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The compass model on a square lattice provides a natural template for building subsystem stabilizer

codes. The surface code and the Bacon-Shor code represent two extremes of possible codes depending on

how many gauge qubits are fixed. We explore threshold behavior in this broad class of local codes by

trading locality for asymmetry and gauge degrees of freedom for stabilizer syndrome information.

We analyze these codes with asymmetric and spatially inhomogeneous Pauli noise in the code capacity

and phenomenological models. In these idealized settings, we observe considerably higher thresholds

against asymmetric noise. At the circuit level, these codes inherit the bare-ancilla fault tolerance of the

Bacon-Shor code.

DOI: 10.1103/PhysRevX.9.021041 Subject Areas: Quantum Information

I. INTRODUCTION

At the heart of scalable quantum computing is fault

tolerance [1–3]. To optimize the fault tolerance of a system,

one should adapt the information extracted from the system

to the particular noise it suffers from. Typical models of

fault tolerance assume isotropic error that is homogeneous

in space. This has resulted in the broad study of codes that

are invariant over space with unbiased noise. We study a

family of codes derived from the compass model of spin

interactions that can be tailored to specific noise models

and maintain simple fault-tolerance procedures. We find

that this tailoring can greatly improve the fault tolerance of

a system in idealized settings, reinforcing the perspective

that noise asymmetry is a resource that should be taken

advantage of. Combined with other methods that benefit

from asymmetric noise [4,5], our results point towards

methods for deriving other families of subspace codes from

subsystem codes.

Our focus is on codes built from local interactions. For

physical systems that prefer such interactions, topological

codes have emerged as leading candidates for fault-tolerant

quantumcomputation [6–13].Among these, the surface code

is a particularly enticing choice, offering depolarization

accuracy thresholds in excess of 15%, assuming efficient,

noiseless, error correction with a planar architecture [14].

Another code family that has generated significant

interest is the subsystem Bacon-Shor code family [15].

These codes have many desirable properties: Their gauge

group is 2-local, measurements can be performed with bare

ancilla with virtually no loss in performance [16,17], and

they support fault-tolerance schemes that avoid costly

magic-state distillation [18]. Unfortunately, while Bacon-

Shor codes offer some of the highest concatenated thresh-

olds [16], they fail to have any threshold when grown as a

local family on a lattice without concatenation [19].

In the present article, we investigate codes derived

from the quantum compass model on a square lattice [20].

This model provides a natural framework for constructing

subsystem and subspace stabilizer codes. These codes can

be viewed as different gauge fixes of the Bacon-Shor code

and so include the (rotated) surface codes, as well as codes

with certain topological defects, as members [8,9]. While

we focus on a subfamily of (generalized) surface codes [21]

with desirable fault-tolerance properties, the design space

for these codes is much larger. Two advantages of this

family are its malleability, making it suitable for correcting

asymmetric noise, and fault-tolerant bare-ancilla syndrome

extraction inherited from measuring along the gauges of the

template Bacon-Shor code.

Tailoring codes and decoders to specific noise models

can often yield fruitful improvements in threshold scaling.
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For biased noise models, one can choose fault-tolerance

schemes and gates that take advantage of asymmetric error

rates [22–24]. Indeed, simply choosing the right decoder

can yield tremendous gains in the effective threshold

[5,25–28]. One can even customize codes directly to

device-level noise [29] or biased error rates [4,30]. Such

asymmetric noise models are motivated experimentally by

the observation that dephasing noise dominates certain

quantum computing architectures [31]. By modifying the

stabilizers and boundaries of a planar code directly, one can

also obtain denser packings of logical qubits [21] and

optimized performance with respect to erasures [32].

We similarly modify the geometry of planar codes using

the convenient language of compass codes, adapting the

density of the syndrome information to better correct biased

and spatially dependent Pauli noise. To quantify the value

of this adapted syndrome data, we consider maximum-

likelihood [6,33], minimum-weight perfect matching [6,14]

and union-find [34] decoders that treat X- and Z-type errors
independently. We choose different decoders depending on

the context, but we generally observe similar performance

across all three. In particular, we expect that tuning

correlated decoders to account for these different noise

models will boost code performance even further [5].

The idea is simple: One should tessellate a lattice

according to the relative likelihood of errors in that part

of the lattice. Although these codes remain local, there is a

trade-off between the locality of their stabilizers and their

robustness against asymmetric noise, similar to Ref. [24].

We analyze these codes numerically in the code capacity

and phenomenological noise models, and observe consid-

erably higher thresholds against asymmetric noise in these

idealized settings. We leave a discussion of the challenges

posed by circuit-level noise to the conclusion.

The paper is structured as follows. In Sec. II, we

introduce 2D compass codes and the noise models we

consider. In Sec. III, we determine the threshold behavior in

two randomized families of codes interpolating between

Bacon-Shor codes, surface codes, and Shor’s code. In

Sec. IV, we quantify the threshold of 2D compass codes

tailored for different asymmetric noise models. In Sec. V,

we demonstrate fault tolerance for the compass-code family

using only bare-ancilla syndrome extraction. We conclude

with some discussion in Sec. VI.

