Trajectory Comparison in a Vehicular Network
II: Eliminating the Redundancy
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Abstract. This paper investigates the truthfulness establishment prob-
lem between two nodes (vehicles) in a vehicular network. We focus more
on the case when no interaction has been conducted and we use the
Point of Interests (POIs) visited by the two nodes (vehicles) to establish
the initial truthfulness. It turns out that this is a general version of a
well-studied problem in compuational genomics called CMSR (Comple-
mentary Maximal Strip Recovery) in which the letters (similar to POIs)
cannot be duplicated, while in our problem POlIs could certainly be du-
plicated. We show that one version (when noisy POIs are deleted all
the remaining POIs must be involved in some adjacency), is NP-hard;
while the other version (with the adjacency involvement constraint is
dropped), is as hard as Set Cover. We then design an ILP solution for
the first problem. Simulations with various synthetic data show that the
algorithm is very effective.

1 Introduction

In a vehicular network, an important problem is that when two vehicles (nodes)
communicate, one needs to determine the trustfulness of the other while privacy
is being preserved. This security issue must be addressed due to the special safety
requirement of vehicular ad hoc networks (VANET'), which has a wide range of
applications in traffic control, accident avoidance and parking management [14,
15].

Unique to VANET, false information dissemination and Sybil attacks are
some of the critical security issues. The former could be a false information like
“parking garage is full” so that the sender can keep away parking competitors.
The latter could be a generation of fake identities to falter the functioning of the
whole system [13,18]. The public-key infrastructure might not be available over
a road network; hence, some kind of trust management must be maintained [19,
16,17].

One challenge to build such a trust management system is how to build the
initial trustfulness between two vehicles while preserving the privacy. Recently a
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method was proposed to compute the truth-telling probability, which is in turn
decided by the opinions of adjacent vehicles [12]. Such information might not be
available sometimes, for example, a man who lives remotely and works at home
might not have a big chance to connect to a VANET on a regular basis.

The solution we propose is to use the Point of Interests (POIs) visited by
each vehicle to establish some level of similarity, which serves as a starting point
for determining the trustfulness of vehicles. In this case, to protect privacy, all
sensitive information regarding the location of POlIs, time a POI is visited, etc,
are erased for our computation and comparison. Hence, an example of POlIs is
“home”, “restaurant”, “coffee shop”, “gym”, etc. (Sometimes, we could make
POlIs slightly more specific without sacrificing privacy, for instance, a restaurant
could be more specific, e.g., “Wendy’s” or “MacDonalds” could be used.)

Now suppose that we have the list of POIs visited by two vehicles over some
time period, say two weeks. How do we compare these sequences (of POIs)? We
adopt a classic concept called adjacency, which is used widely in computational
genomics [1,7,8]. (We note that in computing genomic maps, this concept of
adjacency is only applied on permutations, i.e., each letter appears exact once in
the input and in the final solution [20]. This is different for our purpose.) While
computing the number of adjacencies between two sequence or two permutations
are relatively easy, in our applications (and also in computational genomics ap-
plications), a more important and practical problem is to throw away some noisy
POIs to obtain the true similarity between two sequence of POIs. A variation
of this problem has been studied in the biological community, as the Maximal
Strip Recovery (MSR) and Complementary Maximal Strip Recovery (CMSR)
problems. (Here a strip is a common substring appears in both sequence, one
of which could be in reversed form. For both problem all the remaining letters
must be involved in some adjacency.)

The MSR problem was first studied by the Sankoff group at University of
Ottawa [5,21]. The MSR problem, and its complement CMSR, have been shown
NP-hard [20, 3, 4]. Late they have been shown to be APX-complete [3,9]. MSR is
known to admit a 4-approximation algorithm [4]. (This is achieved by converting
the MSR problem to computing the maximum independent set in ¢-interval
graphs, which admits a 2¢-approximation [2].) CMSR have been shown to admit
a factor-3 approximation [6] and the best current approximation factor is 2.33
[10].

