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Abstract— Control systems are increasingly targeted by ma-
licious adversaries, who may inject spurious sensor measure-
ments in order to bias the controller behavior and cause subop-
timal performance or safety violations. This paper investigates
the problem of tracking a reference trajectory while satisfying
safety and reachability constraints in the presence of such false
data injection attacks. We consider a linear, time-invariant
system with additive Gaussian noise in which a subset of sensors
can be compromised by an attacker, while the remaining sensors
are regarded as secure. We propose a control policy in which
two estimates of the system state are maintained, one based
on all sensors and one based on only the secure sensors. The
optimal control action based on the secure sensors alone is then
computed at each time step, and the chosen control action is
constrained to lie within a given distance of this value. We show
that this policy can be implemented by solving a quadratically-
constrained quadratic program at each time step. We develop
a barrier function approach to choosing the parameters of
our scheme in order to provide provable guarantees on safety
and reachability, and derive bounds on the probability that
our control policies deviate from the optimal policy when
no attacker is present. Our framework is validated through
numerical study.

I. INTRODUCTION

Control systems increasingly rely on real-time measure-
ments from distributed sensors in order to make autonomous
decisions. Malicious adversaries may attempt to degrade
system performance by introducing false sensor measure-
ments that induce suboptimal control decisions. These false
measurements may be introduced by spoofing the sensed
physical invariant, as in reported attacks on GPS and other
navigation sensors [1], physically compromising the sensor
[2], or hijacking the communication channel between the
sensor and controller [3]. Spoofing navigation sensors in
particular has been highlighted as a critical threat to safety
and performance of autonomous vehicles [4].

There is an extensive literature on modeling and mitigat-
ing false data injection attacks on control systems [5]–[7].
The worst-case impact of false data injection attacks was
considered in [8]. Methodologies for detecting false data [9]
and resilient state estimation in the presence of attacks [10],
[11] have also been proposed.

At present, less attention has been given to closed-loop
control in the presence of possible false data attacks. The
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problem of Linear Quadratic Gaussian (LQG) control un-
der false data injection attacks was considered in [12]. In
[12], the system first chooses a control policy mapping the
observed measurements to a sequence of control actions.
Based on this policy, the adversary chooses a strategy for
introducing false measurements based on the state of the
vehicle. The goal of the system is to minimize the worst-
case value of a quadratic cost function while the adversary
attempts to maximize the cost function.

While an adversary can degrade the system performance
by increasing the cost function over a given time horizon,
a potentially more devastating attack is to wait for an
opportune moment and then introduce false measurements to
drive the system to an unsafe state. Such attacks have forced
UAVs to land via GPS spoofing [13] and caused autonomous
vehicles to steer off the road and crash [14]. While simply
ignoring measurements from easily-spoofed sensors could
limit the impact of such attacks, it also reduces the perfor-
mance and safety of systems under normal (non-adversarial)
operating conditions. A new approach is therefore needed to
ensure safety and reachability in the presence of false data
injection without compromising performance.

In this paper, we consider the problem of reference track-
ing for linear systems in the presence of additive noise
and false data injection attacks with safety and reachability
constraints. We formulate the problem of selecting a control
policy that minimizes the deviation of the system state from
the reference trajectory while also ensuring that, when an
adversary is present, the system remains outside of an unsafe
region and reaches a given region with a desired probability.
Our approach is to proactively limit the set of control inputs
in order to ensure a safety constraint holds with a desired
probability. We make the following specific contributions:
• We propose a set of control laws in which the control

input is within a prespecified bound of the optimum
control input when the possibly-compromised sensors
are removed. We demonstrate that this policy can be ex-
ecuted by solving a quadratically-constrained quadratic
program (QCQP) at each time step.

• We present an algorithm for selecting the maximum
deviation of the control input in order to ensure a
provable bound on the safety property. Our algorithm
is based on the barrier method and we show it can be
implemented in an offline fashion by solving a sequence
of semidefinite programs.

• We analyze the optimality of our approach. In particular,
we derive a lower bound on the probability that the
utility achieved by our proposed control policy is equal
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to the utility achieved by an optimal LQG policy that
ignores the adversary.

• Our results are validated through numerical study, in
which our approach closely tracks a reference signal
while avoiding an unsafe region and providing a cost
that is comparable to the optimal LQG control in a
benign environment.

