, while with probability (1 − γ) it is equal
to the cumulative delivery probability with the corresponding
optimally split TTL and hop counts, which is defined as

1− (1− Pi,d,k∗i ,t∗i )× (1− Pj,d,k∗j ,t∗j ). (7)

Once the maximum delivery probability with each neighbor j
is found through optimal TTL and hop split, it is compared
with individual delivery ratio of node i and if splitting is
considered better, it is added to the comprehensive delivery
probability of node i, as in the optimal forwarding strategy
case. Finally, with remaining probability, Rp, the probability
of delivery by current node i with one less remaining TTL
value is added.

Table II shows the summary of comparisons that need to
be made for a decision under forwarding and sharing cases.
Algorithms 1 and 2 show the calculation of Pi,d,k,t for these

Parameter Value
n 36, 41, 50.
Ii,j Obtained from datasets.
E 16, 8, 8 hours of energy
γ 0.1
λ 0.98
ei [0.95, 1.05] units of energy per time slot
L 6 relay nodes
K 4 hops

TABLE III: Simulation settings

scenarios for a specific (i, d, k, t) tuple. Once it is calculated
for every possible tuple following the backward induction
order, the actual forwarding or sharing decision can be made
by checking these values from the corresponding tables.

IV. EVALUATION

In this section, we evaluate the performance of the proposed
energy sharing based content delivery process. Next, we first
list the algorithms compared, performance metrics used, and
describe how the simulations are set. Then, we provide the
simulation results and analyze the impact of several parameters
on results. The list of the parameters and their values used in
simulations are shown in Table III.

A. Algorithms in Comparison

Since energy is used as an incentive to relay nodes to carry
the content received from other nodes and defines the time-to-
live (TTL) value of the message, we define the algorithms to
compare in terms of their impact on the TTL of the message:
• TTL sharing: This corresponds to the proposed optimal

sharing based strategy obtained with Algorithm 2. TTL is
shared with the met node in the amount that will provide
the most significant expected benefit in delivery ratio.

• TTL forwarding: This corresponds to the optimal for-
warding strategy obtained with Algorithm 1. TTL is either
fully forwarded (with loss) to the met node or kept
fully depending on whichever provides higher expected
delivery ratio.

• TTL spraying: This is a modified version of well-known
Spray-and-Wait [18] algorithm within the context of
energy and TTL sharing based delivery. Source node
distributes the message to L different relay nodes (who
can directly meet with destination2) together with its 1/L
of initial TTL budget. If the remaining TTL budget is less
than that, the entire remaining TTL is forwarded.

B. Performance Metrics

We use the following metrics in the performance compari-
son of the aforementioned algorithms:
• Average delivery rate: This is the ratio of the number

of messages delivered to the destination node within all
messages generated before the TTL budget expires.

2This is considered in order to increase the likelihood of delivery. However,
if there is no such node, it is not considered.
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Fig. 3: Delivery rate, delay and number of forwardings versus time-to-live in Cambridge dataset.
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Fig. 4: Delivery rate, delay and number of forwardings versus time-to-live in Haggle dataset.

• Average delivery delay: This is the average of elapsed
time between the delivery of the messages and their
generation at the source nodes. It is the average of
delivery delays of only delivered messages before the
TTL budget expires.

• Number of forwardings: This is the number of times
a message is exchanged between two nodes before the
delivery of the message.

C. Datasets

We use two of the commonly used real DTN traces [41] for
routing performance evaluation. Moreover, we also generate
our own synthetic dataset to have a more dense connectivity
graph with sufficient meeting history. Each of these datasets
represents a different environment with a different number of
users and duration:

• Cambridge dataset: These are the Bluetooth recordings
among 36 students with iMotes from Cambridge Univer-
sity for a duration of almost two months.

• Haggle dataset: These are the Bluetooth sightings
recorded between the iMotes carried by 41 attendants of
Infocom Conference held in Miami in 2005. It spans a
four day period.

• Synthetic dataset: This is a dataset generated randomly
among 50 nodes with a mean intermeeting time of a
random value between [200, 400] minutes. The nodes
have a meeting history on average with 10 different
nodes.