II. BACKGROUND

We begin by defining a subspace stabilizer code, which

is an encoding of logical information into subspace C of an

ambient Hilbert space H,

H ¼ C ⊕ C⊥;

where C can be defined as the þ1-eigenspace of n − k
commuting Pauli operators generating the stabilizer group.

In this case, we say that the code has parameters n, the log

dimension ofH, and k, the log dimension of C. Informally,

this represents an encoding of k qubits into n qubits.

A subsystem stabilizer code is a generalization of a

subspace stabilizer code in which we allow some number

g < k of the logical degrees of freedom (d.o.f.) to vary. In

this case, we further decompose our space as

H ¼ ðL ⊗ GÞ ⊕ C⊥;

where g is the log dimension of G and k − g is the log

dimension of L. We call the group generated by all logical

Pauli operators acting trivially on L the gauge group of the

code, which has the stabilizer group of the underlying

subspace code as its center. This broad class encompasses

the majority of popular code families, where subspace

codes are the special case of g ¼ 0.

A. 2D compass codes

The quantum compass model on a square lattice is

generally defined by the Hamiltonian [35,36]

H ¼
X

i

X

j≠L−1

JXXi;jXi;jþ1 þ
X

i≠L−1

X

j

JZZi;jZiþ1;j:

Here, ði; jÞ indexes a qubit according to its displacement

from the top-left corner of the lattice. Closely connected

with this model are Bacon-Shor codes, which are stabilizer

subsystem codes with gauge operators realized by the two-

body interaction terms of the compass model [15]. This

family is a standard example of codes requiring only local

measurements for error correction, but which are not

topological, with stabilizers that extend the length of the

lattice.

The gauge group of a Bacon-Shor code is generated

by G ¼ hXi;jXi;jþ1; Zi;jZiþ1;ji, with stabilizer group S ¼
h
Q

j Xi;jXiþ1;j;
Q

i Zi;jZi;jþ1i. When defined on an L × L

lattice, these 2L-body stabilizer generators leave us with

ðL − 1Þ2 gauge d.o.f. to format as we please.

Our tool for constructing compass codeswill be themethod

of gauge fixing, bywhichwecan insert gauge transformations

into the stabilizer group [7,37]. Operationally, up to phase,

thismethod corresponds to inserting a gauge operator g intoS
and then removing the set of all gauge operators h that

anticommute with g from G. Note that as Bacon-Shor codes

are CSS codes [38,39], if we perform fixes of either X or Z
type, we preserve the CSS structure.

We focus on a subclass of surface codes that are easy to

specify via a coloring of the lattice (see Fig. 1). In that

graphical language, red plaquettes correspond to “cuts” in

the vertical Z-type stabilizers. By this, we mean that the

Z-type stabilizer is divided into two independent Z stabi-

lizers by the red plaquette, extending the stabilizer group by

one generator while expending 1 gauge d.o.f. In particular,

the original Bacon-Shor code stabilizers remain in the

stabilizer group of any compass code.

LI, MILLER, NEWMAN, WU, and BROWN PHYS. REV. X 9, 021041 (2019)

021041-2



We index plaquettes according to the index of their top-

left qubit; then, for a red plaquette in the ði; jÞth cell of the

lattice, we fix the gauge operator
Q

i
k¼0

Zk;jZk;jþ1, whereas

for a blue plaquette, we fix
Qj

k¼0
Xi;kXiþ1;k. Bacon-Shor

codes correspond to an empty coloring, whereas the

standard surface code corresponds to a red and blue

checkerboard. Note that a plaquette can be colored either

red or blue, but not both, as the resulting stabilizers would

not commute.

B. Noise models

In order to carry out numerical simulations, we restrict

ourselves to asymmetric Pauli noise. We consider the

η-biased depolarizing channel with error rate p, defined as

EðρÞ ¼ ð1 − pÞρþ pXXρX þ pYYρY þ pZZρZ;

where p ¼ pX þ pY þ pZ and η ¼ pZ=ðpX þ pYÞ. We

make the simplifying assumption that pX ¼ pY , matching

the definition in Ref. [5]. The notion of a physical error rate

p is then well defined, as the fidelity of such a channel to

the identity is independent of η.

We consider symmetric but biased noise, in which each

qubit experiences the same error channel, as well as

spatially inhomogeneous noise models, in which the error

channel may depend on the qubit’s position in the lattice.

In the latter case, we define the error rate and bias of the

channel on the lattice as a whole as the average fidelity and

bias over each qubit in the lattice. Note that we must be

careful in comparing such models. For example, concen-

trating noise on a small subset of qubits might always

produce perfectly correctable errors, whereas distributing

that noise symmetrically will not.