The paper is organized as follows. Section II presents the
related work. Section III presents the system and adversary
models. Section IV presents the problem formulation and
solution approach. Section V analyzes the optimality guaran-
tees of this approach. Section VI contains simulation results.
Section VII concludes the paper.

II. RELATED WORK

Reference tracking has been extensively studied in the
existing literature, including characterization of the optimal
control and estimation policies in the LQG case [15], as well
as extensions to nonlinear [16] and constrained [17] systems.
These existing works, however, focus on systems without
intelligent adversaries.

Resilient control in adversarial environments has received
relatively recent research attention. Most of the work on
false data injection attacks has focused on resilient state
estimation and fault detection. Optimal attack strategies
were studied in [8]. Fundamental limits on resilient state
estimation were presented in [9]. Tractable estimators using
Luenberger observers were proposed in [10]. Extensions to
noisy systems are considered in [11]. Closing the control
loop in the presence of attacks has been less studied. In [12],
linear quadratic Gaussian control under false data injection
attacks was studied, although reference tracking and safety
and reachability constraints were not considered, leading to
a fundamentally different approach from this work.

Our approach leverages the barrier function method, which
has been developed for deterministic [18] and stochastic [19]
systems. To the best of our knowledge, the barrier method
has not previously been used for analysis of systems with
malicious adversaries present.

III. SYSTEM AND ADVERSARY MODEL

We consider a linear system with state x(t) ∈ Rn, input
u(t) ∈ Rm, and observations y(t) ∈ Rp. The system
dynamics are described by the equations

ẋ(t) = Ax(t) +Bu(t) + w(t) (1)
y(t) = Cx(t) + v(t) + a(t) (2)

In (1), w(t) is a Gaussian process with mean identically
zero and autocorrelation function Rw(τ) = Σwδ(τ). In (2),
v(t) is a Gaussian process with mean identically zero and
autocorrelation function Rv(τ) = Σvδ(τ). The processes
v(t) and w(t) are independent. The initial state x(0) is equal
to x0. The control strategy of the system is defined as a
function µ that takes as input

{u(t′) : t′ < t} ∪ {y(t′) : t′ < t},

and outputs a control signal u(t). The vector a(t) describes
the impact of the attack as follows.

We let S denote the set of sensors that could be com-
promised by the adversary. If the sensors are compromised,
then the vector a(t) satisfies support(a(t)) ⊆ S for all t.
The nonzero entries of a(t) can be chosen arbitrarily by
the adversary. Otherwise, if no compromise has taken place,
a(t) ≡ 0. At each time t, the adversary is assumed to have
knowledge of the control policy, the system states x(t′) for
t′ ≤ t, and the values of u(t′) and y(t′) for t′ ≤ t. We define
variable α ∈ {0, 1} to be 1 if the adversary has compromised
the sensors S and 0 otherwise. The adversary’s strategy τ is
defined as a mapping from

{x(t′),u(t′),y(t′) : t′ ≤ t}

to a vector a(t). The assumption that the adversary has access
to the true system state enables us to model attacks in which
the adversary has direct observation of the targeted system.

We let G ⊆ Rn denote a set of goal states, and let U ⊆
Rn denote a set of unsafe states. We let T > 0 denote the
final time of the system. The goal of the system is to satisfy
x(T ) ∈ G and x(t) /∈ U for all t ∈ [0, T ]. We assume that
U and R are defined by

U = {x ∈ Rn : gU (x) ≥ 0}, G = {x ∈ Rn : gG(x) ≥ 0}.

In order to satisfy this goal, a trajectory {r(t) : t ∈ [0, T ]}
is chosen that satisfies r(t) /∈ U and r(T ) ∈ G. The system
then attempts to track the reference trajectory by choosing a
control strategy that minimizes

E

[∫ T

0

((x(t)− r(t))TQ(x(t)− r(t)) + u(t)TRu(t)) dt

]
where Q and R are given positive-definite matrices.

IV. PROBLEM FORMULATION AND SOLUTION APPROACH

In this section, we first present the problem formulation
and then our proposed solution approach.

