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Abstract. This paper studies the satisfaction of a class of temporal
properties for cyber-physical systems (CPSs) over a finite-time horizon
in the presence of an adversary, in an environment described by discrete-
time dynamics. The temporal logic specification is given in safe−LTLF ,
a fragment of linear temporal logic over traces of finite length. The inter-
action of the CPS with the adversary is modeled as a two-player zero-
sum discrete-time dynamic stochastic game with the CPS as defender.
We formulate a dynamic programming based approach to determine a
stationary defender policy that maximizes the probability of satisfaction
of a safe − LTLF formula over a finite time-horizon under any sta-
tionary adversary policy. We introduce secure control barrier certificates
(S-CBCs), a generalization of barrier certificates and control barrier cer-
tificates that accounts for the presence of an adversary, and use S-CBCs
to provide a lower bound on the above satisfaction probability. When
the dynamics of the evolution of the system state has a specific underly-
ing structure, we present a way to determine an S-CBC as a polynomial
in the state variables using sum-of-squares optimization. An illustrative
example demonstrates our approach.

Keywords: Linear temporal logic · safe − LTLF · Dynamic
programming · Secure control barrier certificate · Sum-of-squares
optimization

1 Introduction

Cyber-physical systems (CPSs) use computing devices and algorithms to inform
the working of a physical system [8]. These systems are ubiquitous, and vary in
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size and scale from energy systems to medical devices. The wide-spread influ-
ence of CPSs such as power systems and automobiles makes their safe operation
critical. Although distributed algorithms and systems allow for more efficient
sharing of information among parts of the system and across geographies, they
also make the CPS vulnerable to attacks by an adversary who might gain access
to the distributed system via multiple entry points. Attacks on distributed CPSs
have been reported across multiple application domains [20,43,44,46]. In these
cases, the damage to the CPS was caused by the actions of a stealthy, intelligent
adversary. Thus, methods designed to only account for modeling and sensing
errors may not meet performance requirements in adversarial scenarios. There-
fore, it is important to develop ways to specify and verify properties that a CPS
must satisfy that will allow us to provide guarantees on the operation of the
system while accounting for the presence of an adversary.

In order to verify the behavior of a CPS against a rich set of temporal
specifications, techniques from formal methods can be used [9]. Properties like
safety, stability, and priority can be expressed as formulas in linear temporal
logic (LTL) [19]. These properties can then be verified using off-the-shelf model
solvers [15,28] that take these formulas as inputs. If the state space and the
actions available to the agents are both finite and discrete, then the environment
can be represented as a Markov decision process (MDP) [38] or a stochastic game
[11]. These representations have also been used as abstractions of continuous-
state continuous action dynamical system models [10,32]. However, a significant
shortcoming is that the computational complexity of abstracting the underlying
system grows exponentially with the resolution of discretization desired [14,21].

The method of barrier certificates (or barrier functions), which are functions
of the states of the system was introduced in [36]. Barrier functions provide
a certificate that all trajectories of a system starting from a given initial set
will not enter an unsafe region. The use of barrier functions does not require
explicit computation of sets of reachable states, which is known to be undecidable
for general dynamical systems [29], and moreover, it allows for the analysis of
general nonlinear and stochastic dynamical systems. The authors of [36] further
showed that if the states and inputs to the system have a particular structure,
computationally efficient methods can be used to construct a barrier certificate.

Barrier certificates were used to determine probabilistic bounds on the sat-
isfaction of an LTL formula by a discrete-time stochastic system in [22]. A
more recent work by the same authors [23] used control barrier certificates to
synthesize a policy in order to maximize the probability of satisfaction of an
LTL formula.

Prior work that uses barrier certificates to study temporal logic satisfaction
assumes a single agent, and does not study the case when the CPS is operating
in an adversarial environment. To the best of our knowledge, this paper is the
first to use barrier certificates to study temporal logic satisfaction for CPSs in
adversarial environments. We introduce secure barrier certificates (S-CBCs), and
use it to determine probabilistic bounds on the satisfaction of an LTL formula
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under any adversary policy. Further, definitions of barrier certificates and control
barrier certificates in prior work can be recovered as special cases of S-CBCs.

1.1 Contributions

In this paper, we consider the setting when there is an adversary whose aim
is to ensure that the LTL formula is not satisfied by the CPS (defender). The
temporal logic specification is given in safe − LTLF , a fragment of LTL over
traces of finite length. We make the following contributions:

– We model the interaction between the CPS and adversary as a two-player
dynamic stochastic game with the CPS as defender. The two players take
their actions simultaneously, and these jointly influence the system dynamics.

– We present a dynamic programming based approach to determine a stationary
defender policy to maximize the probability of satisfaction of an LTL formula
over a finite time-horizon under any stationary adversary policy.

– In order to determine a lower bound on the above satisfaction probability,
we define a new entity called secure control barrier certificates (S-CBCs). S-
CBCs generalize barrier certificates and control barrier certificates to account
for the presence of an adversary.

– When the evolution of the state of the dynamic game can be expressed as
polynomial functions of the states and inputs, we use sum-of-squares opti-
mization to compute an S-CBC as a polynomial function of the states.

