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Abstract. In this work, we consider an LTI system with a Kalman filter,
detector, and Linear Quadratic Gaussian (LQG) controller under false
data injection attack. The interaction between the controller and adver-
sary is captured by a Stackelberg game, in which the controller is the
leader and the adversary is the follower. We propose a framework under
which the system chooses time-varying detection thresholds to reduce
the effectiveness of the attack and enhance the control performance. We
model the impact of the detector as a switching signal, resulting in a
switched linear system. A closed form solution for the optimal attack
is first computed using the proposed framework, as the best response
to any detection threshold. We then present a convex program to com-
pute the optimal detection threshold. Our approach is evaluated using a
numerical case study.

Keywords: False data injection attacks · Control system · Detection
threshold · LQG control · K-L divergence · Stealthiness

1 Introduction

Distributed sensors provide control systems with rich data. However, open and
insecure communication between the sensors and plant exposes the system to
threats from false data injection attacks. Control systems are vulnerable to false
data injection attacks for the following reasons. Sensors might be physically
unprotected and hence vulnerable to attacks. Compared to directly attacking the
plant, the adversary incurs very low cost when attacking the sensors. Moreover,
the false measurements can bias the decision of the controller and hence degrade
the system performance [3] and cause safety risks [17].

The main challenge of mitigating false data injection attacks initiated by
intelligent adversaries is that false data injection attacks are fundamentally dif-
ferent from stochastic disturbances whose distributions are typically assumed
to be given and independent of the control policy [3]. The adversary, however,
is strategic and hence its attack action will be tailored to the estimation and
control policies that are used by the targeted system.
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Due to the adversary’s strategic response, designing a detection and control
mechanism with fixed parameters could result in a degradation of control per-
formance. An alternative approach is to develop a time-varying detection and
randomized measurement selection strategy in order to increase the uncertainty
of the adversary and thus reduce the impact of the attack. This approach is in
the spirit of moving target defense [20], which has recently been proposed for
control and cyber-physical systems. To the best of our knowledge, however, such
detection strategies have not been proposed in the LQG setting.

In this paper, we focus on a system equipped with a Kalman filter, a detector
and an LQG controller under false data attacks. We adopt the Stackelberg setting
to capture the interplay between the controller and adversary. The adversary
aims at degrading LQG control performance by introducing false measurements
to a subset of sensors while being stealthy. The set of possibly compromised
sensors is known to the controller, since some sensors (e.g., GPS signal [17])
are easier to tamper with, while others are more difficult to manipulate (e.g.,
inertial measurement unit serves as backup for GPS spoofing attack [14]). The
controller computes a detection threshold at each time step to minimize the
LQG cost function. Given the time varying threshold, the controller computes
the control law at each time step by randomly using either all measurements or
the measurements from the secured sensors to eliminate the impact of false data
injected by the adversary. The proposed framework jointly models the attack,
detection and LQG control, and consequently improves the system’s resilience.
We make the following specific contributions:

– We model the interaction between the system and adversary using a zero-sum
Stackelberg game, in which the controller is the leader and the adversary is
the follower. A switched linear system is used to model the system behavior,
where switches between modes occur due to attack detection.

– We formulate a convex optimization problem for the attacker to compute the
optimal attack sequence. By solving the convex program, we show that the
optimal attack for the attacker is a zero-mean Gaussian noise. We derive a
closed form solution for the covariance matrix of the optimal attack.

– We generalize our analysis of optimal attack under single stage case to multi-
stage case. We show that the optimal attack sequence is a sequence of zero-
mean Gaussian noise and give the closed form solution for the optimal covari-
ance at each time step. We formulate a convex optimization problem to com-
pute the optimal detection thresholds for the controller.

– A numerical case study is used to evaluate the proposed approach. The results
show that the proposed approach outperforms the attack detector designed
with fixed parameter.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 gives the system model and problem formulation. Section 4
presents the proposed solution. Section 5 contains an illustrative case study.
Section 6 concludes the paper.
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2 Related Work

False data injection attacks have been extensively analyzed from the adver-
sary’s perspective in the existing literature. False data injection attack against
networked control system equipped with Kalman filter and power system are
analyzed in [12] and [10], respectively. In [7], the worst-case stealthy false data
injection attack strategy is proposed against Kullback-Leibler (K-L) divergence
based detector is proposed. In this work, we consider the interaction between
the detector design and adversary. Hence we not only give the optimal attack
strategy, but also present a game-theoretic approach to analyze how to design a
resilient detector to counter false data injection attacks, which is absent in [7].

