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The compass model on a square lattice provides a natural template for building subsystem stabilizer
codes. The surface code and the Bacon-Shor code represent two extremes of possible codes depending on
how many gauge qubits are fixed. We explore threshold behavior in this broad class of local codes by
trading locality for asymmetry and gauge degrees of freedom for stabilizer syndrome information.
We analyze these codes with asymmetric and spatially inhomogeneous Pauli noise in the code capacity
and phenomenological models. In these idealized settings, we observe considerably higher thresholds
against asymmetric noise. At the circuit level, these codes inherit the bare-ancilla fault tolerance of the

Bacon-Shor code.
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I. INTRODUCTION

At the heart of scalable quantum computing is fault
tolerance [1-3]. To optimize the fault tolerance of a system,
one should adapt the information extracted from the system
to the particular noise it suffers from. Typical models of
fault tolerance assume isotropic error that is homogeneous
in space. This has resulted in the broad study of codes that
are invariant over space with unbiased noise. We study a
family of codes derived from the compass model of spin
interactions that can be tailored to specific noise models
and maintain simple fault-tolerance procedures. We find
that this tailoring can greatly improve the fault tolerance of
a system in idealized settings, reinforcing the perspective
that noise asymmetry is a resource that should be taken
advantage of. Combined with other methods that benefit
from asymmetric noise [4,5], our results point towards
methods for deriving other families of subspace codes from
subsystem codes.

Our focus is on codes built from local interactions. For
physical systems that prefer such interactions, topological
codes have emerged as leading candidates for fault-tolerant
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quantum computation [6—13]. Among these, the surface code
is a particularly enticing choice, offering depolarization
accuracy thresholds in excess of 15%, assuming efficient,
noiseless, error correction with a planar architecture [14].

Another code family that has generated significant
interest is the subsystem Bacon-Shor code family [15].
These codes have many desirable properties: Their gauge
group is 2-local, measurements can be performed with bare
ancilla with virtually no loss in performance [16,17], and
they support fault-tolerance schemes that avoid costly
magic-state distillation [18]. Unfortunately, while Bacon-
Shor codes offer some of the highest concatenated thresh-
olds [16], they fail to have any threshold when grown as a
local family on a lattice without concatenation [19].

In the present article, we investigate codes derived
from the quantum compass model on a square lattice [20].
This model provides a natural framework for constructing
subsystem and subspace stabilizer codes. These codes can
be viewed as different gauge fixes of the Bacon-Shor code
and so include the (rotated) surface codes, as well as codes
with certain topological defects, as members [8,9]. While
we focus on a subfamily of (generalized) surface codes [21]
with desirable fault-tolerance properties, the design space
for these codes is much larger. Two advantages of this
family are its malleability, making it suitable for correcting
asymmetric noise, and fault-tolerant bare-ancilla syndrome
extraction inherited from measuring along the gauges of the
template Bacon-Shor code.

Tailoring codes and decoders to specific noise models
can often yield fruitful improvements in threshold scaling.
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For biased noise models, one can choose fault-tolerance
schemes and gates that take advantage of asymmetric error
rates [22-24]. Indeed, simply choosing the right decoder
can yield tremendous gains in the effective threshold
[5,25-28]. One can even customize codes directly to
device-level noise [29] or biased error rates [4,30]. Such
asymmetric noise models are motivated experimentally by
the observation that dephasing noise dominates certain
quantum computing architectures [31]. By modifying the
stabilizers and boundaries of a planar code directly, one can
also obtain denser packings of logical qubits [21] and
optimized performance with respect to erasures [32].

We similarly modify the geometry of planar codes using
the convenient language of compass codes, adapting the
density of the syndrome information to better correct biased
and spatially dependent Pauli noise. To quantify the value
of this adapted syndrome data, we consider maximum-
likelihood [6,33], minimum-weight perfect matching [6,14]
and union-find [34] decoders that treat X- and Z-type errors
independently. We choose different decoders depending on
the context, but we generally observe similar performance
across all three. In particular, we expect that tuning
correlated decoders to account for these different noise
models will boost code performance even further [5].

The idea is simple: One should tessellate a lattice
according to the relative likelihood of errors in that part
of the lattice. Although these codes remain local, there is a
trade-off between the locality of their stabilizers and their
robustness against asymmetric noise, similar to Ref. [24].
We analyze these codes numerically in the code capacity
and phenomenological noise models, and observe consid-
erably higher thresholds against asymmetric noise in these
idealized settings. We leave a discussion of the challenges
posed by circuit-level noise to the conclusion.