A. Formulation

The problem studied in this work is

minµ E
[∫ T

0
((x(t)− r(t))TQ(x(t)− r(t))

+u(t)TRu(t)) dt|µ, α
]

s.t. maxτ

{
Pr
(⋃

t∈[0,T ] {x(t) ∈ U}|µ, τ, α
)}
≤ ε

minτ {Pr(x(T ) ∈ G|µ, τ, α)} ≥ 1− δ
(3)

Here, E(·|µ, α) denotes the expectation conditioned on
the control policy µ when no adversary is present, while
Pr(·|µ, τ, α) denotes the probability conditioned on control
policy µ, adversary policy τ , and α = 1. The objective func-
tion captures the system’s goal of minimizing the expected
tracking error when there is no attack. The first constraint
implies that the worst-case probability (over all adversary
policies τ ) of violating the safety constraint is bounded
above by ε > 0. The second constraint implies that, for any
adversary policy, the probability of satisfying the reachability
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constraint is at least (1 − δ). Hence, when no adversary is
present (α = 0), the control policy should provide minimal
tracking error. When there is an adversary present (α = 1),
the tracking requirement is relaxed, but the system must
still satisfy the safety and reachability constraints with a
desired probability regardless of the adversary’s strategy.
The parameters δ and ε are chosen based on the safety
requirements of the system, similar to other works on safety
verification of stochastic systems [19]. The time horizon
T is similarly chosen based on the alloted time to reach
the desired state, although infinite-horizon and free-endpoint
generalizations of the problem can also be considered.

B. Solution Approach

Our proposed solution approach is based on the following
intuition. By injecting false data to modify the observations,
the adversary aims to cause the system to choose a subop-
timal control action that violates the safety and reachability
constraints. Hence, the impact of the attack is determined
by how far the control deviates from its desired value. By
proactively limiting the set of feasible control inputs at each
time step, the system can therefore bound the damage caused
by the attack and derive approaches that are guaranteed to
satisfy the desired safety and reachability properties.

In order to limit the set of control inputs, we consider the
state estimate obtained from the set {1, . . . , p} \S of secure
sensor measurements. We then require that the selected
control action must lie within a particular neighborhood of
the optimal control action based on the computed estimate.

Formally, we let Cα denote the matrix obtained by se-
lecting the rows from C indexed in {1, . . . , p} \ S, i.e., the
matrix of observations that are not affected by the adversary.
We let yα(t) ∈ Rp−|S| denote the vector of observations that
are not compromised in the attack and vα(t) = (vi(t) : i ∈
{1, . . . , p} \ S), so that yα(t) = Cαx(t) + vα(t). Let Σvα
denote the covariance matrix of vα.

We define x̂α(t) to be the least-squares estimate of x(t)
based on the measurements {yα(t′) : t′ ≤ t}. This estimate
can be obtained as the output of a continuous-time Kalman
filter defined by [15]

˙̂xα(t) = Ax̂α(t) + Θ(t)(yα(t)− Cαx̂α(t)) +Bu(t)

Θ(t) = Φ(t)CTαΣ−1vα

Φ̇(t) = AΦ(t) + Φ(t)AT + Σw − Φ(t)CTαΣ−1vα
CαΦ(t)T

where Φ(0) = 0 and x̂α(0) = x0. The optimal control based
on the measurements yα(t), denoted uα(t), is then given by

uα(t) =
1

2
K(t)x̂α(t)− 1

2
R−1BT s(t)

K(t) = −R−1BTP (t)

−Ṗ (t) = ATP (t) + P (t)A− 1

2
P (t)BR−1BTP (t) + 2Q

ṡ(t) = (−AT +
1

2
P (t)BR−1BT )s(t) + 2Qr(t)

where s and P have boundary conditions s(T ) = 0 and
P (T ) = 0. We then define the set of feasible control inputs

at time t as

Uγ(t) , {u(t) : ||u(t)− uα(t)||2 ≤ γ}

for some γ ≥ 0. Under this constraint, the control problem
becomes

minimize E
[∫ T

0
((x(t)− r(t))TQ(x(t)− r(t))

+u(t)TRu(t)) dt
]

u(t)
s.t. ||u(t)− uα(t)||2 ≤ γ ∀t ∈ [0, T ]

(4)

The solution to (4) can be computed by solving a stochastic
HJB equation

0 = min
u∈Uγ(t)

{
(x(t)− r(t))TQ(x(t)− r(t))

+ u(t)TRu(t) + Vt(t, x)

+Vx(t, x)(Ax(t) +Bu(t)) +
1

2
tr(Vxx(t, x)Σw)

}
.

