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Abstract— Real-time controllers must satisfy strict safety
requirements. Recently, Control Barrier Functions (CBFs) have
been proposed that guarantee safety by ensuring that a suitably-
defined barrier function remains bounded for all time. The
CBF method, however, has only been developed for determin-
istic systems and systems with worst-case disturbances and
uncertainties. In this paper, we develop a CBF framework for
safety of stochastic systems. We consider complete information
systems, in which the controller has access to the exact system
state, as well as incomplete information systems where the
state must be reconstructed from noisy measurements. In the
complete information case, we formulate a notion of barrier
functions that leads to sufficient conditions for safety with
probability 1. In the incomplete information case, we formulate
barrier functions that take an estimate from an extended
Kalman filter as input, and derive bounds on the probability
of safety as a function of the asymptotic error in the filter. We
show that, in both cases, the sufficient conditions for safety can
be mapped to linear constraints on the control input at each
time, enabling the development of tractable optimization-based
controllers that guarantee safety, performance, and stability.
Our approach is evaluated via simulation study on an adaptive
cruise control case study.

I. INTRODUCTION

Safety-critical systems in application domains including
automobiles, aviation, energy, and medicine must satisfy
strict requirements on their state trajectories in order to
prevent economic harm and loss of life. These requirements
must be satisfied by real-time controllers in the presence of
disturbances and process and measurement noise. Reliance
on distributed and embedded systems places further compu-
tational constraints on the control.

There has been extensive research into safety verification
of control systems, which has grown increasingly salient
with the emergence of autonomous cyber-physical systems.
Common techniques include Lypaunov and barrier methods
[1], [2], discrete approximations [3]–[5], and direct compu-
tation of reachable sets [6], [7], among others. In addition
to proving safety of a given system and controller, there
has been research interest in synthesizing controllers with
provable safety guarantees.

One recently-proposed framework for safe control is the
use of Control Barrier Functions (CBF) [8], [9]. A CBF
takes as input the current system state and outputs a real
number corresponding to the safety state of the system. As
the system approaches an unsafe operating point, the CBF
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value increases to infinity. Safety of the system can therefore
be guaranteed by designing a controller such that the CBF
remains finite for all time.

The CBF framework provides several advantages in addi-
tion to provable safety guarantees. For affine control systems,
CBFs lead to linear constraints on the control, which can
be used to design computationally tractable optimization-
based controllers. CBFs can be easily composed with control
Lyapunov functions to provide joint guarantees on stability,
performance, and safety. CBFs have been proposed for
diverse applications including vehicle cruise control [9],
bipedal locomotion [10], and control of multi-robot swarms
[11].

Existing CBF techniques consider systems that are de-
terministic or have bounded disturbances, and in which the
controller has access to the current state of the system. In
many applications of interest, however, the system to be
controlled is perturbed by noise in the dynamics, and can
only be observed via noisy sensor measurements. A CBF
framework for stochastic systems would enable computation-
ally tractable control with probabilistic guarantees on safety
by making the CBF method applicable to a broader class of
systems. Such a framework, however, is not available in the
existing literature.

In this paper, we generalize CBF to stochastic systems. We
consider complete information systems, in which the exact
state value is known at each time step, as well as incomplete
information systems in which only noisy measurements of
the state are available. In both cases, we show that a
linear constraint on the control at each time step results
in provable probabilistic safety guarantees. We make the
following specific contributions:
• In the complete information case, we formulate a notion

of control barrier function and derive sufficient condi-
tions for the system to satisfy safety constraints with
probability 1.

• In the incomplete information case, we consider a class
of controllers that are based on a state estimate obtained
via an Extended Kalman Filter. We derive bounds on
the probability of violating the safety constraints as a
function of the steady-state estimation error of the filter,
and bound the violation probability when the system
dynamics are linear.

• We describe how to synthesize optimization-based con-
trollers that compute the control action at each time
step by solving quadratic programs. We remark on
how stability and performance can be integrated via
stochastic Control Lyapunov Functions.
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• Our results are illustrated via numerical study on an
adaptive cruise control example. We find that our pro-
posed CBF method ensures safety even when other
deterministic CBF heuristics lead to safety violations.

The rest of the paper is organized as follows. Section II re-
views related work. Section III presents needed background.
Section IV considers the complete information case. Section
V considers the incomplete-information case. Section VII
presents simulation results. Section VIII concludes the paper.

