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Abstract

Storm surge models are constructed to represent the Louisiana coastal landscape
circa 1850, 1890, 1930, 1970, 1990, 2010, 2030, 2050, 2070, 2090, and 2110.
Historical maps are utilized to develop models with past landscapes while a contin-
uation of recent landscape trends is assumed for future models. The same suite of
meteorological wind and pressure fields is simulated with each storm surge model.
Simulation results for 1850 and 1890 demonstrate minimal change in storm surge
characteristics along the Louisiana coast. A mean maximum storm surge height
increase of 0.26 m from 1930 to 2010 is quantified within the sediment-abundant
Atchafalaya-Vermilion coastal basin, while increases of 0.34 m and 0.41 m are
quantified within sediment-starved Terrebonne and Barataria, respectively. Future
mean maximum storm surge heights increase across these three coastal basins by
0.67 m, 0.55 m, and 0.75 m, indicating negligible differences from 2010 to 2110,
regardless of sediment availability. Results indicate that past changes in the Louisi-
ana coastal landscape and storm surge were a consequence of local land and river
management decisions while future changes are dominated by relative (subsidence
and eustatic) sea level rise. Projecting landscape and surge changes beyond 50 years
could aide policy makers as they work to enhance resilience across coastal Louisi-
ana. Similar analyses could be conducted for other deltas across the world, such as
the Ganges, that are experiencing challenges comparable to those of the Mississippi
River Delta.
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Climatic Change

1 Introduction

Deltas across the world are drowning due to relative sea level rise (sum of local subsidence and
local eustatic sea level rise), which has major implications for humans and ecosystems that
depend on their existence (Kulp and Strauss 2017; Syvitski et al. 2009; Vérosmarty et al. 2009;
Wong et al. 2017). Syvitski et al. (2009) grouped 33 major deltas by risk of substantial change
throughout the twenty-first century due to relative sea level rise. The Ganges, Irrawaddy,
Magdalena, Mekong, Mississippi, Niger, and Tigris all feature relative sea level rise rates
greater than that of global mean sea level (GMSL) rise. The Ganges and Mississippi Deltas are
especially similar in terms of areas susceptible to storm surge and historical rates of aggrada-
tion and relative sea level rise (Syvitski et al. 2009). In the Mississippi Delta, river manage-
ment decisions have increased the magnitude of relative sea level rise during the last century
(Blum and Roberts 2009; Day Jr. et al. 2007; Twilley et al. 2016). Levee construction and the
closing of Mississippi River distributaries have resulted in wetland loss and increased inland
storm surge heights across Louisiana hydrologic coastal basins with substantially reduced
riverine sediment input (i.e., sediment-starved). In contrast, minor landscape changes have
occurred in the Atchafalaya-Vermilion hydrologic coastal basin with continued riverine
sediment input (i.e., sediment abundant) (Siverd et al. 2019, 2018). Deltas and their inhabitants
will continue to be stressed as annual rates of GMSL rise are projected to increase throughout
the twenty-first century with extreme scenarios ranging from 1.0 to 2.5 m (Jevrejeva et al.
2016; Stocker et al. 2013; Sweet et al. 2017). The goal of this analysis is to quantify the change
in storm surge characteristics from 1850 to 2110 across coastal Louisiana due to landscape
changes and eustatic sea level rise via a methodology that could be applied to similar deltas
across the world such as the Ganges.

During the past few decades, numerical storm surge model development focused on
accurately representing landscape features to produce more accurate results (Ali 1999;
Bilskie et al. 2015; Bilskie and Hagen 2013; Bilskie et al. 2016b; Blain et al. 1998; Dietrich
et al. 2011a; Lawler et al. 2016; Luettich and Westerink 2004; Massey et al. 2015; Massey
et al. 2011; Walstra et al. 2012; Westerink et al. 2008). Recent studies have also examined the
impact of modern hurricanes on past landscapes (Irish et al. 2013) and the nonlinear response
of storm surge to GMSL rise (Atkinson et al. 2012; Bilskie et al. 2016a; Bilskie et al. 2019;
Bilskie et al. 2014; Smith et al. 2010). Land to water (L:W) isopleths are lines that connect
areas of the same percentage of land with respect to water along the Louisiana coast and were
previously derived from satellite imagery and historical maps. L:W isopleths were previously
utilized to simplify a detailed modern-day Louisiana coastal landscape with coastal zones
labeled high (99% through 90% L:W isopleths), intermediate (90-40%), and submersed (40—
1%) most closely reproducing the detailed coastal Louisiana landscape. For more details, see
Siverd et al. (2018, 2019) and Twilley et al. (2016). In this analysis, L:W isopleths with the
same percentage of land with respect to water (90%, 40%, and 1%) derived circa 1850, 1890,
1930, 1970, 1990, 2010, 2030, 2050, 2070, 2090, and 2110 are applied in storm surge model
mesh development and serve as a connector of temporal wetland loss and storm surge
evolution from 1850 to 2110. Simple landscape representations of the Louisiana coast are
developed for each mesh year due to the lack of comparable topo-bathymetry prior to the early
2000s (Siverd et al. 2018).