Since solving a PDE of this form is computationally chal-
lenging, we adopt the relaxation of assuming that the value
function V is equal to the value function of the unconstrained
problem

min
u(t)

E

{∫ T

0

((x(t)− r(t))TQ(x(t)− r(t))

+u(t)TRu(t)) dt
}
.

This value function is given by [15]

V (x, t) =
1

2
x(t)TP (t)x(t) + β(t) + s(t)Tx(t) + s0(t),

where

−β̇(t) =
1

2
tr(S(t)Σw)

ṡ0(t) =
1

4
s(t)TBR−1BT s(t)− r(t)TQr(t)

We present a bound on the probability that this approxima-
tion is tight, which occurs when the optimal control action in
the non-adversarial case lies in Uγ(t) for all t, as Theorem
1 in Section V.

Under this approximation, the optimal control at each time
step is equal to the minimizer of

(x(t)− r(t))TQ(x(t)− r(t))

+ u(t)TRu(t) + xTP (t)(Ax +Bu) + xT ṡ(t)+

1

2
xT Ṗ (t)x(t) + ṡ0(t) + s(t)T (Ax+Bu) (5)

over Uγ(t). Computing this minimizer is equivalent to solv-
ing the quadratically constrained quadratic program (QCQP)

minimize uTRu + x̂(t)TP (t)Bu + s(t)TBu
u
s.t. (u− uα)T (u− uα) ≤ γ2

(6)

at each time step, where x̂(t) is equal to the expected value of
x(t) conditioned on all previous measurements y under the
assumption that no adversary is present. Eq. (6) is obtained
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by minimizing (5) (neglecting terms that do not contain
u) subject to the constraint that u(t) ∈ Uγ(t). Problems
of this type can be readily solved using standard convex
optimization toolboxes. Our approach is shown as Figure 1.

"̇ # = %" # + '( # + ) #
* # = +" # + , # + -(#)

Kalman filter 
using {1,…,p}\S

Kalman filter 
using {1,…,p}
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(0(#)

2

((#)

Fig. 1: Schematic illustration of our proposed approach. The
optimizer solves the QCQP (6).

C. Selection of Parameter γ

The key design parameter in our approach is γ, which
determines the range of admissible inputs at each time t. A
high value of γ leads to a wider range of admissible inputs
and hence better controller performance when there is no
attacker present, however, a high γ value may also mean that
the adversary is able to bias the system towards reaching an
unsafe state.

Our approach is to perform a search over the possible
values of γ in order to find the maximum γ such that the
constraints of Eq. (3) are satisfied. In particular, we verify
that, for any set of inputs u(t) satisfying u(t) ∈ Uγ(t) for all
t ∈ [0, T ], the safety constraints are satisfied with probability
(1 − ε) and the reachability constraints are satisfied with
probability (1− δ).

In order to verify the safety and reachability constraints,
we use the barrier function method. The idea of the barrier
function method is to construct a function D(x) such that,
for some L, D(x0) ≤ L, D(x) > K for all x ∈ U , and D is
decreasing along any feasible trajectory of x(t). Hence, by
construction x(t) does not enter the unsafe region U . Letting
û(t) = u(t)− uα(t), we have

ẋ(t) = Ax(t) +Buα(t) +Bû(t) + w(t),

where û(t) satisfies ||û(t)||2 ≤ γ. In order to guarantee
safety under any false data injection strategy of the adversary,
we assume that û(t) is a disturbance that can take arbitrary
values. Using the definition of uα(t), we can write an

extended system as

ẋ(t) = Ax(t) +BK(t)x̂α(t)−BR−1BT s(t)
+Bû(t) + w(t)

˙̂xα(t) = Ax̂α(t) + Θ(t)Cαx(t) + Θ(t)vα(t)

−Θ(t)Cαx̂α(t)−BR−1BT s(t) +Bû(t)

+BKx̂α(t)

−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q

Φ̇(t) = AΦ(t) + Φ(t)AT + Σw −Θ(t)ΣvαΘ(t)T

where Θ(t) = Φ(t)CTαΣ−1vα
and K(t) = −R−1BTP (t).

