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Abstract—Assessing the trust between users in a trust social
network (TSN) is a critical issue in many applications, e.g., film
recommendation, spam detection, and online lending. Despite
of various trust assessment methods, a challenge remaining to
existing solutions is how to accurately determine the factors that
affect trust propagation and trust fusion within a TSN. To address
this challenge, we propose the NeuralWalk algorithm to cope with
trust factor estimation and trust relation prediction problems
simultaneously. NeuralWalk employs a neural network, named
WalkNet, to model single-hop trust propagation and fusion in
a TSN. By treating original trust relations in a TSN as labeled
samples, WalkNet is able to learn the parameters that will be used
for trust computation/assessment. Unlike traditional solutions,
WalkNet is able to accurately predict unknown trust relations in
an inductive manner. Based on WalkNet, NeuralWalk iteratively
assesses the unknown multi-hop trust relations among users via
the obtained single-hop trust computation rules. Experiments on
two real-world TSN datasets indicate that NeuralWalk signifi-
cantly outperforms the state-of-the-art solutions.

Keywords—Trust Assessment, Social Network, Neural Network,
Machine Learning

I. INTRODUCTION

A trust social network (TSN) can be regarded as a graph
where the nodes are users and the edges are the trust relations
among users. Assessing the trust between two users, commonly
referred to as trustor and trustee, is a fundamental research
problem in a TSN. Trust assessment in a TSN is essential
in many applications, including online lending', malicious
website identification [1], social network analysis [2], [3],
vehicular network [4] and active friending [5]. Research work
on trust assessment in a TSN can be roughly categorized
into two groups: trust modelling and trust inference. Differ-
ent theoretical frameworks, including Beta distribution [6],
Dempster-Shafer (DS) theory of evidence [7] and subjective
logic (SL) [8] have been adopted to design various trust
models. The major limitation of these studies is that they do
not explicitly consider the multi-hop trust inference problem in
a TSN while designing trust models. On the other hand, most
of the existing trust inference algorithms facilitating multi-hop
trust inference in TSNs, e.g., TidalTrust [9], TrustRank [10]
and MoleTrust [11], commonly work with simplified trust
models, e.g., using a binary number to indicate whether a user
is trustworthy.

Although some recent works, e.g., AssessTrust [12] and
OpinionWalk [13], make an attempt to fill the gap by taking a
joint consideration of both trust modelling and trust inference
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in TSNs, they have difficulty in connecting sophisticated trust
models to real-world datasets. For example, trust ratings are
commonly used by a user to quantify the trust of another;
however, AssessTrust and OpinionWalk assume that trust is
a three-valued opinion rather than a scalar number. As such,
trust ratings were transformed into trust opinions by heuristic
methods, which caused errors in trust assessment.

A. Proposed Solution

Unlike traditional solutions to the multi-hop trust assess-
ment problem, we propose to “learn” the entire trust com-
putation process, instead of mathematically defining it. The
proposed solution is called NeuralWalk that employs a neural
network architecture, WalkNet, to capture trust propagation
and fusion in a TSN. Previous work has shown that a trust
opinion indeed propagates from one user to another, and
several trust opinions (of a trustee) can be fused to derive
a new trust opinion. As such, the discounting operator and
combining operator were proposed to model these two opera-
tions [8]. Existing literature [14], [12], [13] tried to understand
these operations, however, the underlying mechanisms for trust
propagation and fusion are still not clear. In WalkNet, the
operations are implemented by the connections of neurons in
a neural network. The parameters of these two operations are
learned from training datasets.

In addition to the lacked understanding of trust opinion
operations, a practical issue faces multi-hop trust assessment
is that the trust among users, in most existing datasets, is
commonly represented as a rating, rather than an opinion. A
trust rating is either an ordinal or categorical value, indicating
different trust levels; therefore, it must be first converted into
an opinion for accurate trust assessment. To address this issue,
an opinion is learned from a trust rating from a layer of neural
network in the WalkNet. After trust computation, the resulting
opinions will then be transformed into scalar numbers to match
the original trust ratings in the datasets. This is achieved by a
softmax function that transforms an opinion to a multinomial
distribution, from which the most likely trust rating can be
obtained. In the end, we use the cross entropy function as the
loss function to facilitate the back propagation algorithm that
is essential for the training process.

With WalkNet enabling single-hop trust assessment, we
further propose an algorithm called NeuralWalk to support
multi-hop trust assessment. NeuralWalk is an iterative algo-
rithm and there are two steps in each iteration: training and
inference. During the training step, the WalkNet is trained by
minimizing the cross entropy between predicted trust ratings
and labels (ground truths). After training, the parameters for



transforming a trust rating to an opinion, as well as those
for discounting and combining operators, can be learned. In
the inference step, NeuralWalk iteratively employs the trained
WalkNet to perform single-hop trust inference upon unknown
trust relations. Based on single-hop trust inference results in
each iteration, the algorithm will “walk” through the entire
TSN, in a breadth first search (BFS) manner, to conduct multi-
hop trust assessment.