The aim of this analysis is to quantify the historical and future evolution of storm surge
across the Louisiana coastal landscape from 1850 to 2110. Storm surge characteristics such as
maximum water surface elevations, storm surge inundation time, and maximum significant
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wave heights are quantified, and difference plots are generated. The impact of coastal
deforestation on storm surge is also examined. Future Louisiana coastal landscapes are
qualitatively compared with the projections of the Louisiana Coastal Wetlands Conservation
and Restoration Task Force (1993), Barras et al. (2003), and the 2017 Louisiana Coastal
Protection and Restoration Authority (CPRA) coastal masterplan. Storm surge maximum
water surface elevations and maximum significant wave height results are included in the
main text. [nundation time results and the coastal deforestation analysis reinforce conclusions
drawn from analyzing maximum water surface elevation and maximum significant waves and
are included in Online Resource 1. Resio and Westerink (2008) issued a challenge to develop
storm surge models that could be used to design flood defenses through an approach that
“looks far into the future.” In this analysis, we provide an approach to address this challenge.

2 Study area

The study area is the Louisiana coast, which is bound by Sabine Lake (west), Pearl River
(east), Intracoastal Waterway (ICWW) (north), and the Gulf of Mexico (GOM) (south) (Fig.
1). The Louisiana coast is characterized by small topographic gradients, numerous man-made
canals, and navigation waterways. The study area has changed substantially since 1850. In the
nineteenth century, coastal forests were harvested for lumber (Fig. 2) (Conner and Toliver
1990). In both the nineteenth and twentieth centuries, levees were constructed adjacent to the
Mississippi River for flood control (U.S. Army Corps of Engineers 2016). Throughout the
twentieth century, 16,853 km of petroleum canals was excavated in addition to numerous wide
and deep navigation waterways (Turner and McClenachan 2018). By 2010, 4877 km? of
Louisiana coastal wetlands and barrier islands was lost due to changes in river management,
subsidence caused by lack of sediment deposition subsequent to the channeling of the
Mississippi River, and compaction due to subsurface mining (hydrocarbon and groundwater)
(Blum and Roberts 2009; Nienhuis et al. 2017; Syvitski et al. 2009), and eustatic (including
seasonal GOM expansion) sea level rise, with eustatic sea level rise providing only a minimal
historical contribution (Fig. 2) (Batker et al. 2010; Couvillion et al. 2011; Siverd et al. 2019).
This analysis utilizes observed historical GMSL rise measurements and a conservative future
GMSL rise scenario to determine the initial GOM water level for each storm surge model year
1850 through 2110. See Online Resource 1 for more details regarding the study area.

3 Methods
3.1 Hydrodynamic model and mesh development of historical landscapes

Storm surge simulations are facilitated through application of a coupled ADvanced CIRCulation
two-dimensional depth-integrated (ADCIRC-2DDI) code (Luettich Jr. et al. 1992) and the third-
generation wave model Simulating WAves Nearshore (SWAN) (Booij et al. 1999; Dietrich et al.
2011b; Zijlema 2010). ADCIRC solves the depth-averaged shallow water equations (SWEs) for
water surface elevations and depth-averaged currents, and SWAN computes the wave action density
spectrum (Dietrich et al. 2011b). Wind, pressure, and wave forcings are included in this analysis,
while tide and river discharge forcings are excluded to reduce complexity and because the latter have
only minor influence on surge results (National Oceanic and Atmospheric Administration 2018).
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Fig. 1 Year 2015 and 2016 satellite images. a Major coastal features and cities of southeast Louisiana. b Major
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2030, 2050, 2070, 2090, and 2110. Black line indicates the Intracoastal Waterway (ICWW). Purple lines indicate
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Fig. 2 Topography and bathymetry: 1890, 1930, 2010, and 2110

An approach is developed to construct numerical storm surge models featuring both
historical and future landscapes of the Louisiana coast. A storm surge model mesh is a
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topological network comprising elements and nodes containing elevation data. The mesh
developed for the 2017 CPRA Louisiana Coastal Master Plan (Fischbach et al. 2017) serves
as a base to edit and construct meshes featuring the Louisiana coastal landscape circa 1850,
1890, 1930, 1970, 1990, 2010, 2030, 2050, 2070, 2090, and 2110. The CPRA2017 base mesh
features approximately 1.4 million nodes and 2.7 million elements. The base mesh focuses on
the Louisiana coast with 93% of nodes between Mobile Bay, Alabama, and the Bolivar
Peninsula, Texas, and describes the western north Atlantic Ocean west of the 60° W meridian,
GOM, and Caribbean Sea. Because only Mississippi River levees existed in 1850, man-made
features such as levees are removed from the CPRA2017 mesh south and west of the
Mississippi River to compare changes in storm surge characteristics due to land loss across
all mesh years from 1850 to 2110. Removing levees in the study area also removes the need to
account for future levee construction or abandonment (see Siverd et al. (2018) for more
details). Mesh resolution is enhanced seaward of the current (2019) barrier islands to accu-
rately describe barrier islands in southeast Louisiana from 1850 to 2110. This modified
CPRA2017 mesh is hereafter called the “detailed” storm surge model mesh.

