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Abstract

We present measurements of the Planar Nernst Effect (PNE) and the Planar Hall Effect (PHE)

of nickel-iron (Ni-Fe) alloy thin films. We suspend the thin-film samples, measurement leads,

and lithographically-defined heaters and thermometers on silicon-nitride membranes to greatly

simplify control and measurement of thermal gradients essential to quantitative determination

of magnetothermoelectric effects. Since these thermal isolation structures allow measurements

of longitudinal thermopower, or the Seebeck coefficient, and four-wire electrical resistivity of the

same thin film, we can quantitatively demonstrate the link between the longitudinal and transverse

effects as a function of applied in-plane field and angle. Finite element thermal analysis of this

essentially 2D structure allows more confident determination of the thermal gradient, which is

reduced from the simplest assumptions due to the particular geometry of the membranes, which

are more than 350 µm wide in order to maximize sensitivity to transverse thermoelectric effects.

The resulting maximum values of the PNE and PHE coefficients for the Ni-Fe film with 80%

Ni we study here are αPNE,max = 30 nV/K and ρPHE,max = 2 nΩ m, respectively. All signals

are exclusively sin 2θ symmetry with applied field, ruling out long-distance spin transport effects.

We also consider a Mott-like relation between the PNE and PHE, and use both this and the

standard Mott relation to determine the energy-derivative of the resistivity at the Fermi energy to

be ∂ρ/∂E = 4.7× 10−7 Ω m/eV, which is very similar to values for films we previously measured

using similar thermal platforms. Finally, using an estimated value for the lead contribution to

the longitudinal thermopower, we show that the anisotropic magnetoresistance (AMR) ratio in

this Ni-Fe film is two times larger than the magnetothermopower (MTEP) ratio, which is the first

evidence of a deviation from strict adherence to the Mott relation between Seebeck coefficient and

resistivity.
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I. INTRODUCTION

Recent years have seen an intense effort to understand the interplay of thermal, elec-

tronic, and spin degrees of freedom in a wide range of nanoscale magnetic systems and

devices. This new field of spincaloritronics continues to expand, driven by the promise of

new potential routes to energy harvesting, information storage, and logic devices enabled

by spin.1–3 Though significant effort in the field now focuses on interactions of magnons and

electrons at an interface between a magnetic insulator and a non-magnetic metal with strong

spin-orbit coupling4–7, interest in thermal generation of spin currents in purely metallic sys-

tems remains high8–12. Thermal gradients applied to metallic ferromagnets have by now

been confirmed to generate spin accumulation and pure spin currents only when heating is

applied on a very short length scale comparable to the spin diffusion length in the metallic

ferromagnet13–21, or in experimental configurations that rely on magnon spin transport over

somewhat longer distances22. Experiments that probe thermal gradients on much longer

length scales, especially when a thin film ferromagnet is heated on a bulk substrate, have

proven to produce signals dominated by traditional magnetothermoelectric effects. Depend-

ing on the exact orientation of the thermal gradient on the film at the location of the voltage

probes, these effects can involve the planar Nernst effect, the anomalous Nernst effect, or

a combination23–36 . Here the emphasis on the transverse effects (the Nernst effect being

the thermal analog to the Hall effect) comes since the inverse spin Hall effect (ISHE)37–40 is

typically used to probe the presence of spin currents, such that the signal of interest should

be a voltage transverse to the applied thermal gradient.

Since control of the direction of the thermal gradient is so critical in identifying the

physical processes that produce transverse voltages when metallic FM thin films are heated,

we have pioneered thermal isolation platforms where a 500 nm thick free-standing silicon-

nitride membrane replaces the bulk substrate beneath the FM.41,42 This effectively confines

the thermal gradient to the plane of the thin film FM sample deposited on the membrane.

Our first experiments designed to probe thermal generation of spin currents when an ex-

clusively planar thermal gradient is applied to permalloy (Py, the nickel-iron alloy with

80% nickel content) and nickel thin films showed no sign of spin currents.24 All magnetic-

field dependent effects instead showed the symmetry of the planar Nernst effect (PNE),43,44

as confirmed by other groups using similar suspended structures.25,31,36 Further work also
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showed the expected tight link between the magnetic field dependence of the standard See-

beck effect and the PNE,45 though these studies left several open questions, including the

physical origin of a scaling factor needed to explain the total signal size and the cause of a

magnetic field-independent background transverse voltage.

