
Trajectory Comparison in a Vehicular Network

I: Computing a Consensus Trajectory

Peng Zou1, Letu Qingge2, Qing Yang3, and Binhai Zhu1

1 Gianforte School of Computing, Montana State University, Bozeman, MT,
59717-3880, USA. Email: peng.zou@msu.montana.edu, bhz@montana.edu

2 College of Computing and Informatics, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA. Email: qingge1231@gmail.com.

3 Department of Computer Science and Engineering, University of North Texas,
Denton, TX 76207, TX 76207-7102, USA. Email: qing.yang@unt.edu.

Abstract. In this paper, we investigate the problem of computing a
consensus trajectory of a vehicle giving the history of Points of Interest
(POIs) visited by the vehicle over certain period of time. The problem
originates from building the social connection between two vehicles in a
vehicular network. Formally, given a set of m trajectories (sequences Si’s
over a given alphabet Σ, each with length at most O(n), with n = |Σ|),
the problem is to compute a target (median) sequence T over Σ such
that the sum of similarity measure (i.e., number of adjacencies) between
T and all Si’s is maximized. For this version, we show that the problem is
NP-hard and we present a simple factor-2 approximation. If T has to be
a permutation, then we show that the problem is still NP-hard but the
approximation factor can be improved to 1.5. We implement the greedy
algorithm and a variation of it which is based on a more natural greedy
search. Using simulated data over two months (e.g., n = 60) and variants
of m and Σ (e.g., 30 ≤ m ≤ 50 and 30 ≤ |Σ| ≤ 60), the empirical results
are very promising and with the local adjustment algorithm the actual
approximation factor is bounded by 1.14 for all the cases.

1 Introduction

In a vehicular network, before two vehicles (nodes) communicate useful infor-
mation, they need to determine the trustfulness among them while preserving
their privacy. (This problem is getting more important with the advent of au-
tonomous driving.) This security issue must be addressed due to the special
safety requirement of vehicular ad hoc networks (VANET), which has a wide
range of applications in traffic control, accident avoidance and parking manage-
ment [5, 11].

Unique to VANET, false information dissemination and Sybil attacks are
some of the critical security issues. The former could be a false information like
“parking garage is full” so that the sender can turn away parking competitors.
The latter could be a generation of fake identities to falter the functioning of the
whole system [3, 14]. The public-key infrastructure might not be available over

2 Zou, et al.

a road network; hence, some kind of trust management must be maintained [16,
8, 9].

To build the initial trustfulness, the solution we propose is to use the Point
of Interests (POIs) visited by each vehicle to establish some level of similar-
ity, which serves as a starting point for determining the trustfulness of vehicles.
(Later, the trustfulness computation can be enhanced using some other methods
[8, 9], or simply some standard method in game theory.) In this case, to protect
privacy, all sensitive information regarding the location of POIs, time a POI is
visited, etc, are erased for our computation and comparison. Hence, an exam-
ple of POIs is “office”, “restaurant”, “coffee shop”, “gym”, etc. (See Fig.1 for
a simple example.) Certainly, we could make POIs slightly more specific with-
out sacrificing privacy, for instance, a restaurant could be more specific, e.g.,
“Wendy’s” or “MacDonalds” could be used.

gym office officecoffee shop office gymrestaurant

Fig. 1. The POIs visited by a white-collared professional during a typical working day.
If we use A,B, C, and D to represent ‘gym’, ‘office’, ‘coffee shop’, and ‘restaurant’ re-
spectively, then the trajectory would be represented as a sequence 〈A, B, C, B, D, B, A〉.

Now suppose that we have two list of POIs, S1 and S2, visited by two vehicles
over some time period, say two months. How do we compare these sequences (of
POIs)? We adopt a classic concept called adjacency, which is commonly used in
computational genomics [1, 6, 7]. Our idea is to compute two consensus trajec-
tories, T1 and T2, for each vehicle and then compare T1 and T2 directly. (The
latter comparison could be done naively by counting the number of adjacen-
cies between T1 and T2; of course, to make the computation more accurate, we
could delete some redundant POIs — the latter research will be presented in a
companion paper.)