In order to reduce the complexity of the computation, we
assume as an approximation that the Kalman filter and
LQR controller are in steady-state, so that the matrices
Φ, K, P , and Θ are constant. The deviation between this
approximation and the true value can be bounded using
the exponential stability of the optimal LQR controller and
Kalman filter. Introducing additional disturbance terms into
the verification that capture these deviations is a potential
direction for future work. Furthermore, we assume that s(t)
can be approximated as a polynomial function of t.

Define x(t) = (x(t), x̂α(t)) as an extended state vector,
with

ẋ(t) = f(x(t)) +Bû(t) + Fw(t) +G(t)v(t),

where

f(x(t)) =

(
A BK

ΦCTαΣvαCα A−ΘCα +BK

)(
x(t)
x̂α(t)

)
and

B =

(
B
B

)
, F =

(
I
0

)
, G =

(
0
Θ

)
.

Letting Nw and Nv be matrices that satisfy NwN
T
w = Σw

and NvNT
v = Σαv , define

Λ = (FNw GNv).

The following proposition describes the safety guarantees
provided by the barrier method for this model.

Proposition 1: Suppose there exists a function D such
that

D(x0) ≤ ε (7)
D(x) ≥ 1 ∀x ∈ U (8)
D(x) ≥ 0 ∀x (9)
∂D

∂x
(f(x) +Bû) +

∂D

∂t
+

1

2
tr(ΛT

∂2D

∂x2 Λ)

≤ 0 ∀x, ||û||2 ≤ γ (10)

Then Pr
(⋃

t∈[0,T ] {x(t) ∈ U}
)
≤ ε.

The proof combines Proposition 2 and Theorem 15 of [19],
and is included in the appendix for completeness.

We follow a standard procedure for computing barrier
functions, namely, we look for functions of the form

D(x) =
L∑
j=1

cjbj(x),
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where the bj’s are polynomials and cj’s are real coefficients.
The problem is mapped to a sum-of-squares (SOS) optimiza-
tion

minimize
∑L
j=1 kjcj

s.t. di,0(x) +
∑L
j=1 di,j(x)cj is SOS , i = 1, . . . , p

where “is SOS” implies that the polynomial can be decom-
posed as a sum of squares of polynomials. Such SOS prob-
lems can be solved via semidefinite programming. Define

gγD(û) = γ2 −
m∑
i=1

û2i ,

so that ||û||2 ≤ γ is equivalent to gγD(û) ≥ 0. The following
proposition describes the problem mapping.

Proposition 2: Suppose that there exist polynomials
λU (x), λD(x, û), and D(x) such that the following hold:

−D(x0) + ε ≥ 0 (11)
D(x)− 1− λTU (x)gU (x) ≥ 0 (12)

D(x) ≥ 0 (13)

−∂D
∂x

(f(x) +Bû)− λTD(x, û)gγD(û)

−∂D
∂t
− 1

2
tr(ΛT

∂2D

∂x2 Λ) ≥ 0 (14)

λU (x) ≥ 0, λD(x, û) ≥ 0 (15)

Then Pr
(⋃

t∈[0,T ] {x(t) ∈ U}
)
≤ ε

Proof: Eq. (11) and (13) clearly imply Eqs. (7) and (9).
If (12) and (15) hold, then

D(x)− 1 ≥ λTU (x)gU (x) ≥ 0

for all x ∈ U , and hence (8) holds. Finally, if (14) and (15)
hold, then

∂D

∂x
(f(x) +Bû) +

∂D

∂t
+

1

2
tr

(
ΛT

∂2D

∂x2 Λ

)
≤ −λTD(x, û)gγD(û) ≤ 0

when ||û||2 ≤ γ, implying (10). Since the conditions of
Proposition 1 hold, the probability of violating the safety
constraint is bounded above by ε.

Proposition 2 implies that, for a given γ, the safety
criterion can be checked by solving a sum-of-squares op-
timization problem, since each of the constraints (11)–(15)
is a polynomial SOS constraint. Algorithm 1 gives a proce-
dure for selecting γ. The procedure assumes existence of a
function SOS Feasible that takes a set of SOS constraints as
input and returns a 1 if there exist polynomials satisfying the
constraints and 0 otherwise.

In the case where the safety constraint is not satisfied with
sufficient proability even when γ = 0, i.e., even when the
optimal control law is followed based on the secure sensors
alone, then the algorithm does not return a control policy.