Coastal zones are established via the position of the 90%, 40%, and 1% L:W isopleths
along the Louisiana coast in the following configuration: high ICWW—90%), intermediate
(90-40%), and submersed (40—1%) (Siverd et al. 2018). Mesh nodes are assigned an elevation
value (NAVDSS) based on their respective zone classification, high, 0.47 m; intermediate, 0.27
m; and submersed, — 0.98 m. Manning’s n bottom roughness values are also assigned per
coastal zone, high, 0.070; intermediate, 0.045; and submersed, 0.025. In accordance with
Church et al. (2013), historical GOM initial water levels are set for each storm surge model
based on the following GMSL rise rates: 0.5 mm/year 1850-1890, 1.0 mm/year 1890-1930,
2.0 mm/year 1930-2010. The Intermediate-Low scenario from Sweet et al. (2017), which
averages 5.1 mm/year 2010-2110 (Table 1), is selected for future models. GOM initial water
levels are derived from the 2010 starting point of 0.23 m NAVDSS8, which was established by
the U.S. Army Corps Joint Storm Surge (JSS) study and describes the annual summer increase
in GOM water levels (U.S. Army Corps of Engineers 2008). To further explain, historical
water levels are set by subtracting the GMSL rise between each historical model year and the
2010 starting value of 0.23 m NAVDS8S. Future initial water levels are set by adding the
Intermediate-Low projected rise in sea levels to the 2010 value of 0.23-m NAVDSS for each
model year (Table 1).

3.1.1 Storm surge model meshes

For the 1850, 1890, 1930, 1970, 1990, and 2010 storm surge model meshes, the location of the
Intracoastal Waterway (ICWW) is designated the northern boundary of the study area even
though excavation did not begin until 1925 (Fig. 1c) (Harrison 2015). Because data exist,
barrier islands from Isles Dernieres to the Chandeleur Islands are input according to U.S. Coast
and Geodetic Survey (USC&GS) T-Sheets and the USGS 1:62.5k quads for 1850 and 1890
(Supplementary Table 1). L:W isopleths (1%, 40%, 90%) were previously derived for 1932,
1973, 1990, and 2010 and applied to the detailed model mesh from Lake Sabine to the Pearl
River to construct meshes circa 1930, 1970, 1990, and 2010 (Fig. 2). USGS quad sheets and/or
National Oceanic and Atmospheric Administration (NOAA) T-sheets were utilized to input
barrier islands, ridges, and navigation waterways as they existed in each mesh year. For more
details regarding mesh years 1930, 1970, and 2010, see Siverd et al. (2019). For mesh years
1850, 1890, and 1990, see Online Resource 1.
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Table 1 Storm surge model descriptions. 1890 wooded areas are inserted in model 12 for the sensitivity analysis

No. Storm surge model ~GOM initial water Navigation Surface Surface directional
mesh (year) level (m) waterways (year) canopy (year) roughness (z0) (year)

Historical and future storm surge models

1 1850 0.01 1850 18501890 1850-1890
2 1890 0.03 1890 1850-1890 1850-1890
3 1930 0.07 1930 19302110 1930-2110
4 1970 0.15 1970-2110 19302110 19302110
5 1990 0.19 1970-2110 19302110 1930-2110
6 2010 0.23 1970-2110 19302110 19302110
7 2030 0.32 1970-2110 1930-2110 19302110
8 2050 0.43 19702110 19302110 19302110
9 2070 0.54 1970-2110 19302110 19302110
10 2090 0.64 1970-2110 1930-2110 1930-2110
11 2110 0.74 19702110 19302110 19302110
Sensitivity analysis storm surge model