Metallic ferromagnets show several important responses to currents and thermal gra-

dients, which often share a common origin and are related by simple expressions. In

the Seebeck effect, a longitudinal thermal gradient, ~∇T applied to a conducting sample

along the x-direction excites phonons and electrons that transport energy through the film.

When no steady-state current can flow through the sample, charge flows only until the

electric field balances the heat flow through the film such that Ex = −αxx∂T/∂x. If the

thermal gradient is uniform between the voltage measurement leads separated by `, then

∆V = Ex`, ∂T/∂x = ∆T/`, and the longitudinal thermopower or Seebeck coefficient is

given by α = −∆V/∆T with ∆T the temperature difference across the sample. Further-

more, the Seebeck coefficient is related to the electrical resistivity of the sample, ρ, via the

Mott equation:

α = −π
2k2

BT

3e

1

ρ

[
∂ρ

∂E

]
E=EF

. (1)

The interaction between conduction electrons and sample magnetization adds additional

electrical and thermoelectric effects in ferromagnetic metals. One example of this interaction

is the anisotropic magnetoresistance (AMR), where spin-dependent spin-orbit scattering

generates a change in ρ(H) that depends on the angle of the magnetization with respect

to current flow that is even in applied field H. Examination of Eq. 1 indicates that the

field-dependence of ρ will be reflected in α.

In addition to longitudinal thermopower, ferromagnetic conductors exhibit transverse

thermopowers, where a voltage develops in the direction perpendicular to the applied thermal

gradient. The anomalous Nernst effect (ANE) and planar Nernst effect (PNE) are thermal

analogs to the well-known anomalous Hall effect (AHE) and planar Hall effect (PHE) in FM

metals. In these effects, spin-dependent scattering of electrons in the presence of the internal

magnetic field of the ferromagnet adds transverse momentum, which leads to voltages in the

ŷ-direction when either current or thermal gradient is applied in the x̂ direction. In the ANE

a magnetic field applied perpendicular to the plane of a sample and a ~∇T in the plane of

a sample generates an electric field transverse to the applied ~∇T . In contrast to the ANE,
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the PNE depends on the angle between the in-plane sample magnetization and ~∇T . The

PNE coefficient is defined by46

αPNE(H) =
1

2
[α(H‖)− α(H⊥)]sin 2θ. (2)

In this equation, α(H‖) and α(H⊥) are longitudinal thermopower coefficients measured in

external fields oriented parallel and perpendicular to the applied ~∇T . θ is the angle between

the film magnetization, ~M , and ~∇T . The resulting angular dependence of the PNE is pro-

portional to sin 2θ. The transverse electric field generated is then Ey,PNE = αPNE(H)∂T/∂x

and again if the thermal gradient is uniform the transverse PNE voltage is

VT,PNE = αPNE(H)
∆T

`
w, (3)

where w is the width of the sample in the transverse direction. Thus the PNE is the thermal

analog to the planar Hall effect, where transverse voltage is generated depending on the

angle between applied current and in-plane magnetization with coefficient:

ρPHE(H) =
1

2
[ρ(H‖)− ρ(H⊥)] sin 2θ. (4)

Here, assuming uniform current density, the transverse electric field is Ey,PHE = ρPHE(H)I/(t·

w), with the sample thickness t and width in the transverse direction w defining the cross-

sectional area. The transverse PHE voltage is then

VT,PHE = ρPHE(H)
I

`
w. (5)

This shows that just as measurements of longitudinal ρ(H) allow prediction of the planar

Hall voltage, measurements of longitudinal α(H) allow prediction of the planar Nernst volt-

age. One powerful feature of our thermal isolation platforms is that all these quantities can

be measured on the same sample. If the measured VT do not match the expectations from

Eqs. 3 and 5, this indicates that the simple assumptions regarding uniformity of current

density and/or thermal gradient must be examined.

The ability to measure ρPHE and αPNE on the same sample also allows a unique exploration

of the existence of a Mott-like relation between the planar Hall and planar Nernst effects.