– We present an illustrative example demonstrating our approach.

1.2 Outline of Paper

We summarize related work on control barrier certificates and temporal logic
satisfaction in Sect. 2. Section 3 gives an overview of temporal logic and game-
theoretic concepts that will be used to derive our results. The problem that is the
focus of this paper is formulated in Sect. 4. Our solution approach is presented in
Sect. 5, where we define a dynamic programming operator to synthesize a policy
for the defender in order to maximize the probability of satisfaction of the LTL
formula under any adversary policy. We define a notion of secure control barrier
certificates to derive a lower bound on the satisfaction probability, and are able
to explicitly compute an S-CBC under certain assumptions. Section 6 presents
an illustrative example, and we conclude the paper in Sect. 7.

2 Related Work

The method of barrier functions was introduced in [36] to certify that all trajec-
tories of a continuous-time system starting from a given initial set do not enter
an unsafe region. Control barrier functions (CBFs) were used to provide guaran-
tees on the safety of continuous-time nonlinear systems with affine inputs for an
adaptive cruise control application in [6]. The notion of input-to-state CBFs that
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ensured the safety of nonlinear systems under arbitrary input disturbances was
introduced in [24], and safety was characterized in terms of the invariance of a set
whose computation depended on the magnitude of the disturbance. The authors
of [45] relaxed the supermartingale condition that a barrier certificate had to sat-
isfy in [36] in order to provide finite-time guarantees on the safety of a system.
The verification and control of a finite-time safety property for continuous-time
stochastic systems using barrier functions was recently presented in [41]. Barrier
certificates were used to verify LTL formulas for a deterministic, continuous-time
nonlinear dynamical system in [49]. Time-varying CBFs were used to accomplish
tasks specified in signal temporal logic in [30]. A survey of the use of CBFs to
design safety-critical controllers is presented in [5]. The use of barrier certificates
or CBFs in these works were all for continuous time dynamical systems and did
not consider the effect of the actions of an adversarial player.

Barrier certificates in the discrete-time setting were used to analyze the reach-
able belief space of a partially observable Markov decision process (POMDP)
with applications to verifying the safety of POMDPs in [2], and for privacy
verification in POMDPs in [3]. The use of barrier certificates for the verifica-
tion and synthesis of control policies for discrete-time stochastic systems to sat-
isfy an LTL formula over a finite time horizon was presented in [22] and [23].
These papers also assumed a single agent, and did not account for the presence
of an adversary.

The authors of [33] used barrier functions to solve a reference tracking prob-
lem for a continuous-time linear system subject to possible false data injection
attacks by an adversary, with additional constraints on the safety and reach-
ability of the system. Probabilistic reachability over a finite time horizon for
discrete-time stochastic hybrid systems was presented in [1]. This was extended
to a dynamic stochastic game setting when there were two competing agents in
[18], and to the problem of ensuring the safety of a system that was robust to
errors in the probability distribution of a disturbance input in [50]. These papers
did not assume that a temporal specification had to be additionally satisfied.

Determining a policy for an agent in order to maximize the probability of
satisfying an LTL formula in an environment specified by an MDP was pre-
sented in [19]. This setup was extended to the case when there were two agents-
a defender and an adversary- who had competing objectives to ensure the satis-
faction of the LTL formula in an environment specified as a stochastic game in
[32]. These papers assume that the states of the system are completely observ-
able, which might not be true in every situation. The satisfaction of an LTL
formula in partially observable environments represented as POMDPs was stud-
ied in [42] and the extension to partially observable stochastic games with two
competing agents, each with its own observation of the state of the system, was
formulated in [39].

3 Preliminaries

In this section, we give a brief introduction to linear temporal logic and
discrete-time dynamic stochastic games. Wherever appropriate, we consider a
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probability space (Ω,F ,P). We write (X,B(X)) to denote the measurable space
X equipped with the Borel σ−algebra, and R≥0 to denote the set of non-negative
real numbers.

3.1 Linear Temporal Logic

Temporal logic frameworks enable the representation and reasoning about tem-
poral information on propositional statements. Linear temporal logic (LTL) is
one such framework, where the progress of time is ‘linear’. An LTL formula [9]
is defined over a set of atomic propositions AP, and can be written as:

φ := T|σ|¬φ|φ ∧ φ|Xφ|φUφ,

where σ ∈ AP, and X and U are temporal operators denoting the next and
until operations. The semantics of LTL are defined over (infinite) words in 2A P .

The syntax of linear temporal logic over finite traces, denoted LTLF [17],
is the same as that of LTL. The semantics of LTLF is expressed in terms of
finite-length words in 2A P . We denote a word in LTLF by η, write |η| to denote
the length of η, and ηi, 0 < i < |η|, to denote the proposition at the ith posi-
tion of η. We write (η, i) |= φ when the LTLF formula φ is true at the ith

position of η.