Resilient control in adversarial environments has been extensively studied.
Robust control and secure state estimation against false data injection attacks
has been studied in [4,5,13,15] and references therein. In this work, we focus on
the detection of false data injection attack under LQG setting. One alternative
approach to thwart false data injection initiated by adversary that is knowl-
edgeable in system model and detection and control strategies is to limit its
information by committing to a time varying detection and control mechanism.
A randomized detection threshold for K-L divergence based detectors is proposed
in [9]. While [9] focuses on minimizing estimation error, in this work, we fill the
gap between LQG control in adversarial environments and the detection strat-
egy under false data injection attack. Moving target defense has been applied in
literature to limit the adversary’s knowledge of the system model, e.g., system
dynamics [20]. The idea of [20] is to change the system dynamics randomly to
limit the knowledge of the adversary, while this works aims at designing a time
varying detection threshold with fixed system dynamics. Moreover, the metric
in this work is set as the LQG cost function, while contributions [19,20] focuses
on the information metric (e.g., Fisher information matrix) from the adversary’s
perspective. A resilient LQG control under false data injection attacks has been
proposed for LTI system in [4]. In [4], a resilient control strategy is proposed so
that the worst case damage introduced by the adversary is limited. However, no
detection mechanism is considered in [4].

In addition to control-theoretic approaches, game theory is also used to study
the interaction between the system and adversary [1,11,21]. These models con-
sider the Nash setting, in this paper we consider a Stackelberg setting which is
applicable to a variety of CPS domains [16]. Contribution [22] focuses on picking
pre-designed detector among a configuration library. In this work, we investigate
the problem of jointly modeling the attack, detection and LQG control perfor-
mance. Stackelberg setting is adopted in [6,18] to compute a detector tuning. A
fixed detection threshold is considered in [18], while a time-varying threshold is
considered in this work. While an exhaustive search based approach is given [6]
to select an adaptive detection threshold, we consider the LQG control perfor-
mance in this work and show that the time-varying detection threshold can be
obtained by solving a convex program.
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3 System Model and Problem Formulation

In this section, we present the system model and problem formulation.

3.1 System Model

Consider a discrete-time LTI system with time index k = 1, 2, · · · , as follows:

xk+1 = Axk + Buk + wk, yk = Cxk + vk

where xk ∈ R
n is the system state, uk ∈ R

p is the input, yk ∈ R
m is the output,

and wk ∈ R
n and vk ∈ R

m are i.i.d. stochastic disturbance with distributions
wk ∼ N (0, Σw) and vk ∼ N (0, Σv), respectively. Matrices A, B and C are
with proper dimensions. The initial state x0 is assumed to follow a distribution
x0 ∼ N (0, Σx). The disturbances wk and vk are assumed to be independent of
each other and independent of the historical values of w, v, u and y.

The state estimation x̂k is computed using a Kalman filter [8] as x̂0|−1 =
0, x̂k+1|k = Ax̂k + Buk, P0|−1 = Σx, Pk+1|k = APkAT + Σw, Kk = Pk|k−1C

T

(CPk|k−1C
T + Σv)−1, x̂k = Ax̂k|k−1 + Kk(yk − Cx̂k|k−1), and Pk = Pk|k−1 −

KkCPk|k−1. The Kalman filter is assumed to be in steady state and the error
covariance and Kalman gain are hence represented as P = limk→∞ Pk|k−1,K =
PCT (CPCT + Σv)−1 [8]. Denote the residue at each time step k as zk+1 =
yk+1 − C(Ax̂k + Buk). Then the state estimation can be rewritten as x̂k+1 =
Ax̂k + Buk + K[yk+1 − C(Ax̂k + Buk)].