The above approach can also be modified to ensure that the
reachability constraint is satisfied with the desired probability
(1 − δ). In this case, we incorporate time as an additional
“state variable”, i.e., ṫ = 1 and t(0) = 0. The extended state

Algorithm 1 Algorithm for computing the maximum param-
eter γ that ensures safety.

1: procedure SAFETY SOS
2: γ ← 0, γ ← γmax
3: while |γ − γ| > ρ do
4: γ ← (γ + γ)/2
5: q ← SOS Feasible(Eq. (11), Eq. (12), Eq. (13),

Eq. (14), Eq. (15))
6: if q == 0 then
7: γ ← γ
8: else
9: γ ← γ

10: end if
11: end while
12: return γ
13: end procedure

space is then given by Rn× [0,∞), while the unsafe region
consists of (V \ R) × {T}. The barrier function equations
are given by

D1(x0, 0) ≤ δ (16)
D1(x, T ) ≥ 1 ∀x ∈ V \R (17)
D1(x, t) ≥ 0 (18)

∂D1

∂x
(f(x) +Bû) +

∂D1

∂t
(19)

+
1

2
tr(ΛT

∂2D1

∂x2 Λ) ≤ 0 ∀x, ||û||2 ≤ γ (20)

by the same argument as Proposition 1. The corresponding
SOS constraints are then defined by

−D1(x0, 0) + δ ≥ 0 (21)
D1(x, T )− 1 + λTR(x)gR(x) ≥ 0 (22)

D1(x, t) ≥ 0 (23)
∂D1

∂x
(f(x) +Bû) +

∂D1

dt

+
1

2
tr

(
ΛT

∂2D1

∂x2 Λ

)
− λTD(x, û, t)gγD(û) ≥ 0 (24)

λR(x) ≥ 0, λD(x, û, t) ≥ 0 (25)

Proposition 3: Suppose that Eqs. (21)–(25) hold. Then
Pr(x(T ) /∈ R) ≤ δ.
The proof is analogous to that of Proposition 2. An algorithm
for choosing the maximum parameter γ satisfying the reach-
ability constraint can be obtained by starting with Algorithm
1 and replacing Line 5 with

q ←
SOS Feasible(Eq. (21), Eq. (22), Eq. (23),

Eq. (24), Eq. (25)).

V. ANALYSIS

In this section, we analyze the optimality of our proposed
approach. We observe that if the optimal control action u∗(t)
of (3) with the safety and reachability constraints removed
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is in Uγ(t) at each time t, then our proposed approach
provides the same utility as the best possible control when no
adversary is present, and hence is optimal. In what follows,
we derive a bound on the probability that u∗(t) ∈ Uγ(t) for
all t ∈ [0, T ]. As a preliminary, we define the concept of a
martingale as follows.

Definition 1: A continuous random process (Xt) is a mar-
tingale if E(Xs|Xt) = Xt for all s ≥ t. A supermartingale
is a random process such that E(Xs|Xt) ≤ Xt for all
s ≥ t. A submartingale is a random process such that
E(Xs|Xt) ≥ Xt for all s ≥ t.

The probability that a submartingale crosses a particular
bound is bounded as follows.

Lemma 1 (Doob’s Martingale Inequality [20]): Let Xt

be a nonnegative submartingale. Then for any T > 0 and
constant θ,

Pr

(
sup

0≤t≤T
Xt ≥ θ

)
≤ E(XT )

θ
.

We now state the following result bounding the prob-
ability of optimality for our approach. First, let K =
sup {||K(t)||2 : t ∈ [0, T ]}.

Theorem 1: Suppose that (A,C) and (A,Cα) are both
observable. Define

λ∗ = sup
t
{λmax(Σ(t))} (26)

λ∗α = sup
t
{λmax(Σα(t))} (27)

where Σ(t) and Σα(t) are the covariance matrices of (x(t)−
x̂(t)) and (x(t)− x̂α(t)), respectively, and λmax(·) denotes
the maximum eigenvalue of a matrix. Then we have

Pr(u∗(t) ∈ Uγ(t) ∀t ∈ [0, T ])

≥ 4(λ∗ + λ∗α)nK
2

γ2
(28)

Proof: We have that u∗(t) = 1
2K(t)x̂(t) −

1
2R
−1BT s(t) and uα(t) = 1

2K(t)x̂α(t) − 1
2R
−1BT s(t).