2 Preliminaries

At first, we make some necessary definitions. Given a set X of POIs (or just
letters), a string P is called permutation if each element in X' appears exactly
once in P. We use ¢(P) to denote the set of elements in permutation P. A
string A is called sequence if some POIs appear more than once in A, and ¢(A)
denotes all POIs of A, which is a multi-set of elements in Y. For example, X
={a, b, ¢, d}, A = abedacd, ¢(A) = {a, a, b, ¢, ¢, d, d}. A substring with
m letters (in a sequence A) is called an m-substring, and a 2-substring is also
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called a pair. Throughout this paper, the relative order of the two letters in a
pair does not matter, i.e., the pair zy is equal to the pair yz. Given a sequence
A=ajasas - - an, let Py = {aja9,asas,...,an—1a,} be the set of pairs in A.

Definition 1. Given two sequences A=aias - --a, and B=bibs - by, if a;a;11
=bjbjy1 (or aia;41=bj11b;), where a;a;11 € Pa and bjbj11 € Pp, we say that
a;ai+1 and bjb;y1 are matched to each other. In a mazimum matching of pairs
i Pa and Pp, a matched pair is called an adjacency, and an unmatched pair
1s called a breakpoint in A and B respectively.

It follows from the definition that sequences A and B contain the same set
of adjacencies but distinct breakpoints. The maximum matched pairs in B (or
equally, in A) form the adjacency set between A and B, denoted as a(A, B).
We use ba(A, B) and bp(A, B) to denote the set of breakpoints in A and B
respectively. We illustrate the above definitions in Fig. 1.

sequence A= {cbcedaba)
sequence B = {ababdc)
Pa = {cb, be, ce, ed, da, ab,ba}
Pp = {ab, ba, ab, bd, dc}
matched pairs : (ab < ba), (ba < ab)
a(A, B) = {ab,ba}
ba(A, B) = {cb,be, ce,ed,da}
bs(A, B) = {ab, bd, dc}

Fig. 1. An example for adjacency, breakpoint and the related definitions.

Note that our breakpoint and adjacency definitions are more general than
those for permutations. Let P, be permutations over X with length n. Let
P (resp. Q) be the reversal of P (resp. Q). Then |bp(P,Q)| = |bo(P,Q)| =
n —1—|a(P, Q)|; moreover, if |bp(P, Q)| = |bo(P, Q)| = 0 then either P = @,
or P = Q For general sequences, this is not necessarily true. For instance,
A = dabdcba, B = dcbabda, and there is no breakpoint between A and B. But
A # B and A # B. Nonetheless, when there are more adjacencies between A
and B, they are similar intuitively.

In essence, we need to compare the similarity between A and B when some
redundant POIs are deleted. (To start with, any POI family not in A and B at
the same time should deleted. Hence we assume that A and B are over the same
set of POIs X.)

Now, we define the problems we study in this paper formally.

Definition 2. Redundant POI Deletion (RPD).
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Input: two sequences A and B of length at most n over a POI set X, and two
positive integers k, {.

Question: Can a total of k letters (POIs) be deleted from A and B to obtain
A* and B* such that ¢(A*) = ¢(B*), |a(A*,B*)| > £ and all letters in A* and
B* are involved in some adjacency in a(A*, B*)?

If two sequences X and Y are not inherently similar, requiring that the
remaining letters in X and Y are all involved in some adjacency might be too
much. Hence, we could have a different version of the problem.

Definition 3. POI Deletion to Maximize the Number of (String) Adjacencies
(PD-MNSA).

Input: two sequences X and Y of length at most n over a POI set X', and two
positive integers k, {.

Question: Can a total of k letters (POIs) be deleted from X and Y to obtain
X* and Y* such that ¢(X*) = c(Y*) and |a(X*,Y*)| > €2

We comment that the two problems are very different. As we will show in the
next section, the second problem is at least as hard as Set Cover (which cannot
be approximated with C'logn unless P=NP), while the first problem can only
be shown to be NP-hard.