B. Technical Challenges

NeuralWalk addresses three technical challenges that were
not adequately researched in existing trust assessment solu-
tions. First of all, to the best of our knowledge, most existing
multi-hop trust assessment methods, accounting for both trust
propagation and fusion, are deductive. That means the trust
operations in these models and algorithms must obey rules or
logic derived from assumptions based on cognitive recognition.
These rules and/or assumptions, however, have been criticized
for either being unrealistic or unable to offer flexible trust
assessments in different systems. For example, the statement
that “the enemy of my enemy is my friend” could be true or
false under different circumstances [15]. As a result, one has to
customize the rules and assumptions used in trust assessment
and fine-tune the corresponding trust models empirically; oth-
erwise, the deductive solutions will barely capture the nature
of trust propagation and fusion. To address this challenge,
NeuralWalk models trust propagation and fusion among users
in an inductive manner. In the WalkNet, the rules for trust
propagation and fusion are learned from training samples,
obtained from real-world datasets. In this way, NeuralWalk
is automatically adapted to the most numerically-fitted model,
eliminating any manual efforts.

Secondly, some previous multi-hop trust assessment mod-
els [12], [13], [16] use evidence, e.g., positive, negative, and
uncertain ones, as the input to accurately quantify a trust
relation. However, the information is often unavailable in
almost all existing datasets. Moreover, in many scenarios, the
information will not be allowed to collect, e.g., due to privacy
concerns. As a matter of fact, only ordered or categorical
trust ratings are provided in most trust social networks. To
the extent of our knowledge, there is very limited research on
how to effectively convert from a ordered or categorical trust
rating to a trust opinion, or vice versa. To break this limitation,
NeuralWalk incorporates the transformation into WalkNet, i.e.,
ordered or categorical trust ratings are converted to trust
opinions through a layer of neural network. The parameters
of the layer are jointly learned as those for opinion operators
are learned.

In the end, trust propagation and fusion in a TSN can
hardly be addressed by an end-to-end neural network. This
is because the network topologies between users in a TSN are
inconsistent and complex, especially when they are multiple
hops away from each other. As a result, it is difficult, if not
impossible, for an end-to-end neural network, whose architec-
ture is consistent, to precisely capture trust propagation and
trust fusion. To address this challenge, WalkNet is designed
to handle single-hop trust propagation and fusion only, upon
which the architecture of WalkNet is consistent. Based on the
learned WalkNet, NeuralWalk algorithm iteratively searches a
TSN, in a BFS manner, to realize multi-hop trust assessment.

C. Contributions

The contributions of this paper lie in the following four
aspects. First, we propose for the first time a unique neural
network based solution for multi-hop trust assessment in a trust
social network. Second, existing trust models are too sophis-
ticated to be validated by existing TSN datasets, however, the
long-known problem is addressed by the proposed WalkNet
that provides a mechanism to freely map between trust ratings
and trust opinions. Third, experiment results demonstrate that
not only the WalkNet is a valid model for trust computation
but also the NeuralWalk algorithm is able to offer accurate
trust assessment, i.e., achieving state-of-the-art performance,
compared to previous methods. In the end, the WalkNet model
in NeuralWalk can be substituted with any other machine learn-
ing models, providing opportunities for more accurate trust
assessment. This feature also makes NueralWalk a fundamental
framework that can be easily adapted to other networking
applications.

II. PRELIMINARIES
A. Problem Formulation

A trust social network (TSN) is modeled as a directed graph
G(V,E,W) where vertex ¢ € V represents a user, and edge
e;; € I denotes that user ¢ has a trust relation to j. The
weight w;; € W on edge e;; indicates how user ¢ trusts j. It
is modeled as either a real number [9] or a feature vector [8],
[12], [13], resulting in different accuracies in trust assessments.
The trust assessment problem can be formulated as follows.
Given a trust social network G(V,E, W), Vi and j, s.t. i,j €
V, 3 at least one path from i to j, how to compute i’s trust
in j where {j € V,j #i}.

B. Trust Opinion

To enable accurate trust assessment, vector-based trust
opinions [8], [12], [13], [16] are recently adopted to model the
trust propagation and fusion among users in a TSN. In these
models, an original trust relation is considered a probabilistic
distribution over three different states, i.e., belief, distrust,
and uncertainty. The probability of a user being trustworthy,
untrustworthy, or uncertain is determined by the observed
evidence for each corresponding state. As such, the trust
relation between users ¢ and j can be represented as an opinion
Wij = <aij7ﬂij77ij> [16], where Oéz'j,ﬂq;j, and Yij denote
the amounts of positive, negative, and uncertain evidence,
respectively.

C. Opinion Operators

Besides original trust relations, the prediction of potential
trust relations in TSNs has attracted many attentions in recent
years. Potential trust is used to express the unknown yet
possible trust relation between two users who do not have
explicit trust relation. Given three users ¢, s and j, and trust
opinions w;, and wsj, it is possible to predict i’s potential
trust in j, based on s’s recommendation of j. Potential trust
can be computed based on original trust opinions via opinion
operations. The trust propagation and trust fusion are two basic
operations used to conduct trust computation in TSNs [8], [12],
[13], [16]. Two opinion operators, namely discounting and
combining operators, are proposed in literature [8], [12], [13],
[16] to facilitate modeling trust propagation and trust fusion in
TSNs. Given three users 7, s and j, and two existing opinions



Fig. 1: Illustration of trust assessment between two users.

wis and wsj, the discounting operator A(w;s,ws;) yields an
opinion €);;, expressing ¢’s potential trust in j, based on s’s
recommendation of j To distinguish from original opinion,
Q5 is used to denote 4’s potential opinion on j. Let €2j; and €2,
be two potential opinions, the combining operator G(Q”, QQ )
produces a new opinion {;; that fuses Qj; and QF;.