Finally, depending on the context, we consider either the

code capacity setting, in which syndrome measurements

are assumed to be perfect, or the phenomenological setting,

in which the syndrome measurements can be faulty.

C. Decoders

Inherent to any discussion on thresholds is a choice of

decoder. We focus on three decoders: independent maxi-

mum-likelihood, minimum-weight perfect matching, and

union-find decoding. We choose among these according to

our computational needs.

Each of these decoders corrects X- and Z-type errors

independently. Thus, any gains in threshold scaling are a

product of the tailored syndrome information alone; it is

these gains we aim to quantify. For example, we expect that

using a correlated decoder with X- and Y-type stabilizers

would augment the threshold further [5].

1. Decoder graph

For independent correction of X- and Z-type errors on a

CSS code, the relevant decoding information is captured in

the decoder (hyper)graph. The decoder graph for phase

errors is constructed by associating a vertex to each X-type
stabilizer and a (hyper)edge to each qubit, where the edges

connect all stabilizers incident to that qubit. The decoder

graph for bit-flip errors is defined analogously. Note that

for the subspace codes we consider, the decoder graph

corresponds to a cellulation which realizes that code as a

homological surface code. For an example of the phase-

error decoder graph of a compass code, see Fig. 4.

The task of a decoder is then, given some syndrome

information in the form of marked nodes, to identify the

corresponding edge configuration producing those marked

nodes up to homology. The question we consider in this

paper is the following: What threshold gains do we obtain

by modifying the phase and bit-flip decoder graphs

according to asymmetrically distributed edge failure

probabilities?

2. Maximum-likelihood decoding

The maximum-likelihood decoder is one that takes in

syndrome information and chooses the most likely error

class producing that syndrome. Formally, its probability of

success is given by psucc ¼
P

s PrðĒsÞ, where the sum runs

over all syndromes s and Ēs is the most likely error class

conditioned on syndrome s. This decoder will yield optimal

thresholds, but it is often inefficient to implement.

Fortunately, one can relate the threshold of the maxi-

mum-likelihood decoder to the phase transition of an

associated random-bond Ising model [6,40,41], with cou-

pling strengths satisfying a particular set of criteria known

as the Nishimori conditions [42]. The probability of an

error class is then given by the partition function at a

particular quenched disorder. In particular, the disorder of

FIG. 1. An example of a compass code on a 9 × 9 lattice with

qubits placed on vertices. Red and blue plaquettes represent cuts

in the Z-type and X-type stabilizers, respectively. Equivalently,

Z-type stabilizers are formed by blue plaquettes on the left, and

X-type stabilizers are formed by red plaquettes on the right. Bare

horizontal lines on the left represent horizontal ZZ stabilizers or

“0”-area blue plaquettes; the analogous vertical lines on the right

form XX stabilizers. As there are no blank plaquettes in the

combined picture, all of the gauge d.o.f. are fixed.

2D COMPASS CODES PHYS. REV. X 9, 021041 (2019)

021041-3



the model serves as an order parameter that captures this

phase transition, which determines the maximum-likeli-

hood threshold in the presence of independent [41] and

even correlated [42] noise. For our purposes, however, we

only need the correspondence to independently decoded

noise [6].

3. Minimum-weight perfect matching decoding

The minimum-weight perfect matching (MWPM)

decoder assigns to each syndrome the error class correspond-

ing to a most-likely individual error producing that syn-

drome. Its probability of success is then psucc ¼
P

s PrðEsÞ,
where Es is the most-likely error producing syndrome s.
This decoder is implemented by constructing aminimum-

weight perfect matching among the marked vertices in the

decoder graph. The edge weights between two marked

vertices correspond to the most probable path between

them, and our edge weights are generated using standard

techniques [43]. For symmetric noise, this is simply the

shortest path, but for asymmetric noise it need not be.

Fortunately, Edmond’s blossom algorithm runs efficiently

on graphswithout hyperedges, takingOðn3Þ time on a graph

with n nodes [44].

Within the subfamily of compass codes we focus on,

each qubit participates in at most two stabilizer generators

of a given type. As a result, the corresponding decoder

graphs contain no hyperedges, so compass codes inherit the

efficient MWPM decoder of the surface code.

When dealing with boundary conditions, some care must

be taken to ensure a perfect matching exists since the parity

of the marked nodes may no longer be even. We use the

techniques of Ref. [14] to estimate the logical error rates in

the presence of boundaries.

4. Asymmetrically weighted union-find decoding

The final decoder we use is an asymmetrically weighted

variant of the union-find decoder recently proposed in

Ref. [34]. This decoder is guaranteed to perform optimally

on errors of weight at most bd=2c, and it has been shown

empirically to perform almost as well as MWPM on toric

codes with respect to its threshold.