3 Hardness Results

3.1 RPD is NP-Complete

Note that in reality we are really interested in the optimization version of the
RPD problem, i.e., deleting the minimum number of POIs in the input trajec-
tories A, B to maximize the number of adjacencies between the resulting tra-
jectories A’, B’ and each letter in A’, B’ is involved in some adjacency. For the
hardness result we simply look at the decision of the RPD problem (RPD for
short). This problem is a generalization of the Complementary Maximal Strip
Recovery problem in which case no POI can be duplicated in the input 77, T5,
and even this restricted version of the problem is NP-complete [20]. Here we give
a simple proof.

Theorem 1. The Redundant POI Deletion problem is NP-complete.

Proof. Tt is easy to see that the Redundant POI Deletion (RPD) problem is in
NP. We now show that Exact Cover by 3-Sets (X3C) can be reduced to RDP.
Given a base set X = {z1,22,...,23¢} and a set S = {S1,5%,..., S}, where
S; € X and |S;] = 3, the question is whether we could identify ¢ sets in S
which collectively cover all the n = 3¢ elements in X. In our construction, for
each z; we create an x}. Let S; = {®@i1, %2, Ti3}, we construct a string T; =
Ti1 Ty TioXhe iz We construct two trajectories as follows.

A = (c162)"a1b1T1a2boTs - - - A b Trn Qg1 by 11 #H,
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/ / /
B =z cicoxaxycica - - xpxpc1C2 - FHa101a2b2 - b G101

Note that in B, all the 2-substrings cic2’s, z;z}’s and a;b;’s (before and after
#+#) are already forming 2n + (m + 1) + 1 = 2n + m + 2 adjacencies with
the correspondinging ones in A. Hence the problem is really to delete letters
in T;’s to form new adjacencies in the form bja;;;. We make the following
claim: X3C has a solution of size ¢ iff the RDP problem has a solution of size
6(m —q),2n + 2m — q + 2) (i.e., 6(m — q) letters can be deleted from A, B
to form 2n + 2m — q + 2 adjacencies and all the remaining letters are in some
adjacency). O

We show a simple example for the reduction. X = {1,2,3,4,5,6,a,b,¢,d,e, f}.
Sl = {17253}7 S2 = {17550‘}7 S3 = {47556}7 S4 = {a,b,c}, S5 = {47ba6}5
Se = {d, e, f}. Our construction is then

A = (c1¢2)a1011122'33"-a2bo11'55"aa’-a3b344'55'66'-asbsaa’bh cc'-asbs44' b ee’

'agbgdd/ee/ff/a7b7##v
B =11"cica-22'¢crca - 33 ciea - 44 crea - 55 crea - 66'cica - aa’creg - b erea - e’ cqeo
dd' cieg - ee’cicy - ffleica - #4 - arby - agbs - asbs - asby - asbs - agbg - azbr.

As the unique solution for this X3C instance is {51, S3, Sy, Ss}, we need to
delete the 12 letters in 715 and T5 from A to obtain A’, and notice that B’ = B.

Al = (clcg)ualbl11’22’33’-(12172-a3b344/55/66’-a4b4aa’bb’cc’-a5b5-aebﬁdd’ee/ff’a7b7##.

The two new adjacencies after Tb,T5 are deleted are: boaz and bsag. As there
are already 2n + m + 2 = 32 adjacencies between A and B and the deleted
letters are all from A, the total number of adjacencies between A’ and B is
m+2m—q+2=34.

Note that the following extensions can be obtained:

(1) The problem remains NP-complete when A’ and B’ must be permutations
and when the deletions of letters only occur at one of A and B. This can be done
by making all the cjca’s distinct and by changing ## to #1#-2.

In the above reduction, notice that all the letters in A" and B’ are involved
in some adjacency. If we drop this condition, then the problem is much harder.

3.2 PD-MNSA is As Hard As Set-Cover

We first recall the Set Cover problem. Here the input to set cover is X =
{x1,22,....; 2pn} and S = {51, 52, ..., Sm}, where S; C X and U;(S;) = X. The
objective is to find minimum number (say k) of subsets in S such that they
collectively cover X. We consider a special version of Set Cover, in which all .S;’s
have the same size A. We call this version A-Set Cover. The following lemma is
not hard to obtain.