The paper is structured as follows. In Sec. II, we
introduce 2D compass codes and the noise models we
consider. In Sec. III, we determine the threshold behavior in
two randomized families of codes interpolating between
Bacon-Shor codes, surface codes, and Shor’s code. In
Sec. IV, we quantify the threshold of 2D compass codes
tailored for different asymmetric noise models. In Sec. V,
we demonstrate fault tolerance for the compass-code family
using only bare-ancilla syndrome extraction. We conclude
with some discussion in Sec. VI.

II. BACKGROUND

We begin by defining a subspace stabilizer code, which
is an encoding of logical information into subspace C of an
ambient Hilbert space H,

H=Ca®CH,
where C can be defined as the +1-eigenspace of n — k

commuting Pauli operators generating the stabilizer group.
In this case, we say that the code has parameters n, the log

dimension of H, and k, the log dimension of C. Informally,
this represents an encoding of k qubits into n qubits.

A subsystem stabilizer code is a generalization of a
subspace stabilizer code in which we allow some number
g < k of the logical degrees of freedom (d.o.f.) to vary. In
this case, we further decompose our space as

H=(L®G) & C,

where ¢ is the log dimension of G and k — g is the log
dimension of £. We call the group generated by all logical
Pauli operators acting trivially on £ the gauge group of the
code, which has the stabilizer group of the underlying
subspace code as its center. This broad class encompasses
the majority of popular code families, where subspace
codes are the special case of g = 0.

A. 2D compass codes

The quantum compass model on a square lattice is
generally defined by the Hamiltonian [35,36]

H = Z Z IxXijXij + Z ZJZZi.jZiHJ'

i jEL-1 #L-1

Here, (i,j) indexes a qubit according to its displacement
from the top-left corner of the lattice. Closely connected
with this model are Bacon-Shor codes, which are stabilizer
subsystem codes with gauge operators realized by the two-
body interaction terms of the compass model [15]. This
family is a standard example of codes requiring only local
measurements for error correction, but which are not
topological, with stabilizers that extend the length of the
lattice.

The gauge group of a Bacon-Shor code is generated
by G = (X;;X;;+1.Z;;Z;.1 ), with stabilizer group S =
(I XijXit1-11; ZijZij+1)- When defined on an L x L
lattice, these 2L-body stabilizer generators leave us with
(L —1)? gauge d.o.f. to format as we please.

Our tool for constructing compass codes will be the method
of gauge fixing, by which we can insert gauge transformations
into the stabilizer group [7,37]. Operationally, up to phase,
this method corresponds to inserting a gauge operator g into S
and then removing the set of all gauge operators & that
anticommute with g from G. Note that as Bacon-Shor codes
are CSS codes [38,39], if we perform fixes of either X or Z
type, we preserve the CSS structure.

We focus on a subclass of surface codes that are easy to
specify via a coloring of the lattice (see Fig. 1). In that
graphical language, red plaquettes correspond to “cuts” in
the vertical Z-type stabilizers. By this, we mean that the
Z-type stabilizer is divided into two independent Z stabi-
lizers by the red plaquette, extending the stabilizer group by
one generator while expending 1 gauge d.o.f. In particular,
the original Bacon-Shor code stabilizers remain in the
stabilizer group of any compass code.
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FIG. 1. An example of a compass code on a 9 x 9 lattice with
qubits placed on vertices. Red and blue plaquettes represent cuts
in the Z-type and X-type stabilizers, respectively. Equivalently,
Z-type stabilizers are formed by blue plaquettes on the left, and
X-type stabilizers are formed by red plaquettes on the right. Bare
horizontal lines on the left represent horizontal ZZ stabilizers or
“0”-area blue plaquettes; the analogous vertical lines on the right
form XX stabilizers. As there are no blank plaquettes in the
combined picture, all of the gauge d.o.f. are fixed.

We index plaquettes according to the index of their top-
left qubit; then, for a red plaquette in the (i, j)th cell of the
lattice, we fix the gauge operator Hi:o ZjZ j+1> whereas

for a blue plaquette, we fix [[;_, X; X, Bacon-Shor
codes correspond to an empty coloring, whereas the
standard surface code corresponds to a red and blue
checkerboard. Note that a plaquette can be colored either
red or blue, but not both, as the resulting stabilizers would
not commute.

B. Noise models

In order to carry out numerical simulations, we restrict
ourselves to asymmetric Pauli noise. We consider the
n-biased depolarizing channel with error rate p, defined as

E(p) = (1 = p)p+ pxXpX + pyYpY + pzZpZ,

where p = px + py +pz and n = pz/(px + py). We
make the simplifying assumption that py = py, matching

the definition in Ref. [5]. The notion of a physical error rate
p is then well defined, as the fidelity of such a channel to
the identity is independent of #.