Hence

Pr

(
sup
t∈[0,T ]

||u∗(t)− uα(t)||2 ≥ γ

)

≤ Pr

(
sup
t∈[0,T ]

||x̂(t)− x̂α(t)||2 ≥
γ

K

)
Therefore, it suffices to bound the maximum deviation be-
tween the estimate x̂(t) computed using all of the sensors and
the estimate x̂α(t) computed using only the secure sensors.
By the triangle inequality, we have

Pr

(
sup
t∈[0,T ]

||x̂(t)− x̂α(t)||2 ≥
γ

K

)

≤ Pr

(
sup
t∈[0,T ]

||x̂(t)− x(t)||2

+ sup
t∈[0,T ]

||x̂α(t)− x(t)||2 ≥
γ

K

)
.

In order for

sup
t∈[0,T ]

||x̂(t)− x(t)||2 + sup
t∈[0,T ]

||x̂α(t)− x(t)||2 ≥
γ

K

to hold, we must have ||x(t) − x̂(t)||2 ≥ γ

2K
or ||x(t) −

x̂α(t)||2 ≥ γ

2K
for some t ∈ [0, T ]. Taking a union bound,

we obtain

Pr

(
sup
t∈[0,T ]

||x̂(t)− x(t)||2

+ sup
t∈[0,T ]

||x̂α(t)− x(t)||2 ≥
γ

K

≤ Pr

(
sup
t∈[0,T ]

||x(t)− x̂(t)||2 ≥
γ

2K

)

+ Pr

(
sup
t∈[0,T ]

||x(t)− x̂α(t)||2 ≥
γ

2K

)
(29)

Considering each term of the right-hand side separately, we
have

Pr

(
sup
t∈[0,T ]

||x(t)− x̂(t)||2 ≥
γ

2K

)

= Pr

(
sup
t∈[0,T ]

(x(t)− x̂(t))T (x(t)− x̂(t)) ≥ γ2

4K
2

)

≤ Pr

(
sup
t∈[0,T ]

(x(t)− x̂(t))T
1

λ∗
(x(t)− x̂(t)) ≥ γ2

4K
2
λ∗

)

≤ Pr

(
sup
t∈[0,T ]

(x(t)− x̂(t))TΣ(t)−1(x(t)− x̂(t)) ≥ γ2

4K
2
λ∗

)

For an observable system, the function

V (x(t), t) = (x(t)− x̂(t))TΣ(t)−1(x(t)− x̂(t))

is known to have a differential generator that is strictly
decreasing [21], and hence is a submartingale. Doob’s mar-
tingale inequality then implies that

Pr

(
sup
t∈[0,T ]

(x(t)− x̂(t))TΣ(t)−1(x(t)− x̂(t)) ≥ γ2

4K
2
λ∗

)

≤
(

γ2

4K
2
λ∗

)−1
lim
t→∞

[
E((x(t)− x̂(t))TΣ(t)−1(x(t)− x̂(t)))

]
=

4λ∗nK
2

γ2
.

Following a similar procedure for the second term of (29)
and combining inequalities yields the desired result.

The results of Proposition 2 and Theorem 1 imply that the
control strategy chosen using our approach satisfies the safety
and reachability properties in the presence of the adversary
with a desired probability, while also achieving optimality in
the absence of the adversary with probability characterized
by Theorem 1.

2955



-1.5 -1 -0.5 0 0.5 1

State x
1

0

1

2

3

4

5

6

S
ta

te
 x

2

Trajectory Tracking Performance

Realized Trajectory

Reference Trajectory

Obstacle

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
o
s
t

Cost Comparison

LQ Tracking With Adversary

Proposed Approach

LQ Tracking Without Adversary

(b)

Fig. 2: Numerical evaluation of proposed approach. (a) Comparison of reference trajectory with realized trajectory using
our proposed approach. The realized trajectory slightly deviates from the reference due to the impact of the attack in order
to avoid reaching the obstacle. (b) Comparison of the cost function for LQ tracking controller, our proposed approach, and
the performance of LQ tracking when no adversary is present. Our proposed approach experiences a slight increase in error
compared to the non-adversarial case, but greatly reduces the cost when an adversary is present.