II. RELATED WORK

The problem of verifying safety of a given system and
controller has received extensive research attention [3], [4],
[12]–[14]. In the verification literature, the approach that is
closest to the present work is the barrier function method [1],
[2]. In this method, a barrier function is constructed that is
bounded below by a given value in the unsafe region, and
then the trajectory of the barrier function is analyzed to prove
that the state trajectory does not enter the unsafe region.
Existing works have developed methods, typically based on
semidefinite programming, for constructing barrier functions
for deterministic, hybrid, uncertain, and stochastic systems.
These works, however, are focused on proving safety of a
given controller, while the goal of the present paper is to
synthesize a controller with safety guarantees.

The CBF method for synthesizing safe controllers was pro-
posed in [8] and has since been considered in [9], [15]–[19].
These existing works, however, do not consider stochastic
systems with noise in either the state dynamics or the system
measurements. Furthermore, applying these existing methods
on an estimated state value may be insufficient to ensure
safety, as we demonstrate in the simulation study.

III. BACKGROUND

We let E(·) and tr(·) denote expectation and trace, re-
spectively. We first review the concepts of martingales and
stopping times.

Definition 1: The random process xt is a martingale if
E(xt|xs) = xs for all t ≥ s, a submartingale if E(xt|xs) ≥
xs for all t ≥ s, and a supermartingale if E(xt|xs) ≤ xs
for all t ≥ s.
A stopping time is defined as follows.

Definition 2: A random variable τ is a stopping time of
a filtration Ft if the event {τ ≤ t} belongs to the σ-field Ft
for all t ≥ 0.

Intuitively, a random time τ is a stopping time if all of the
information required to decide if τ = t is available at time t.
For example, for a random process Xt that is adapted to Ft,
τ = min {t : Xt = c} is a stopping time for any constant c,
but τ = max {t : Xt = c} is not a stopping time.

Let xt be a submartingale (resp. supermartingale) and let
τ be a stopping time. If t ∧ τ denotes the minimum of t
and τ , then xt∧τ is a submartingale (resp. supermartingale).
In other words, stopped martingales are martingales. The
following lemma gives a condition on the maximum value
of a submartingale.

Lemma 1 (Doob’s Martingale Inequality [20]): Let
(xt,Ft) be a submartingale, [t0, t1] a subinterval of [0,∞),
and λ > 0. Then

λPr

(
sup

t0≤t≤t1
xt ≥ λ

)
≤ E(max {xt, 0}) (1)

Definition 3: A continuous semimartingale Xt is a pro-
cess which has the decomposition Xt = X0 + Mt + Bt
with probability 1, where Mt is a martingale and Bt is
the difference of two continuous, nondecreasing, adapted
processes.

A stopped semimartingale is also a semimartingale. The
following lemma describes a composition rule for semi-
martingales.

Lemma 2 (Itô’s Lemma [20]): Let f(x, t) be a twice-
differentiable function and let Xt be a semimartingale. Then
f(Xt) is a semimartingale that satisfies

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dMs +

∫ t

0

f ′(Xs) dBs

+
1

2

∫ t

0

f ′′(Xs)d < M >s

with probability 1 for all t, where < M >s denotes the
quadratic variation of M .

We will use the standard notation

dxt = a(x, t)dt+ σ(x, t)dWt (2)

to describe a stochastic differential equation (SDE) in Itô
form, where a(x, t) and σ(x, t) are continuous functions and
Wt is a Brownian motion. The dimension of xt is equal to
n, while the dimension of Wt is equal to r. The notion of a
solution of (2) used in this paper is defined as follows.

Definition 4 ( [20], Def. 5.2.1): A strong solution of the
SDE (2) with respect to Brownian motion W and initial
condition ξ is a process {xt : t ∈ [0,∞)} with continuous
sample paths and the following properties:

(i) Pr(x0 = ξ) = 1
(ii) For every 1 ≤ i ≤ n, 1 ≤ j ≤ r, and t ∈ [0,∞),

Pr

(∫ t

0

|ai(τ, xτ )|+ σ2
ij(τ, xτ ) dτ <∞

)
= 1

(iii) The integral equation

xt = x0 +

∫ t

0

a(xτ , τ) dτ +

∫ t

0

σ(xτ , τ)dWτ ,

where the latter term is a stochastic integral with
respect to the Brownian motion Wt, holds with prob-
abilty 1.

Any strong solution of an SDE is a semimartingale [20].
For such strong solutions, if f(x, t) is a twice differentiable
function, then Itô’s Lemma reduces to

dzt =(
∂f

∂t
+
∂f

∂x
a(x, t) +

1

2
tr

(
σ(x, t)T

∂2f

∂x2
σ(x, t)

))
dt

+

(
∂f

∂x
σ(x, t)

)
dWt (3)
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Recall that a class-K function is a function f that is strictly
increasing and satisfies f(0) = 0. A function f : Rn → R
is locally Lipschitz if, for every x0 ∈ Rn, there exists a
neighborhood U of x0 and L > 0 such that |f(x)− f(y)| ≤
L||x− y||2 for all x, y ∈ U .