122010 0.23 19702110 1850-1890 1850-1890

3.2 Hydrodynamic model mesh development of future landscapes

Recall that the 1% L:W isopleth indicates one part land for every 100 parts water, or
virtually open water. For all historical storm surge models (1850-2010), the position of
the 1% L:W isopleth demonstrates only minor spatial variations due to the CPRA’s recent
restoration of the barrier islands. Additionally, the CPRA has committed to maintaining
the barrier islands through a periodic rebuilding campaign (Coastal Protection and
Restoration Authority 2018). Therefore, the 2010 1% L:W isopleth is utilized for the
location of the 1% L:W isopleth for all meshes featuring future Louisiana landscapes.
Conversely, a trend in isopleth migration is observed across storm surge model mesh
years 1970, 1990, and 2010 for interior L:W isopleths. The land to water ratio decreases
by approximately 10% at all locations south of the ICWW for each 20-year interval with
only minor variations (i.e., the 40% L:W isopleth in 1970 converts to 30% in 1990 and
20% in 2010). This trend is extrapolated into the future using the 2010 L:W isopleths:
the 2010 50% L:W isopleth is considered spatially equal to the 2030 40%; 2010 60%
equals 2050 40%; 2010 70% equals 2070 40%, 2010 80% equals 2090 40%, and 2010
90% equals 2110 40% (Fig. 1c). Similarly, 2010 99% equals the 2030 90%. Because
L:W isopleth migration trends of the recent past are assumed to continue into the future,
substantial increases or decreases in annual subsidence rates are assumed not to occur.
The only exception to the land loss trend is in the Wax Lake-Atchafalaya Deltas where land
has been increasing since 1970. According to Wells et al. (1984) and Twilley et al. (2008), a
delta rapidly grows for the first 60 to 90 years after the initial emergence of land. Subsequent
delta growth slows substantially due to radial expansion assuming constant sediment supply,
subsidence, and erosion rates. The Wax Lake Outlet was dredged in the 1930s to reduce river
flood risk in Morgan City, marking the beginning of the Wax Lake-Atchafalaya Delta
formation (U.S. Geological Survey 2017b). Additionally, since 1970, the sediment loads of
the Mississippi and Atchafalaya Rivers have decreased by approximately half (Blum and
Roberts 2009; Siverd et al. 2019). Because the rapid growth phase of the Wax Lake-
Atchafalaya Deltas has ended, sediment supply used to build the deltas has decreased by half
and due to the projected future increase in annual GMSL rise, limited future delta growth is
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assumed. Therefore, the 2010 40% L:W isopleth is utilized to input the position of the Wax
Lake and Atchafalaya Deltas for 2030, 2050, 2070, 2090, and 2110.

The state of Louisiana has committed to rebuilding and maintaining the barrier islands from
Isles Dernieres to the Chandeleur Islands (Coastal Protection and Restoration Authority 2017).
Therefore, the barrier islands are assumed to stay in the same position far into the future. This
is considered a conservative assumption because higher inland storm surge could occur if the
barrier islands are not continuously rebuilt (Ulm et al. 2016). Barrier island position, elevation,
and Manning’s n values as they exist in the detailed model mesh are included in future meshes
2030 to 2110. For comparability purposes, the ICWW is maintained as the northern boundary
of the study area even though landscape changes north of the ICWW are likely to occur but are
unlikely to alter the response of storm surge flooding south of the ICWW. Future representa-
tions of the Louisiana coastal landscape from 2030 to 2110 portray a conservative scenario for
the state of Louisiana because it is not known how areas susceptible to change such as the
upper Atchafalaya-Vermilion, Terrebonne, Barataria coastal basins, land bridge between New
Orleans East and Slidell, and the shoreline of Lake Pontchartrain will be maintained by the
state and federal governments. Therefore, the elevation and Manning’s » values north of the
ICWW are unchanged through 2110. Future Louisiana coastal landscapes and surge results can
also be considered conservative due to the extrapolation of the observed rate of land change
between 1970 and 2010 to create the landscapes of 2030 through 2110 and due to the
application of the NOAA Intermediate-Low future GMSL rise scenario to future model initial
GOM water levels. Therefore, the impact of future increases in the rate of global ice melt is not
included in this analysis.

3.3 Subsidence

Subsidence is addressed via the migration of the L:W isopleths inland from 1850 to 2110.
Coastal zones high, intermediate, and submersed, which are delineated by the position of L:W
isopleths, feature the same elevation and Manning’s » values for all mesh years. As the 90%
and 40% L:W isopleths migrate inland from 1850 to 2110, coastal zone high converts to
intermediate and submersed thereby decreasing 9840 km? (100%), intermediate decreases
3746 km? (50%), and submersed doubles in size increasing by 11,913 km?2 (204%) (Fig. 3).
Additionally, the 2010 average elevations derived for each coastal zone (Siverd et al. 2018) are
supported via marsh elevations measured by Day et al. (2011).

3.4 Storm surge model simulations

The objective of this analysis is to quantify temporal changes in hurricane storm surge along
the Louisiana coast due to landscape changes and eustatic sea level rise. To permit a reasonable
comparison, all storm surge models are forced with the same suite of meteorological wind and
pressure fields developed from 14 historical hurricanes (Cox et al. 1995; Powell et al. 1998).
These 14 hurricanes include Isaac (2012), Gustav (2008), Ike (2008), Dennis (2005), Katrina
(2005), Rita (2005), Ivan (2004), Georges (1998), Earl (1998), Opal (1995), Andrew (1992),
Kate (1985), Elena (1985), and Agnes (1972) (Siverd et al. 2019). Simulated hurricane storm
surges are from hurricanes that tracked across the GOM, reached category 1 status while in the
GOM, and made landfall between Galveston and Apalachicola Bay. These 14 historical
hurricanes provide a suite of varying storm characteristics that include track, landfall location,
and intensity. We are not attempting to show how each hurricane would have looked in the past
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included in Online Resource 1
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or may look in the future. Rather we are using the suite of storms to examine relative changes
in storm surge characteristics between all eras. Outputs per mesh node include maximum water
surface elevation, inundation time, current velocity, and wave statistics (Dietrich et al. 2011Db).
The maximum of maximums (MOM) water surface elevation is computed by finding the
highest simulation output per node from all hurricanes. MOM water surface elevation differ-
ences are calculated by subtracting the earlier mesh year simulation output (i.e., 1850) from
that of a later year (i.e., 2110).