We consider symmetric but biased noise, in which each
qubit experiences the same error channel, as well as
spatially inhomogeneous noise models, in which the error
channel may depend on the qubit’s position in the lattice.
In the latter case, we define the error rate and bias of the
channel on the lattice as a whole as the average fidelity and
bias over each qubit in the lattice. Note that we must be
careful in comparing such models. For example, concen-
trating noise on a small subset of qubits might always
produce perfectly correctable errors, whereas distributing
that noise symmetrically will not.

Finally, depending on the context, we consider either the
code capacity setting, in which syndrome measurements
are assumed to be perfect, or the phenomenological setting,
in which the syndrome measurements can be faulty.

C. Decoders

Inherent to any discussion on thresholds is a choice of
decoder. We focus on three decoders: independent maxi-
mum-likelihood, minimum-weight perfect matching, and
union-find decoding. We choose among these according to
our computational needs.

Each of these decoders corrects X- and Z-type errors
independently. Thus, any gains in threshold scaling are a
product of the tailored syndrome information alone; it is
these gains we aim to quantify. For example, we expect that
using a correlated decoder with X- and Y-type stabilizers
would augment the threshold further [5].

1. Decoder graph

For independent correction of X- and Z-type errors on a
CSS code, the relevant decoding information is captured in
the decoder (hyper)graph. The decoder graph for phase
errors is constructed by associating a vertex to each X-type
stabilizer and a (hyper)edge to each qubit, where the edges
connect all stabilizers incident to that qubit. The decoder
graph for bit-flip errors is defined analogously. Note that
for the subspace codes we consider, the decoder graph
corresponds to a cellulation which realizes that code as a
homological surface code. For an example of the phase-
error decoder graph of a compass code, see Fig. 4.

The task of a decoder is then, given some syndrome
information in the form of marked nodes, to identify the
corresponding edge configuration producing those marked
nodes up to homology. The question we consider in this
paper is the following: What threshold gains do we obtain
by modifying the phase and bit-flip decoder graphs
according to asymmetrically distributed edge failure
probabilities?

2. Maximum-likelihood decoding

The maximum-likelihood decoder is one that takes in
syndrome information and chooses the most likely error
class producing that syndrome. Formally, its probability of
success is given by pgc = >, Pr(E,), where the sum runs
over all syndromes s and E; is the most likely error class
conditioned on syndrome s. This decoder will yield optimal
thresholds, but it is often inefficient to implement.

Fortunately, one can relate the threshold of the maxi-
mum-likelihood decoder to the phase transition of an
associated random-bond Ising model [6,40,41], with cou-
pling strengths satisfying a particular set of criteria known
as the Nishimori conditions [42]. The probability of an
error class is then given by the partition function at a
particular quenched disorder. In particular, the disorder of
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the model serves as an order parameter that captures this
phase transition, which determines the maximum-likeli-
hood threshold in the presence of independent [41] and
even correlated [42] noise. For our purposes, however, we
only need the correspondence to independently decoded
noise [6].

3. Minimum-weight perfect matching decoding

The minimum-weight perfect matching (MWPM)
decoder assigns to each syndrome the error class correspond-
ing to a most-likely individual error producing that syn-
drome. Its probability of success is then py,. = >, Pr(E;),
where E| is the most-likely error producing syndrome s.

This decoder is implemented by constructing a minimum-
weight perfect matching among the marked vertices in the
decoder graph. The edge weights between two marked
vertices correspond to the most probable path between
them, and our edge weights are generated using standard
techniques [43]. For symmetric noise, this is simply the
shortest path, but for asymmetric noise it need not be.
Fortunately, Edmond’s blossom algorithm runs efficiently
on graphs without hyperedges, taking O (n*) time on a graph
with n nodes [44].

Within the subfamily of compass codes we focus on,
each qubit participates in at most two stabilizer generators
of a given type. As a result, the corresponding decoder
graphs contain no hyperedges, so compass codes inherit the
efficient MWPM decoder of the surface code.

When dealing with boundary conditions, some care must
be taken to ensure a perfect matching exists since the parity
of the marked nodes may no longer be even. We use the
techniques of Ref. [14] to estimate the logical error rates in
the presence of boundaries.

4. Asymmetrically weighted union-find decoding

The final decoder we use is an asymmetrically weighted
variant of the union-find decoder recently proposed in
Ref. [34]. This decoder is guaranteed to perform optimally
on errors of weight at most |d/2], and it has been shown
empirically to perform almost as well as MWPM on toric
codes with respect to its threshold.

For simplicity, our simulations are run with a periodic
north-south boundary condition, which suffices for thresh-
old comparison [45]. However, for completeness, we
summarize the decoder on lattices with boundaries, along
with our modifications to account for asymmetric error
rates. Decoding proceeds in two steps.

(1) Asymmetrically weighted syndrome validation. The
first step is (weighted) syndrome validation. In this
step, we form an erasure that is consistent with the
observed syndrome and that accounts for the asym-
metric error rates. To satisfy the first property, we
save each node as a cluster, growing all clusters with
an odd number of marked nodes by half-edges. After
each growth, we fuse those clusters that intersect.