3.2 Adversary Model

We consider an intelligent adversary that can corrupt a subset of sensors by
injecting false measurements. The injected false measurements provide the sys-
tem biased outputs ỹk at each time k and hence misleads the controller. At each
time step k, the measurements perceived by the system can be characterized as
follows: ỹk = Cxk + vk + ak, where ak is an arbitrary measurement injected
by the adversary. The residue under false data injection attack is computed as
z̃k+1 = ỹk+1 − C(Ax̂k + Buk).

The adversary can perform false data injection attacks on a certain set of
sensors Υ . Thus the support of injected false measurements supp(ak) ⊆ Υ . We
assume that Υ is fixed and known to both the system and adversary. The reason
that the adversary can only corrupt the measurements of sensors in Υ is that the
adversary might only be co-located with a subset of sensors, and it is only capa-
ble of corrupting the sensors that are exposed and unattended (e.g., distributed
sensors in networked control system [12,17]). For instance, in [14], inertial mea-
surements are used as a secure backup in the event of a GPS spoofing attack.
For notation simplicity, we denote the set of sensors Υ as compromised sensors
and the set of sensors outside Υ as the secured sensors.

Denote the information available to the adversary at time k as IA
k . Then

the information set is represented as IA
k = {u0, · · · ,uk} ∪ {yA

0 , · · · ,yA
k } ∪
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{x0, · · · ,xk}, where yA
k is the measurement from the compromised sensors. The

information IA
k captures the worst-case adversary model. Denote the set of all

possible information set available to the adversary as IA
k . An attack policy for

the adversary τk : IA
k �→ R

supp(ak) is a function mapping the set of possible infor-
mation to the set of false measurements at time k. Let τ = {τk : k = 0, 1, · · · , }
be the sequence of attack policies over time.

3.3 Controller Model

Assume the matrices A, B, C, Σw and Σv are known to the system and
adversary. Denote the information available to the system at each time step
k as Ik. The system knows the control inputs up to time k and the out-
puts up to time k. Therefore, the information set Ik is represented as Ik =
{u0,u1, · · · ,uk} ∪ {ỹ0, ỹ1, · · · , ỹk}. Denote the set of all possible Ik at time k
as Ik.

The system implements LQG control uk = −Lkx̂k to minimize a cost func-
tion in quadratic form as follows:

J = E

{
N∑

k=0

(
xT

k Qkxk + uT
k Rkuk

)}
, (1)

where Qk and Rk are symmetric positive definite matrices for all k, respectively,
and Lk is the controller gain. The state estimation x̂k is determined by the
measurements that the system uses. Based on the detection result, which is
further jointly determined by the system’s strategy and adversary’s strategy, the
system decides if it will only consider the measurements from secured sensors or
it will consider measurements from all sensors. Taking the detection result as a
switching signal, we model the system’s choices over sensors by formulating the
following switched linear system: xk+1 = Axk + Buk + wk,yk = Cθk

xk + vk,
where θk ∈ Θ = {0 , 1} is the mode index defined as θk = 0 if no alarm is
triggered from the detector and θk = 1 if an alarm is triggered from the detector.
Matrix Cθk

models the selection of the sensor measurements for each time step k.
Let C[i] denote the ith row of matrix C. Then for each row i and time k, matrix
Cθk

is defined as follows: Cθk
[i] = 0n if θk = 0 and Cθk

[i] = C[i] if θk = 1 , with
0n being zero vector of length n. Using matrix Cθk

, the jump between modes
of the switched linear system captures the system’s choice over sensors. If no
alarm is sounded, then the output yk is computed using the measurements from
all sensors. In this mode, the control performance could be potentially degraded
since the adversary can inject false measurements and bias the system’s control
decision. If an alarm is triggered by the detector, then the output yk is computed
using the measurements obtained from the subset of sensors that are secured.
In this mode, although the false measurements injected by the adversary are
eliminated, system performance would degrade under benign environment since
the state estimation x̂ might be inaccurate when only using measurements from
a subset of sensors. Thus, the system needs to carefully design its detection
threshold and henceforth determine the mode θk at each time step.
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Let D(z̃k||zk) =
∫

fz̃(t) log fz̃(t)
fz(t)