A transverse Mott relation between the ANE and the AHE has been described theoretically

and proven for dilute magnetic semiconductors47,48, but the relation for planar transverse

effects has not been explored or demonstrated to our knowledge. Our group and others
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In this paper we present results from an optimized thermal isolation platform designed to

more comprehensively probe thermal effects in thin film permalloy excited by well-controlled

and quantified planar thermal gradients. These platforms employ wider samples than used

in our earlier studies with both platinum strips and point contacts (as described in more de-

tail below), in order to clarify the source of transverse voltages. We also produced platforms

with no additional transverse electrical conduction path to examine closely any reduction in

signal that these paths could produce. These platforms also allow voltage measurements on

the same sample when either thermally biased or biased with an applied electrical current.

This allows measurement of the planar Hall effect and the planar Nernst effect on exactly

the same sample, and a close examination of the expected link between these various man-

ifestations of spin-orbit scattering in metallic FM films. Since this comparison suggested

disagreement when we used the simplest estimation of thermal gradient in the thermal iso-

lation platform, we also performed 2d finite element modeling thermal analysis to calculate

expected thermal gradients in the suspended structure as a function of position. Using

the resulting thermal gradients gives excellent agreement between expected PNE and PHE

signals and the corresponding Seebeck and anisotropic magnetoresistance values, compre-

hensively ruling out any signal corresponding to spin current generation in this mm-length

scale experiment. Finally, we consider the form of a Mott relation between the planar Nernst

coefficient and the planar Hall resistivity and compare this expectation to the Mott rela-

tion between longitudinal thermopower and electrical resistivity. The results show the same

apparent field-independence of the scattering that was previously reported, though we add

consideration of the field-dependence of the estimated absolute Seebeck effect that suggests

a possibly anisotropy in the scattering with field direction.

II. EXPERIMENTAL DETAILS

We originally measured α(H), AMR and PNE in previous thermal isolation platforms

of sizes much smaller than current platforms. Here we designed new platforms (Fig. 1)

to further probe the potential long-range transverse spin Seebeck effect (tSSE) along with

the PNE. We fabricated these using 500-nm-thick low-stress Si-N, with each platform mi-

cromachined from the same 100-mm Si wafer. We patterned 40-nm-thick Pt leads with a

10-nm-thick Cr adhesion layer via photolithography to serve as thermometers, heaters and
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voltage leads. This extremely low thermal mass membrane yields effectively 2D heat flow

and a unidirectional thermal gradient across the majority of bridge. We are able to measure

four-wire electrical resistivity, longitudinal thermopower, and transverse voltages at three

locations along Ni-Fe films. The sample studied here was grown on the Si-N structures be-

fore release from the Si substrate via e-beam evaporation from alloy source material under

high vacuum (7× 10−7 Torr) at 20 nm/s. The Si wafer was rotated during film deposition.

The Si-N structures were subsequently released via deep-trench Si etching from the backside

of the wafer.

As shown in Fig. 1, the updated thermal platforms consist of two 800 x 800 µm Si-N

islands each connected to a supporting Si frame by 4 Si-N legs. The islands are connected

with a bridge of length 2050-µm and width of 380-µm all suspended over a cavity. A 75-

nm-thick NiFe film with width 353 µm was patterned on the bridge, which makes electrical

contact with large Pt triangular leads for longitudinal thermopower and Pt voltage contacts

for transverse voltage measurements. The platforms allow for “zero substrate” heating of

our Ni-Fe thin films, which eliminates unintended thermal gradients and pushes our system

to the 2D limit. Two varieties of voltage contacts are used for making transverse voltage

measurements: strips (Fig. 1c) and d)) and point contacts (Fig. 1b) and e)) . These contacts

are placed at either end of the film as well as the center. We also tested platforms with either

point voltage contacts (Fig. 1b)) or Pt strips (Fig. 1c)) and no other metallic connections to

the film, produced by removing the large triangular longitudinal thermopower measurement

pads. These “no shorts” lead patterns eliminate any current shunting effects when measuring

a transverse voltage on an island.