IV. STOCHASTIC CBF UNDER COMPLETE INFORMATION

This section presents our construction of control barrier
functions (CBFs) for stochastic systems where the controller
has complete state information. We first present the problem
statement and then our barrier function construction and
proof.

A. Problem Statement

We consider a system with time-varying state xt ∈ Rn
and a control input ut ∈ Rm. The state xt follows the SDE

dxt = (f(xt) + g(xt)ut) dt+ σ(xt)dWt (4)

where f : Rn → Rn, g : Rn×Rn×m, and σ : Rn → Rn are
locally Lipschitz continuous functions and Wt is a Brownian
motion. We assume that (4) has a strong solution.

The system is required to satisfy a safety constraint for
all time t, which is expressed as xt ∈ C for all t where C is
a specified safe operating region. The set C is defined by a
locally Lipschitz function h : Rn → R as

C = {x : h(x) ≥ 0}
δC = {x : h(x) = 0}

consistent with [8], [9]. The problem statement is, How to
design a control policy that maps the sequence {xt′ : t′ ∈
[0, t]} to an input ut such that xt ∈ C for all t with maximal
probability?

B. Control Barrier Function Construction

Our construction of a stochastic control barrier function is
given as follows.

Definition 5: Let xt be a stochastic process described by
an equation of the form (2). A control barrier function
B : Rn → R is locally Lipschitz and twice-differentiable
on int(C) and satisfies the following properties:

1) There exist class-K functions α1 and α2 such that

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(5)

for all x.
2) There exists a class-K function α3 such that

∂B

∂x
a(x) + tr

(
1

2
σ(x)T

∂2B

∂x2
σ(x)

)
≤ α3(h(x)) (6)

In the deterministic case, the construction of the CBF
B(x) ensures that B(x) ∼ 1

h(x) , and hence that B(x) tends
to infinity as the system state approaches the boundary of
the safe region C. Consequently, by selecting a controller
that ensures that B(x) remains finite (6), the safety of the
system is guaranteed. Definition 5 extends this approach to
the stochastic case by providing sufficient conditions for the
system to remain bounded in expectation, and hence almost

surely finite. This fact is made explicit by the following
theorem.

Theorem 1: Suppose that there exists a CBF for a process
xt described by (2). Then for all t, Pr(xt ∈ C) = 1, provided
that x0 ∈ C.

Proof: Let B be a CBF and define Bt = B(xt). Since
each sample path of xt is continuous, each sample path of
Bt is continuous. Hence, if xt /∈ C for some t, then there
exists t′ < t such that h(xt′) = 0 and, by Eq. (5), Bt′ =∞.
As a result, if for all t > 0 and δ ∈ (0, 1), we have

Pr

(
sup
t′<t

Bt′ =∞
)
< δ,

then Pr(xt ∈ C) = 1 for all t.
Let t > 0 and δ > 0. We will construct K > 0 such that

Pr(supt′<tBt′ > K) < δ. Let L = B0, and choose a real
number K such that

K >
L+ tα3(α−12 ( 1

L ))

δ
.

Define stopping time β as β = inf {t : xt = 2K}. We have
that xt∧β is a semimartingale and the function B(x) is twice
differentiable on int(C), and therefore for any x in a sample
path of xt∧β . Hence we can apply Ito’s Lemma to obtain

Bt∧β

= B0 +

∫ t∧β

0

∂B

∂x
a(xτ ) +

1

2
tr

(
σ(xτ )T

∂2B

∂x2
σ(xτ )

)
dτ

+

∫ t∧β

0

∂B

∂x
σ(xτ ) dWτ (7)

with probability 1. We construct a sequence of stopping times
ηi and ζi as

η0 = 0, ζ0 = inf {t : Bt < L} (8)
ηi = inf {t : Bt > L, t > ζi−1}, i = 1, 2, . . . , (9)
ζi = inf {t : Bt < L, t > ηi}, i = 1, 2, . . . , (10)

The times ηi and ζi are the up- and down-crossings of Bt
over L. Define a random process B̃t by

B̃t = L+

∞∑
i=0

[∫ ζi∧t

ηi∧t
α3(α−12 (

1

L
)) dτ

+

∫ ζi∧t

ηi∧t

∂B

∂x
σ(xτ ) dτ

]
We aim to show that, for any sample path where (7) holds,
we have Bt∧β ≤ B̃t∧β , or equivalently, Bt∧β ≤ B̃t∧β with
probability 1. The proof is by induction. At t = 0, B0 =
B̃0 = L. For t ∈ (ηi, ζi],