The cluster growth terminates when each cluster has
an even number of marked nodes, indicating that we
can form a hypothetical erasure that is consistent
with the observed syndrome. Furthermore, we use
the weighted-growth heuristic, growing only those
odd clusters in each step whose boundary is small-
est. We refer to the reader to Ref. [34] for a more
lengthy description of syndrome validation.

In the case of a decoder graph with a boundary, we
no longer have a guarantee that there are an even
number of syndromes in our graph. This is because
some of the syndromes might condense at the
boundary. To accommodate for this issue, we simply
treat the boundary as a sink in which every cluster
that fuses with the boundary is assigned an even
parity.

After this, syndrome verification concludes by
choosing a spanning forest within the clusters. We
asymmetrically weight syndrome verification by
using Kruskal’s algorithm to choose a maximum-
weight spanning forest, where each edge is weighted
according to its probability of failure [46]. This
choice increases the probability of identifying the
erroneous qubits.

(2) Peeling with boundaries. Having associated to the
graph an erasure forest that is consistent with
the observed syndrome and asymmetric error rates,
the second step is to apply maximum-likelihood
erasure decoding in the form of an altered peeling
decoder [47].

To each leaf node of the resulting erasure forest,
we apply the following rules:

(1) If the leaf node is marked, apply a phase flip to
the corresponding edge and flip the mark of the
connected node. Then, remove the leaf node
and edge from the erasure tree.

(ii) If the leaf node is unmarked, remove it and the
corresponding edge from the erasure tree.

At this stage, we have an erasure forest with
no leaf nodes and potentially some open edges
connecting to the open boundaries. Unfortu-
nately, these open edges are missing their leaf
nodes, so we cannot peel them. In Ref. [47], this
case is avoided by growing the spanning forest
so that each tree has at most one open edge, and
then peeling towards that edge. However, for
asymmetrically distributed noise, a maximum-
weight spanning forest might not take this form.

Instead, we can use dynamic programming to find a

maximum-probability error configuration consistent with
syndrome information in linear time. Fix any tree inside the
forest, with edges weighted according to their error
probabilities, and root the tree at any node. Each node
in this tree corresponds to a stabilizer, which will be either
marked or unmarked. Our aim is to identify a subset S of
edges that is both consistent with the syndrome information

021041-4



2D COMPASS CODES

PHYS. REV. X 9, 021041 (2019)

FIG. 2. The square represents the decoder graph (unseen) with
north-south open boundary conditions. First, the clusters (dashed
enclosures) are grown to an erasure consistent with the (red)
marked syndromes. We then find maximum-weight spanning
trees, with unmarked syndromes in black. After peeling the leaf
nodes, we decode the trees using dynamic programming.

and has maximal failure probability. We then apply our
phase-error correction to this set.

We proceed recursively. To each node v, we associate
two values. First, we compute the maximum weight of S,
for the subtree rooted at v over all subspanning trees that
include the parent edge. Second, we compute the same
maximum weight of S, over all subspanning trees that do
not include the parent edge. Each of these updates takes
constant time, assuming that the children were previously
evaluated and that v has a bounded degree. Iterating over all
vertices in the tree and trees within the forest, this
terminates in linear time and can be used to produce the
desired S.

By using a tree structure, the union-find growth algo-
rithm takes O(n - a(n)) time, where a is the exceptionally
slow-growing inverse Ackermann’s function. However,
because we find a maximum-weight spanning tree, this
variant requires O(nlog(n))-time preprocessing. The
union-find decoder is the most time efficient of the three
decoders we consider.

For a pictoral skeleton of the decoder, see Fig. 2. A
comparison of the decoder error rates with and without the
asymmetric alteration on the surface code is shown in
Fig. 3. There, the error model is generated by choosing an
error probability p; €, [0,2p] for each physical qubit i
uniformly at random. The value p; is passed to the
asymmetric decoder to inform Kruskal’s algorithm. This
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FIG. 3. A comparison of logical error rates for the asymmetric
decoder (solid lines) versus the symmetric decoder (dashed lines).
Each data point was generated with 10° independent Monte Carlo
trials.

additional information results in an improvement on the
error rate but with little effect on the threshold.

III. THRESHOLD SCALING

Before we consider asymmetric noise models, we ask the
more fundamental question, how does the threshold behave
in these compass codes? In particular, Bacon-Shor codes
have no threshold, while surface codes boast some of the
highest thresholds. Compass codes provide a framework
for interpolating between these two, so we examine the
threshold scaling here first.