All measurements are taken using a cryostat under vacuum of 10−6 Torr or better to pre-

vent convective heating. We mount the platforms to a radiation-shielded gold-plated copper

mount to prevent radiative heating. Wire bonds are used to make connection with room-

temperature electronics. Base temperatures of 276 K are used for all thermal measurements,

so that raising the temperature of the platform island to 50 K above this base brings the av-

erage temperature of the sample itself near to room temperature, and 300 K for all electrical

measurements. A small 20 µA current is used for resistance measurements to prevent film

heating. We measure longitudinal thermopower by applying a series of heating powers to

one island’s heater. We then measure not only the voltage generated at either longitudinal

or transverse contacts, but also the temperature of each island’s separate sample thermome-
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III. RESULTS

Fig. 2 displays longitudinal thermopower, αrel(H), and four-wire R(H) at 300 K in per-

pendicular and parallel field orientations. The R(H) measurements are typical of AMR in

permalloy and show a film coercivity of ∼ 3 Oe in perpendicular and parallel configura-

tions, about the same as seen on the narrower and thinner films previously measured24,45.

As expected, at zero field and
→
M , both parallel and perpendicular orientations have similar

values (the small difference in α‖ and α⊥ at H = 0 is most likely due to a small misalign-

ment in the field angle for this measurement). R(H) and α(H) exhibit similar, even field

dependent patterns, indicating both are a result of spin-dependent scattering. ∆R/R for

the various devices measured (not all are shown here) are in the 0.8 − 1% range. We will

use the quantities α‖, α⊥, ρ‖, and ρ⊥ in Eqs. 2 and 4 to determine the expected PNE and

PHE coefficients.

Fig. 3 details transverse thermopower and PHE measurements made on Ni-Fe using a

thermal isolation platform with point contacts (as shown in Fig. 1a) and e)). Panel a) shows

transverse voltage VT at the center of the platform bridge as a function of field for four

different orientations of H with respect to ∇T . For example in the θ = 0◦ orientation, ∇T

is parallel to applied field. Also shown in each sub-panel are measurements for ∇T = 0

(black symbols), ∇T = 14.9 K/mm (red symbols) and ∇T = −14.9 K/mm (blue symbols).

As discussed in detail below, these values of thermal gradient are the result of 2d heat flow

simulations and are significantly lower than the simple expectation based on the measured

temperature difference between the islands. Note that heating both islands such that∇T = 0

gives a totally field-independent background voltage. Panel b) shows transverse voltage at

the same center point contacts in response to applied charge current for I = ±30 µA and

15 µA. These show qualitatively similar patterns, though no background voltage appears

in the PHE case since no significant temperature differences arise in the platform for these

measurements.

Figs. 3c) and d) summarize the results of these experiments by plotting the saturated

values of VT as a function of the angle θ. In the case of thermal measurement for the , the

∇T = 0 voltage was first subtracted though of course this does not alter the field dependence

of the signal in any way. Here the sin 2θ dependence of the PNE is clear, and the maximum

value of these signals indicates a PNE component with voltage near 150 nV. As expected,
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of the saturated VT measurements for Pt strips have ever shown larger voltages than the

corresponding measurement with point contacts, which puts a firm limit on the presence

of thermal spin current effects when truly in-plane thermal gradients are applied on mm-

length scales in metallic FMs. Considering the elimination of uncertainty introduced by

shunting effects and the increased length of the Pt detector strips used here, these results

reduce the lower limit we previously placed on the tSSE coefficient24 by more than a factor

of three using the original definition of the SSSE coefficient55. This upper limit (using the

experimental parameters assumed in the original report) is |SSSE| ≤ 3.6× 10−12 V/K.

IV. DISCUSSION

According to Eqs. 2 and 4 and using the data from Fig. 2, we calculate the maximum

value of the PNE coefficient that occurs when sin 2θ = 1, αPNE,max = 30 nV/K, and the

maximum value of the PHE coefficient, ρPHE,max = 2 nΩ m. Using the geometry of the Ni-

Fe film, the expected PHE transverse voltage signal from Eq. 5 is shown in Fig. 3d) as the

green solid curve and has a maximum value of 800 nV. This is in excellent agreement with

VT,max = 780 nV measured for the PHE on the center point contacts, as is obvious in Fig.

3d). However, if we use the simple assumptions regarding thermal gradients that result in

the expression in Eq. 3, we expect a thermal gradient near 23 K/mm and VT,max ∼ 240 nV.

The actual measured values of this PNE voltage contribution even for the ideal case of the

center point contacts are far lower (150 nV), indicating that the real thermal gradient at

the center of the bridge of the thermal isolation platform is lower.