Definition 1 (LTLF Semantics). The semantics of LTLF can be recursively
defined in the following way:

1. (η, i) |= T;
2. (η, i) |= σ iff σ ∈ ηi;
3. (η, i) |= ¬φ iff (η, i) �|= φ;
4. (η, i) |= φ1 ∧ φ2 iff (η, i) |= φ1 and (η, i) |= φ2;
5. (η, i) |= Xφ iff i < |η| − 1 and (η, i + 1) |= φ;
6. (η, i) |= φ1Uφ2 iff ∃j ∈ [i, |η|] such that (η, j) |= φ2 and for all k ∈

[i, j), (η, k) |= φ1.

Finally, we write η |= φ if and only if (η, 0) |= φ.

Moreover, the logic admits derived formulas of the form: (i) φ1 ∨ φ2 :=
¬(¬φ1 ∧ ¬φ2); (ii) φ1 ⇒ φ2 := ¬φ1 ∨ φ2; (iii) Fφ := TUφ (eventually); (iv)
Gφ := ¬F¬φ (always). The set L (φ) comprises the language of finite-length
words associated with the LTLF formula φ. In this paper, we focus on a sub-
set of LTLF called safe − LTLF [40], that explicitly considers only safety
properties [26].

Definition 2 (safe − LTLF Formula). An LTLF formula is a safe − LTLF

formula if it can be written in positive normal form (PNF)1, using the temporal
operators X (next) and G (always).

1 In PNF, negations occur only adjacent to atomic propositions.
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Next, we define an entity that will serve as an equivalent representation of
an LTLF formula, and will allow us to check if the LTLF formula is satisfied
or not.

Definition 3 (Deterministic Finite Automaton). A deterministic finite
automaton (DFA) is a quintuple A = (Q,Σ, δ, q0, F ) where Q is a nonempty
finite set of states, Σ is a finite alphabet, δ : Q×Σ → Q is a transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of accepting states.

Definition 4 (Accepting Runs). A run of A of length n is a finite sequence
of (n + 1) states q0

σ0−→ q1
σ1−→ . . .

σn−1−−−→ qn such that qi ∈ δ(qi−1, σi−1) for all
i ∈ [1, n] and for some σ0, . . . , σn−1 ∈ Σ. The run is accepting if qn ∈ F . We
write L (A ) to denote the set of all words accepted by A .

Every LTLF formula φ over AP can be represented by a DFA Aφ with Σ =
2A P that accepts all and only those runs that satisfy φ, that is, L (φ) = L (Aφ)
[16]. The DFA Aφ can be constructed by using a tool like Rabinizer4 [25].

3.2 Discrete-Time Dynamic Stochastic Games

We model the interaction between the CPS (defender) and adversary as a two-
player dynamic stochastic game that evolves according to some known (discrete-
time) dynamics [7]. The evolution of the state of the game at each time step is
affected by the actions of both players.

Definition 5 (Discrete-time Dynamic Stochastic Game). A discrete-time
dynamic stochastic game (DDSG) is a tuple G = (X,W,Ud, Ua, f,N ,AP, L),
where X ⊆ R

n and W are Borel-measurable spaces representing the state-space
and uncertainty space of the system, Ud ⊆ R

d and Ua ⊆ R
a are compact Borel

spaces that denote the action sets of the defender and adversary, f : X×Ud×Ua×
W → X is a Borel-measurable transition function characterizing the evolution
of the system, N = {0, 1, . . . , N − 1} is an index-set denoting the stage of the
game, AP is a set of atomic propositions, and L : X → 2A P is a labeling
function that maps states to a subset of atomic propositions that are satisfied in
that state.

The evolution of the state of the system is given by:

x(k + 1) = f(x(k), ud(k), ua(k), w(k)); x(0) = x0 ∈ X; k ∈ N , (1)

where {w(k)} is a sequence of independent and identically distributed (i.i.d.)
random variables with zero mean and bounded covariance.

In this paper, we focus on the Stackelberg setting with the defender as leader
and adversary as follower. The leader selects its inputs anticipating the worst-
case response by the adversary. We assume that the adversary can choose its
action based on the action of the defender [18], and further, restrict our focus to
stationary strategies for the two players. Due to the asymmetry in information
available to the players, equilibrium strategies for the case when the game is
zero-sum can be chosen to be deterministic strategies [13].
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Definition 6 (Defender Strategy). A stationary strategy for the defender is
a sequence μ(d) := {μ

(d)
k }k∈N of Borel-measurable maps μ

(d)
k : X → Ud.

Definition 7 (Adversary Strategy). A stationary strategy for the adversary
is a sequence μ(a) := {μ

(a)
k }k∈N of Borel-measurable maps μ

(a)
k : X × Ud → Ua.

4 Problem Formulation

For a DDSG G , recall that the labeling function L indicates which atomic propo-
sitions are true in each state.

Assumption 1. We restrict our attention to labeling functions of the form L :
X → AP. Then, if AP = (a1, . . . , ap), AP and L will partition the state
space as X := ∪p

i=1Xi, where Xi := L−1(ai). We further assume that Xi �= ∅
for all i.

Remark 1. Through the remainder of the paper, we interchangeably use xk or
x(k) to denote the state at time k.