dt be the K-L divergence between compro-
mised residue z̃k and residue zk [9,21]. The K-L divergence represents how the
realized residue under attack differs from the expected residue without attack.
From the adversary’s perspective, the K-L divergence should be small to fool the
controller who cannot distinguish the deviation caused by measurement noise vk

and attack ak. Given a detection threshold γk at time step k, an alarm will be
triggered from the detector if D(z̃k||zk) > γk, and correspondingly the opera-
tion mode θk = 1 . Otherwise no alarm will be triggered and θk = 0 . Thus we
have that the mode at each time k is determined as θk = 0 if D(z̃k||zk) ≤ γk

and θk = 1 if D(z̃k||zk) > γk. To implement the detector, we need to evaluate
the K-L divergence D(z̃k||zk), which requires the probability distributions of the
residue zk of the legitimate system and the residue z̃k under false data injection
attack. The distribution of the residue zk is identical to that of the additive
noise vk, i.e., zk ∼ N (0, Σv). The probability distribution of the compromised
residue z̃k can be evaluated numerically by observing the historical residue [2].
While the residues of the sensors under attack have unknown distribution, we
can leverage Theorem 1 in Sect. 4, which states that the optimal attack strategy
is a zero-mean ergodic Gaussian random process. Hence, without loss of gen-
erality (since we assume that the adversary chooses the optimal strategy), we
assume that the residue sequence {z̃k} is ergodic and the K-L divergence can be
computed using known detection algorithms [2].

A deterministic control policy μk : Ik �→ R at each time step k is a function
mapping the set of information Ik to a detection threshold γk. Let μ = {μk :
k = 0, 1, · · · , } be the sequence of control policies over time. Then the objective
of the system is to compute a sequence of control policies μ such that the cost
function (1) is minimized.

3.4 Problem Formulation

The problem we investigate is formulated as minμ maxτ E{∑N
k=0(x

T
k Qkxk +

uT
k Rkuk)}, where the expectation is over wk, vk, θk, and x0. The formulation

can be interpreted as a two-player zero-sum Stackelberg game, in which the
system computes a sequence of detection threshold, and the adversary chooses
the set of false measurements to inject. In the following section, we solve the
problem by computing the Stackelberg equilibrium.

4 Solution Approach

In this section, we give the proposed solution approach. First, we rewrite the
system dynamics for state vector x̄k = [xk, x̂k]T ∈ R

2n as x̄k+1 = Ākx̄k + Wk,

where Āk =
[

A −BLk

KCθk+1A A − BLk − KCθk+1A

]
, and Wk = [wk,KCθk+1wk +

Kvk+1 +K(1−Iθk+1)ak+1]T , where indicator function Iθk+1 = 0 when θk+1 = 0
and Iθk+1 = 1 when θk+1 = 1 . Denote the matrices Āk and Wk when θk+1 = θ
as Āθ

k and W θ
k , respectively. Let Σk = E{x̄kx̄T

k }. Given uk = −Lkx̂k, the cost
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function (1) can be rewritten as J =
∑N

k=0 E
{
x̄T

k Hkx̄k

}
=

∑N
k=0 tr (HkΣk)

where Hk =
[
Qk 0
0 LT

k RkLk

]
, and tr(·) is the trace operator. The evolution of

matrix Σk is given by

Σk+1 = E

{(
Ākx̄k + Wk

) (
Ākx̄k + Wk

)T
}

= G(Σk) + W̄k + F (Λk+1),

where G(Σk) = E{Ākx̄kx̄T
k ĀT

k } = p0k (q01k+1Ā
1
kΣkĀ1T

k + q00k+1Ā
0
kΣkĀ0T

k ) + p1k
(q11k+1Ā

1
kΣkĀ1T

k +q10k+1Ā
0
kΣkĀ0T

k ), W̄k = E{WkWT
k } = p0k (q01k+1W

1 +q00k+1W
0 )+

p1k (q11k+1W
1 + q10k+1W

0 ), F (Λk+1) = (p0k q00k+1 + p1k q10k+1)
[
0 0
0 KΛk+1K

T

]
, W 1 =[

Σw P 1

P 1 P̄ 1

]
, W 0 =

[
Σw P 0

P 0 P̄ 0

]
, P 1 = KC1ΣwC1T

KT , P̄ 1 = P 0 + KΣvKT ,

P 0 = KC0ΣwC0T

KT , P̄ 0 = P 0 +KΣvKT , pθ
k is the probability of the system

being at mode θ at time k, qθθ′
k+1 is the transition probability from mode θ to θ′,