Computing the consensus trajectory (sequence) is a traditional problem in
computational biology, under different distance measures. For instance, given a
set of DNA sequences {S1, S2, ..., Sm}, computing a median sequence T of length
L such that

∑
i dH(T, Si) is minimized — where dH() is the Hamming distance,

is an important problem in computing conserved regions in many molecular
biology problems [10]. When the input sequences are genomes and the distance
measure is the breakpoint distance, then we have the breakpoint median problem
[2, 12, 15]. It is not surprising that all these problems are NP-hard; in fact, for
the breakpoint-median problem the problem is NP-hard even if there are only
three input genomes [2].

The problem we investigate in this paper, while similar in some sense to
these previous works, are different in several aspects. First of all, the similarity
measure we use is not a distance measure; instead, it is a similarity measure
featuring “the more similar, the more number of adjacencies”. Secondly, the

Computing a Consensus Trajectory 3

alphabet (i.e., set of POIs) we use is not necessarily a small constant and POIs
are allowed to repeat in any input sequence. Thirdly, the length of the median
trajectory is bounded (as otherwise the problem becomes trivial to solve). These
make the design of algorithms more challenging.

The paper is organized as follows. In Section 2, we give necessary definitions
and define the corresponding problems. In Section 3, we give NP-hardness proofs
for these problems. In Section 4, we present two approximation algorithms for
these problems, with approximation factor 2 and 1.5 respectively. In Section 5,
we implement two methods based on one of these approximation algorithms and
show the empirical results. In Section 6, we conclude the paper with several open
questions.

2 Preliminaries

At first, we make some necessary definitions. Given a set Σ of POIs (or just
letters or nodes), a string P is called permutation if each element in Σ appears
exactly once in P . We use c(P) to denote the set of elements in permutation P .
A string A is called sequence if some POIs appear more than once in A, and
c(A) denotes POIs of A, which is a multi-set of elements in Σ. (Throughout this
paper, we will mix the use of sequences and trajectories, with the understanding
that consecutive identical letters will always be preprocessed as a single letter.
For instance A = abcdddab would be preprocessed as A = abcdab.) For example,
Σ = {a, b, c, d}, A = abcdacd, c(A) = {a, a, b, c, c, d, d}. A substring with
m letters (in a sequence A) is called an m-substring, and a 2-substring is also
called a pair. The relative order of the two letters of a pair does not matter,
i.e., the pair xy is equal to the pair yx. Given a sequence A=a1a2a3 · · · an, let
PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

Definition 1. Given two sequences A=a1a2 · · ·an and B=b1b2 · · · bm, if aiai+1

= bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB, we say that
aiai+1 and bjbj+1 are matched to each other. In a maximum matching of pairs
in PA and PB , a matched pair is called an adjacency, and an unmatched pair
is called a breakpoint in A and B respectively.

It follows from the definition that sequences (trajectories) A and B contain
the same set of adjacencies but distinct breakpoints. The maximum matched
pairs in B (or equally, in A) form the adjacency set between A and B, denoted
as a(A, B). We illustrate the above definitions in Fig. 2.

We now define the problems to be studied in this paper. We use the decision
versions in the definition, though in designing approximation algorithms we will
focus on the corresponding optimization versions.

Definition 2. Median Trajectory Problem.
Input: A set of m sequences/trajectories Si’s, i = 1..m, over a POI set Σ (with
|Σ| = n), and two positive integers k and ℓ.
Question: Can a trajectory T with ℓ elements over Σ be computed such that∑

i |a(T, Si)| ≥ k?

4 Zou, et al.

sequence A = 〈a b a e c a b d 〉

sequence B = 〈c b d a b a d〉

PA = {ab, ba, ae, ec, ca, ab, bd}

PB = {cb, bd, da, ab, ba, ad}

matched pairs : (ab↔ ab), (ba↔ ab), (bd↔ bd)

a(A, B) = {ab, ba, bd}

bA(A, B) = {ae, ec, ca, ab}

bB(A, B) = {cb, da, ad}

Fig. 2. An example for adjacency, breakpoint and the related definitions.