Given a sequence of states xN := (x0, x1, . . . , xN−1), using Assumption 1, if
ηk = L(xk) for all k ∈ N , then we can write L(xN ) = (η0, η1, . . . , ηN−1).

Definition 8 (LTL Satisfaction by DDSG). For a DDSG G and a safe −
LTLF formula φ, we write P

x0
μ(d),μ(a){L(xN ) |= φ} to denote the probability that

the evolution of the DDSG starting from x(0) = x0 under player policies μ(d)

and μ(a) satisfies φ over the time horizon N = {0, 1, . . . , N − 1}.
We are now ready to formally state the problem that this paper seeks to solve.

Problem 1. Given a discrete-time dynamic game G = (X,W,Ud, Ua, f,
N ,AP, L) that evolves according to the dynamics in Eq. (1) and a safe−LTLF

formula φ, determine a policy for the defender, μ(d), that maximizes the prob-
ability of satisfying φ over the time horizon N = {0, 1, . . . , N − 1} under any
adversary policy μ(a) for all x0 ∈ L−1(aj) for some aj ∈ AP. That is, compute:

sup
μ(d)

inf
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= φ} (2)

5 Solution Approach

In this section, we present a dynamic programming approach to determine a solu-
tion to Problem 1. Our analysis is motivated by the treatment in [18] and [50].

We then introduce the notion of secure control barrier certificates (S-CBCs),
and use these to provide a lower bound on the probability of satisfaction of
the safe − LTLF formula φ for a defender policy under any adversary policy
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in terms of the accepting runs of length less than or equal to the length of the
time-horizon of interest of a DFA associated with φ. For systems whose evolution
of states can be written as a polynomial function of states and inputs, we present
a sum-of-squares optimization approach in order to compute an S-CBC.

S-CBCs generalize barrier certificates [22] and control barrier certificates [23]
to account for the presence of an adversary. A difference between the treatment
in this paper and that of [22,23] is that we define S-CBCs for stochastic dynamic
games, while the latter papers focus on stochastic systems with a single agent.

5.1 Dynamic Programming for safe − LTLF Satisfaction

We introduce a dynamic programming (DP) operator that will allow us to recur-
sively solve a Bellman equation related to Eq. (2) backward in time. First, observe
that we can write the satisfaction probability in Definition 8 as:

P
x0
μ(d),μ(a){L(xN ) |= φ} = Eμ(d),μ(a){

∏

k∈N

1(L(xk) |= φ)|x(0) = x0}, (3)

where Eμ(d),μ(a) is the expectation operator under the probability measure
Pμ(d),μ(a) induced by agent policies μ(d) and μ(a). 1(·) is the indicator function,
which takes value 1 if its argument is true, and 0 otherwise.

Assume that V : X → [0, 1] is a Borel-measurable function. A DP operator
T can then be characterized in the following way:

V (xN−1) = 1(L(xN−1) |= φ) (4)

(TV )(xk) := sup
ud

inf
ua

1(L(xk) |= φ)
∫

X

V (f(xk, ud, ua, w))dxk+1, (5)

where dxk+1 ≡ (dxk+1|xk, ud, ua) is a probability measure on the Borel space
(X,B(X)).

The following results adapts Theorem 1 of [18] to the case of temporal logic
formula satisfaction over a finite time-horizon.

Theorem 1. Assume that the DDSG G has to satisfy a safe − LTLF formula
φ over horizon N . Let the DP operator T be defined as in Eq. (5). Additionally,
if dxk ≡ (dxk+1|xk, ud, ua) is continuous, then,

sup
μ(d)

inf
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= φ} = (TNV )(x0), (6)

where TN := T ◦ T ◦ · · · ◦ T (N times) is the repeated composition of the
operator T .

Proof. Consider a particular pair of stationary agent policies μ(d) and μ(a).
For these policies, define measurable functions V μ(d),μ(a)

k : X → [0, 1], k =
0, 1, . . . , N − 1:
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V μ(d),μ(a)

N−1 (xN−1) := 1(L(xN−1) |= φ) (7)

V μ(d),μ(a)

k (xk) := Eμ(d),μ(a){
N−1∏

i=k

1(L(xi) |= φ)|x(k) = xk}, k = 0, 1, . . . , N − 2

(8)

Therefore, we have P
x0
μ(d),μ(a){L(xN ) |= φ} = V μ(d),μ(a)

0 (x0).
Now, consider strategies of the agents at a stage k. Define the operator

T
μ
(d)
k ,μ

(a)
k

:

(T
μ
(d)
k ,μ

(a)
k

V )(xk) := 1(L(xk) |= φ)
∫

X

V (f(xk, ud, ua, w))dxk+1 (9)

Expanding Eq. (8) using the definition of the expectation operator will allow us
to write V μ(d),μ(a)

k (x) = (T
μ
(d)
k+1,μ

(a)
k+1

V )(x).
The result follows by an induction argument which uses the fact that T

μ
(d)
k ,μ

(a)
k

is a monotonic operator. We refer to [18] for details. Further, this procedure also
guarantees the existence of a defender policy that will maximize the probability
of satisfaction of φ under any adversary policy. ��

5.2 Secure Control Barrier Certificates

Definition 9. A continuous function B : X → R≥0 is a secure control bar-
rier certificate (S-CBC) for the DDSG G if for any state x ∈ X and some
constant c ≥ 0,

inf
ud

sup
ua

Ew[B(f(x, ud, ua, w)|x] ≤ B(x) + c. (10)

Intuitively, for some defender action ud, the increase in the value of an S-CBC
is bounded from above along trajectories of G under any adversary action ua.