III. WALKNET

Although there are several works on modeling trust prop-
agation and trust fusion [14], [17], [18], [12], [13], to the
best of our knowledge, most existing methods accounting for
these two operations are deductive. That means these trust
models obey the laws of logic derived from assumptions, based
on cognitive recognition. These assumptions, however, have
been criticized for being unrealistic in practice [15]. What’s
worse, all parameters in the deductive trust models have to be
determined empirically, which seriously impacts the accuracy
of trust assessments. Therefore, it is worth exploring new
ways for modeling trust propagation and fusion in an inductive
manner.

A. Overview of WalkNet

Instead of rigidly defining the trust operators, we propose
to “learn” the operators with the WalkNet, a neural network.
For the sake of simplicity, we use an example to illustrate
how the WalkNet works. As shown in Fig. 1, the process of
user ¢ assessing the trust of j can be decomposed into five
steps. The first step is to retrieve the original trust ratings
(e.g., ¢’s trust in s) from existing datasets, and convert these
ratings into trust opinions, as shown in step 2. In most existing
TSN datasets, trust between users is represented by an ordered
or categorical scalar, which indicates the ¢’s trust rating of
s. The scalar representation of trust hinders the application
of trust opinion, resulting inaccurate trust assessments. To
address this issue, a transformation from scalar trust ratings
to vector based trust opinions becomes essential, which will
be discussed in Section III-B. Based on the trust opinions
(e.g., w;s), discounting operations will be carried out in step
3 to obtain the potential opinions (e.g., €2;;), which will be
elaborated in Section III-C. In step 4, 7’s all potential opinions
on j will be combined to yield a new opinion €2;;, finishing the
trust assessment process. Finally, in step 5, a softmax-based
transformation is applied to convert obtained trust opinion
(e.g., §;;) into a trust rating. In the following, we will describe
the details of each step, based on the illustration in Fig. 2.

B. Rating to Opinion

Existing research has shown that a vector-based trust
opinion is able to accurately model trust and thus ensures
precise trust assessment [12], [13], [16]. On the other hand,
when datasets for trust social networks were collected, scalar
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Fig. 2: Nlustration of the architecture of WalkNet.

numbers were commonly used to represent the trust relations
among users. To close this gap, it is worth studying the
mechanism that effectively transforms ratings to opinions and
vice versa.

For two users ¢ and j, let’s assume ¢’s trust in j is denoted
as a scalar number 7;;. Then, we can use an one-hot vector
x;; € RP! to represent the trust rating. For instance, in the
Advogato dataset [19], the trust relations between users are
quantified by four ratings: apprentice, observer, journeyer, and
master. In this example, as the trust rating falls into four
possible levels, the four corresponding one-hot vectors can be
represented as [1,0,0, O]T

0,1,0,0"
[0,0,1,0]"
0,0,0,1]"

Obviously, the dimension of a one-hot vector D; is determined
by the number of possible trust levels in the dataset.

For an one-hot vector x;;, WalkNet employs a non-linear
transformation to convert it into an opinion® w;; € R, The
non-linear transformation is expressed as

wi;= ReLU(:BZ-TjWO +b,),

where W, € RP*Po and b, € RP°. The ReLU here
refers to rectified linear unit that is a widely used activation
function in neural networks. The ReLU function is defined as
ReLU(x) = max(0,z). According to [20], [21], ReLU is a
preferred activation function in feedforward neural network,
due to its efficacy in computation and convergence. Because
we assume a trust opinion (see Section II-B) is built upon three
types of evidence, i.e., positive, negative and uncertain, D, is
set to be 3 here. The value of D,, however, can be any positive
integer greater than 3 to account for trust models considering
more than three features.

C. Discounting Operation

Based on [12], [13], the discounting operation of two opin-
ions, e.g., w;s and wg;, can be expressed as ;; = A(wis, wsj).

2Since vectors are usually denoted as bold symbols in a neural networks,
we use a bold Greek letter to denote an opinion.



A discounting operator A in fact recombines the three com-
ponents in w;s; and ws; to generate 2;;. That also implies
that the interactions of components s, Bis, Vis> Qsjs Bsjs Vsj
determine the resulting opinion €2;;. It is unfortunately not
clear that how these interactions are carried out when trust
propagates within a TSN.

To this end, we make use of a neural network to address
this problem. We use pairwise multiplications of components
in w;, and w,; to represent the interactions among them. The
pairwise multiplications will result in a set of parameters,

T T
Wi X Wi, = [aisasja O‘isﬁsj; QisYsjs
61’.90453'7 Bisﬂsm /BiS’YSj7
'Yisa(sjvfyisﬁsjvf)/is'yk‘;j]a

which can be used as the building blocks for reconstructing the
discounting operation. Together with components «;s, 55, Vis»
asj, Bsj, and 7, we can obtain d;; = cat(w},wk x
wgzj,w;fj), where cat(-) means concatenating. Note that d;;
serves as the determining factor for 2;; as follows. With
another linear transformation, d;; can be converted into the

form of the resulting opinion
Qij=di;W4 + ba,

where W, € R(P:+2De)xDo and b, € D,. As D, = 3 in
this example, we have w;rs X wSTj € R and W, € RI5x3,
We further add a bias vector by to account for the bias in the
discounting operation.