To explore this possibility in greater detail we performed 2D finite element analysis heat

flow simulations in steady state using the actual geometry of our platforms imported directly

from lithography layout files. As a first approximation, we use temperature independent

thermal conductivities but take these values from our extensive experience using similar

platforms to measure thermal conductivity of metallic thin films and the Si-N supporting

structure41,56. Figure 6 reports results of these simulations, with panel a) showing the

color-mapped solution of the thermal Laplace equation overlaid on the representation of the

FEM mesh used in the calculation, and panel b) showing the resulting thermal gradient

along the center of the sample bridge as a function of position x, for the three different

heating conditions used in the PNE measurements. These simulations clearly show that
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FIG. 6. 2D finite element analysis modeling of PNE structures using PDE toolbox from MATLAB.

a) Color-mapped solution of the thermal Laplace equations overlaid on FEM mesh for left side

heated. b) Temperature profiles down center length (y = 0) of membrane under various thermal

load. Red line indicates left side heating with ∆T = 50 K between left island and frame. Blue line

indicates right side heating with ∆T = 50 K between right island and frame. Black line indicates

both left and right island heating with ∆T = 0 K between islands and 50 K between islands and

frame.

when the desired 50 K temperature difference between heated island and frame is achieved,

the thermal gradient at the center of the bridge is very uniform for a large range of the

structure, but indeed is much lower than the simple estimation. Using the simulated values

of ∇T = ±14.9 K/mm to predict the PNE VT gives the green curve in Fig. 3c, which nearly

exactly matches the measured VT .

With this understanding of the thermal gradient and transverse shorting issues, we can

also examine limits on the existence of the long-length scale thermal spin current generation,

or tSSE, in metallic ferromagnets. The original reports of the tSSE suggested spin Seebeck
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Sample MMott

(
V
KΩm

)
∂ρ/∂E

(
Ωm
eV

)
∂ρ/∂Eplanar

(
Ωm
eV

)

Ni-Fe (75 nm) −3.42× 10−12 4.7× 10−7 4.7× 10−7

Ni-Fe (20 nm)45 −2.6× 10−12 3.5× 10−7 -

Ni (20 nm)45 −2.8× 10−12 3.8× 10−7 -

TABLE I. Slope MMott and derivatives ∂ρ/∂E comparing three different membrane-supported FM

metal films.

coefficients near 6 × 10−11 V/K for Ni-Fe. Using the geometry of the thermal isolation

platforms discussed here, the resulting signal would be a cos θ contribution with amplitude

near 300 nV. Here we have conclusively shown no cos θ signal within the ∼ 10 nV error bar

of our transverse voltage measurements. This puts a stringent limit on the existence of the

tSSE, of ≈ 20× lower than original reports.55

Finally, we can examine the question of a Mott-like relation between the PNE and PHE

coefficients. Eq. 1 shows that at a fixed temperature, and if the energy derivative of ρ is

independent of magnetic field, a plot of α(H) vs. 1/ρ(H) will be linear with a slope given

by

MMott = −π
2k2

BT

3e

[
∂ρ

∂E

]
E=EF

. (6)

When examining the Mott relation involving the longitudinal Seebeck coefficient, one must

measure multiple α and 1/ρ and determine this slope, since any measurement of longitu-

dinal thermopower includes the contribution from the voltage lead itself. In other words,

all measured longitudinal thermopower values are relative rather than absolute, such that

αrel = αfilm − αlead. Examining only the field dependence is one way to correct for this lead

contribution, though this technique also throws away any portion of the sample thermopower

that is field-independent. Since at fixed T the first fraction in Eq. 6 is entirely constant,

determining this slope from the saturated values of α and ρ as shown in Fig. 2, allows cal-

culation of the energy derivative of the electrical resistivity with respect to energy. This

is a quantity that is difficult to measure directly, so these measurements have fundamental

value for exploring the electron-energy dependence of the scattering events that contribute

to ρ. The first two columns of Table I compare MMott and ∂ρ/∂E for the Ni-Fe thin film

measured here, as well as Ni-Fe and Ni films previously measured by our group45. Despite
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differences in thickness and growth technique (75 nm films were e-beam evaporated and 20

nm films were sputtered), the values for ∂ρ/∂E at E = EF are remarkably similar, varying

by less than 25%.