We use the code’s CSS structure to argue directly about
phase-flip errors of probability p; bit-flip errors can be
decoded analogously and independently. To correct phase
errors, the relevant information about the code consists of
Gz and Sy, the Z-type gauge subgroup and the X-type
stabilizer subgroup, respectively.

A. Surface-density codes

The first family of codes we consider are the (random-
ized) surface-density codes, which interpolate between the
Bacon-Shor and surface codes. Each code is determined
stochastically according to a surface-density gg,s in the
following way. Given a square lattice, for each plaquette of
one color in the checkerboard configuration of the surface
code, we cut the corresponding X-type stabilizer at that
plaquette with probability g+ Correspondingly, g, = 0
is equivalent to the Bacon-Shor family (with respect to
phase errors), and gy s = | is equivalent to the surface
code.

021041-5



LI, MILLER, NEWMAN, WU, and BROWN

PHYS. REV. X 9, 021041 (2019)

1. Ising models associated to quantum codes

We identify the scaling of the threshold with the surface-
density under maximum-likelihood decoding. To do so, we
exploit the aforementioned correspondence between
thresholds of quantum codes and phase transitions of
associated random-bond Ising models [6,40—-42].

We briefly summarize this connection in the simplest
case of independently decoded noise. Let G, be a minimal
generating set of G,. Let the g; € G, be indexed by i, and
associate to each generator an Ising spin s; = 1. Index the
physical qubits by j € {1,...,L?}, and define

1 if g, is supported on site j.

9i(J) = {

0 otherwise

Then, for any vector 7€ {+1,—1}~, we define the
classical spin Hamiltonian

~
[N}

|Go|

Ho(s) ==Y = [[ s

J=1 =1

For any Pauli Z error E, define (zz), to be —1 if E is
supported on site k, and +1 otherwise. For physical error
rate p, we can define the virtual temperature /3, according
to the Nishimori line [48] so that

5, = log(1 — p) —log(p)
p 2

Note that this is a simplification of the more general
Nishimori conditions, with fixed coupling coefficients
J =1 [42]. Define r to be a quenched vector-
valued random variable that takes value 7 with probability

plEI(1 — p)L*~IEl Then, a phase transition of the associated
random-bond Ising model at (p..f, ) corresponds to an
accuracy threshold at p,. [6,40-42].

For an example of an Ising model associated to a
compass code, see Fig. 4. Note that, for decoder graphs
without hyperedges, the graph defining the Ising model is
dual to the decoder graph.

2. Numerical simulations

Parameters of the simulation.—We map surface-density
codes to their corresponding anisotropic Ising models on
random graphs. We generate random samples of the model
with the given g, and p for various system sizes L, with
the temperature determined by the Nishimori line according
to the disorder parameter p. For each random trial, we use a
cluster algorithm [49] and an improved estimator to
compute the Binder cumulant [50]. Finally, we scan over
p [at a separation of 0.1 for In(p)] and look for a transition
point. The system size we use ranges from L =35 to
L = 61, the number of steps for the cluster update ranges

FIG. 4. The left-hand side represents the graph describing the
two-body Ising model. The right-hand side represents its dual, the
decoder graph. The blue squares represent cuts in the X-type
stabilizers on a 9 x 9 lattice. The connectivity on the left-hand
graph determines the sparsity on the right.

from 10° to 10%, and the number of random trials for each
parameter set ranges from 200 to 10%.

In general, as the transition point p, increases with gy,
it enhances the frustration in the system, so more steps are
needed for convergence. This case is verified by the
autocorrelation of the observables. However, for larger
Geut» the slope of the Binder cumulant U with respect to
—In(p) also increases. As a result, less samples and smaller
system sizes are required to achieve the same level of
accuracy.

Numerical results.—Interestingly, simulations suggest
that the threshold grows linearly with the surface density
(see Fig. 5). In particular, a positive density is both

0.12

011+
010+
0.09 |
0.08
0.07+
o 0.06f .
0.05- 1
0.04
0.03 |
0.02+
0.01F

0 . | . | . | I I . .
0O 01 02 03 04 05 06 07 08 09 1.0

qsurf

FIG. 5. Scaling of the critical disorder p, with respect to the
surface density g, Autocorrelation is checked using a binning
analysis; the fit is linear through the origin. The widest error bars
are of total width of approximately 1%. At g, = 1, the results
closely match the established critical point at p. = 0.1094 +
0.0002 [51].
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necessary and sufficient for the presence of a threshold.
The linearity contrasts with the threshold scaling of the
less-restricted code family that we consider next.

B. Shor-density codes

We next turn our attention to Shor-density codes, which
form a randomized family of codes that interpolate between
Bacon-Shor codes and their full X-type gauge-fix, Shor’s
subspace code. These codes are defined similarly to
surface-density codes according to a new parameter, which
we call the Shor-density ¢g, For these codes, X-type
stabilizers are cut at each plaquette with probability g,
Thus, ¢gqor =0 again corresponds to the Bacon-Shor
code, whereas ¢y, = | corresponds to Shor’s subspace
code [52].