D. Combining Operation

Combining operation is used to fuse multiple trust opinions
into a consensus one. Let Q;1; = (a;15, Bi15,Vi15) and Q05 =
(avigj, Bioj, vizj) be i’s two opinions of j’s trust. Then, the
combining operation ©(£2;1;,2;2;) [16] yields a new opinion
(aij, Bij, Vij) where

Qi = Q515 + Q2
{ Bij = Bi1j + Bizj
Yij = Yi1j + Vi2j
When there are n opinions to be combined, it can be expressed
as O(Qi15, Qigj, - -+, Qinj), due to the associative property of
the combining operator. Therefore, the combining operation
can be extended as

O(Qi1j, Qing, - - Qing) = (i, Bij, Vij) » (D
where Qij = Q15 + Qg5 + 0+ Qing
Bij = Bing + Bigj + -+ + Bing
Yij = Yi1g + Vi2g + 0+ Ving

Based on the above analysis, WalkNet employs a matrix
multiplication to implement the combining operator. We rep-
resent the to-be-combined opinions in a matrix as Mg =
(15, Qinj, -, Qinj], where Q;5; € RP0 for every possible
s = 1,2,--- ,n. Note that Q;,; = [aisj,ﬁisj,visj]T when
D, = 3. Therefore, M, € RPo xn. Let I € nx 1 be a vector
with all ones [1,1,--- l]T, then Eq. 1 can be rewritten as

O(Q15, Qizj, - Qinj) = Mol. (2)
In addition, to normalize1 the resulting opinion, we have
G(Qiljy Qi2j7 R Qinj) = *MQI, in the WalkNet.
n

E. Opinion to Rating

So far, WalkNet is able to represent the discounting and
combining operations. In the last step, WalkNet transforms
the computed opinions into scalar trust values, for training
and validation purposes. The transformation is realized via
a softmax function, which is a generalization of the logistic
function. It squashes a multi-dimensional vector to a proba-
bility distribution over certain scalar numbers (trust ratings).
Given an opinion €;;, the probability that it is corresponding
to the rating k& can be denoted as P(7;; = k|[§2;;) where 7;;
is the inferred trust rating. By exploiting a softmax function,

it becomes
Wi
P(n—j=k|ﬂij):W- 3
The output of this step will be a multinomial probability
distribution over all possible ratings. The rating with the

highest probability is considered ¢’s inferred trust in j.

F. Loss Function

The main reason of introducing WalkNet is to leverage
original trust relations in a TSN to train the parameters for
opinion operations, and then use the trained WalkNet to predict
potential trust relations. To facilitate the training process, we
use the cross entropy as the loss function. The function is
expressed as

D,
L= > lry = HKlog P(#i; = k), O]

€ij cFE k=1
where the Iverson bracket I[r;; = k] evaluates to 1 if r;; = k,
and O otherwise. It is clear that Eq. 4 is minimized when
all known trust ratings r;; are correctly predicted by the
WalkNet. By applying the back-propagation algorithm [22]
on WalkNet, the undetermined matrices W,, b,, W, by and
Wp,m = 1,2,--- /D, in Eq. 3 can be estimated such that

Eq. 4 is minimized.
IV. NEURALWALK

With WalkNet and a given TSN, the NeuralWalk algorithm
“Walks” through the TSN and computes trust with WalkNet
alternately. In this section, we present the details NeuralWalk
algorithm, in two folds. Firstly, we explain how the algorithm
“walks” through a TSN and compute trustees’ trust. Secondly,
we elaborate the algorithm with details of how to compute trust
via the WalkNet, rather than the original opinion operations.

A. The “Walking” Process

The “Walking” process upon a TSN, denoted as G, is
accomplished in K iterations, where K is the maximum iter-
ation number. Intuitively, it is the depth NeuralWalk “Walks”
through the TSN. It can be any integer greater then 1. We use
the example shown in Fig. 1 to illustrate how the algorithm
“walks” in G. For convenience, we use N;,(u) and N,y (u)
to denote the in-neighbors and out-neighbors of a node v € G,
respectively. In-neighbors are the nodes that connect to w,
while out-neighbors are those u connects to. In addition, since
G will be updated during different iterations, we use G*) to
denote the TSN in the kth iteration. Notably, we use G(©) to
denote the original TSN in the beginning.

In the kth iteration, for each node (trustor) i € G, the
algorithm starts from ¢ and conducts a BFS-style search to
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Fig. 3: An illustration of how NeuralWalk ‘Walks” through a
TSN G®) and computes potential trust relations.(a) Based on

the training set (e.g. 1"7%), r&kg, ruv)) found in G k) a WalkNet

is trained based on 7(*) and used to predict rg(cy;r ) based on

ré’;{ and r‘,(jfg,? Note that ré’iﬂ) cannot be computed at the
current iteration. (b) In k + 1th iteration, NeuralWalk is able
to collect more training samples for 7*+1) and learn a new

WalkNet. Based on the previously predicted rating ré@jl) and

original rating 7752)2, it is able to predict the potential trust rating
r{) | Where z is 2-hops way from = in G+ Intuitively,

NeuralWalk “Walks” from y, to z.

find all of its out-neighbors S, i.e., 1-hop neighbors. If k£ = 0,
’s trust ratings on s € S will be original trust ratings only,

since r”),Vs € S comes from G(?). Otherwise, it can be
either original trust ratings or potential trust ratings predicted
in previous iteration. Based on S, NeuralWalk conducts one
more level of BFS-style search on each s € S and reaches
nodes that are at most 2-hops away from 7 in G*). We denote
the set of these nodes as J. NeuralWalk will collect training
and inference samples for WalkNet from 4, S and J. More

specifically, NeuralWalk processes the nodes in J in two cases:

Case 1. If the node j € J NS and r(k) r? € GO
(i.e., 7;; is an original trust relation in the orlgmal graph),
the NeuralWalk collects all of potential and original trust

ratings on 2-hop path(s) from ¢ to j, i.e., (rfj Jil;)) as

input, where s € Nyt (i) N Ny (f). With rfj) as a label, a
training sample is formed:
{( (k) (k))VS €N,,

(0)
18 51 ()ONZ'”( )7 Z] } (5)
Case 2. If the node j € J and j ¢ S, the NeuralWalk
collects all of the 2-hop path(s) from i to j, i.e., (7 l(f), rg;)),
where s € Nyt (i) N Ny (j) to form an inference sample:

{(rz(s)7 g;))vs S Nout( ) N Nln(j)} . (6)

Notably, predicted trust relations, i.e.,r;; € G(k)/G(O), will
not be considered as labels here. The purpose is to guarantee
that the ground truths in the training set will always be correct.
By traversing all of the nodes ¢ € GG as is introduced above,
the algorithm will obtain a training set 7(*) and inference set
Z(¥) for the current iteration.

With T(k), a WalkNet for the current iteration, denoted as
W), can be learned. By applying W) on Z(*), the potential
trust relation r(k) for each rz(f), gj) € T can be computed.
In the end, an updated TSN for the next iteration, G*+1 | will
be obtained by filling the computed trust relations into G(k)

With G*+1D) | the algorithm goes into the next iteration, until
the iteration number is reached or all of the potential trust
relations have been identified. As the TSN is filled with more
potential trust relations, more training samples yielding Eq. 5
will be found. Therefore, we have |7 (*+1)| > | 7).

B. Boolean Matrix Operation

After showing the process of “walking” in a straightforward
way, we present how NeuralWalk is implemented with Boolean
matrix operations. By using Boolean matrix operations, Neu-
ralWalk can be significantly accelerated with matrix-efficient
tool-kits in a parallel or distributed environment. In addition,
a further increase in computing speed can be expected if the
Boolean matrix operation is implemented with GPUs.

For a TSN G¥) in iteration k, we use G*) to denote its
adjacent matrix, where G(*)[4, j] = 1 if there is an original or
potential trust rating between node ¢ and j, otherwise we have
G™1Ji,j] = 0. For any i € G*), we use a vector

E E) (k k k

o = [l e W]

to indicate if ¢ has trust ratings in all trustees from G® | ie.,
sgk) = G®[i,:]. Note that the index of any nonzero element
in sik is the index of a 1-hop neighbor of i in G(*). Based

on G*) and sgk), we conduct a matrix multiplication to get
another vector
k) (k k
o [
jgk) — (G(k)> ngk) — | GGz T teveny | (g
k) (k k) (k
51 611\)7 5N6N3\7

In addition, to track each element e( )e(k)

Ny in Eq. 7, we also
keep a matrix

(k) (k) o) o (F)

e&e)e%}«)’ (k)el(vkl)’

J(k (G(k)) Ek) = €1 €125 TN END>
k k

e, »rfzv)eﬁv%

where ® denotes element wise product. Tyg)lcally, there will
be special paths e, e vl < 2 < Nin J These paths are
essentially 1-hop edges from ¢ to j. Thereby, we set egi) =0

in s(k) such that any nonzero element J Ek)
a2- hops path from ¢ through s to j.

[s, 7] only indicate

By carr%lmg out an element-wise multiplication between
) and JZ we get a third vector

(0l 4 el .
o= | (0 e et

mgk) = SEO) ®]
k) (k k) (k 0
( El)egi\i) ( )eg\fg\f) ( )

With sz(-k), mg and Jgk), we can find out the training set T (%)
as introduced in the previous session. Specifically, a nonzero
element, whose index is j in mgk), indicates that there exists
2-hops path(s) from 7 to j, as well as an 1-hop original trust
relation from i to j in G(9. These two-hops paths can be
retrieved from G(*) with the nonzero elements indices from

k)



J(k)[ :]. For example, J] [ s] = 1 indicates that there is a
2-hops path from ¢ through s to j in G*). Therefore, these
two-hops paths and 51(' )[ j] will compose of a training sample
defined in Eq. 5.

On the other hand, the algorithm conducts another element-

wise multiplication between sgk) and jgk) to obtain a forth
vector

k) (k k) (k k
(el 4+ el P,
p) = 5 g ) _ (é?4£+ +4?4@)§?7 ,
k) (k k) (k k
(el ebiefth) o
where s( is the negation of s( ) , 1.e., turning nonzero elements
in sgk) into zeros and vice versa. With pgk) and Jgk), we

can find out the inference set as introduced in the previous
session. Specifically, a nonzero element, whose index is j
in pl(-k), indicates that there exists 2-hops path(s) from ¢ to
7, but no 1-hop trust relation from ¢ to 7 in G®), Notably,
any original or potential trust ratings already in G*) will be

ignored by multiplying with sgk). This mechanism will prevent
a trust rating be repeatedly computed in a loop. Similarly, these
two-hops paths can be retrieved from G(*) with the nonzero
elements indices from J Ek) [7,:]. These two-hops paths will
compose of an inference sample in Eq. 6.