For simplicity, our simulations are run with a periodic

north-south boundary condition, which suffices for thresh-

old comparison [45]. However, for completeness, we

summarize the decoder on lattices with boundaries, along

with our modifications to account for asymmetric error

rates. Decoding proceeds in two steps.

(1) Asymmetrically weighted syndrome validation. The

first step is (weighted) syndrome validation. In this

step, we form an erasure that is consistent with the

observed syndrome and that accounts for the asym-

metric error rates. To satisfy the first property, we

save each node as a cluster, growing all clusters with

an odd number of marked nodes by half-edges. After

each growth, we fuse those clusters that intersect.

The cluster growth terminates when each cluster has

an even number of marked nodes, indicating that we

can form a hypothetical erasure that is consistent

with the observed syndrome. Furthermore, we use

the weighted-growth heuristic, growing only those

odd clusters in each step whose boundary is small-

est. We refer to the reader to Ref. [34] for a more

lengthy description of syndrome validation.

In the case of a decoder graph with a boundary, we

no longer have a guarantee that there are an even

number of syndromes in our graph. This is because

some of the syndromes might condense at the

boundary. To accommodate for this issue, we simply

treat the boundary as a sink in which every cluster

that fuses with the boundary is assigned an even

parity.

After this, syndrome verification concludes by
choosing a spanning forest within the clusters. We
asymmetrically weight syndrome verification by
using Kruskal’s algorithm to choose a maximum-
weight spanning forest, where each edge is weighted
according to its probability of failure [46]. This
choice increases the probability of identifying the
erroneous qubits.

(2) Peeling with boundaries. Having associated to the

graph an erasure forest that is consistent with

the observed syndrome and asymmetric error rates,

the second step is to apply maximum-likelihood

erasure decoding in the form of an altered peeling

decoder [47].

To each leaf node of the resulting erasure forest,

we apply the following rules:

(i) If the leaf node is marked, apply a phase flip to

the corresponding edge and flip the mark of the

connected node. Then, remove the leaf node

and edge from the erasure tree.

(ii) If the leaf node is unmarked, remove it and the

corresponding edge from the erasure tree.

At this stage, we have an erasure forest with
no leaf nodes and potentially some open edges
connecting to the open boundaries. Unfortu-
nately, these open edges are missing their leaf
nodes, so we cannot peel them. In Ref. [47], this
case is avoided by growing the spanning forest
so that each tree has at most one open edge, and
then peeling towards that edge. However, for
asymmetrically distributed noise, a maximum-
weight spanning forest might not take this form.

Instead, we can use dynamic programming to find a

maximum-probability error configuration consistent with

syndrome information in linear time. Fix any tree inside the

forest, with edges weighted according to their error

probabilities, and root the tree at any node. Each node

in this tree corresponds to a stabilizer, which will be either

marked or unmarked. Our aim is to identify a subset S of

edges that is both consistent with the syndrome information
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and has maximal failure probability. We then apply our

phase-error correction to this set.

We proceed recursively. To each node v, we associate

two values. First, we compute the maximum weight of Sv
for the subtree rooted at v over all subspanning trees that

include the parent edge. Second, we compute the same

maximum weight of Sv over all subspanning trees that do

not include the parent edge. Each of these updates takes

constant time, assuming that the children were previously

evaluated and that v has a bounded degree. Iterating over all
vertices in the tree and trees within the forest, this

terminates in linear time and can be used to produce the

desired S.
By using a tree structure, the union-find growth algo-

rithm takes O(n · αðnÞ) time, where α is the exceptionally

slow-growing inverse Ackermann’s function. However,

because we find a maximum-weight spanning tree, this

variant requires O(n logðnÞ)-time preprocessing. The

union-find decoder is the most time efficient of the three

decoders we consider.

For a pictoral skeleton of the decoder, see Fig. 2. A

comparison of the decoder error rates with and without the

asymmetric alteration on the surface code is shown in

Fig. 3. There, the error model is generated by choosing an

error probability pi ∈r ½0; 2p� for each physical qubit i
uniformly at random. The value pi is passed to the

asymmetric decoder to inform Kruskal’s algorithm. This

additional information results in an improvement on the

error rate but with little effect on the threshold.

III. THRESHOLD SCALING

Before we consider asymmetric noise models, we ask the

more fundamental question, how does the threshold behave

in these compass codes? In particular, Bacon-Shor codes

have no threshold, while surface codes boast some of the

highest thresholds. Compass codes provide a framework

for interpolating between these two, so we examine the

threshold scaling here first.

We use the code’s CSS structure to argue directly about

phase-flip errors of probability p; bit-flip errors can be

decoded analogously and independently. To correct phase

errors, the relevant information about the code consists of

GZ and SX, the Z-type gauge subgroup and the X-type
stabilizer subgroup, respectively.