T is typically called a median trajectory. When the median trajectory is
restricted to be a permutation. We have a variation of the problem.

Definition 3. Median Permutation Problem.
Input: A set of m sequences/trajectories Si’s, i = 1..m, over a POI set Σ (with
|Σ| = n), and a positive integers k.
Question: Can a permutation M (with n elements) over Σ be computed such
that

∑
i |a(M, Si)| ≥ k?

When the median trajectory must cover a superset of the POIs in Σ (but
some POIs could appear multiple times), we have the following problem.

Definition 4. Median Canonical Trajectory Problem.
Input: A set of m sequences/trajectories Si’s, i = 1..m, over a POI set Σ (with
|Σ| = n), and two positive integers k and ℓ > n.
Question: Can a trajectory Z with ℓ elements over Σ be computed such that∑

i |a(Z, Si)| ≥ k and c(Z) ⊇ Σ?

3 Hardness Results

In this section we prove that all the three problems are NP-hard. As the proofs
are in general similar (certainly with some twist), for the first one we give all
the details and for the second and third one we only give the most important
ideas. The details will be given in the full version of this paper.

Theorem 1. The decision version of the Median Trajectory problem is NP-
complete.

Proof. We reduce the Hamiltonian Path problem to the Median Trajectory with
a bounded length 3n. WLOG, let G = (V, E) be an undirected graph with vertex
degree deg(u) ≥ 2 for u ∈ V . For each vertex u ∈ V , let u1, u2, · · · , udeg(v) be

Computing a Consensus Trajectory 5

the list of vertices adjacent to u ordered by their indices. We define L1(u) as
follows:

L1(u) = #1
u · uu1#2

u · uu2 · #3
u · ... · #deg(u)

u · uudeg(u).

Then, we define

Lj(u) = u$uu,

for j = 2, 3, 4. Finally, we define

L(u) = {L1(u), L2(u), L3(u), L4(u)}.

Let V = {v1, v2, ..., vn}, and we write #k
vi

and $vi
simply as #k

i and $i

respectively. Note that #k
i are POIs which occur only once in all trajectories.

Then we construct 4n trajectories as

L = L(v1) ∪ L(v2) ∪ L(v3) ∪ · · · ∪ L(vn).

Notice that Σ = V ∪ {$v|v ∈ V } ∪ {#j
i |i = 1..n, j = 1..deg(vi)}.

Let P (V) = 〈vπ(1), vπ(2), · · · , vπ(n)〉 be a permutation of V . We claim the
following: P (V) is a Hamiltonian path for G if and only if

T = 〈vπ(1), $π(1), vπ(1), vπ(2), $π(2), vπ(2), · · · , vπ(n), $π(n), vπ(n)〉,

which is of ℓ = 3n elements, is a median trajectory with a total of 8n − 2
adjacencies between T and L.

“If part”: If P (V) is a Hamiltonian path, then in T each 3-substring
vπ(i)$vπ(i)vπ(i), i = 1..n, contributes 6 adjacencies with L2(vπ(i)), L3(vπ(i))
and L4(vπ(i)) in L(vπ(i)) (containing 4 trajectories). Moreover, each 2-substring
vπ(i)vπ(i+1), i = 1..n−1, contributes 2 adjacencies (one with L1(vπ(i)), the other
with L1(vπ(i+1)). This gives us a total of 6n + 2(n − 1) = 8n − 2 adjacencies
between T all the trajectories in L.

“Only-if part” If T is a median trajectory of length 3n for L forming a
total of 8n − 2 adjacencies from T to L(i)’s, the first thing to notice is that T
has length 3n, hence to form 8n − 2 adjacencies we cannot use any POI #k

i as
#k

i vi or vj#
k
i in T each could form only one adjacency with trajectories in L.