Bt = Bηi +

∫ t

ηi

∂B

∂x
a(xτ ) +

1

2
tr

(
σ(xτ )T

∂2B

∂x2
σ(xτ )

)
dτ

+

∫ t

ηi

∂B

∂x
σ(xτ ) dWτ (11)

B̃t = B̃ηi +

∫ t

ηi

α3(α−12 (
1

L
)) dτ +

∫ t

ηi

∂B

∂x
σ(xτ ) dWτ (12)
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By induction, Bηi ≤ B̃ηi . The third terms of (11) and (12)
are equal. It remains to show that the second term of (11)
is a lower bound on the second term of (12). By definition
of ηi, Bτ ≥ L for all τ ∈ [η, t], or equivalently, 1

Bτ
≤

1
L . By Eq. (5), Bτ ≤ 1

α2(h(xτ ))
, and hence α2(h(xτ )) ≤

1
Bτ

and h(xτ ) ≤ α−12 ( 1
Bτ

). We therefore have h(xτ ) ≤
α−12 ( 1

Bτ
) and α3(h(xτ )) ≤ α3(α−12 ( 1

Bτ
)). Combining these

inequalities with (6) yields

∂B

∂x
a(xτ )+

1

2
tr

(
σ(xτ )T

∂2B

∂x2
σ(xτ )

)
≤ α3

(
α−12

(
1

L

))
,

and thus the integrand of the second term of (11) is a
lower bound on the integrand of the second term of (12).
In particular, L = Bζi ≤ B̃ζi .

For t ∈ [ζi, ηi+1],

B̃t = L+
i∑

j=0

[∫ ζj

ηj

α3(α−12 (
1

L
)) dτ +

∫ ζj

ηj

∂B

∂x
σ(xτ ) dWτ

]
= B̃ζi ≥ L ≥ Bt

by definition of ηi and ζi. Hence Bt ≤ B̃t for all t almost
surely. As a corollary, B̃t∧β ≥ Bt∧β almost surely, and we
have

Pr

(
sup
t′∈[0,t]

Bt′ > K

)
= Pr

(
sup
t′∈[0,t]

Bt′∧β > K

)

≤ Pr

(
sup
t′∈[0,t]

B̃t′∧β > K

)

It therefore suffices to prove that Pr(supt′<t B̃t′∧β > K) <
δ. We first show that B̃t is a submartingale. We have

E(B̃t|B̃s) = B̃s + E

[ ∞∑
i=0

∫ ζi∧t

ηi∧t
α3(α−12 (

1

L
)) dτ

+

∫ ζi∧t

ηi∧t

∂B

∂x
σ(xτ ) dWτ

]

= B̃s + E

[ ∞∑
i=0

∫ ζi∧t

ηi∧t
α3(α−12 (

1

L
)) dτ

]
≥ B̃s

implying that B̃t is a submartingale.
Lemma 1 then yields

KPr

(
sup
τ∈[0,t]

B̃τ∧β > K

)
≤ E(B̃t∧β)

≤ L+ (t ∧ β)α3

(
α−12

(
1

L

))
≤ L+ tα3

(
α−12

(
1

L

))
.

Rearranging terms and using the choice of K implies that

Pr

(
sup
τ∈[0,t]

Bτ∧β > K

)
≤ δ,

as desired.

Theorem 1 implies that, for the SDE (4), the following
condition on the controller is sufficient to ensure safety.

Corollary 1: Let B : Rn → R be a twice-differentiable
function satisfying (5) for class-K functions α1 and α2.
Suppose that, at each time t, ut satisfies

∂B

∂x
(f(xt)+g(xt)ut)+

1

2
tr

(
σ(xt)

T ∂
2B

∂x2
σ(xt)

)
≤ α3(h(x))

(13)
for some class-K function α3 and all t. Then the system
satisfies Pr(xt ∈ C) = 1 for all t

Proof: We show that a function B satisfying the
conditions of the corollary is a control barrier function,
implying that Pr(xt ∈ C) = 1 by Theorem 1. Eq. (5)
holds by assumption. Eq. (6) follows from (13), with a(x) =
f(x) + g(x)u from Eq. (4).

Corollary 1 implies that adding the constraint (13) to the
control, which is linear in ut, is sufficient to ensure safety
of the system with probability 1.

Intuitively, almost-sure safety is possible because the con-
troller acts in continuous time with complete information of
the system state. Since the system trajectory is continuous,
the controller is able to correct for the disturbance at each
time t. When only partial or noisy state information is avail-
able, however, such safety guarantees may not be possible.
This case is discussed in the following section.