A. Surface-density codes

The first family of codes we consider are the (random-

ized) surface-density codes, which interpolate between the

Bacon-Shor and surface codes. Each code is determined

stochastically according to a surface-density qsurf in the

following way. Given a square lattice, for each plaquette of

one color in the checkerboard configuration of the surface

code, we cut the corresponding X-type stabilizer at that

plaquette with probability qsurf. Correspondingly, qsurf ¼ 0

is equivalent to the Bacon-Shor family (with respect to

phase errors), and qsurf ¼ 1 is equivalent to the surface

code.

FIG. 3. A comparison of logical error rates for the asymmetric

decoder (solid lines) versus the symmetric decoder (dashed lines).

Each data point was generated with 106 independent Monte Carlo

trials.FIG. 2. The square represents the decoder graph (unseen) with

north-south open boundary conditions. First, the clusters (dashed

enclosures) are grown to an erasure consistent with the (red)

marked syndromes. We then find maximum-weight spanning

trees, with unmarked syndromes in black. After peeling the leaf

nodes, we decode the trees using dynamic programming.
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1. Ising models associated to quantum codes

We identify the scaling of the threshold with the surface-

density under maximum-likelihood decoding. To do so, we

exploit the aforementioned correspondence between

thresholds of quantum codes and phase transitions of

associated random-bond Ising models [6,40–42].

We briefly summarize this connection in the simplest

case of independently decoded noise. Let G0 be a minimal

generating set of GZ. Let the gi ∈ G0 be indexed by i, and
associate to each generator an Ising spin si ¼ �1. Index the

physical qubits by j ∈ f1;…; L2g, and define

giðjÞ ≔

�

1 if gi is supported on site j:

0 otherwise

Then, for any vector τ ∈ fþ1;−1gL
2

, we define the

classical spin Hamiltonian

HτðsÞ ¼ −
X

L2

j¼1

τj

Y

jG0j

i¼1

s
giðjÞ
i :

For any Pauli Z error E, define ðτEÞk to be −1 if E is

supported on site k, and þ1 otherwise. For physical error

rate p, we can define the virtual temperature βp according

to the Nishimori line [48] so that

βp ≔
logð1 − pÞ − logðpÞ

2
:

Note that this is a simplification of the more general

Nishimori conditions, with fixed coupling coefficients

J ¼ 1 [42]. Define τ to be a quenched vector-

valued random variable that takes value τE with probability

pjEjð1 − pÞL
2−jEj. Then, a phase transition of the associated

random-bond Ising model at ðpc; βpc
Þ corresponds to an

accuracy threshold at pc [6,40–42].

For an example of an Ising model associated to a

compass code, see Fig. 4. Note that, for decoder graphs

without hyperedges, the graph defining the Ising model is

dual to the decoder graph.

2. Numerical simulations

Parameters of the simulation.—We map surface-density

codes to their corresponding anisotropic Ising models on

random graphs. We generate random samples of the model

with the given qsurf and p for various system sizes L, with
the temperature determined by the Nishimori line according

to the disorder parameter p. For each random trial, we use a

cluster algorithm [49] and an improved estimator to

compute the Binder cumulant [50]. Finally, we scan over

p [at a separation of 0.1 for lnðpÞ] and look for a transition
point. The system size we use ranges from L ¼ 5 to

L ¼ 61, the number of steps for the cluster update ranges

from 106 to 108, and the number of random trials for each

parameter set ranges from 200 to 104.

In general, as the transition point pc increases with qsurf ,
it enhances the frustration in the system, so more steps are

needed for convergence. This case is verified by the

autocorrelation of the observables. However, for larger

qsurf , the slope of the Binder cumulant U with respect to

− lnðpÞ also increases. As a result, less samples and smaller

system sizes are required to achieve the same level of

accuracy.

Numerical results.—Interestingly, simulations suggest

that the threshold grows linearly with the surface density

(see Fig. 5). In particular, a positive density is both

FIG. 4. The left-hand side represents the graph describing the

two-body Ising model. The right-hand side represents its dual, the

decoder graph. The blue squares represent cuts in the X-type
stabilizers on a 9 × 9 lattice. The connectivity on the left-hand

graph determines the sparsity on the right.

FIG. 5. Scaling of the critical disorder pc with respect to the

surface density qsurf. Autocorrelation is checked using a binning

analysis; the fit is linear through the origin. The widest error bars

are of total width of approximately 1%. At qsurf ¼ 1, the results

closely match the established critical point at pc ¼ 0.1094�
0.0002 [51].
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necessary and sufficient for the presence of a threshold.

The linearity contrasts with the threshold scaling of the

less-restricted code family that we consider next.

B. Shor-density codes

We next turn our attention to Shor-density codes, which

form a randomized family of codes that interpolate between

Bacon-Shor codes and their full X-type gauge-fix, Shor’s

subspace code. These codes are defined similarly to

surface-density codes according to a new parameter, which

we call the Shor-density qshor. For these codes, X-type
stabilizers are cut at each plaquette with probability qshor.
Thus, qshor ¼ 0 again corresponds to the Bacon-Shor

code, whereas qshor ¼ 1 corresponds to Shor’s subspace

code [52].