Of course, the thresholds for such codes are one-sided:
More cuts for one type of stabilizer leaves less for the other.
Consequently, such codes are best suited for asymmetric
noise models. Note that these codes remain local, in the
sense that the expected maximum stabilizer weight grows
logarithmically in the lattice size for any fixed ggpor-

Because the associated graphs to these codes have a
richer structure, which may hinder the convergence of the
clustering algorithm, we instead study these codes using the
union-find decoder. We generate a new decoder graph and
error in each round and perform 10® Monte Carlo trials for
each data point. We then exploit the efficiency of the union-
find decoder to run 300 Monte Carlo trials on a 1001 x
1001 lattice to verify the thresholds, which should sharply
converge to either p; = 0 or p; = 0.5 about the threshold.
This large lattice size is necessary to mitigate the growing
finite-size effects.

The threshold scaling in Fig. 6 nearly saturates the zero-
rate quantum Gilbert-Varshamov bound [38],

H(py) + H(p:) <1,

mirroring results obtained on other lattice configurations
[53,54]. One thing to note is the normalizing finite-size
effects at very high and very low densities. Note that, at
qaor = 1, we essentially have disjoint copies of a repetition
code. This result has a threshold of 50% since the union-
find decoder behaves optimally on errors of weight less
than |L/2] [34]. However, we observe a pseudothreshold
of approximately 45% for union-find decoding on a 1001 x
1001 Iattice, matching the analytical solution

(1 - (1 _zprep)L)»

NSH

Plogical =

where p, is the probability of failure of a repetition code
of length L,

0.30 —_—
025

020}

0.10

0.05 I

I

0 ‘ | l | | | | l |
0 0.1 02 03 04 05 06 07 08 09 1.0
q

shor

FIG. 6. Scaling of the estimated threshold p with respect to the
Shor density gy, The fit is quadratic through the origin; the
finite-size effects are apparent. All points were obtained on
81 x 81-size lattices, except for g4, = 0.9. To emphasize finite-
size effects, this was performed on a 631 x 631 lattice, which is
greater than necessary for fault-tolerant computation [10].

Prep = ZL: <Ilz> p(1=p)~

k=T%1

Summary.—These simulations suggest that the threshold
is determined predominantly by the density of syndrome
measurements, rather than their specific configuration, for
symmetrically distributed noise. The usual surface code
does not far outperform randomized codes of equal density
by this metric; it does so only slightly, as its symmetry will
minimize the number of [L/2]-weight errors that introduce
a logical error. This result is reinforced by the observation
that the threshold appears to scale linearly with surface
density, but it is strictly convex with respect to Shor density.

IV. ASYMMETRIC NOISE

Next, we turn our attention to asymmetric noise. We
consider two different types: biased noise that is symmet-
rically distributed throughout the lattice, and asymmetri-
cally distributed noise. In both cases, we find that
substantial gains can be made by tailoring the decoder
graphs to the noise directly. We analyze these in both the
code capacity and phenomenological models, and compute
their thresholds under different noise biases.

A. Biased but symmetric noise

For biased noise that is symmetrically distributed, we
construct a family of compass codes we call elongated
codes. These codes are defined by a parameter # € N that
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we call the elongation of the code, and they are constructed
by cutting the Z stabilizers at the (i, j)th plaquettes for all
i—j=0 (mod 7). The X stabilizers are then cut at all
remaining plaquettes, resulting in a subspace code. This
method is similar to the approaches of Refs. [16,24], which
consider concatenations with different phase-flip repetition
codes.

Under this definition, we obtain Shor’s code for # = 1
and the surface code for # = 2. For # > 2, we obtain an
asymmetrization of Kitaev’s toric code in the bulk with
extended 27-body plaquette operators. This family illus-
trates that a simple compass code is well equipped to
correct asymmetric noise while somewhat sacrificing
locality.

It is worth noting that choosing asymmetric lattice
dimensions as in Ref. [4] may alter the logical error rate
of a code family, but it will not change the threshold, as it is
a property of the bulk. Thus, the elongation of the code
refers to a stretching of the bulk stabilizer geometry not the
lattice itself.

As the elongation grows, finite-size effects play a greater
role. As such, we use MWPM decoding to perform
simulations on smaller lattices at lower elongations and
union-find decoding to test larger lattices. While these
larger lattices also suffer from finite-size effects, we use the
efficiency of union-find decoding to simulate lattices of
between 10° and 10* qubits, which is the estimated code
size required for full-scale fault-tolerant computation [10].