and Λk+1 is the covariance matrix for injected false measurement ak+1.
In the following, we derive the optimal attack strategy and controller’s strat-

egy. At time step k′, the adversary solves the following problem:

max
ak′:N

N∑
k=k′

tr (HkΣk) (2a)

subject to Σk = G(Σk−1) + W̄k + F (Λk), ∀k = k′, · · · , N (2b)
D(z̃k||zk) ≤ γk, ∀k = k′, · · · , N (2c)
Σk 
 0, ∀k = k′, · · · , N (2d)

The objective of the adversary is to maximize the cost function J . Constraint (2b)
models the evolution of matrix Σ. Constraint (2c) requires the adversary to
design its attack signal such that the system stays in mode 0 so that the injected
false measurements can bias the system. Constraint (2d) guarantees the covari-
ance matrix Σ is well defined. Substituting constraint (2b) into the objective
function (2a), we observe that the adversary maximizes the cost J in two ways:
(i) increase the probability of being at mode 0 , and (ii) increase the covariance
matrix Λ. The following theorem characterizes the optimal attack [7].

Theorem 1. The optimal attacks a∗
0:N = [a∗

0, · · · ,a∗
N ]T are zero-mean and

Gaussian.

Given Theorem 1, the K-L divergence D(z̃||z) can be represented as D(z̃||z) =
1
2

(
tr

(
Σ−1

v Λ
) − m + log (det(Σv)/det(Λ))

)
. Assume mode switch reaches sta-

tionary probability distribution. Then we simply denote the probability of being
at mode 0 and 1 at time k as p0k and p1k , respectively. Substituting constraint
(2b) into (2a), we can convert problem (2) to a convex program
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max
Λk′:N

p0k′tr
(
Hk′Λ̄k′

)
+ p0k′+1p

0
k′tr

(
Hk′+1Ā

0
k Λ̄k′Ā0T

k′

)
+ p1k′+1p

1
k′tr

(
Hk′+1Ā

1
k Λ̄k′Ā1T

k′

)
+ Jk′ (3a)

subject to
1
2

(
tr

(
Σ−1

v Λ
) − m + log

(
det(Σv)
det(Λ)

))
≤ γk, ∀k = k′, · · · , N

(3b)

Λk 
 0, ∀k = k′, · · · , N (3c)

where Jk′ contains the terms that are independent of Λk′ .
Solving optimization problem (3), then the covariance of optimal attack at

time k is characterized using the following theorem.

Theorem 2. The covariance Λ∗
k of the optimal attack a∗

k is computed as

Λ∗
k =

(
− 1

βk
Φk + Σ−1

v

)−1

, (4)

where A0 = A − BLk − KC0A, A1 = A − BLk − KC1A,

Φk = 2p0kKT LT RkLT K + 2p0k+1p
0
kKT

(
LT

k BT Qk+1BLk + A0T

LT
k+1Rk+1

Lk+1A
0T

)
K + 2p1k+1p

1
kKT

(
LT

k BT Qk+1BLk + A1T

LT
k+1Rk+1Lk+1A

1T
)
K,

pθ
k is the probability of system being in mode θ at time k, and βk satisfies

∑
i

[
βk

βk − Λk,i
+ log

(
βk − Λk,i

βk

)]
= m + 2γ, (5)

and Λk,i are the eigenvalues of ΦkΣv.

Before proving Theorem2, we first present the a preliminary proposition.

Proposition 1. Let {λi : λi ≥ 0} be a set of non-negative real numbers and
sorted in descending order. Consider function g(β) : (−∞, 0) ∪ (Λ1,+∞) �→
(0,+∞) defined as g(β) =

∑
i

[
β

β−Λi
+ log

(
β−Λi

β

)]
. Then given any positive

number ḡ, there exists some β > 0 such that g(β) = ḡ.