Hence, to maximize the number of adjacencies between T and L, we must only
use POIs in V ∪ {$v|v ∈ V }. As vπ(i)$vπ(i)vπ(i) contributes 6 adjacencies with
L(vπ(i)), including all of them in the median trajectory naturally gives us 6n
adjacencies. Now, to increase the total adjacencies between T and L to 8n − 2,
we must make use of the 2(n−1) adjacencies in the form of vπ(i)vπ(i+1) — which
implies that vπ(i)vπ(i+1) must form an edge of G, hence the 2 adjacencies are
formed with L1(vπ(i)) and L1(vπ(i + 1)) respectively. Obviously, the order of
such vπ(i)vπ(i+1)’s gives us a Hamiltonian path for G.

The reduction takes O(|V | + |E|) time. Hence the theorem is proven. ⊓⊔

Theorem 2. The decision version of the Median Permutation problem is NP-
complete.

6 Zou, et al.

Proof. Again, we reduce the Hamiltonian Path problem to the Median Permuta-
tion problem, this time with a bounded length 2n. WLOG, let G = (V, E) be an
undirected graph with vertex degree deg(u) ≥ 2 for u ∈ V . For each vertex u ∈ V ,
we define L1(u) = L2(u) = uu′. For each edge e = (u, w) ∈ E, we define L3(e) =
u′w and L4(e) = uw′. L contains 2|V | + 2|E| trajectories. Let π(i) be a permu-
tation on [1..n], then for V = {v1, v2, · · · , vn}, M = 〈vπ(1), vπ(2), · · · , vπ(n)〉 is a
permutation on V . We claim the following: G admits a Hamiltonian path M if
and only if T is a median permutation for L in one of the two forms:

1. T = 〈vπ(1), v
′

π(1), vπ(2), v
′

π(2), · · · , vπ(n), v
′

π(n)〉, or

2. T = 〈v′π(1), vπ(1), v
′

π(2), vπ(2), · · · , v′π(n), vπ(n)〉.

We leave the detailed arguments as an exercise for the readers. The reduction
obviously takes O(|V | + |E|) time. Hence the theorem is proven. ⊓⊔

Theorem 3. The decision version of the Median Canonical Trajectory problem
is NP-complete.

Proof. The reduction is slightly different from the previous two. We will reduce
the Hamiltonian Cycle problem to the Median Canonical Trajectory problem.
Given an undirected graph G = (V, E), WLOG, we want to compute a Hamilto-
nian Cycle starting from some vertex v1. For each edge e = (vi, vj), we construct
a trajectory

L(e) = vivj .

For v1, we construct two trajectories

L1(v1) = L2(v1) = 〈$s, #1, #2, · · · , #γ , v1, #γ , #γ−1, · · · , #1, $t〉.

Let L = {L(e)|e ∈ E}∪{L1(v1), L2(v1)}. Then we have m = |E|+2 trajectories,
with |Σ| = n + γ + 2.

Let π(i) be a permutation on [n], with π(1) = 1. We claim the following: G
has a Hamiltonian Cycle if and only if T (of ℓ = n+2γ+3 elements) is a median
canonical trajectory for L in one of the two forms:

1. T = 〈$s, #1, #2, · · · , #γ , v1, vπ(2), · · · , vπ(n), v1, #γ , #γ−1, · · · , #1, $t〉, or
2. T = 〈$t, #1, #2, · · · , #γ , v1, vπ(2), · · · , vπ(n), v1, #γ , #γ−1, · · · , #1, $s〉;

moreover, there are n + 4γ + 4 adjacencies between T and L.
Again, we leave the detailed arguments as an exercise for the readers. The

reduction obviously takes O(|V | + |E|) time. Hence we have the theorem. ⊓⊔

4 Approximation Algorithms

In this section we present two simple approximation algorithms for the median
trajectory and the median permutation problems respectively. It is open whether
a constant factor approximation for the median canonical trajectory problem can
be designed.