3.5 Application of hydrologic coastal basins

Hydrologic coastal basins have been delineated across the Louisiana coast at least since the
passage of the 1990 Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA)
(Barras et al. 2003; Boesch et al. 1994; Couvillion et al. 2011; Louisiana Coastal Wetlands
Conservation and Restoration Task Force 1993; Twilley et al. 2016; Twilley et al. 2008; U.S.
Army Corps of Engineers 2009). This analysis applies hydrologic unit code 6 (HUC6) coastal
basins and the smaller HUC12 sub-watersheds, which fit within HUC6 coastal basins, as
spatial bounds to quantify storm surge height and inundation time (Siverd et al. 2019; U.S.
Geological Survey 2017a). Henceforth, HUCG6 coastal basins are referred to as “coastal basins”
while HUC12 sub-watersheds are referred to as “sub-watersheds.”

4 Results

The following subsections include projections of future landscapes, a qualitative assessment of
future landscapes, and detailed results concerning mean maximum of maximums (MOM)
water surface elevations and maximum significant wave heights. For detailed results and
discussion regarding inundation time and the impact of coastal deforestation, see Online
Resource 1.

4.1 Qualitative assessment of future landscapes

Coastal zones high, intermediate, and submersed for 2030, 2050, 2070, 2090, and 2110 result
from the previously discussed L:W isopleth inland migration trend from mesh year 1970 to
2010 (Fig. 3). South of Houma and Lafitte (Fig. 1a), the rate of inland migration of the 40%
L:W isopleth visibly slows from 2070 to 2110 (Figs. 1c and 3) as the 40% isopleth encounters
inland ridges and levees indicating near-total wetland loss by 2070 in this area. However, in
southwest Louisiana between Sabine and Wax Lakes (Fig. 1b), negligible inland migration of
the 40% isopleth occurs from 2030 to 2050 while substantial inland migration visibly occurs
from 2070 to 2110.

Coastal zones high, intermediate, and submersed for 2050 and 2070 reveal substantial
spatial similarities with previously published projections. The 2050 projection derived from
this analysis and the 2040 projection created by the Louisiana Coastal Wetlands Conservation
and Restoration Task Force (1993) demonstrate coast-wide similarity with our coastal zone
intermediate (green) overlaying their wetland area (tan) and our coastal zone submersed (blue)
overlaying their areas of open water (red). Specifically, white arrows point to the 40% L:W
isopleth, which separates our intermediate and submersed coastal zones. In areas of disagree-
ment, our analysis projects less future wetland loss southwest of Lafitte (yellow arrow) and
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more wetland loss south of Lake Charles (red arrow) (Fig. 4a). For our same 2050 projection
but versus the 2050 projection from Barras et al. (2003), similarity of future coastlines
generally occurs across the coast. Our white intermediate zone generally overlays their green
land areas and our blue submersed zone overlays their red land loss areas (black arrows point
to the 40% L:W isopleth) except between the Biloxi Marsh and the east side of the Mississippi
River (red arrow) (Fig. 4b). Notably, this area was substantially impacted by Hurricane Katrina
in 2005 (Chen et al. 2008). The Louisiana Coastal Protection and Restoration Authority (2017)
coastal master plan 2067 medium scenario for both no action (Fig. 4c) and with action (Fig.
4d) generally compares to our 2070 projection derived from this analysis. Agreement occurs
where our intermediate coastal zone (green) overlays the land satellite image and where our
coastal zone submersed (blue) overlays their areas of projected land loss (red). White arrows
indicate areas of agreement while yellow arrows indicate areas of where the CPRA’s projection
is less optimistic than ours. The only area where we project more land loss is indicated by the
red arrow (Fig. 4c). If the 2017 CPRA coastal masterplan is fully implemented, the comparison
of our 2070 projection versus theirs is similar to that of without action except the areas of land
gain (bright green) and areas that are maintained (brown) are included (Fig. 4d).