V. STOCHASTIC CBF UNDER INCOMPLETE
INFORMATION

This section considers control barrier functions for
stochastic systems with incomplete information due to noisy
measurements. We first give the problem statement, and then
formulate the stochastic CBF for this case.

A. Problem Statement

We consider a system with time-varying state xt ∈ Rn, a
control input ut ∈ Rm, and an output yt ∈ Rp described by
the SDEs

dxt = (f(xt) + g(xt)ut) dt+ σt dVt (14)
dyt = cxt dt+ νt dWt (15)

where Vt and Wt are Brownian motions, c is a matrix of
appropriate dimension, and f : Rn → Rn and g : Rn →
Rn×m are locally Lipschitz continuous functions. Define
f(x, u) = f(xt) + g(xt)ut. As a preliminary, the notion
of uniform detectability is defined as follows.

Definition 6: The pair [∂f∂x (x, u) c] is uniformly detectable
if there exists a bounded, matrix-valued function Λ(x) and
a real number γ > 0 such that

wT
(
∂f

∂x
(x, u) + Λ(x)c

)
w ≤ −γ||w||2

for all w, z, and x.
We make the following additional assumptions on the

system dynamics.
Assumption 1: The SDEs (14) and (15) satisfy the follow-

ing conditions:
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1) There exist constants q, r ∈ R≥0 such that E(σtσ
T
t ) ≥

qI and E(νtν
T
t ) ≥ rI for all x and t.

2) The pair
[
∂f
∂x (x, u), c

]
is uniformly detectable.

3) Let φ be defined by

f(x, u)− f(x̂, u) =
∂f

∂x
(x− x̂) + φ(x, x̂, u)

Then there exist real numbers kφ and εφ such that

||φ(x, x̂, u)|| ≤ kφ||x− x̂||22
for all x and x̂ satisfying ||x− x̂||2 ≤ εφ.

The safety condition is defined as in Section IV-A, i.e.,
the safe region C is given by C = {x : h(x) ≥ 0}, with
boundary δC = {x : h(x) = 0}, where h is a locally
Lipschitz function.

In the incomplete information case, the problem studied
is stated as, For given ε ∈ (0, 1), how to design a control
policy that maps the sequence {yt′ : t′ ∈ [0, t]} to an input
ut at each time t such that Pr(xt ∈ C ∀t) ≥ (1 − ε)? In
other words, how to ensure that the system remains safe with
a given probability (1− ε)?

B. Solution Approach

Our solution approach is in two parts. First, we consider
an estimate of the system state, and construct a safe region
for the estimated state based on the accuracy of the estimator.
Second, we show that the problem reduces to a complete-
information stochastic SDE on the estimated state value,
enabling application of the approach derived in Section IV.

For the state estimation, we use the Extended Kalman Fil-
ter (EKF) [21], which we select due to its widespread appli-
cability (including lightweight embedded implementations)
and availability of provable error bounds. The estimated state
is equal to x̂t. Define matrix At by

At =
∂f

∂x
(x̂(t), u(t))

that is, the linearization of f around (x̂, u). The Kalman gain
matrix Kt is defined by Kt = Ptc

T
t R
−1
t , where Rt = νtν

T
t

is a time-varying positive definite matrix. Pt is the solution
to the Riccati differential equation

dP

dt
= AtPt + PtA

T
t +Qt − PtCTt R−1t CtPt

where Qt = σtσ
T
t . The EKF estimator is then defined by

the SDE

dx̂t = f(x̂t, ut) dt+Kt(dyt − cx̂t dt). (16)

The following result describes the estimation accuracy of
the EKF.

Proposition 1 ( [21]): If the conditions of Assumption 1
hold, then for any ε > 0, there exists γ > 0 such that

Pr

(
sup
t≥0
||xt − x̂t||2 ≤ γ

)
≥ 1− ε. (17)

Note that Proposition 1 requires that u is bounded, which
is implicit in Assumption 1. Define

hγ = sup {h(x) : ||x− x0||2 ≤ γ for some x0 ∈ h−1({0})}.

The following lemma gives a sufficient condition for safety
of the incomplete information system.

Lemma 3: If ||xt− x̂t||2 ≤ γ for all t and h(x̂t) > hγ for
all t, then xt ∈ C for all t.

Proof: Suppose that xt /∈ C for some t. Since each
sample path of xt is continuous, we must have h(xτ ) = 0
for some τ ∈ [0, t]. By assumption, ||x̂τ − xτ ||2 ≤ γ, i.e.,
x̂τ ∈ B(xτ , γ). Since xτ ∈ h−1({0}), we have

h(x̂τ ) ≤ sup {h(x) : ||x− xτ ||2 ≤ γ}
≤ sup {h(x) : ||x− x0||2 ≤ γ for some x0 ∈ h−1({0})}
= hγ .