Computing a Consensus Trajectory 7

4.1 A 2-Approximation for the Median Trajectory Problem

Given a set of m trajectories S = {S1, S2, · · · , Sm} over the same alphabet Σ, we
need to compute a median trajectory T ∗ with ℓ nodes such that

∑
i=1..m |a(T ∗, Si)|

is maximized.
We use a greedy method to select ⌊ℓ/2⌋ edges uv as follows: select uv that

appear in S the maximum number of times, then subtract one copy of the edge uv
(or vu) from the corresponding Si’s that uv or vu appears, update Si’s and then
repeat until ⌊ℓ/2⌋ edges are selected. We then concatenate these edge arbitrarily
into a trajectory T . If ℓ is odd, then we arbitrarily concatenate another POI at
the end of T .

As a POI could appear in T (and in T ∗) multiple times, by the greedy
search, the selected ⌊ℓ/2⌋ edges form the maximum number of adjacencies with
S. This in turns implies that

∑
i=1..m |a(T, Si)| is greater than or equal to the

adjacencies formed between any ⌊ℓ/2⌋ edges in T ∗ with the trajectories in S.
Hence,

∑
i=1..m |a(T, Si)| ≥

1
2

∑
i=1..m |a(T ∗, Si)|. We thus have the following

theorem.

Theorem 4. The Median Trajectory problem admits a factor-2 polynomial-time
approximation.

4.2 A 1.5-Approximation for the Median Permutation Problem

Given a set of m trajectories S = {S1, S2, · · · , Sm} over the same alphabet Σ,
we need to compute a median permutation M∗ with n = |Σ| nodes such that∑

i=1..m a(M∗, Si) is maximized.
Note that |M∗| = |Σ| = n. In this case, we first construct a weighted graph

G such that the vertices are all the (distinct) POIs. Two vertices u and v form
an edge e = (u, v) if uv is an adjacency in some Li; moreover, the weight of e,
W (e), is the total number of Li’s that e appears at least once.

The algorithm is to compute the maximum path-cycle cover PC(G) of G,
which is a set of disjoint paths/cycles with the maximum total edge weights.
It is well-known that PC(G) can be reduced to the maximum weight matching
problem, hence can be computed in polynomial time [4, 13].

Let PC(G) = {P1, P2, · · · , Pq} ∪ {C1.C2, · · · , Cr}, where Pi’s are paths and
Cj ’s are cycles in PC(G). Let |Pi| be the total weight of the edges in Pi, and let
|Cj | be the total weight of the edges in Cj ’. Let |PC(G)| be the total weight of
the edges in Pi’s and Cj ’s.

Then we just delete the edge with the minimum weight in each Cj to have a
path C−

j . We then concatenate all Pi’s and C−

j ’s arbitrarily to have an approx-
imate median M .

Note that the optimal solution M∗, with OPT =
∑

i=1..m |a(M∗, Si)|, pro-
vides a feasible solution for the corresponding path-cycle cover for G. Then, by
the optimality of PC(G), which contains a disjoint set of q paths and r cycles,
we have

OPT ≤ |PC(G)| =
∑

i=1..q

|Pi| +
∑

j=1..r

|Cj |.

8 Zou, et al.

As each cycle Cj has at least 3 edges, and the minimum weight edge is deleted
to obtain C−

j , we have

|C−

j | ≥
2

3
|Cj |,

for j = 1..r. Hence,

|M | =
∑

i=1..q

|Pi| +
∑

j=1..r

|C−

j | ≥
∑

i=1..q

|Pi| +
2

3

∑

j=1..r

|Cj | ≥
2

3
OPT.

In other words, this gives us a factor-1.5 approximation for the median permu-
tation problem.

Theorem 5. The Median Permutation problem admits a factor-1.5 polynomial-
time approximation.

We comment that the median permutation problem is mainly of a theoretical
meaning, in practice, it is hardly the case that the median trajectory must be a
permutation. In the next section, we present a practical solution, based on the
greedy 2-approximation algorithm, for the median trajectory problem.