In today’s technology, mobile nodes should be in close
proximity (i.e., almost touching) to be able to transfer power.
While the Bluetooth (which is considered in above real traces)
communication range is in the order of several meters, such
interactions can be considered as an indication of users being
in the close proximity of each other so that they can com-
municate and get further close to each other for a potential
energy transfer. We assume that when nodes meet, they stay
close enough to each other until they can achieve the required
energy transfer under optimal TTL sharing scenario. We look
at the impact of transfer efficiency in our results, which can be
considered as the relaxation of this assumption to some extent.
However, in our future work, we will enhance our algorithm
considering the partial energy transfers between nodes during
meetings with limited duration.

D. Performance Results
In Fig. 3, we first compare the performance of the three

algorithms in the Cambridge dataset. In order to see the benefit
of the sharing based delivery, source and destination pairs
are selected such that they do not directly meet. TTL sharing
offers the best delivery rate among all algorithms. Moreover,
it can achieve this with a similar average delivery delay and a
similar number of forwardings with TTL forwarding. There is
a slight increase in the number of forwardings with larger TTL
budgets. This is due to the increased delivery ratio achieved
at those TTL budgets.

The results for Haggle traces are illustrated in Fig. 4. We
observe similar performance graphs, but the gap in the number
of forwardings of TTL sharing and TTL forwarding is more
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Fig. 5: Delivery rate, delay and number of forwardings versus time-to-live in synthetic dataset.
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Fig. 6: Impact of loss rate, transfer efficiency and available partial link weight on the performance ratio of sharing over
forwarding.

and starts in earlier TTL budgets. On the other hand, it is still
less than the TTL spraying algorithm and achieves the best
delivery ratio. Note that such a performance improvement in
the delivery ratio can be preferred as the forwarding cost per
message delivery is a small value.

In Fig. 5, we look at the performance results with synthetic
dataset. The results are also similar to other dataset results but
the delivery ratios of TTL sharing and TTL forwarding is closer
to each other. This is because the benefit of sharing policy
could be dominated with other optimal forwarding based paths
which could appear more often in dense graphs.

Finally, we look at the impact of some parameters in the
performance results. In Fig. 6, we plot the impact of loss
rate, transfer efficiency and partially available link weight
information on the performance ratio of the TTL sharing com-
pared to TTL forwarding. As the results show, with increasing
loss rates, the benefit of sharing is more pronounced as it
can provide better delivery probability over multiple paths
(despite the shorter TTL in each due to the split). However,
this also increases the forwarding ratio which can be an issue
if there is not enough buffer at nodes. On the other hand, as
loss rate gets smaller, the performance ratio gets close to 1.
Transfer efficiency also affects the performance ratio of the
TTL sharing remarkably. As the efficiency gets lower, TTL
sharing behaves like TTL forwarding, meaning sharing is not
considered beneficial due to the loss during energy transfers.
Finally, in the last graph, the impact of partially available
intermeeting time information on the results is shown. For

these results, we set the Ii,j values for some pairs to 0
(i.e., unknown) and calculate the Pi,d,k,t values accordingly.
The results show that when 50% of the link weights or
mean intermeeting times are unknown, the benefits over TTL
forwarding are lost. Thus, this suggests that the proposed
optimal sharing policy will be more effective in networks
with long-term stable relations among nodes with predictable
meeting patterns.

V. CONCLUSION

In this paper, we study the content delivery problem in
mobile social networks in which nodes are motivated by
energy transfers for carrying the messages. That is, each relay
node carries a message forwarded by another node as long
the energy provided or the corresponding time-to-live (TTL)
value lasts. In order to find the optimal content and energy
forwarding or sharing policy, we model and solve the problem
using optimal stopping theory and dynamic programming. We
evaluate the performance of the proposed solution in both
real and synthetic mobile social network traces and show
that sharing can offer better delivery rate, while it can also
cause an increase in the cost of delivery (i.e., number of
forwardings) to some extent. We also look at the impact of
several parameters on the performance of the proposed sharing
based content delivery process and discover the settings that
provide performance enhancements.

In our future work, we will analyze the performance of
the proposed system in other datasets as well as work on the
closed-form expression to reduce time dimension as in [20].



We will also study the partial energy transfers during meetings
with limited duration between nodes in which the split of the
content can also be considered.
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