This, however, contradicts the assumption that h(x̂τ ) > h,
and hence we must have xt ∈ C for all t.

Combining Proposition 1 and Lemma 3, we have that it
suffices to select γ such that ||xt − x̂t||2 is bounded by γ
with probability 1 − ε, and then design a control law that
guarantees h(x̂t) > hγ for all t. Define ĥ(x) = h(x)− hγ .

The following theorem gives a sufficient condition for
a controller to satisfy the safety constraint in the partial
information case.

Theorem 2: Suppose that there exists a function B :
Rn → R and class-K functions α1, α2, and α3 such that

1

α1(ĥ(x))
≤ B(x) ≤ 1

α2(ĥ(x))
(18)

∂B

∂x

(
f(x̂t, ut) + γ||∂B

∂x
Ktc||2

)
+

1

2
tr

(
νTt K

T
t

∂2B

∂x2
Ktνt

)
≤ α3(ĥ(x̂t)) (19)

and γ satisfies (17) for some ε > 0. Then Pr(xt ∈ C ∀t) ≥
(1− ε).

Proof: Our approach is to show that ĥ(x̂t) ≥ 0 for all
t if ||xt− x̂t||2 ≤ γ. Combining Eqs. (15) and (16), we have

dx̂t = f(x̂t, ut) dt+Kt(cxt dt+ νtdWt − cx̂t dt)
= (f(x̂t, ut) +Ktc(xt − x̂t)) dt+Ktνt dWt

Define Bt = B(x̂t). Hence

dBt =

(
∂B

∂x

(
f(x̂t, ut) +Ktc(xt − x̂t)

)
+

1

2
tr

(
νTt K

T
t

∂2B

∂x2
Ktνt

))
dt+

∂B

∂x
KtνtdWt (20)

If ||xt − x̂t||2 ≤ γ, then

∂B

∂x
Ktc(xt − x̂t) ≤ ||

∂B

∂x
Ktc||2||xt − x̂t||2 ≤ γ||

∂B

∂x
Ktc||2

Hence, if (19) holds, then

∂B

∂x

(
f(x̂t, ut) +Ktc(xt − x̂t)

)
+

1

2
tr

(
νTt K

T
t

∂2B

∂x2
Ktνt

)
≤ ∂B

∂x

(
f(x̂t, ut) + γ||∂B

∂x
Ktc||2

)
+

1

2
tr

(
νTt K

T
t

∂2B

∂x2
Ktνt

)
≤ α3(ĥ(x̂t))

and thus Pr(ĥ(x̂t) ≥ 0 ∀t) = 1 by Theorem 1.
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Theorem 2 implies that, if the parameter γ is chosen such
that the estimation error remains bounded by γ with sufficient
probability, then selecting a control input ut at each time
instant such that (19) holds is sufficient to ensure safety.
This constraint is linear in ut, and all other parameters can
be evaluated based on the noise characteristics and system
and Kalman filter matrices.

We note that the condition (18) does not depend on the
variance of the process noise. The process noise nonetheless
affects the performance of our approach because of its impact
on the estimation error (xt − x̂t).

In the special case where the system dynamics are linear,
the EKF is the minimum mean-square estimator, and the
following error bound holds.

Lemma 4: Suppose that f(xt) = Axt and g(xt) = B
where A and B are known, constant matrices. Let λ∗ =
supt λmax(Pt), where λmax(·) denotes maximum eigen-
value. Let γ =

√
nλ∗

ε . If ut is chosen such that (18) and
(19) hold, then Pr(xt ∈ C ∀t) ≥ (1− ε).

Proof: By Theorem 2, it suffices to show that
Pr (supt ||xt − x̂t||2 ≥ γ) ≤ ε. We have that

Pr

(
sup
t
||xt − x̂t||2 ≥ γ

)
= Pr

(
sup
t

(xt − x̂t)T (xt − x̂t) ≥ γ2
)

= Pr

(
sup
t

(xt − x̂t)T
1

λ∗
(xt − x̂t) ≥

γ2

λ∗

)
By definition, 1

λ∗ I ≤ P
−1
t for all t, and hence we have

Pr

(
sup
t

(xt − x̂t)T
1

λ∗
(xt − x̂t) ≥

γ2

λ∗

)
≤ Pr

(
sup
t

(xt − x̂t)TP−1t (xt − x̂t) ≥
γ2

λ∗

)
The random process Vt = (xt − x̂t)