4.2 Storm surge evolution 1850-2010

Maximum surge output for all 14 storms is averaged across hydrologic coastal basins and called
“mean maximum of maximums (MOM) water surface elevations” (Fig. 5). Mean MOM water
surface elevations differences are quantified per sub-watersheds: 1890-1850 (Fig. 6(a)), 1930—
1890 (Fig. 6(b)), and 2010-1930 (Fig. 6(c)). Mean MOM water surface elevation differences
reveal little change from mesh year 1850 to 1890 across coastal Louisiana (Fig. 6(a), Table 2).
Storm surge extends inland and is lower near the coast within coastal basins Atchafalaya-
Vermilion, Terrebonne, and Barataria due to the loss of coastal forests by 1930 and GMSL rise
(Fig. 6(b)). Storm surge is also able to propagate further up the Atchafalaya River in 1930 due to
excavation of the Wax Lake Outlet, as illustrated by a 1.70-m difference within a sub-watershed
in this area (Fig. 6(b), Table 3). Between 1930 and 2010, a smaller change of 0.26 m in mean
MOM water surface elevations occurs within Atchafalaya-Vermilion while mean MOM chang-
es 0f 0.34 m and 0.41 m occur across Terrebonne and Barataria, respectively (Fig. 6(c), Table 2).
Sub-watershed statistics of Atchafalaya-Vermilion demonstrate trends different from those of
Terrebonne and Barataria. For example, within Atchafalaya-Vermilion mean MOM water
surface elevation difference, standard deviations are (m): 0.01, 0.26, 0.17, and 0.20 for 1890~
1850, 1930-1890, 2010-1930, and 2110-2010 (Table 3). Mean MOM water surface elevation
difference range also demonstrates a decrease in variability for 2010 minus 1930, 0.64 m,
compared with 1930 minus 1890, 1.84 m, and 2110 minus 2010, 0.92 m, indicating the impact
of maintained sediment input on the unfragmented landscape of Atchafalaya-Vermilion. For
sediment-starved Terrebonne and Barataria, standard deviation and range consistently increase
from the first interval of 1890 minus 1850 to the last interval of 2110 minus 2010.

Maximum significant wave height differences are quantified for each difference interval
(Fig. 7). Similar to MOM water surface elevations, minimal change occurs from 1850 to 1890
in maximum significant wave heights. Relatively minor changes also occur from 1890 to 1930
except within the Lower Mississippi-New Orleans coastal basin where wave heights decrease
due to the progradation of the Balize Delta (Fig. 7b). Similarly, wave heights decrease in the
southeast area of the Atchafalaya-Vermilion coastal basin due to the emergence and growth of
the Wax Lake-Atchafalaya Deltas from 1930 to 2010 (Fig. 7c).
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< Fig. 4 Coastal zones versus projections of future Louisiana landscapes. a 2050 coastal zones versus Louisiana
coastal landscape in 2040 (Louisiana Coastal Wetlands Conservation and Restoration Task Force 1993). Areas in
red depict land loss by 2040 and are described as less than 50% land. b 2050 coastal zones versus USGS 2050
landscape (Barras et al. 2003). ¢ 2070 coastal zones versus 2067 future without action-medium scenario. d 2070
versus 2067 future with action-medium scenario (Coastal Protection and Restoration Authority 2017). Similarity
occurs where coastal zone intermediate (green) overlays the satellite image and submersed (blue) overlays areas
of projected land loss (red)

4.3 Storm surge evolution 2010-2110

Mean MOM water surface elevation differences are quantified per sub-watersheds: 2110 minus
2010 (Fig. 6(d)) and 2110 minus 1850 (Fig. 6(e)). The contrast in changes in MOM water
surface elevations across the three coastal basins Atchafalaya-Vermilion, Terrebonne, and
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Fig. 5 Maximum of maximums (MOM) water surface elevations for all eleven storm surge model years from
1850 to 2110
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Fig. 6 Mean maximums of maximums (MOM) water surface elevations difference (m, NAVD8S) per coastal
basins (bold lines) and per sub-watersheds (gray lines) for: (a) 1890—-1850, (b) 1930-1890, (c) 2010-1930, (d)
2110-2010, (e) 2110-1850. GMSL rise of 0.5 mm/year 1850-1890, 1 mm/year 1890-1930, 2 mm/year 1930—
2010, 5.1 mm/year 2010-2110 is included

Barataria (0.67 m, 0.55 m, and 0.75 m, respectively) diminishes between 2010 and 2110 as the
rate of annual GMSL rise increases (Fig. 6(d), Table 2). For sub-watersheds, standard deviation
and range increase across the three coastal basins between 2010 and 2110 (Table 3), further
indicating the impact of greater annual increases in future GMSL rise. Table 2 additionally
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Fig. 6 (continued)

reveals the coastal basin with the smallest change in mean MOM water surface elevations from
2010 to 2110 is Lower Mississippi-New Orleans with an average increase of 0.39 m while
Calcasieu-Mermentau experiences the greatest average increase, which is 1.15 m.

Between 2010 and 2110, all coastal basins except Lake Maurepas and Pearl feature an area
where the difference in maximum significant wave heights exceeds 1 m. A large area within
the Calcasieu-Mermenau coastal basin features wave height differences greater than 1 m due to
substantial wetland loss by 2110 (Fig. 7d). In contrast with mesh year 1850, maximum
significant wave heights increase more than 1 m by 2110 across coastal Louisiana due to both
wetland loss and GMSL rise. A small exception occurs in the areas of Wax Lake-Atchafalaya
delta growth (Fig. 7e).