Of course, the thresholds for such codes are one-sided:

More cuts for one type of stabilizer leaves less for the other.

Consequently, such codes are best suited for asymmetric

noise models. Note that these codes remain local, in the

sense that the expected maximum stabilizer weight grows

logarithmically in the lattice size for any fixed qshor.
Because the associated graphs to these codes have a

richer structure, which may hinder the convergence of the

clustering algorithm, we instead study these codes using the

union-find decoder. We generate a new decoder graph and

error in each round and perform 106 Monte Carlo trials for

each data point. We then exploit the efficiency of the union-

find decoder to run 300 Monte Carlo trials on a 1001 ×

1001 lattice to verify the thresholds, which should sharply

converge to either pL ¼ 0 or pL ¼ 0.5 about the threshold.

This large lattice size is necessary to mitigate the growing

finite-size effects.

The threshold scaling in Fig. 6 nearly saturates the zero-

rate quantum Gilbert-Varshamov bound [38],

HðpxÞ þHðpzÞ ≤ 1;

mirroring results obtained on other lattice configurations

[53,54]. One thing to note is the normalizing finite-size

effects at very high and very low densities. Note that, at

qshor ¼ 1, we essentially have disjoint copies of a repetition

code. This result has a threshold of 50% since the union-

find decoder behaves optimally on errors of weight less

than bL=2c [34]. However, we observe a pseudothreshold

of approximately 45% for union-find decoding on a 1001 ×

1001 lattice, matching the analytical solution

plogical ¼
1

2
ð1 − ð1 − 2prepÞ

LÞ;

where prep is the probability of failure of a repetition code

of length L,

prep ¼
X

L

k¼⌈L
2
⌉

�

L

k

�

pkð1 − pÞL−k:

Summary.—These simulations suggest that the threshold

is determined predominantly by the density of syndrome

measurements, rather than their specific configuration, for

symmetrically distributed noise. The usual surface code

does not far outperform randomized codes of equal density

by this metric; it does so only slightly, as its symmetry will

minimize the number of ⌈L=2⌉-weight errors that introduce
a logical error. This result is reinforced by the observation

that the threshold appears to scale linearly with surface

density, but it is strictly convex with respect to Shor density.

IV. ASYMMETRIC NOISE

Next, we turn our attention to asymmetric noise. We

consider two different types: biased noise that is symmet-

rically distributed throughout the lattice, and asymmetri-

cally distributed noise. In both cases, we find that

substantial gains can be made by tailoring the decoder

graphs to the noise directly. We analyze these in both the

code capacity and phenomenological models, and compute

their thresholds under different noise biases.

A. Biased but symmetric noise

For biased noise that is symmetrically distributed, we

construct a family of compass codes we call elongated

codes. These codes are defined by a parameter l ∈ Nþ that

FIG. 6. Scaling of the estimated threshold p with respect to the

Shor density qshor. The fit is quadratic through the origin; the

finite-size effects are apparent. All points were obtained on

81 × 81-size lattices, except for qshor ¼ 0.9. To emphasize finite-

size effects, this was performed on a 631 × 631 lattice, which is

greater than necessary for fault-tolerant computation [10].
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we call the elongation of the code, and they are constructed

by cutting the Z stabilizers at the ði; jÞth plaquettes for all

i − j≡ 0 (mod l). The X stabilizers are then cut at all

remaining plaquettes, resulting in a subspace code. This

method is similar to the approaches of Refs. [16,24], which

consider concatenations with different phase-flip repetition

codes.

Under this definition, we obtain Shor’s code for l ¼ 1

and the surface code for l ¼ 2. For l > 2, we obtain an

asymmetrization of Kitaev’s toric code in the bulk with

extended 2l-body plaquette operators. This family illus-

trates that a simple compass code is well equipped to

correct asymmetric noise while somewhat sacrificing

locality.

It is worth noting that choosing asymmetric lattice

dimensions as in Ref. [4] may alter the logical error rate

of a code family, but it will not change the threshold, as it is

a property of the bulk. Thus, the elongation of the code

refers to a stretching of the bulk stabilizer geometry not the

lattice itself.

As the elongation grows, finite-size effects play a greater

role. As such, we use MWPM decoding to perform

simulations on smaller lattices at lower elongations and

union-find decoding to test larger lattices. While these

larger lattices also suffer from finite-size effects, we use the

efficiency of union-find decoding to simulate lattices of

between 103 and 104 qubits, which is the estimated code

size required for full-scale fault-tolerant computation [10].

Furthermore, we estimate the phenomenological thresh-

old by simulating (2þ 1)-D elongated codes. For a

physical lattice of linear size L, this corresponds to

performing L rounds of faulty syndrome extraction, fol-

lowed by an ideal round, and then decoding. The corre-

sponding decoder graph is then Lþ 1 copies of the initial

decoder graph, with L timelike slices of edges connecting

the corresponding vertices in each spacelike slice. These

timelike edges represent faulty measurements.