Remark 2. S-CBCs generalize control barrier certificates and barrier certificates
seen in prior work. If f(x, ud, ua1 , w) ∼ f(x, ud, ua2 , w) for every ua1 , ua2 ∈ Ua,
then we recover the definition of a control barrier certificate [23]. The def-
inition of a barrier certificate [22,36] is got by additionally requiring that
f(x, ud1 , ua1 , w) ∼ f(x, ud2 , ua2 , w) for every ud1 , ud2 ∈ Ud and ua1 , ua2 ∈ Ua.
Here ∼ denotes stochastic equivalence of the respective stochastic processes [35].
In the latter case, when c = 0, the function B is a super-martingale. For this
case, along with some additional assumptions on the system dynamics, asymp-
totic guarantees on the satisfaction of properties over the infinite time-horizon
can be established [36].

Remark 3. Although our definition of S-CBCs in Definition 9 bears resemblance
to the notion of a worst-case barrier certificate introduced in [36], there are some
distinctions. While the entity in [36] considers a dynamical system with a single
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disturbance input, our setting considers three terms that influence the evolution
of the state of the system: we want to find a defender input that will allow
the barrier function to satisfy a certain property under any adversary input and
disturbance. A second point of difference is that while [36] focuses on asymptotic
analysis, we consider properties over a finite time horizon.

We limit our attention to stationary strategies for both players. Studying the
effects of other strategies is left as future work. The following preliminary result
will be used subsequently to determine a bound on the probability of reaching
a subset of states under particular agent policies over a finite time-horizon.

Lemma 1. Consider a DDSG G and let B : X → R≥0 be an S-CBC as in
Definition 9. Then, for some constants λ > 0 and c ≥ 0, initial state x0 ∈ X,
and a stationary defender policy, μ(d) : X → Ud, the following holds under any
stationary adversary policy μ(a) : X × Ud → Ua:

inf
μ(d)

sup
μ(a)

P
x0
μ(d),μ(a) [ sup

0≤k<N
B(x(k)) ≥ λ] ≤ B(x0) + cN

λ
(11)

Proof. The proof follows from the result of Chapter III, Theorem3 and Corollary
2-1 in [27], Definition 9, and the fact that the agents adopt stationary policies. ��
Definition 10 (s−Reachability). For the DDSG G with dynamics in Eq. (1),
let s ∈ [0, 1] and X0 ⊂ X be the set of possible initial states and X1 ⊂ X be
disjoint from X0. Then, G is s−reachable with respect to X1, if sup

k∈N
P[xk ∈

X1] ≤ s. That is, the probability of reaching a state in X1 starting from X0 in
the time horizon [0, N ] is upper bounded by s.

Theorem 2. With X0 and X1 known, and X0 ∩X1 = ∅, assume there exists an
S-CBC B : X → R≥0, stationary policies, μ(d) : X → Ud and μ(a) : X × Ud →
Ua, and constant c ≥ 0. Additionally, if there is a constant δ ∈ [0, 1] such that:

1. B(x) ≤ δ for all x ∈ X0,
2. B(x) > 1 for all x ∈ X1,

then the DDSG G starting from x0 ∈ X0 is (δ+cN)−reachable with respect to X1.

Proof. Observe that X1 ⊆ {x ∈ X : B(x) ≥ 1}. Therefore, Px0
μ(d),μ(a) [∃k ∈ N :

x(k) ∈ X1] ≤ P
x0
μ(d),μ(a) [B(x(k)) ≥ 1]. Since this should be true for arbitrary k,

we have:

sup
k∈N

P[xk ∈ X1] ≤ P
x0
μ(d),μ(a){ sup

k∈N
B(x(k)) ≥ 1} ≤ inf

μ(d)
sup
μ(a)

P
x0
μ(d),μ(a){ sup

k∈N
B(x(k)) ≥ 1}

≤ B(x0) + cN ≤ δ + cN

The second line of the above system of inequalities follows by setting λ = 1 in
Lemma 1, and the fact that B(x) ≤ δ for all x ∈ X0. ��
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5.3 Automaton-Based Verification

In order to verify that {L(xN ) |= φ} under agent policies μ(d) and μ(a), we need
to establish that (η0, η1, . . . , ηN−1) ⊆ L (Aφ). To do this, we first construct a
DFA A¬φ, that accepts all and only those words over AP that do not satisfy
the safe − LTLF formula φ. We have the following result:

Lemma 2. [9] For L(xN ) = (η0, η1, . . . , ηN−1) and a DFA Aφ, the following
is true:

(η0, η1, . . . , ηN−1) ⊆ L (Aφ) ⇔ (η0, η1, . . . , ηN−1) ∩ L (A¬φ) = ∅

The construction of A¬φ can also be carried out in Rabinizer4 [25]. The
accepting runs of A¬φ of length less than or equal to N can be computed using a
depth-first search algorithm [47]. For the purposes of this section, it is important
to understand that the accepting runs of A¬φ of length less than or equal to N
will give a bound on the probability that a particular pair of agent policies
(μ(d), μ(a)) will not satisfy φ over the time horizon N . Using Definition 4 and
following the treatment of [22] and [23] define the following terms (the reader is
also referred to these works for an example that offers a detailed treatment of
the procedure):

RN (A¬φ) := {q = (q0, . . . , qn) ∈ L (A¬φ) : n ≤ N, qi �= qi+1∀i < n} (12)

Ra
N (A¬φ) := {q = (q0, . . . , qn) ∈ RN (A¬φ) : a ∈ AP and q0

a−→ q1} (13)

Pa(q) :=

{
{(qi, qi+1, qi+2, T (q, qi+1)) : 0 ≤ i ≤ n − 2} q ∈ Ra

N (A¬φ), |q| > 2

∅ otherwise

(14)

T (q, qi+1) :=

{
N + 2 − |q| ∃a ∈ AP : qi+1

a−→ qi+1

1 otherwise
(15)

Intuitively, RN (A¬φ) is the set of accepting runs in A¬φ of length not greater
than N , and without counting any self-loops in the states of the DFA. The set
Ra

N (A¬φ) is the set of runs in RN (A¬φ) with the first state transition labeled by
a ∈ AP. For an element of Ra

N (A¬φ), Pa(q) defines the set of paths of length
3 augmented with a ‘loop-bound’. The ‘loop-bound’ T (q, qi+1) is an indicator of
the number of ‘self-loops’ the run in the DFA can make at state qi+1 while still
keeping its length less than or equal to N . We assume that T (q, qi+1) = 1 when
the run cannot make a self-loop at qi+1.

5.4 Satisfaction Probability Using S-CBCs and A¬φ

In this section, we show that an accepting run of A¬φ of length less than or
equal to N gives a lower bound on the probability that a particular pair of agent
policies will not satisfy the safe − LTLF formula φ. We use this in conjunction
with the S-CBC to derive an upper bound on the probability that φ will be
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satisfied for a particular choice of defender policy under any adversary policy.
Specifically, we use Theorem 2 over each accepting run of A¬φ of length less than
or equal to N to give a bound on the overall satisfaction probability.

Theorem 3. Assume that the DDSG G has to satisfy a safe − LTLF formula
φ over horizon N . Let A¬φ be the DFA corresponding to the negation of φ, and
for this DFA, assume that the quantities in Eqs. (12)–(14) have been computed.
Then, for some aj ∈ AP and all x0 ∈ L−1(aj) the maximum value of the
probability of satisfaction of φ for a defender policy μ(d) under any adversary
policy μ(a) satisfies the following inequality:

sup
μ(d)

inf
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= φ} ≥ 1 −

∑

q∈R
aj
N (A¬φ)

∏

ρ∈P aj (q)

(δρ + cρT ),

where ρ = (q, q′, q′′, T ) ∈ Paj (q) is the set of paths of length 3 with loop bound
T for aj ∈ AP in an accepting run of length N in A¬φ.

Proof. For aj ∈ AP, consider q ∈ R
aj

N (A¬φ) (Eq. (13)) and the set Paj (q)
(Eqs. (14) and (15)). Consider an element ρ = (q, q′, q′′, T ) ∈ Paj (q). From The-
orem 2, for some stationary defender policy μ(d), the probability that a trajectory
of G starting from x0 ∈ L−1(σ : q

σ−→ q′) and reaching x1 ∈ L−1(σ : q′ σ−→ q′′)
under stationary adversary policy μ(a) over the time horizon T is at most δρ+cρT .
Therefore, the probability of an accepting run in A¬φ of length at most N start-
ing from x0 ∈ L−1(aj) is upper bounded by:

inf
μ(d)

sup
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= ¬φ} ≤

∑

q∈R
aj
N (A¬φ)

∏

ρ∈P aj (q)

(δρ + cρT )

Now consider Eq. (2) of Problem 1. We have the following set of equivalences
and inequalities:

sup
μ(d)

inf
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= φ} = sup

μ(d)
(− sup

μ(a)
(−P

x0
μ(d),μ(a){L(xN ) |= φ}))

= − inf
μ(d)

sup
μ(a)

(−P
x0
μ(d),μ(a){L(xN ) |= φ})

= − inf
μ(d)

sup
μ(a)

(−1 + P
x0
μ(d),μ(a){L(xN ) |= ¬φ})

≥ 1 − inf
μ(d)

sup
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= ¬φ}

≥ 1 −
∑

q∈R
aj
N (A¬φ)

∏

ρ∈P aj (q)

(δρ + cρT )