Proof. Proposition 1 follows from the fact that function g(β) is continuous and
monotone decreasing with respect to β. 
�
Proof. (Proof of Theorem 2.) We prove by induction backwards. First, (4) and
(5) hold for time k = N since Hk+1 = 0.

Next, suppose (4) and (5) hold up to time k′ + 1. We then induct one time
step backwards. We prove (4) and (5) hold at time k′ by verifying the KKT
conditions of (3) at time k′.
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We start with the stationarity condition. The Lagrangian is represented as

Lk′ = −p0k′p0k′+1tr
(
Hk′+1Ā

0
k′Λ̄k′Ā0T

k′

)
− p0k′p1k′+1tr

(
Hk′+1Ā

1
k′Λ̄k′Ā1T

k′

)
−p0k′tr

(
Hk′Λ̄k′

)
+ Jk′ +

βk′

2

(
tr

(
Σ−1

v Λk′
) − m + log

(
det(Σv)
det(Λk′)

)
− 2γ

)
,

where βk′ is the Lagrangian multiplier associated with constraint D(z̃k′ ||zk′) ≤
γk′ . Take the partial derivative of Lk′ with respect to Λk′ and let it be zero.
Then we have Φk′ + βk′Σ−1

v − βk′Λ−1
k′ = 0. When − 1

βk
Φk + Σ−1

v is positive
definite, we have (4) holds. By (4), we have Λ∗

k′ is symmetric. Moreover, Λ∗
k′

can be rewritten as
(−Φk′/βk′ + Σ−1

v

)−1 = Σv (I − Φk′Σv/βk′)−1
, which is a

product of two positive definite matrices. Hence, we have Λ∗
k′ defined in (4) is

positive definite, implying primal feasibility defined by (3c) is satisfied.
We then verify dual feasibility βk ≥ 0. First, we show that βk �= 0. Suppose

βk = 0. Then the derivative of Lagrangian implies −p0KT LT RLK = 0. Since
KT LT RLK � 0, we must have p0 = 0. Therefore the system stays in mode 1
forever, implying that constraint (2c) is violated. By Proposition 1, we have that
given any γk ≥ 0, there exists a unique βk > 0 such that (5) is satisfied. Hence,
(5) guarantees dual feasibility β ≥ 0.

We finally verify primal feasibility and complementary slackness. We take
the partial derivative of Lk′ with respect to βk′ and set it as zero. Then we have
tr

(
Σ−1

v Λk′
)

+ log det(Σv) − log det(Λk′) = m + 2γ. Substituting (4) into the
equation above, we have (5) holds. 
�

By Theorem 2, the controller can compute the best response from the
adversary, i.e., given any detection threshold γ, it can estimate the covariance
matrix selected by the adversary. By Theorem1, we have that the mode switch
probability follows χ2 distribution. Using the tail bounds of χ2 random vari-
able to approximate the mode switch probability, we have Pr (D(z̃k||zk) ≤ γ)
≤ exp

(
− (m−γ)2

4m

)
. We remark that the cost obtained using the tail bound is

an upper bound, and hence models the worst-case cost. Although Theorem1
coincides with the result reported in [7], Theorem 2 differs from [7] since the
adversary’s objective is different and its strategy is not restricted to linear attack
strategy. In the following, we also show how the system computes the detection
threshold to optimize the LQG control performance, which is not reported in
[7].

Given the optimal attacks characterized by Theorems 1 and 2, in the fol-
lowing, we derive the optimal mode switch thresholds. The system solves the
following optimization problem

min
γ0:N

N∑
k=0

tr (HkΣk) (6a)

subject to Σk = G(Σk−1) + W̄k + F (Λk), ∀k (6b)
Σk 
 0, ∀k (6c)
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Theorem 3. The optimal mode switch thresholds can be obtained by solving a
convex program.