TP−1t (xt − x̂t) is a
submartingale [21], [22], and hence we can apply Doob’s
martingale inequality to obtain

Pr

(
sup
t

(xt − x̂t)TP−1t (xt − x̂t) ≥
γ2

λ∗

)
≤
(
γ2

λ∗

)−1
lim
t→∞

E
(
(xt − x̂t)TP−1t (xt − x̂t)

)
= n

(
λ∗

γ2

)
= ε,

as desired.
An additional challenge is computing the threshold h. This

computation will depend on the choice of h. When h is of
the form h(x) = aTx − b, for example, the value of h can
be obtained as the value of the quadratic program

maximize aTx− b
x, x0
s.t. (x− x0)2 ≤ γ2

aTx0 = b

(21)

VI. CONTROL POLICIES FROM CBFS

This section discusses how control policies be synthesized
using control barrier functions. We consider a case where the
goal of the system is to minimize the expected value of a
quadratic objective function

Vt(xt, ut) =
(
xTt uTt

)( Qt St
STt Rt

)(
xt
ut

)
.

The objective function may arise as a quadratic approxima-
tion to the value function of an optimal control problem. In
the complete information case, the controller input ut at time
t is equal to the solution of

minimize Vt(xt, ut)
ut

s.t. ∂B
∂x f(xt) + ∂B

∂x g(xt)ut + 1
2tr

(
σ(xt)

T ∂2B
∂x2 σ(xt)

)
≤ α3(h(xt))

(22)
where B is the chosen CBF. Eq. (22) is a quadratic program,
which can be solved efficiently using embedded processors.

In the incomplete information case, the controller consists
of an Extended Kalman Filter, which computes an estimate
x̂t of the xt as a function of the prior observations {yτ : τ ∈
[0, t]}. The controller then computes each measurement as a
solution to the optimization problem

minimize Vt(x̂t, ut)
ut
s.t. ∂B

∂x

(
f(x̂t) + g(x̂t)ut + γ||∂B∂xKtc||2

)
+ 1

2tr
(
νTt K

T
t
∂2B
∂x2 Ktνt

)
≤ α3(h(x̂t)− h)

||ut|| ≤ Z
(23)

where Z is an upper bound on ut chosen to ensure that
Assumption 1 is satisfied. Eq. (23) is also a quadratic pro-
gram. We further observe that the program can be extended
to describe multiple safety constraints, for example, when
the region C =

⋂N
i=1 {x : hi(x) ≥ 0}. This extension can be

performed by having a set of linear constraints, one for each
constraint {hi(x) ≥ 0}. There is no guarantee, however, that
such a program has a feasible solution ut.

The remaining design specification is the choice of barrier
function B(x). One applicable function considered in [9] is
B(x) = 1

h(x) . By inspection, B(x) satisfies the conditions
of Definition 5 with α1(y) = α2(y) = y. For this function,
the partial derivatives and Jacobian matrix are given by

∂h

∂xi
= −hxi(x)

h(x)2

∂2h

∂xi∂xj
= −

(
hxixj (x)h(x)− 2hxi(x)hxj (x)h(x)

h(x)4

)
which can be readily computed when the first and second
derivatives of h are known. For example, when h(x) =
aTx− b, we have

∂h

∂xi
= − ai

(aTx− b)2
∂2B

∂xi∂xj
=

2

(aTx− b)3
aaT
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Fig. 1: Numerical evaluation of our approach using an automatic cruise control example. The goal of the vehicle is to
maintain a desired velocity while minimizing control effort and avoiding collisions with the leading vehicle. We simulated
a naive controller that does not incorporate safety constraints, our proposed CBF approach, and a simplified CBF approach
that treats the EKF estimates as true state values. (a) Velocity trajectories under each approach. The velocity of the leading
vehicle is below the desired reference value, and hence the two CBF-based controllers slow down to avoid collisions while
the naive controller attempts to track the reference velocity. (b) Control input over time. Both CBF approaches rapidly brake
in order to avoid collision, and otherwise have similar input magnitudes to the naive approach. (c) Safety violations. Both the
naive and simplified CBF controllers violate safety constraints, while our proposed approach satisfies the safety constraints.

An advantage of the CBF method in the deterministic
case is that control barrier functions can be composed
with Control Lyapunov Functions (CLFs) to provide joint
guarantees on safety, performance, and stability. Such CLFs
are defined in the stochastic setting as follows.