As a first attempt at writing an expression that relates αPNE and ρPHE, one might simply

replace the corresponding longitudinal coefficients in Eq. 1, as is effectively the case for the

ANE and PHE47,48. However, such an equation would suggest that decreasing ρPHE would

increase αANE, which is not physically accurate. Instead we first assume the Mott relation

holds separately for α⊥ and α‖, and use the definition of the PNE coefficient to determine

the relationship:

αPNE = −1

2

π2kB2T

3e

(
1

ρ‖

[
∂ρ‖
∂E

]
E=EF

− 1

ρ⊥

[
∂ρ⊥
∂E

]
E=EF

)
sin 2θ. (7)

With the further assumption that[
∂ρ‖
∂E

]
E=EF

=

[
∂ρ⊥
∂E

]
E=EF

≡
[
∂ρ

∂E

]
E=EF

, (8)

and using Eq. 4, then

αPNE =
π2kB2T

3e

ρPHE

ρ‖ρ⊥

[
∂ρ

∂E

]
E=EF

. (9)

As we have experimentally determined all coefficients in this equation apart from the energy

derivative of ρ, we can determine (∂ρ/∂E)planar directly as shown in Table I. The result

exactly matches the quantity determined from the standard Mott relation, as expected

based on the assumptions made in this calculation.

However, we note that any angular dependence of this derivative is likely to have the same

functional dependence of the AMR and magnetothermopower, and the apparent agreement

of the various values in Table I cannot reveal an anisotropy in the scattering because of

the underlying assumption that the Mott relation holds for the separate field directions.

However, we can examine this assumption more closely by comparing the AMR ratio and

its thermal analog. By the traditional definition using the data shown in Fig. 2, the AMR

ratio for our Ni-Fe sample is

∆ρ

ρo
=

ρ‖ − ρ⊥
1
3
ρ‖ + 2

3
ρ⊥

= 8.40× 10−3. (10)

The thermal analog is simple to write, but we clarify that this requires determination of the

absolute Seebeck coefficient, which is challenging for thin film structures since thin films even
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of nominally pure materials cannot be expected to have bulk values of the Seebeck coefficient.

We have explored a number of techniques to approximate the lead contribution to longitudi-

nal thermopower57,58 and estimate a room-temperature contribution from the Pt leads used

in these thermal isolation platforms to be αlead = −5 µV/K. If we keep the definition of α‖

and α⊥ as relative thermopower used above, then the corrected magnetothermopower ratio

is

∆α

αo

=
α‖ − α⊥

1
3
α‖ + 2

3
α⊥ + αlead

= 4.20× 10−3, (11)

which is a factor of two lower than for the AMR. Since typical error on relative thermopower

measurements made with our thermal isolation platforms is on the order of several percent

at most, the largest source of uncertainty in Eq. 11 is the estimated value of lead resistance.

However, we point out that for the magnetothermopower ratio to equal the AMR ratio

would require αlead more than a factor of 3 larger in magnitude and of opposite sign. Such

a large deviation in the estimated lead contribution is unlikely. This is the first indication

of a break with the strict relationship between α and ρ prescribed by the Mott relation and

may be the first evidence of a field-induced anisotropy between the thermally-driven and

electric-field driven scattering of electrons in ferromagnetic metals.

In summary, we have used unique thermal isolation platforms to explore the relation be-

tween the planar Nernst effect and planar Hall effect in thin films of ferromagnetic metallic

nickel-iron alloys. To confirm the uniformity of thermal and current gradients, we mea-

sured transverse voltages at various locations on the film, and explicitly tested the effect

of transverse current shorting paths. The comparison between the current-driven planar

Hall effect and the thermally-driven planar Nernst effect is extremely tight after the correct

value of thermal gradient was determined for this structure using 2D finite element analysis.

As all measured signals show field dependence of sin 2θ, these results put a stringent limit

on the long-distance transverse spin Seebeck effect in ferromagnetic metals. Comparison of

the AMR and magnetothermopower ratios, after estimation of the absolute Seebeck coeffi-

cients, is the first evidence of a possible deviation in field dependence of the thermal and

current-based effects.
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