Furthermore, we estimate the phenomenological thresh-
old by simulating (2 + 1)-D elongated codes. For a
physical lattice of linear size L, this corresponds to
performing L rounds of faulty syndrome extraction, fol-
lowed by an ideal round, and then decoding. The corre-
sponding decoder graph is then L + 1 copies of the initial
decoder graph, with L timelike slices of edges connecting
the corresponding vertices in each spacelike slice. These
timelike edges represent faulty measurements.

Although the size of each stabilizer is independent of the
lattice size, we scale the probability of failure for each
stabilizer linearly with its weight. We assume the usual
phenomenological normalization that plaquette stabilizers
are faulty at the physical error rate p. Despite some
increasing stabilizer weights, we observe substantial thresh-
old gains in both the code capacity and phenomenological
models.

Tables I and II show the code-capacity thresholds using
the MWPM and union-find decoder, respectively, while
Table III shows the phenomenological threshold using the
union-find decoder. In these tables, 7, refers to the optimal
bias that realizes the threshold py,., while 7, is the bias
above which the codes will outperform the surface code.

Notably, a relatively smaller noise bias is required to
outperform the surface code in the phenomenological
setting. Unsurprisingly, the MWPM outperforms the
union-find decoder as a whole, but surprisingly, it displays

TABLE 1. Thresholds for the MWPM decoder in the code-
capacity model. Simulations were done on lattices of size 17 x 17
at most.

4 ’70pt Pthr e Pz Px

2 05 155% NJ/A  103% +02% 10.3% £ 0.2%
3 167 179% 139 14.1% +0.3% 6.5% £+ 0.2%
4 3,00 20.0% 210 17.5% +0.2% 5.0% + 0.2%
5 426 21.6% 278 195%+0.1% 4.1% +0.1%
6 589 228% 370 21.1%=+0.1% 33% +0.1%
TABLE II. Thresholds for the union-find decoder in the code-
capacity model. Simulations were done on lattices of size 81 x 81
at most.

4 I/IOpt Pthr My P Px

2 0.5 150% N/A 10.0% £0.2% 10.0% + 0.2%
3 141 16.9% 1.14 134% +£03%  7.0% £+ 0.2%
4 240 18.4% 1.78 157% +02%  5.4% + 0.2%
5 345 19.6% 241 174% +0.1% 4.4%+0.1%
6 445 207% 295 188%+0.1% 3.8% +0.1%
7 562 219% 355 202%+0.1% 33% +0.1%
8 623 228% 384 212%+0.1% 3.1% £0.1%
9 729 237% 417 222%+01% 29% +0.1%
10 836 24.0% 477 227% +0.1%  2.6% +0.1%
20 207  283% 105 27.6% +0.1% 1.3% + 0.1%
50 553 33.8% 240 335%+0.1%  0.6% +0.1%
TABLE III. Thresholds for the union-find decoder in the

phenomenological model. Simulations were done on lattices of
size 35 x 35 x 35 at most.

¢ Mopt Pinr My Pz Px

2 05 398% N/A 2.65%+02% 2.65% +0.2%
3 120 445% 099 3.4% £+ 0.2% 2.0% = 0.2%
4 188 4.60% 1.49 3.8% +0.2% 1.6% + 0.2%
5 273 485% 2.06 42% £ 0.2% 1.3% £ 0.2%
6 317 500% 232 4.4% + 0.2% 1.2% + 0.2%

lower thresholds on lattices comprised of higher-weight
stabilizers. This result suggests that union-find decoding
may better exploit the degeneracy of certain lattices; in
particular, one should use MWPM for Z-type errors and
union-find decoding for X-type errors on elongated lattices.
Our estimates for established surface-code thresholds
match those found in Ref. [14] at 10.3% for MWPM
decoding and in Ref. [34] at 9.95% and 2.65% for union-
find decoding in 2- and (2 + 1)-D, respectively.

B. Spatially dependent noise

We conclude by considering noise that is asymmetrically
distributed throughout the lattice. To illustrate the idea, we
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FIG. 7. Error rates for gradually (w = 0.25, top panel) and
steeply (w = 0.10, bottom panel) inclined linear noise, computed
on a lattice of size 33 x 33 using union-find decoding in the high-
noise regime. Here, pg,; represents the total probability of a
failure in either the X- or Z-type decoders.

focus on a simple noise model in which dephasing noise
decays linearly from the right-hand side of the lattice
according to the function p_(i,j) = (w(j/L) + (1 —w)x
(1 = j/L))pwi/2- Here, i and j are the coordinates of a
qubit, L is the linear size of the lattice, and w is a constant
that determines the degree of incline. We further assume
that p, = piot/2, SO Pyt 18 the total infidelity of the channel.
Note that the average bias between the dephasing noise and
bit-flip noise is symmetric.