5 Discussion

Sustainable land area (L) of a delta can be defined as the volumetric sediment discharge (Q;)
entering the delta multiplied by the fraction retained (f;) and the volume contributed by organic
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Table 3 Sub-watershed statistics per coastal basin. Mean sub-watershed values calculated for MOM water
surface elevation difference 10 m x 10 m rasters. GMSL rise of 0.5 mm/year 1850—1890, 1 mm/year 1890-1930,
2 mm/year 1930-2010, 5.1 mm/year 2010-2110 included

Sub-watershed statistics per  MOM water surface elevation difference (m)
coastal basin

1890-1850 1930-1890 2010-1930 21102010 2110-1850

(Fig. 6a) (Fig. 6b) (Fig. 6¢) (Fig. 6d) (Fig. 6e)
Atchafalaya-Vermilion
Mean 0.02 0.18 0.23 0.74 1.18
Median 0.02 0.08 0.22 0.77 1.20
Stand. dev. 0.01 0.26 0.17 0.20 0.41
Range 0.03 1.84 0.64 0.92 2.34
Minimum 0.00 -0.14 0.01 0.30 0.54
Maximum 0.03 1.70 0.66 1.22 2.88
Count 55 55 55 56 55
Terrebonne
Mean 0.03 0.09 0.39 0.64 1.09
Median 0.02 0.09 0.32 0.59 1.04
Stand. dev. 0.02 0.14 0.32 0.35 0.54
Range 0.10 0.81 1.15 1.47 1.98
Minimum 0.00 -0.21 - 0.06 - 0.08 0.24
Maximum 0.10 0.59 1.08 1.38 222
Count 54 54 55 58 54
Barataria
Mean 0.02 0.11 0.45 0.78 1.37
Median 0.02 0.10 0.40 0.74 1.16
Stand. dev. 0.02 0.14 0.27 0.36 0.63
Range 0.10 0.94 1.06 1.47 248
Minimum 0.00 -0.49 -0.03 0.20 0.36
Maximum 0.10 0.45 1.03 1.67 2.84
Count 55 55 56 57 55

production () divided by solids volume fraction (C) and relative sea level rise (sum of A and
o) (Paola et al. 2011):

L:str(l+r0)
C0(0'+H)

This equation for sustainable land area provides a lens to analyze the results of this study.
Four distinct stages are established in the evolution of the coastal Louisiana landscape:
(1) 1850-1890: minimal to no change in landscape; (2) 1890—1930: disappearance of the
coastal forests and excavation of the Wax Lake Outlet; (3) 1930-2010: substantial
wetland loss occurs in Terrebonne and Barataria coastal basins and emergence and
growth of the Atchafalaya-Wax Lake Deltas within the Atchafalaya-Vermilion coastal
basin; (4) 2010-2110: drowning of all coastal basins due to increased global mean sea
level (GMSL) rise and continued subsidence. In terms of the Paola et al. (2011) equation,
from 1850 to 2110, volumetric sediment discharge within the Mississippi River Delta
decreases, while the annual rate of relative sea level rise increases. The result is reduced
sustainable land area of the Mississippi River Delta, historical and future wetland
collapse. Furthermore, because of the importance of riverine sediment inputs in delta
growth and maintenance (Blum and Roberts 2009; Siverd et al. 2019), the assumed
reduction in future delta growth and eventual retrogradation results in higher future
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Fig. 7 10 m x 10-m maximum of maximums significant wave height difference plots. a 1890-1850. b 1930—
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included for spatial reference. GMSL rise of 0.5 mm/year 1850-1890, 1 mm/year 1890-1930, 2 mm/year 1930—
2010, 5.1 mm/year 2010-2110 is included. All subplots follow the same legend scale.

model surge output compared to if the Mississippi River Delta is supplied with sediment
to compensate for relative sea level rise.

A comparative hurricane storm surge analysis for the period spanning 1850 to 2110
presents stark implications of the past and potential future evolution of the coastal Louisiana
landscape. Water surface elevation differences correlate with changes in the Louisiana coastal
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Fig. 7 (continued)

landscape. Minimal surge differences exist between 1850 and 1890. By 1930, storm surge
propagates further inland due to the loss of coastal forests and excavation of the Wax Lake
Outlet. Between 1930 and 2010, a smaller change of 0.26 m in maximum of maximums
(MOM) water surface elevations occurs within Atchafalaya-Vermilion while changes of 0.34
m and 0.41 m occur within Terrebonne and Barataria, respectively. Mean MOM water surface
elevations quantify the near uniform drowning of all three coastal basins between 2010 and
2110 via mean MOM differences of 0.67 m, 0.55 m, and 0.75 m for Atchafalaya-Vermilion,
Terrebonne, and Barataria, respectively. All other coastal basins also drown with the greatest
calculated mean MOM water surface elevation occurring in Calcasieu-Mermentau.