5 Empirical Results

5.1 Heuristic Method for the Median Trajectory Problem

The 2-approximation algorithm presented in the previous section is probably
not practical. We present a slightly different heuristic method based on the
2-approximation algorithm. Later, we compare the performance of these two
algorithms using simulated data over a 2-month period.

sequence S1 = 〈a b a e c a b d 〉

sequence S2 = 〈c b d a b a d〉

sequence S3 = 〈a b e c a b c a f〉

AM(ab) = 〈3, 3, 1〉

AM(ac) = 〈2, 1〉

Fig. 3. An example for the adjacency map, with m = 3 and Σ = {a, b, c, d, e, f}.
If ℓ = 6, the 2-approximation would return T = ab · ab · ac, which incurs a total
of 9 adjacencies with Si’s. The optimal solution would be abacbd, which incurs 12
adjacencies.

To make the presentation more clear, we formally define the concept of ad-
jacency map as follows. Let ab be a 2-substring which appears in some Si, 1 ≤
i ≤ m. The adjacency map of ab, denoted as AM(ab), is a vector

AM(ab) = 〈w1(ab), w2(ab), · · · , wq(ab)〉

Computing a Consensus Trajectory 9

with w1(ab) ≥ w2(ab) ≥ · · · ≥ wq(ab) > 0 and w0(ab) = 0, such that wi(ab) is
the number of Si’s that contains either ab or ba as a 2-substring after wi−1(ab)
number of 2-substrings in the form of ab or ba have been removed from each of
these Si’s. In Fig. 3, we show an example for this definition.

With this concept, the original 2-approximation is simply a greedy search in
the space (of adjacency maps) M = {wi(ab)|i > 0, ab is a 2-substring in some
Si}. More precisely, the algorithm repeatedly selects 2-substrings ab without
replacement such that wi(ab) is the current maximum; moreover, when ab is
selected the corresponding wi(ab) is deleted from the search space. Our new
heuristic method is based on this greedy search, and searches more carefully by
possibly extending existing solutions.

We first present the one-step implementation of this greedy search method,
named as Greedy1, which is a subroutine used in the final algorithm.

Algorithm 1 Greedy1

Input: adjacency map M, temporary solution T

Output: adjacency mapM, temporary solution T , integer k > 0

1: find a 2-substring ab with the maximum k = wi(ab) inM.
2: put ab in T .
3: remove wi(ab) from M.

To improve the simple greedy search method, which adds a 2-substring to
the solution at each round, we make the following observations. In general,
the final solution T is a concatenation of maximal substrings T1, T2, · · · , Tq

such that breakpoints only exist between Ti and Ti+1. More precisely, let Ti =
〈Ti[1], Ti[2], · · · , Ti[|Ti|]〉, then wx(Ti[|Ti|]Ti+1[1]) = 0 for any x — in other
words, Ti[|Ti|]Ti+1[1] does not even exist in M. (For convenience, we will also
use left(Ti) and right(Ti) to represent Ti[1] and Ti[|Ti|] respectively.) With this
observation in mind, if ab is first selected with Greedy1 and uv would be selected
next with Greedy1, then we could select cd instead if w1(bc)+w1(cd) > w1(uv).
Naturally, this means if we could extend ab into abcd, then it is better than
ab · uv, where b · u could be a breakpoint.

10 Zou, et al.

Algorithm 2 Greedy2

Input: adjacency map M, temporary solution T

Output: adjacency mapM, temporary solution T , integer k > 0

1: for a maximal substring S in the temporary solution T do

2: find a 2-substring ab s.t. L = wi(ab) + wj(〈b, left(S)〉) is maximum.
3: find a 2-substring cd s.t. R = wi′(〈right(S), c〉) + wj′(cd) is maximum.
4: update temp← max(L, R).
5: update k← max(k, temp).
6: end for

7: update S ← ab ◦ S if temp = L, and update S ← S ◦ cd if temp = R.
8: remove wi(ab) and wj(〈b, left(S)〉) from M if temp = L.
9: remove wi′(〈right(S), c〉) and wj′(cd) from M if temp = R.

We are now ready to give the heuristic algorithm based on Greedy1 and
Greedy2.