The idea is simple: When the noise is distributed
asymmetrically, the stabilizer information can be chosen
to match the noise. Intuitively, lower weight stabilizers add
more error information about the qubits nearby. With this in

mind, we define a randomized family of codes that we
call (p,-)tailored codes. At each plaquette, we choose to
cut the corresponding X-type stabilizer with probability
2p.(i,J)/ P Where i, j are the coordinates of the upper-
left qubit at that plaquette. Then, in the presence of a high
amount of dephasing noise, many low-weight X-type
stabilizers will appear to aide in error correction.

We observe that the tailoring of these codes to the noise
model can augment error rates (see Fig. 7). It is worth
noting, however, that simply weighting the probability of
each cut according to the surrounding qubits may not
always be the optimal strategy. In particular, in the low
error-rate limit, this will become an optimization problem
that seeks to minimize the weights of uncorrectable paths of
length [L/2] in the decoder graph.

V. FAULT TOLERANCE WITH BARE ANCILLA

One of the major advantages that comes with the locality
of the Bacon-Shor code is fault-tolerant bare-ancilla syn-
drome extraction [16,17]. Although this extraction scheme
is the simplest and least resource intensive, most codes
incur some loss in effective distance due to high-weight
correlated errors produced by errors on the ancilla. For the
standard and rotated surface codes, these “hook” errors
can be carefully designed to ensure no significant loss in
performance [6,8].

In the compass-code framework, this resilience to
correlated errors is a general phenomenon resulting from
measuring stabilizers along the Bacon-Shor gauge oper-
ators. Using such a syndrome extraction scheme on any
gauge fix of the Bacon-Shor code, any collection of d — 1
faults in the circuit produce an error of the form EG, where
|supp(E)| < d — 1 is minimal and G is a gauge operator of
the initial Bacon-Shor code.

Divide the generators of the stabilizer group of any
compass code into S = (Sp,Sr), where Sp are the
stabilizer generators of the Bacon-Shor code and Sy are
those gauge operators that have been fixed. Then, for any
error EG resulting from d — 1 faults in the circuit, if
|supp(E)| =0, then either G € Sy or there exists an
S € Sp:SG =-GS. Otherwise, if 0 < |supp(E)| < d,
then there exists an S € Sp:SE = —ES. Since S must also
commute with any gauge operator G, it follows that EG is
detectable. Thus, any error resulting from < d — 1 faults
during syndrome extraction is either detectable or trivial.

This demonstrates that there exists fault-tolerant decod-
ing without a loss in effective distance. However, it is not
necessarily maximum-likelihood decoding on the memory.
One simple counterexample is Shor’s code, where a single
well-placed ancilla error can affect a weight d memory
error that maximum-likelihood will misdiagnose as a
weight d — 1 memory error, resulting in failure. The above
case implies that performing MWPM with respect to linear-
probability faults in the decoder graph is fault tolerant.
Introducing these faults amounts to triangulating the
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decoding graph, similar to hook errors in the surface-code
case [6,14]. Determining circuit-level compass-code per-
formance in this model is the subject of future inquiry [55].

VI. CONCLUSIONS

In this article, we have described an ansatz for designing
planar codes stemming from the 2D compass model. We
have provided evidence that simple subfamilies of this class
may be useful for correcting biased noise in idealized code
capacity and phenomenological noise models, particularly
if that bias is distributed geometrically. In particular, one
can bias the stabilizers locally towards correcting a certain
error type.

There are two central challenges for these codes in the
more realistic circuit-level noise model. Although these
codes are still local, there is a trade-off between the bias of
the codes and the locality of the stabilizer measurements.
We have demonstrated that fault-tolerant measurement in
Bacon-Shor [16,17] and surface codes [6,8] using bare
ancilla can be adapted to the compass model, if measure-
ments are performed in the correct order. Nevertheless,
these correlated errors will deteriorate code performance as
higher-weight stabilizer outcomes become less reliable.
This result might be mitigated by using other flag-type
schemes or by preserving some gauge d.o.f. We would
expect that these gains would persist but at the expense of
higher bias and code overhead. As such, we leave a more
involved circuit-level analysis to future work.

The second concern is whether the biased noise model
itself can persist at the circuit level. To remain experimen-
tally motivated, one must choose operations that preserve
the bias [5,22,24]. Consequently, the construction of simple
and bias-preserving fault-tolerant gadgets is key to utilizing
asymmetric noise.

Finally, we have only narrowly broached the design
space offered by these codes. Exploring different configu-
rations according to other geometrically defined noise [32],
generalizing to codes defined on the 3-D compass model,
and using correlated decoders [5,25-27,56] are all avenues
to explore. More generally, finding other low-density
parity-check constructions adapted to biased noise may
give the best of both worlds, mitigating the overhead of
asymmetrization while taking advantage of the bias.
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