VI. SIMULATION STUDY

In this section, we evaluate the proposed approach using
a numerical case study. We consider a system with n = 2
states and m = 2 inputs equipped with p = 2 sensors. The
system matrices A and B are set to be identity matrices with
proper dimensions. Matrix C is designed as

C =

[
1 1
1 −1

]
.

The cost matrices are defined as Q = I and R = I/1000
with proper dimensions. The noises w and v are generated
using zero-mean Gaussian distributions. The covariance ma-
trices Σw and Σv are set as identity matrices.

The system tracks a reference trajectory r(t) in the pres-
ence of an adversary who can corrupt the measurement of the
second sensor by injecting arbitrary false data. We simulate
an adversary who injects noise chosen uniformly from [0, 1]
at each time step. The reference trajectory is designed as a
hyperbola, which is characterized as

x1 = 3 cosh(t)− 3
√

2, x2 = 2.5 sinh(t) + 2.5.

Moreover, the system is required to avoid the unsafe states
{x̄|gU (x̄) ≥ 0}, where

gU (x̄) = 1− x21 − (x2 − 2.5)2

defines a circle with radius 1 whose center located at (0, 2.5).
The worst case probability of reaching unsafe state was ε =
0.05. The value of γ was chosen as 9.9219 using Algorithm
1.

First, we present the reference tracking performance in
Fig. 2(a). We observe that the trajectory generated using
the proposed approach tracks the reference trajectory well

at the beginning. The trajectory then slightly deviates from
the reference trajectory due to the safety requirement and the
impact of the noise injected by the adversary.

The cost incurred by our approach, measured by the
quadratic objective function with matrices Q and R as
defined above, is shown in Fig. 2(b). The figure compares
three scenarios: optimal LQG controller when there is an
adversary injecting a noise signal as described above, our
proposed approach when there is an adversary injecting the
same noise signal, and an optimal LQG controller when no
adversary is present. We found that our proposed approach
significantly reduces the cost compared to the LQG controller
that is corrupted by false data, and only slightly increases
the cost compared to an LQG controller with no adversary.
Characterizing the gap between the performance of our
approach and the optimal LQG control when no adversary
is present is a direction of future work.

VII. CONCLUSIONS

This paper considered the problem of reference tracking
in the presence of an adversary under safety and reachability
constraints. We modeled a system in which a subset of
sensors can be compromised by an adversary, while the
remaining sensors are assumed to be secure. We proposed
a control strategy in which an optimal LQG control input
is computed based on the secure sensors, and the selected
control input is constrained to within a given bound of
this nominal input value. We proposed a barrier certificate
approach for selecting the bound and proving both safety
and reachability with a desired probability. This approach
requires only a Kalman filter and real-time solution of
quadratically-constrained quadratic programs. Furthermore,
we analyzed the probability that our proposed policy is
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optimal when no adversary is present. Our approach was
evaluated via simulation study.
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APPENDIX

Proof: [Proof of Proposition 1] By (8),

Pr

 ⋃
t∈[0,T ]

{x(t) ∈ U}

 ≤ Pr
 ⋃
t∈[0,T ]

{D(x(t)) ≥ 1}


= Pr

(
sup
t∈[0,T ]

D(x(t)) ≥ 1

)
.

Our approach will be to show that D(x(t)) is a supermartin-
gale and then use Doob’s martingale inequality (Lemma 1).
By Dynkin’s formula, for s ≤ t,

E(D(x(t))|x(s)) = D(x(s))

+ E

[∫ t

s

AB(D(x(τ))) dτ |x(s)

]
,

where AB(·) is the differential generator. In this case,

AB(D(x(t))) =
∂D

∂x
(f(x)+Bû)+

∂D

∂t
+

1

2
tr

(
ΛT

∂2D

∂x2 Λ

)
(30)

Since the right-hand side of (30) is bounded above by 0 due
to the constraint (10), E(D(x(t))|x(s)) ≤ E(D(x(s))) and
hence D(x(t)) is a supermartingale.

By Doob’s martingale inequality, we then have

Pr

(
sup
t∈[0,T ]

D(x(t)) ≥ 1

)
≤ D(x(0))

1
≤ ε,

where the latter inequality is due to (7), thus completing the
proof.
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