Although the size of each stabilizer is independent of the

lattice size, we scale the probability of failure for each

stabilizer linearly with its weight. We assume the usual

phenomenological normalization that plaquette stabilizers

are faulty at the physical error rate p. Despite some

increasing stabilizer weights, we observe substantial thresh-

old gains in both the code capacity and phenomenological

models.

Tables I and II show the code-capacity thresholds using

the MWPM and union-find decoder, respectively, while

Table III shows the phenomenological threshold using the

union-find decoder. In these tables, ηopt refers to the optimal

bias that realizes the threshold pthr, while η� is the bias

above which the codes will outperform the surface code.

Notably, a relatively smaller noise bias is required to

outperform the surface code in the phenomenological

setting. Unsurprisingly, the MWPM outperforms the

union-find decoder as a whole, but surprisingly, it displays

lower thresholds on lattices comprised of higher-weight

stabilizers. This result suggests that union-find decoding

may better exploit the degeneracy of certain lattices; in

particular, one should use MWPM for Z-type errors and

union-find decoding for X-type errors on elongated lattices.
Our estimates for established surface-code thresholds

match those found in Ref. [14] at 10.3% for MWPM

decoding and in Ref. [34] at 9.95% and 2.65% for union-

find decoding in 2- and (2þ 1)-D, respectively.

B. Spatially dependent noise

We conclude by considering noise that is asymmetrically

distributed throughout the lattice. To illustrate the idea, we

TABLE I. Thresholds for the MWPM decoder in the code-

capacity model. Simulations were done on lattices of size 17 × 17

at most.

l ηopt pthr η� pz px

2 0.5 15.5% N=A 10.3%� 0.2% 10.3%� 0.2%

3 1.67 17.9% 1.39 14.1%� 0.3% 6.5%� 0.2%

4 3.00 20.0% 2.10 17.5%� 0.2% 5.0%� 0.2%

5 4.26 21.6% 2.78 19.5%� 0.1% 4.1%� 0.1%

6 5.89 22.8% 3.70 21.1%� 0.1% 3.3%� 0.1%

TABLE II. Thresholds for the union-find decoder in the code-

capacity model. Simulations were done on lattices of size 81 × 81

at most.

l ηopt pthr η� pz px

2 0.5 15.0% N=A 10.0%� 0.2% 10.0%� 0.2%

3 1.41 16.9% 1.14 13.4%� 0.3% 7.0%� 0.2%

4 2.40 18.4% 1.78 15.7%� 0.2% 5.4%� 0.2%

5 3.45 19.6% 2.41 17.4%� 0.1% 4.4%� 0.1%

6 4.45 20.7% 2.95 18.8%� 0.1% 3.8%� 0.1%

7 5.62 21.9% 3.55 20.2%� 0.1% 3.3%� 0.1%

8 6.23 22.8% 3.84 21.2%� 0.1% 3.1%� 0.1%

9 7.29 23.7% 4.17 22.2%� 0.1% 2.9%� 0.1%

10 8.36 24.0% 4.77 22.7%� 0.1% 2.6%� 0.1%

20 20.7 28.3% 10.5 27.6%� 0.1% 1.3%� 0.1%

50 55.3 33.8% 24.0 33.5%� 0.1% 0.6%� 0.1%

TABLE III. Thresholds for the union-find decoder in the

phenomenological model. Simulations were done on lattices of

size 35 × 35 × 35 at most.

l ηopt pthr η� pz px

2 0.5 3.98% N=A 2.65%� 0.2% 2.65%� 0.2%

3 1.20 4.45% 0.99 3.4%� 0.2% 2.0%� 0.2%

4 1.88 4.60% 1.49 3.8%� 0.2% 1.6%� 0.2%

5 2.73 4.85% 2.06 4.2%� 0.2% 1.3%� 0.2%

6 3.17 5.00% 2.32 4.4%� 0.2% 1.2%� 0.2%
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focus on a simple noise model in which dephasing noise

decays linearly from the right-hand side of the lattice

according to the function pzði; jÞ ¼ (wðj=LÞ þ ð1 − wÞ×
ð1 − j=LÞ)ptot=2. Here, i and j are the coordinates of a

qubit, L is the linear size of the lattice, and w is a constant

that determines the degree of incline. We further assume

that px ¼ ptot=2, so ptot is the total infidelity of the channel.

Note that the average bias between the dephasing noise and

bit-flip noise is symmetric.

The idea is simple: When the noise is distributed

asymmetrically, the stabilizer information can be chosen

to match the noise. Intuitively, lower weight stabilizers add

more error information about the qubits nearby. With this in

mind, we define a randomized family of codes that we

call (pz-)tailored codes. At each plaquette, we choose to

cut the corresponding X-type stabilizer with probability

2pzði; jÞ=ptot, where i, j are the coordinates of the upper-

left qubit at that plaquette. Then, in the presence of a high

amount of dephasing noise, many low-weight X-type
stabilizers will appear to aide in error correction.