Algorithm 3 The Heuristic Algorithm

Input: sequences Si(i = 1..m), integer ℓ

Output: sequence T with ℓ nodes, number r of adjacencies between T and
Si’s.

1: T ← ε, r ← 0.
2: compute the adjacency map M from Si’s.
3: (M, T, r)← Greedy1(M, T)
4: ℓ← ℓ− 2
5: while ℓ ≥ 2 do

6: if Greedy1(M, T).r > Greedy2(M, T).r then

7: (M, T, r)← Greedy1(M, T)
8: else

9: (M, T, r)← Greedy2(M, T)
10: end if

11: ℓ← ℓ− 2
12: end while

13: if ℓ > 0 then

14: extend a maximal substring S of T by a new node x such that temp1 =
max(wi(〈x, left(S)〉), wj(〈right(S), x〉)) is maximized over all S and x.

15: update r ← r + temp1.
16: update S ← x ◦ S if temp1 = wi(〈x, left(S)〉).
17: update S ← S ◦ x if temp1 = wj(〈right(S), x〉).
18: end if

Note that as the heuristic algorithm subsumes the 2-approximation algo-
rithm, it provides a performance guarantee of at most 2 as well. Unfortunately,
this is the best we could say regarding its theoretical performance. We show next

Computing a Consensus Trajectory 11

that with randomly generated simulated data, the actual performance (approx-
imation factor) is always bounded by 1.14.

5.2 Empirical Results

For the empirical results, we first generate 60 sequences randomly (presumably
for 60 days or 2 months), each with a length in the range [1.5|Σ|−5, 1.5|Σ|+5].
Then for different target length ℓ, we run the 2-approximation algorithm and
the heuristic algorithm to obtain the median trajectories T1 and T2 respectively.
We run this 10 times to obtain the average of the maximum appearance (the
maximum number of time a node, or POI, appearing in any sequence Si), and
the averages of T1 and T2 — the last two being rounded to the largest integers
below. The result is summarized in Table 1.

We also obtain the following Table 2, using some variations to the simulated
data. With the 2-approximation algorithm, we have App1 ≥ Opt/2, or equiva-
lently, Opt ≤ 2 ·App1. (For practical reason, here we can take App1 roughly the
same as |T1|.) Hence, the actual performance (aka. approximation factor) can be
bounded from above by

|T2|

2 · |T1|
≤

|T2|

Opt
,

which is always less than 1.14 for the data in both tables.

Table 1. Results for |Si| ∈ [1.5|Σ| − 5, 1.5|Σ| + 5], averaged over 10 tries.

|Σ| ℓ Avg. of max appearance |T1| (2-App) |T2| (Heuristic)

30 40 6.7 215 384
30 45 6.8 243 427
30 50 6.7 261 467

40 55 6.9 251 445
40 60 7.1 268 482
40 65 7.0 294 521

50 70 7.3 280 501
50 75 6.8 303 540
50 80 7.1 316 570

60 85 7.5 318 558
60 90 7.5 330 587
60 95 7.1 352 620

6 Concluding Remarks

Using the concept of adjacency from computational genomics, we try to compare
the similarity of trajectories from a vehicular network, which we propose to use
as the first step to build trustfulness in vehicular networks. Here, a trajectory is

12 Zou, et al.

Table 2. Results for |Si| ∈ [1.5|Σ| − 10, 1.5|Σ| + 10], averaged over 10 tries.

|Σ| ℓ Avg. of max appearance |T1| (2-App) |T2| (Heuristic)

30 35 6.3 194 337
30 40 6.7 214 383
30 45 6.2 244 425
30 50 6.5 258 458
30 55 6.5 288 511

40 50 7.2 231 411
40 55 7.5 255 450
40 60 6.9 270 481
40 65 7.0 297 524
40 70 6.7 308 550

50 65 7.2 267 470
50 70 7.2 278 503
50 75 7.1 308 543
50 80 7.5 318 571
50 85 7.4 344 611