In the end, a WalkNet W) can be trained with 7).
G*+1) is then updated with the inference results from apply-
ing W*) on Z(F),

C. NeuralWalk Algorithm

Algorithm 1 NeuralWalk(G, V, H)

Require: A directed graph G(?) with node set V' and iteration
number .
Ensure: ¢’s trust rating on j, Vi, j € V,i # j.
1: k<0
2: Initialize G*) based on G*)
3: while £ < H do
4 THE <}, 70 « [

5: forallieV ]90 . . Gk

6 Generate J( J( ), m{*) ( ") and p *) from G*)
7: Generate 'T from m(k) J(k) z( and G*)

8 T 70y T,

9 Generate Z*) from p{*), J¥), s{*) and G(*)

0 I® 70 yz®

11:  end for

12:  Train WalkNet W®*) with 7

13 Use W) to infer Z*) and update G**+1) with the
inference results

14: k+—k+1

15: end while

16: return G*+D

The pseudo-code of NeuralWalk is shown in Algorithm 1.
In line 2, the adjacent matrix G*) is generated from G*).
From line 5 to line 11, training set 7(*) and inference set Z(*)
are generated via collecting training and inference samples

i () for each node i € V. In hne 12,
T *) is used to train a WalkNet W) In line 13, W®) is used
on the inference set, and the newly computed trust ratings are
updated to G(F+1),

Now we analyze the time complexity of the NeuralWalk al-
gorithm. The time complexity from lines 5 is O(|V]). The time
complex1ty of generating JE ), Jgk), ml(.k) and pl(-k) are O(|V|2),

O(IV|?), O(]V]) and O(|V'|), respectively. Therefore, the time
complexity from line 5 to line 11 is O(|V|*). However, since
this part is accomplished based on Boolean matrix operations,
it can be efficiently implemented. As the training time is
proportional to the sample size?, the time complexity of line
12 is O(|V|?). Similarly, the time complexity of line 13 is
also O(|V|?), since the size of inference set is |V/|*. Finally,
because H < V, we can conclude that the time complexity
of NeuralWalk is O(|V[*).

V. EXPERIMENTS AND RESULT ANALYSIS

T(k) and inference set Z,

The performance of NeuralWalk (NW) will be compared
to state-of-the-art trust assessment solutions, including Opin-
ionWalk (OW) [13], Matri [23] and TidalTrust (TT) [9]. Two
real-world datasets, Advogato [19] and Pretty Good Privacy
(PGP) [24], will be used in the evaluation. The focus of the
evaluation will be how accurately different algorithms are,
regarding to trust assessment.

A. Datasets

The first dataset, Advogato, is obtained from an online
software development community where a connection between
two users represents one’s trust in anther’s ability in software
development. The trust between users is quantified by four
different levels: apprentice, observer, journeyer, and master.
The second dataset, PGP, is collected from a public key
certification network where an edge from a node to another
indicates that the node certificates the trust of the other node.
The trust between nodes in PGP is also divided into four
levels. The different levels in both datasets reflect different
trust values, so we use numbers 1, 2, 3 and 4 to indicate them.
The statistics of the datasets are summarized in TABLE 1.

TABLE I: Statistics of the Advogato and PGP Datasets

Dataset # of Vertices | # of Edges | Avg Deg | Diameter
Advogato 6,541 51,127 19.2 4.82
PGP 38,546 31,7979 16.5 7.1

B. Experimental Setup

In the evaluation, we use the same parameter settings for
OW, Matri and TT, as they were in the papers [13], [23], [9], to
initialize the trust opinions between users. As the trust ratings
in the datasets are already categorical values, they are directly
fed into the NW as the input. The only hyperparameters of
NW are (1) the dimension of opinion D,, and (2) the max
number of opinions to be combined, i.e., n in Section III-D.
D, indicates the number of hidden features in a trust opinion,
and we set D, = 16 as the performance of NW with D, > 16
tends to be consistent. To keep the training set robust enough,

the paths (r ) 0 )) from the original graph will be considered

is ) sg

3The training and inference time are also impacted by the parameter scale
of WalkNet. We treat it as a constant number because it does not depends on
the graph size.



as the prior choice for opinion combining. Consequentially, we
set n = 32 because majority (93% and 95%) of the nodes in
Advogato and PGP have out degree less than 32. When the out
degree of a node in G s less than 32, in the evaluation, we
randomly select paths composed of computed potential trust
ratings as compensation. If the combined opinions are still
less then 32, the blank positions will be padded as zeros. The
entire NW algorithm is developed using python 3.6. Specially,
WalkNet is implemented by PyTorch 0.4.

Because OW and TT are deductive algorithms, there is no
need to separate a certain portion of the datasets for the training
purpose. For these algorithms, we randomly select a trustor u
from the datasets and find all its 1-hop neighbors v’s. For each
neighbor node v, if there exists at least one path from u to v,
we remove the edge (u, v) from the datasets. The original trust
ratings from u to v’s are considered the ground truths. With
the updated datasets, OW and TT algorithms are executed to
estimate u’s trust in v. The estimated trust values are then
compared to the ground truths to determine the algorithms’
accuracy in trust assessment. We randomly select 1000 trustors
from Advogato or PGP, in the evaluation, to obtain statistically
significant results.