This analysis also confirms findings of past studies that suggest change in surge heights is
nonlinear with GMSL rise (Atkinson et al. 2012; Bilskie et al. 2016a; Smith et al. 2010;
Wamsley et al. 2010). For example, for mesh years 2010 through 2110, the Louisiana coastal
landscape surrounding Lake Pontchartrain (Fig. 1a) is unaltered. However, the increase in
mean maximum of maximums (MOM) water surface elevations within Lake Maurepas coastal
basin sub-watersheds ranges 0.95-1.25 m from 2010 to 2110 while GMSL rise simulated
during this period is only 0.51 m (Fig. 6(d)). The projected future increase in mean MOM
water surface elevations within Lake Pontchartrain demonstrates the importance of the Biloxi
Marsh and east Lake Pontchartrain land bridge in minimizing surge levels within the lake. Due
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to the counter-clockwise rotation of hurricanes, future storm surge enters Lake Pontchartrain
with less resistance as these two natural surge barriers deteriorate.

Changes in maximum significant wave heights are also nonlinear with greater differences
occurring further inland in 2110 compared with 1850 (Fig. 7¢). As interior wetlands between
barrier islands and cities such as Houma continue to become more fragmented and deteriorate,
waves propagate further inland until reaching resistance such as higher land or flood defenses.
Because current flood defenses (levees, etc.) along the Louisiana coast are not designed for
constant wave attack, future subsidence and GMSL rise will have major implications on flood
protection. More robust and, therefore costlier, storm surge defenses will be required to
maintain current levels of flood risk through 2110.

Future drowning of the Louisiana coastal landscape has major implications for similar
deltas across the world, especially the Ganges, Irrawaddy, Magdalena, Mekong, Niger, and
Tigris, which are subsiding faster than GMSL is rising. As noted in “Section 1,” the Ganges
and Mississippi Deltas feature similar areas less than 2 m above sea level and are historically
impacted by storm surge and relative sea level rise rates (Syvitski et al. 2009). The Ganges and
other similarly sinking deltas susceptible to storm surge will likely be impacted by higher
inland surge heights similarly to the Mississippi River Delta. In addition, deltas no longer
aggrading greater than relative sea level rise such as the Brahmani, Godavari, Indus, and
Mahanadi (Syvitski et al. 2009) will also face similar challenges but on a longer time scale.

6 Conclusions

In this analysis, comparable representations of the Louisiana coastal landscape are developed
for storm surge model mesh years 1850, 1890, 1930, 1970, 1990, 2010, 2030, 2050, 2070,
2090, and 2110 via historical maps for past landscapes. Projections of future landscapes are
based on recent trends in landscape change and are comparable with projections of previous
studies (Barras et al. 2003; Blum and Roberts 2009; Coastal Protection and Restoration
Authority 2017; Dunbar et al. 1992; Gagliano et al. 1970; Louisiana Coastal Wetlands
Conservation and Restoration Task Force 1993). A suite of historical storms is used to simulate
storm surge and wind-waves for each mesh year. Surge output is averaged across hydrologic
coastal basins and smaller sub-watersheds to quantify and evaluate surge evolution.

From 1930 to 2010, mean maximum water surface elevations within the sediment-starved
Terrebonne and Barataria coastal basins are multiples of 1.3 and 1.6 greater than those of
sediment abundant Atchafalaya-Vermilion. However, from 2010 to 2110, differences in mean
maximum water surface elevations across Atchafalaya-Vermilion, Terrebonne, and Barataria
are 0.67 m, 0.55 m, and 0.75 m, respectively, revealing little future distinction among these
three coastal basins. Mean maximum significant wave heights also indicate little differentiation
among these coastal basins from 2010 to 2110. By 2110, increases in inland surge heights
double the applied sea level rise along the shore of Lake Pontchartrain and in southwest
Louisiana indicating a nonlinear relationship between storm surge and GMSL rise. A rapid rate
of annual GMSL rise during the twenty-first century would therefore have major implications
for future flood exposure and associated flood defense costs across coastal Louisiana (Kulp
and Strauss 2017; Wong et al. 2017).

Throughout the twenty-first century, the Mississippi Delta will experience extensive
drowning due to a rate of relative sea level rise that is substantially greater than the rate of
aggradation. In contrast, historical changes in the Louisiana coastal landscape resulted from
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local anthropogenic influences such as changes in Mississippi River management. The results
of this analysis have major implications for similar deltas across the world. As the rate of
annual relative sea level rise increases, deltas susceptible to storm surge will experience
increased inland surge heights to the detriment of local inhabitants and ecosystems. However,
establishing recent landscape and storm surge evolution trends of major coastal deltas and
projecting these trends beyond 50 years into the future could aide policy makers as they work
to enhance resilience.
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