��
Theorem 3 generalizes Theorem 5.2 of [23] to provide a lower bound for a

stationary defender policy that maximizes the probability that the safe−LTLF

formula is satisfied by the DDSG G over the time horizon N , starting from
x0 ∈ L−1(aj) for some aj ∈ AP for any stationary adversary policy.
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5.5 Computing an S-CBC

The use of barrier functions will circumvent the need to explicitly compute sets
of reachable states, which is known to be undecidable for general dynamical sys-
tems [29]. However, computationally efficient methods can be used to construct
a barrier certificate if the system dynamics can be expressed as a polynomial
[36]. This will allow for determining bounds on the probability of satisfaction of
the LTL formula without discretizing the state space. In contrast, if the under-
lying state space is continuous, computing the satisfaction probability and the
corresponding agent policy using dynamic programming will necessitate a dis-
cretization of the state space in order to approximate the integral in Eq. (5).

We propose a sum-of-squares (SOS) optimization [34] based approach that
will allow us to compute an S-CBC if the evolution of the state of the DDSG
has a specific structure. The key insight is that if a function can be written as a
sum of squares of different polynomials, then it is non-negative.

Assumption 2. The sets X,Ud, Ua in the DDSG G are continuous, and
f(x, ud, ua, w) in Eq. (1) can be written as a polynomial in x, ud, ua for any
w. Further, the sets Xi = L−1(ai) in Assumption 1 can be represented by
polynomial inequalities.

Proposition 1. Under the conditions of Assumption 2, suppose that sets X0 :=
{x ∈ X : g0(x) ≥ 0}, X1 := {x ∈ X : g1(x) ≥ 0}, and X := {x ∈ X : g(x) ≥ 0},
where the inequalities are element-wise. Assume that there is an SOS polynomial
B(x), constants δ ∈ [0, 1] and c, SOS (vector) polynomials s0(x), s1(x), and s(x),
and polynomials sd

ui
(x) corresponding to the ith entry in ud, such that:

− B(x) − sᵀ
0(x)g0(x) + δ (16)

B(x) − sᵀ
1(x)g1(x) − 1 (17)

∀ua ∈ Ua : − Ew[B(f(x, ud, ua, w)|x] + B(x) −
∑

i

(udi
− sd

ui
(x))− sᵀ(x)g(x)+ c

(18)

are all SOS polynomials. Then, B(x) satisfies the conditions of Theorem2, and
udi

= sd
ui

(x) is the corresponding defender policy.

Proof. The proof of this result follows in a manner similar to Lemma 7 in [49]
and Lemma 5.6 in [23], and we do not present it here. ��

The authors of [23] discuss an alternative approach in the case when the
input set has finite cardinality. A similar treatment is beyond the scope of the
present paper, and will be an interesting future direction of research.

6 Example

We present an example demonstrating our solution approach to Problem1.
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Example 1. Let the dynamics of the DDSG G with X = W = R
2, Ud is a

compact subset of R, Ua = [−1, 1], and w1(k), w2(k) ∼ Unif [−1, 1] (and i.i.d.)
be given by:

x1(k + 1) = −0.5x1(k)x2(k) + w1(k) (19)

x2(k + 1) = x1(k)x2(k) + 0.1x2
2(k) + ud(k) + 0.6ua(k) + w2(k) (20)

Let AP = {a0, a1, a2, a3, a4}, and sets X0,X1,X2,X3,X4 such that for x ∈ Xi,
L(x) = ai. The sets Xi are defined by:

X0 := {(x1, x2) : x2
1 + x2

2 ≤ 0.9},

X1 := {(x1, x2) : (2 ≤ x1 ≤ 6) ∧ (−2 ≤ x2 ≤ 2)},

X2 := {(x1, x2) : x2
1 + (x2 − 10)2 ≤ 4},

X3 := {(x1, x2) : (−10 ≤ x1 ≤ −3) ∧ (−4 ≤ x2 ≤ −2)},

X4 := X \
⋃

i

Xi.

The aim for an agent is to determine a sequence of inputs {ud} such that
starting from X0, for any sequence of adversary inputs {ua}, it avoids obstacles
in its environment, defined by the sets X1,X2, and X3 for 10 units of time. The
corresponding safe − LTLF formula is φ = [a0 ∧ G¬(a1 ∨ a2 ∨ a3)]. The DFA
that accepts ¬φ is shown in Fig. 1. Suppose we are interested in determining a
bound on the probability of φ being satisfied for a time-horizon of length 10.
Using Eqs. (12)–(15), we have Pa0(q0, q1, q2) = {(q0, q1, q2, 9)}, and Paj = ∅
for j = 1, 2, 3, 4.

Fig. 1. The DFA that accepts ¬φ for the safe − LTLF formula φ = [a0 ∧ G¬(a1 ∨
a2 ∨ a3)] and AP = {a0, a1, a2, a3, a4}.