For NW and Matri algorithms, the datasets are divided into
two parts: one for training and the other for testing. For Matri,
we first identify all trustor-trustee pairs (u,v) in the datasets
and treat the trust ratings between them as the labels. Then,
20% of edges are randomly selected and removed from the
graph, to compose the testing set. The remaining graph is
used as the training set. After Matri is trained, it is used to
the estimate the trust values of the edges in the testing set.
The difference between the estimated and ground truth values
is recorded and treated as the algorithm’s accuracy in trust
assessment. Similarly, for NW, we split the datasets as 80%
and 20% for training and testing sets, respectively.

C. Evaluation Metrics

The metrics used to evaluate the accuracy of trust assess-
ment offered by these algorithms are F1 score, mean absolute
error (MAE), and binary F1 score. Because NW is essentially
a categorical classifier, F1 score is the most appropriate metric.
However, OW, Matri and TT aim at computing a continuous
trust value, for a given trustor-trustee pair. Therefore, to make
a fair comparison, MAE is used in the evaluation. To evaluate
NW using MAE, the four trust levels are converted to 0.1, 0.4,
0.7 and 0.9, respectively. To obtain an F1 score, for Matri, OW
and TT, the estimated trust values are rounded to the closest
categorical trust value. Last but not the least, it is commonly
useful to know whether a node is trustworthy or not, so the
four different trust levels are collapsed into two levels, i.e.,
trustworthy and untrustworthy, to obtain binary F1 scores for
different algorithms. The original first and second levels of
trust are merged into one level and the other two levels into
another level.

D. Accuracy

Using the Advogato dataset, we evaluate the trust assess-
ment accuracy of different algorithms. As shown in Fig. 4a
and Fig. 4b, NW offers the highest accuracy, in terms of F1
score, binary F1 score, and MAE. It is intriguing to note that
NW achieves an F1 score as high as 0.746, which is 0.051
higher than OW — the best solution in the literature. As the

range of an F1 score is [0,1], a 0.051-higher F1 score is
considered a substantial improvement. The binary F1 scores
of NW and other algorithms are higher than their F1 scores,
which makes sense as the binary F1 score only provides a
coarse accuracy measurement. Not surprisingly, all algorithms
achieve a > 0.8 F1 score, as shown in Fig. 4a. The observation
indicates that trust assessment becomes much easier if it is
solely for determining whether a user is trustworthy or not.
Nevertheless, NW achieves the best performance, with a binary
F1 score of 0.886. This is still better than the second best
algorithm — Matri. As shown in Fig. 4b, NW’s outstanding
performance is also confirmed when MAE is used to measure
the accuracy in trust assessment. Specifically, the MAE of NW
is as low as 0.076, which is nearly 25% lower than the second
best solution — OW.
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Fig. 4: Accuracy of different algorithms on Advogato.

To confirm NW’s performance does not depend on datasets,
we then evaluate NW, as well as all other algorithms, using the
PGP dataset. As shown in Fig. 5a and Fig. 5b, all algorithms
perform better, compared to their performance in Advogato.
For example, the NW achieves the highest F1 score of 91.6%.
It is 16.7% higher than Matri, the second best one. It is
interesting to note that the accuracy of OW is lower than
Matri, which is not the case when the Advogato dataset was
used. That implies neither Matri nor OW will perform well
consistently, in both Advogato and PGP. As we expected, the
binary F1 scores of NW and all other algorithms are higher
than their F1 scores. Among all the solutions, NW achieves
the highest binary F1 score 0.935. As shown in Fig. 5b, the
overall trend of MAE is similar to that of Advogato. NW still
performs the best while Matri is the second best. In point of
fact, the MAE of NW is only 0.054, which is nearly 50%
lower than that of Matri (the second best).

From the above experiments, we conclude that NW sig-
nificantly outperforms existing (either inductive or deductive)
solutions to trust assessment, in both the Advogato and PGP
datasets. The main reason is that NW inherited the capability
of 3VSL, in terms of accurately modeling trust. Moreover, the
machine learning based (discounting and combining) opinion
operations enable more precise trust computation, which is
lacked in the original 3VSL trust model.

E. Robustness

In addition to accuracy, we are interested in NW’s robust-
ness to training sample size. As an inductive method, NW’s
performance may degrade when not enough training samples
are available. The method of evaluating NW’s robustness to
sample size is to adjust the ratio between the training and
testing sets. Specially, we compare the performance of NW
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Fig. 5: Accuracy of different algorithms on PGP.

when the train set is 80%, 60% and 40% of the entire dataset,
respectively. We compare NW to Matri and ignore OW and
TT algorithms because Matri is an inductive solution while
the others are not.

As shown in Fig. 6, the degraded performance of NW is
not notable when the ratio is reduced to 40% in the Advogato
dataset. In Fig. 6a, the F1 scores of NW are 0.743 and 0.739,
when the training set ratios are 60% and 40%, respectively. The
F1 scores of NW are only 0.003 and 0.007 smaller than the
best one where the ratio is 80% (where the F1 score is 0.746).
On the other hand, the F1 scores of Matri are 0.663 and 0.641
when ratios are 60% and 40%, respectively. Matri degrades
0.015 and 0.037 from the best 0.678, i.e., Matri shows worse
robustness. For binary F1 score, NW’s performance drops
0.004 and 0.006 from the best 0.886, which can be ignored.
The binary F1 scores of Matri are 0.006 and 0.015 lower than
that of the best case, when the the ratio is reduced to 60% and
40%, respectively. As shown in Fig. 6b, the MAE of NW is
increased 0.001 and 0.003 from the best 0.076. Overall, we
do not observe drastic performance difference for NW, when
the training/testing ratio is adjusted.