Lemma 1. A-Set Cover is as hard as Set Cover, both in terms of polynomial
time approzimability and FPT tractability.
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Proof. We reduce Set Cover to A-Set Cover. Let the input to set cover be X =
{z1,22,...,2n} and § = {51, 59, ..., S}, where S; C X and U;(S;) = X. Let
A= max; |Sz|

We construct a set of A new elements, S’ = {y1,...,ya—1, 2}. The instance
for A-Set Cover is constructed as follows. First set X/ = X U S’, and clearly
| X' =|X|+A=n+ A< 2n. For all S;, if |S;] < A, then we take a subset of
A—|S;| elements from S’ —{z} and union it with .S; to obtain S/; otherwise, set
Si «— S;. Then, we have &' = {51, 55,...,5,,,5"}. It is obvious that Set Cover
has a solution of size k iff A-Set Cover has a solution of size k + 1. We omit the
details as the only notice one should pay attention to is that S’ must be included

in any solution for A-Set Cover — as the elements z € X’ is only covered by
S’. O

We now reduce A-Set Cover to POI Deletion to Maximize the Number of
(String) Adjacencies (PD-MNSA).

Theorem 2. The POI Deletion to Mazximize the Number of (String) Adjacen-
cies (PD-MNSA) problem is NP-complete.

Proof. We reduce A-Set Cover to POI Deletion to Maximize the Number of
(String) Adjacencies (PD-MNSA). Let the input to A-Set Cover be X = {e1,...,e,}
and § = {S51,..., S}, with S; C X’ and |S;| = A for i = 1..m. For each e;, let
f(2) be the number of sets in S which contains e;.

In the following, i and i are all letters (POIs). Let S; = {e;1,€i2,...,€i A},
we build a string T; = e;1€;2 - - ¢; . We construct two permutations: Y (n) =
(2n+1)(2n—1)---3-1-(2n+2)(2n)---4-2and Z(m,n) = (2n+1-2n—1---3-
T)™. (3n+2-21---1-2)™.

We construct two sequences G and H as follows.

G =1t ) Tuby - asTabs - - am T
Antiontl oo (2p 4 2)n T
H=Y(n)e] VY (n)- e} Y (n)--- Y (n)
«arb1 Z(myn) - agbaZ(m,n) - - am—1bm-1Z(m,n) + ambmZ(m,n).

Assuming that k < n,k < m, we have the following facts:

Fact 1: To obtain some adjacency in the form of i -7+ 1 or i(i + 1), with
i # 2n + 1, one needs to delete at least n + 1 letters.

Fact 2: To obtain some adjacency in the form of a;j or b;j or a;j or b;j,
with ¢ <m and j < 2n + 2, one needs to delete at least n + 1 letters.

Fact 3: To obtain some adjacency in the form of ¢;j or e;j, with i < n and
7 < 2n+ 2, one needs to delete at least n + 1 letters.
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Fact 4: To obtain some adjacency in the form of e;e;, with 4,5 < n, one
needs to delete at least 2n + 2 letters.

Hence, the only possibility to obtain an adjacency in the form a;b; is to delete
T;, with is of length A < n.

Therefore, we have the following claim: A-Set Cover has a solution of size
k iff Ak letters are deleted from both G and H to obtain k adjacencies. (Note
that to make sure that ¢(G’) = ¢(H'), after each T; is deleted, we must delete
the corresponding e;’s in them from H as well.) ad

Corollary 1. The optimization version of PD-MNSA does not admit a factor
C'logn approzimation unless P=NP.

Proof. The above two reductions in Lemma 1 and Theorem 2 are both L-
reductions. As Set Cover cannot be approximated with a factor of C'logn for
some constant C' (unless P=NP) [11], the same claim holds for PD-MNSA. O

An intriguing problem is whether RPD admits a constant factor approxima-
tion. (Recall that the more restricted version of RPD, where the input sequences
are permutations, does admit constant factor approximations [6,10].) To solve
the problem practically, we will design an ILP solution for the RPD problem.

4 A Practical Solution for Redundant POI Deletion

—we have the algorithm and implementation already, just need to obtain the
empirical results —
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