We use a sum-of-squares optimization toolbox, SOSTOOLS [37] along with
SDPT3 [48], a semidefinite program solver. The barrier function B(x) =
B(x1, x2) was assumed to be a polynomial of degree-two. For the case c = 0, we
determine the smallest value of δ that will satisfy the conditions in Proposition 1
to compute an S-CBC. The output of the program was an S-CBC given by

B(x) = 0.1915x2
1 + 0.1868x1x2 − 0.144x1 + 0.1201x2

2 + 0.1239x2
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The environment and the obstacles denoted by the sets X1,X2,X3 and the
contours of the S-CBC is shown in Fig. 2. We observe that B(x) is less than 1 in
some part of X1. A possible reason is that when solving for the second condition
in Proposition 1, we work with the union of the sets X1,X2, and X3, which may
lead to a conservative estimate of the S-CBC.

Fig. 2. The regions X0, X1, X2, X3, X4 along with the computed secure control barrier
certificate (S-CBC): B(x) = 0.1915x2

1 + 0.1868x1x2 − 0.144x1 + 0.1201x2
2 + 0.1239x2.

The regions with red boundaries (X1, X2, X3) denote obstacles in the environment. X0

is the set from which the agent starts at time 0. The contours show the values of the
S-CBC of degree 2 ranging from 1 to 100. (Color figure online)

From Theorem 2 and the computed value of δ, we have that

sup
μ(d)

inf
μ(a)

P
x0
μ(d),μ(a){L(xN ) |= φ} ≥ 0.9922.

This bound is conservative in the sense that we consider defender inputs ud for
only the extreme values of ua = −1 and ua = 1. However, for the dynamics in
Eq. (20), if the last inequality in Proposition 1 is non-negative for both ua = −1
and ua = 1, then for any ua ∈ [−1, 1], this quantity will be non-negative.

Determining methods to explicitly compute a defender policy and considering
S-CBCs of higher degree is an area of future research.
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7 Conclusion

This paper introduced a new class of barrier certificates to provide probabilis-
tic guarantees on the satisfaction of temporal logic specifications for CPSs that
may be affected by the actions of an intelligent adversary. We presented a solu-
tion to the problem of maximizing the probability of satisfying a temporal logic
specification in the presence of an adversary. The interaction between the CPS
and adversary was modeled as a discrete-time dynamic stochastic game with
the CPS as defender. The evolution of the state of the game was influenced
jointly by the actions of both players. A dynamic programming based approach
was used to synthesize a policy for the defender in order to maximize this sat-
isfaction probability under any adversary policy. We introduced secure control
barrier certificates, an entity that allowed us to determine a lower bound on
the satisfaction probability. The S-CBC was explicitly computed for a certain
class of dynamics using sum-of-squares optimization. An example illustrated
our approach.

Our example may have resulted in conservative bounds for the satisfaction
probabilities since we restrict our focus to barrier certificates that are second
degree polynomials and to stationary policies for the two agents. Future work
will seek to study conditions under which possibly more effective non-stationary
agent policies and higher degree S-CBCs can be deployed to solve the problem. A
second interesting problem over a finite time-horizon is to investigate if explicit
time bounds can be enforced on the temporal logic formula. An example of such
a property is that the agent is required to reach a subset of states of the system
between 3 and 5 min. This formula cannot be encoded in LTL, but there are
other temporal logic frameworks like metric interval temporal logic [4] or signal
temporal logic [31] that will allow us to express it. We propose to study the case
when the system will have to satisfy other kinds of timed temporal specifications
[12] in the presence of an adversary in dynamic environments.
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R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 211–230.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 11

13. Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibria in two-person
games. J. Optim. Theory Appl. 59(1), 71–97 (1988)

14. Chow, C.S., Tsitsiklis, J.N.: An optimal one-way multigrid algorithm for discrete-
time stochastic control. IEEE Trans. Autom. Control 36(8), 898–914 (1991)

15. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
495–499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

16. De Giacomo, G., Vardi, M.: Synthesis for LTL and LDL on finite traces. Int. Joint
Conf. Artif. Intell. 15, 1558–1564 (2015)

17. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: International Joint Conference on Artificial Intelligence, pp. 854–
860 (2013)

18. Ding, J., Kamgarpour, M., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: A
stochastic games framework for verification and control of discrete time stochastic
hybrid systems. Automatica 49(9), 2665–2674 (2013)

19. Ding, X., Smith, S.L., Belta, C., Rus, D.: Optimal control of MDPs with linear
temporal logic constraints. IEEE Trans. Autom. Control 59(5), 1244–1257 (2014)

20. Farwell, J.P., Rohozinski, R.: Stuxnet and the future of cyber war. Survival 53(1),
23–40 (2011)

21. Gordon, G.J.: Approximate solutions to Markov decision processes. School of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA, Technical report (1999)

22. Jagtap, P., Soudjani, S., Zamani, M.: Temporal logic verification of stochastic
systems using barrier certificates. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 177–193. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 11

23. Jagtap, P., Soudjani, S., Zamani, M.: Formal synthesis of stochastic systems via
control barrier certificates. arXiv preprint arXiv:1905.04585 (2019)

24. Kolathaya, S., Ames, A.D.: Input-to-state safety with control barrier functions.
Control Syst. Lett. 3(1), 108–113 (2018)
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