We observe that the tailoring of these codes to the noise

model can augment error rates (see Fig. 7). It is worth

noting, however, that simply weighting the probability of

each cut according to the surrounding qubits may not

always be the optimal strategy. In particular, in the low

error-rate limit, this will become an optimization problem

that seeks to minimize the weights of uncorrectable paths of

length ⌈L=2⌉ in the decoder graph.

V. FAULT TOLERANCE WITH BARE ANCILLA

One of the major advantages that comes with the locality

of the Bacon-Shor code is fault-tolerant bare-ancilla syn-

drome extraction [16,17]. Although this extraction scheme

is the simplest and least resource intensive, most codes

incur some loss in effective distance due to high-weight

correlated errors produced by errors on the ancilla. For the

standard and rotated surface codes, these “hook” errors

can be carefully designed to ensure no significant loss in

performance [6,8].

In the compass-code framework, this resilience to

correlated errors is a general phenomenon resulting from

measuring stabilizers along the Bacon-Shor gauge oper-

ators. Using such a syndrome extraction scheme on any

gauge fix of the Bacon-Shor code, any collection of d − 1

faults in the circuit produce an error of the form EG, where
jsuppðEÞj ≤ d − 1 is minimal and G is a gauge operator of

the initial Bacon-Shor code.

Divide the generators of the stabilizer group of any

compass code into S ¼ hSB;SFi, where SB are the

stabilizer generators of the Bacon-Shor code and SF are

those gauge operators that have been fixed. Then, for any

error EG resulting from d − 1 faults in the circuit, if

jsuppðEÞj ¼ 0, then either G ∈ SF or there exists an

S ∈ SF∶SG ¼ −GS. Otherwise, if 0 < jsuppðEÞj < d,
then there exists an S ∈ SB∶SE ¼ −ES. Since S must also

commute with any gauge operator G, it follows that EG is

detectable. Thus, any error resulting from ≤ d − 1 faults

during syndrome extraction is either detectable or trivial.

This demonstrates that there exists fault-tolerant decod-

ing without a loss in effective distance. However, it is not

necessarily maximum-likelihood decoding on the memory.

One simple counterexample is Shor’s code, where a single

well-placed ancilla error can affect a weight d memory

error that maximum-likelihood will misdiagnose as a

weight d − 1 memory error, resulting in failure. The above

case implies that performing MWPMwith respect to linear-

probability faults in the decoder graph is fault tolerant.

Introducing these faults amounts to triangulating the

FIG. 7. Error rates for gradually (w ¼ 0.25, top panel) and

steeply (w ¼ 0.10, bottom panel) inclined linear noise, computed

on a lattice of size 33 × 33 using union-find decoding in the high-

noise regime. Here, pfail represents the total probability of a

failure in either the X- or Z-type decoders.
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decoding graph, similar to hook errors in the surface-code

case [6,14]. Determining circuit-level compass-code per-

formance in this model is the subject of future inquiry [55].

VI. CONCLUSIONS

In this article, we have described an ansatz for designing

planar codes stemming from the 2D compass model. We

have provided evidence that simple subfamilies of this class

may be useful for correcting biased noise in idealized code

capacity and phenomenological noise models, particularly

if that bias is distributed geometrically. In particular, one

can bias the stabilizers locally towards correcting a certain

error type.

There are two central challenges for these codes in the

more realistic circuit-level noise model. Although these

codes are still local, there is a trade-off between the bias of

the codes and the locality of the stabilizer measurements.

We have demonstrated that fault-tolerant measurement in

Bacon-Shor [16,17] and surface codes [6,8] using bare

ancilla can be adapted to the compass model, if measure-

ments are performed in the correct order. Nevertheless,

these correlated errors will deteriorate code performance as

higher-weight stabilizer outcomes become less reliable.

This result might be mitigated by using other flag-type

schemes or by preserving some gauge d.o.f. We would

expect that these gains would persist but at the expense of

higher bias and code overhead. As such, we leave a more

involved circuit-level analysis to future work.

The second concern is whether the biased noise model

itself can persist at the circuit level. To remain experimen-

tally motivated, one must choose operations that preserve

the bias [5,22,24]. Consequently, the construction of simple

and bias-preserving fault-tolerant gadgets is key to utilizing

asymmetric noise.

Finally, we have only narrowly broached the design

space offered by these codes. Exploring different configu-

rations according to other geometrically defined noise [32],

generalizing to codes defined on the 3-D compass model,

and using correlated decoders [5,25–27,56] are all avenues

to explore. More generally, finding other low-density

parity-check constructions adapted to biased noise may

give the best of both worlds, mitigating the overhead of

asymmetrization while taking advantage of the bias.
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