Proposition 2 ( [23]): Suppose that there exists a func-
tion V : Rn → R such that

∂V

∂x
(f(x) + g(x)u) + tr(σT

∂2V

∂x2
σ) ≤ 0 (24)

for all x. Then 0 is stochastically asymptotically stable.
Eq. (24) implies that stability requirements can be incorpo-

rated as a linear constraint on the optimization-based control.

VII. NUMERICAL STUDY

Our proposed approach was validated through a numerical
study using a modified version of the automatic cruise control
example introduced in [9]. We consider a system with three
states (x1 x2 x3)T , where x1 = vf denotes the velocity
of the following vehicle, x2 denotes the velocity of the
leading vehicle, and x3 denotes the distance between the
vehicles. The velocity of the leading vehicle was chosen as
a constant. The input is the force applied to the following
vehicle, leading to dynamics

dxt =

 −Fr(xt)/M0
x2 − x1

+

 1/M
0
0

u+ dWt (25)

where Fr(x) = f0 + f1vf + f2v
2
f is the aerodynamic drag

with constants f0 = 0.1, f1 = 5, and f2 = 0.25. The mass
M = 1650. The initial state was chosen as x1 = 18, x2 =
10, and x3 = 150. Wt is a Brownian motion.

The goal of the following vehicle is to achieve a desired
velocity vd = 22 while minimizing control effort (defined
as the integral of u2t ) and avoiding collision with the lead
vehicle. The collision constraint is encoded as x3− 1.8x1 ≥

0, which is linear in x. The target velocity is encoded in a
CLF V (x) = (x1 − vd)2.

We compared three controllers for this problem. The first
controller is a naive optimization-based controller that, at
each time t, minimizes the objective function

(u δ)

(
1 0
0 100

)(
u
δ

)
,

under the constraint V̇ (x, u) ≤ δ. Hence the controller
attempts to follow the instruction encoded in the CLF
while minimizing the control input magnitude, but does not
consider safety. The second controller is our proposed CBF
based on the measurement dyt = xtdt + dVt, where dVt
is a Brownian motion. The parameter γ in our method was
selected by simulating the nonlinear dynamics (25) in the
absence of any control, observing the maximum deviation
||x − x̂||2 between the estimated and actual value, and
choosing γ to be ten times this maximum deviation. The
barrier function was chosen as

B(x) = − log

(
h(x)

1 + h(x)

)
,

and α3(x) = 1/x.
The third controller that we simulated was a simplified

version of the CBF method. In this version, the barrier
function constraint was equal to

∂B

∂x
(f(x̂t) + g(x̂t)u) ≤ α3(B(x̂t)).

This constraint can be interpreted as a deterministic CBF
based on the estimated value x̂t.

The results of the simulation are shown as Figure 1. The
naive method begins to approximate the desired velocity
(Fig. 1(a)), but violates the safety constraint because of the
desired velocity exceeds the velocity of the leading vehicle,
resulting in a collision (Fig. 1(c)). The CBF method, on
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the other hand, tracks the naive method until it begins to
approach the lead vehicle, triggering a sudden braking (Fig.
1(b)) in order to avoid collision. The CBF then settles on a
slower velocity that matches the leading vehicle, with control
input magnitude comparable to the naive case following
the initial braking maneuver. The CBF method satisfies the
safety constraint for all time t (Fig. 1(c)).

The simplified CBF method also tracks with the naive
method and attempts to brake in order to avoid collision,
however, the braking does not occur rapidly enough because
it fails to incorporate the impact of process and measurement
noise (Fig. 1(b)). This results in a safety violation (Fig. 1(c)).
This example illustrates that the uncertainty arising due to
noise must be incorporated when choosing the control action,
and that adopting a “certainty equivalent” control strategy
based on an estimator may be insufficient to ensure safety.

VIII. CONCLUSIONS AND FUTURE WORK

This paper investigated control barrier functions for non-
linear stochastic systems. In the CBF framework, the desired
safety properties of the system are mapped to finiteness
of a given barrier function that grows as the system ap-
proaches the boundary of the safe region. We considered
two cases, namely complete information (when the full state
information is available) and incomplete information (when
only noisy measurements are available). In the complete
information case, we derived sufficient conditions based on
CBFs for almost sure safety of the system. In the incomplete
information case, we proved that the safety of the system
can be guaranteed if the error between an estimated state
and the true state remains bounded by a given parameter.
We characterized the probability of safety over an infinite
time horizon as a function of the estimation error. In both
the complete and information cases, our sufficient conditions
can be mapped to linear constraints on the control input at
each time, enabling us to design efficient controllers with
guarantees on performance, safety, and stability. Our frame-
work was evaluated via numerical study. In future work, we
plan to consider systems where the output is a nonlinear
function of the state, as well as CBFs for distributed, multi-
agent systems.
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