60 80 7.4 298 530
60 85 7.0 316 556
60 90 7.5 334 591
60 95 7.0 343 611
60 100 7.2 365 652

a sequence of POIs visited by a vehicle in one day. This paper focuses on comput-
ing a consensus trajectory given a set of such trajectories, the objective being
maximizing the total number of adjacencies between the consensus trajectory
and the input trajectories. We consider three versions of the problem: Median
Trajectory, Median Permutation and Median Canonical Trajectory, which are
all NP-hard. We also give factor-2 and factor-1.5 approximation algorithms for
the first two problems. For the Median Trajectory problem, we also design a
heuristic algorithm which greatly outperforms the 2-approximation algorithm
using simulated data articulately generated. The actual approximation factor is
bounded from above at 1.14, even though in theory it is 2 in the worst case.

There are still many open questions along this line. Theoretically, does Me-
dian Canonical Trajectory admit a constant factor approximation? Can the ap-
proximation factor for Median Trajectory be improved to be below 2? These
questions definitely need further research.

Acknowledgments

This research was supported by NSF under project CNS-1761641. Peng Zou was
also supported by a COE Benjamin PhD Fellowship at Montana State University.

Computing a Consensus Trajectory 13

References

1. S. Angibaud, G. Fertin, I. Rusu, A. Thevenin, and S. Vialette. On the approxima-
bility of comparing genomes with duplicates. J. Graph Algorithms and Applica-
tions, 13(1):19-53, 2009.

2. D. Bryant. The complexity of the breakpoint median problem. Technical Report
CRM-2579. Centre de Recherches en Mathématiques, Université de Montréal.
1998.

3. J. Doucer. The Sybil attack. Proc. IPTPS’01 Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, pages 251-260, 2002.

4. J. Edmonds and E. Johnson. Matching: a well-solved class of integer linear pro-
grams. In Combinatorial Structures and Their Applications (Gordon and Breach,
New York), pages 89–92, 1969.

5. H. Hartenstein and L. Kenneth. VANET: Vehicular Applications and Inter-
Networking Technologies. Wiley, New Jersey, USA, 2009.

6. H. Jiang, F. Zhong, and B. Zhu. Filling scaffolds with gene repetitions: maximizing
the number of adjacencies. Proc. 22nd Annual Combinatorial Pattern Matching
Symposium (CPM’11), LNCS 6661, pp. 55-64, 2011.

7. H. Jiang, C. Zheng, D. Sankoff, and B. Zhu. Scaffold filling under the breakpoint
and related distances. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 9(4):1220-1229, July/August, 2012.

8. G. Liu, Q. Yang, H. Wang, X. Lin and M. Wittie. Assessment of multi-hop inter-
personal trust in social networks by Three-Valued Subjective Logic. Proc. INFO-
COM’14, pages 1698-1706, 2014.

9. G. Liu, Q. Chen, Q. Yang, B. Zhu, H. Wang and W. Wang. OpinionWalk: An
efficient solution to massive trust assessment in online social networks. Proc. IN-
FOCOM’17, pages 1-9, 2017.

10. M. Li, B. Ma and L. Wang. Finding similar regions in many sequences. J. Comput.
Sys. Sci., 65(1):73-96, 2002.

11. P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger, M. Raya, Z.
Ma, F. Kargl, A. Kung and J-P. Hubaux. Secure vehicular communication systems:
design and architecture. IEEE Communications Magazine, 46(11):100-109, 2008.

12. I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Elec. Colloq. Comput. Complexity, TR-98-071. 1998.

13. Y. Shiloach. Another look at the degree constrained subgraph problem. Info. Pro-
cess. Lett., 12(2):89-92, 1981.

14. R. Shrestha, S. Djuraev and S.Y. Nam. Sybil attack detection in vehicular network
based on received signal strength. Proc. 3rd Intl. Conf. on Connected Vehicles and
Expo (ICCVE’14), pages 745-746, 2014.

15. E. Tannier, C. Zheng and D. Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics 10:120. 2009.

16. J. Zhang. A survey on trust management for VANETS. Proc. 2011 IEEE Intl.
Conf. Advanced Information Networking and Applications (AINA’11), pages 105-
115, 2011.