Proof. By Theorem 2, problem (6) can be expressed as follows:

min
γ0:N ,Ψ

Ψ (7a)

subject to max
Λ0:N

{
N∑

k=0

tr(HkΣk) : Λk satisfies D(z̃k||zk) ≤ γk

}
≤ Ψ (7b)

Σk = G(Σk−1) + W̄k + F (Λk), ∀k (7c)
Σk 
 0, ∀k (7d)

Constraint (7b) is linear with respect to Ψ and logarithmically convex with
respect to γk. Thus problem (7) is jointly convex with respect to γk and Ψ . 
�

5 Simulation

In this section, we present a case study to demonstrate our proposed method.
The proposed approach is evaluated using Matlab.

We consider a robot moving along a straight line [12]. The state of the
robot contains its position and velocity, which are measured by two sensors. The

dynamics is given by xk+1 =
[
1 0
1 1

]
xk +

[
1

0.5

]
uk + wk,yk = xk + vk + ak. The

adversary can compromise the measurements from the position sensor, while it
cannot tamper with the measurements from velocity sensor. Therefore, the out-
put model is expressed using a switched system as yk = xk + vk + ak if θt = 0 ,

and yk =
[
0 0
0 1

]
xk +

[
0 0
0 1

]
vk, if θt = 1 . Three scenarios are considered in our

simulation: (i) LQG control in benign environment, (ii) design the detection
threshold using the proposed approach, (iii) randomly generate one detection
threshold without considering the presence of adversary and the adversary opti-
mally responds to it. We demonstrate the effectiveness of the proposed approach
by evaluating their LQG control performances, as shown in Fig. 1a. In the first
scenario, the system does not need to switch between different modes and the
cost incurred is the optimal LQG cost. This scenario gives the minimum cost
among the three scenarios. Using the proposed approach, although the system
still incurs additional cost comparing to the LQG cost incurred under benign
environment due to the presence of the adversary, the cost increment is limited.
In the third scenario, the system does not consider the presence of adversary and
simply fix a mode switch threshold γ = 3.3 for all time instants. This scheme
gives the highest cost among all scenarios. The strategic adversary can introduce
much higher cost comparing to our proposed approach.

We illustrate the relationship between the cost function and γ in Fig. 1. We
consider the single time step case and choose γ from 1 to 4. When γ is close
to the single stage optimal solution γ∗ = 2.1, the cost is minimized. When the
threshold deviates from the optimal value γ∗, the system incurs more cost.
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Cost Comparison under Different Scenarios
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Fig. 1. (a) presents cost functions incurred in different scenarios: optimal LQG cost
in benign environment, cost incurred using proposed mode switch, and cost incurred
using fixed mode switch threshold without considering the presence of adversary. (b)
shows the relationship between the cost function and the value of threshold γ.

6 Conclusion

In this paper, we focused on a control system conducting LQG control under false
data injection attacks. Using the signal issued by the detector whose detection
threshold is carefully designed as a switch signal, the system was modeled as
a switched linear system with two modes. We investigated the optimal attack
strategy and gave a closed form solution for the covariance of optimal attack.
Furthermore, we showed the optimal detection threshold for the detection, and
the corresponding optimal mode switch policy can be computed using a convex
program. The proposed approach was evaluated using a numerical case study.
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17. Tippenhauer, N.O., Pöpper, C., Rasmussen, K.B., Capkun, S.: On the require-
ments for successful GPS spoofing attacks. In: ACM Conference on Computer and
Communications Security, pp. 75–86. ACM (2011)

18. Umsonst, D., Sandberg, H.: A game-theoretic approach for choosing a detector
tuning under stealthy sensor data attacks. In: 2018 IEEE Conference on Decision
and Control (CDC), pp. 5975–5981. IEEE (2018)

19. Weerakkody, S., Sinopoli, B.: Detecting integrity attacks on control systems using
a moving target approach. In: 54th IEEE Conference on Decision and Control
(CDC), pp. 5820–5826. IEEE (2015)

20. Weerakkody, S., Sinopoli, B.: A moving target approach for identifying malicious
sensors in control systems. In: Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 1149–1156. IEEE (2016)

21. Zhang, R., Venkitasubramaniam, P.: A game theoretic approach to analyze false
data injection and detection in lqg system. In: Conference on Communications and
Network Security (CNS), pp. 427–431. IEEE (2017)
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