TidalTrust

1.2
—NwW 0.150
1.1 mmm NW Binary "
Matri 50.125
1.0 Matri Binary fin]
4 £0.100
o El
{09 0886 g7y 0882 (gen 0880 o § 0,075
T <
* 0.8 =
: © 0.050
0.741 Q
074 0.73 s
0.7 678 663 0.025
641
0.6 0.000
80% 60% 40% 80% 60% 40%

Proportion of Training Set

Proportion of Training Set

(b) Mean Absolute Error

(a) 4 Class and Binary F1 Scores

Fig. 6: Impact of training size on Advogato.

Using the PGP dataset, similar yet even better observations
can be found in Fig. 7. In Fig. 7a, the F1 scores of NW
are 0.916, 0.915 and 0.914, when the training sets are 80%,
60% and 40%, respectively. The performance difference is too
subtle to be notable. On the other hand, the F1 scores of Matri
are 0.749, 0.728 and 0.706, when the ratios are 80%, 60%
and 40%, respectively. The performance of Matri degrades
much faster than NW. Minor performance degradation is also
observed for NW, if binary F1 score is used in evaluations.
Finally, as shown in Fig. 7b, NW’s MAE does not change
significantly when the ratio is changed from 80% to 60% and
then to 40%. In summary, we conclude that NW is robust to the
training sample size, i.e., it offers a fairly stable performance
even if smaller amount of training samples are available.
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VI. RELATED WORK

Previous study in trust assessment mainly focuses in two
folds, i.e., trust inference and trust modeling. Trust infer-
ence focuses on conducting multi-hop trust assessment in
complicated network. Assuming trust is a scalar number and
the trust value is derived from the paths between a trustor
and trustee, several research works are proposed [11], [9].
The methods proposed in [11], [9] aim at computing the
trustworthiness by performing path searches in the network
and models trust propagation as flow decaying and aggregation
in the network. However, these methods are lack of accurate
ways for modeling trust. On the other hand, trust modeling
focuses on representing the existing trust between two user
with a mathematical model. Conventional methods model trust
as statistic distribution upon evidences or observations [7],
[8]. The advantage of these methods is that they are able
to model the complicated nature of trust, in an explainable
way. However, the limitation is these methods that the are
unable to handle complex networks due to the limitations
identified in [12]. Combining both trust modeling and infer-
ence, AssessTrust [12] and OpinionWalk [13] are proposed to
conduct trust assessment in complex networks, such as online
social networks. However, a non-trivial problem remaining to
AssessTrust and OpinionWalk is that their parameters have
to be determined empirically, which limits their accuracy and
is impractical in trust assessment systems. Recently, matrix
factorization-based methods [25], [23], such as Matri, are
proposed to conduct both trust modeling and inference in
an inductive manner. By minimizing the error between the
observed trust values and the inner products of corresponding
trustor/trustee vectors, the unobserved trust values can be
predicted via conducting inner products upon their feature
vectors. The main limitation of these methods is that the output
of this models are continues scalars indicating the strength of
trust, therefore cannot be accurately fitted into discrete trust
ratings existed in most of the trust datasets. In addition, none
of them accounts for the trust fusion operation, therefore their
accuracy are impacted.

The idea of WalkNet is inspired by the recent studies in
graph representation learning [26], [27], [28], [29]. In [26],
an approach called DeepWalk is proposed to learn distributed
representations of nodes in a social network, based on the
co-occurrence of the nodes in a local area. The distributed
representations are vectors with same dimensions. The tie
strength between two nodes in a social network can hence
be measured by the distance between the vectors representing
them. Based upon DeepWalk, improvements are made in [27]
to account for the dynamics and scalability of social networks.
In [28], a framework called GraphSage is proposed to predict




the feature of a target node via learning and aggregating the
feature representations of the k& hop nodes around it. Similar
to GraphSage, in [29], a model called R-GCN is proposed to
predict the feature (link type) of a target edge by the feature
(entity type) representations of nodes around it.

Note that the WalkNet model and NeuralWalk algorithm
are different from the aforementioned works. On the one hand,
WalkNet makes use of the interactions of edge features in
serial and parallel typologies to predict the feature of a certain
edge. On the other hand, WalkNet is regarded as an end-to-
end solution of single-hop trust assessment only. Working with
WalkNet, the NeuralWalk algorithm conduct multi-hop trust
assessment across TSNs in a BFS manner.

VII. CONCLUSIONS

We proposed a machine learning driven algorithm, Neu-
ralWalk, to tackle the trust assessment problem in trust social
networks. Unlike traditional solutions, NeuralWalk employs a
neural network architecture, called WalkNet, to model single-
hop trust propagation and trust combination. The parameters
in WalkNet are learned, when the NeuralWalk algorithm
searches within a trust social network, via the standard training
framework of neural networks. Based on the learned single-hop
trust computation, i.e., discounting and combining operations,
NeuralWalk iteratively conducts multi-hop trust assessment
in a BFS manner. Experiments are conducted against two
real-world datasets, and results demonstrate that NeuralWalk
outperforms the state-of-the-art solutions. As a fundamental
framework, NeuralWalk can be extended to cope with more
complex trust inference algorithms. The obtained transforma-
tion mechanism, for trust ratings and trust opinions, can be
used to covert existing datasets to support the validation of
sophisticated trust models.
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