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ABSTRACT
Uniqueness of positive solutions to viscous Hamilton–Jacobi–Bellman
(HJB) equations of the form �DuðxÞ þ 1

c jDuðxÞjc ¼ fðxÞ�k, with f a
coercive function and k a constant, in the subquadratic case, that is,
c 2 ð1; 2Þ, appears to be an open problem. Barles and Meireles
[Comm. Partial Differential Equations 41 (2016)] show uniqueness in
the case that fðxÞ�jxjb and jDf ðxÞj�jxjðb�1Þþ for some b> 0, essen-
tially matching earlier results of Ichihara, who considered more gen-
eral Hamiltonians but with better regularity for f. Without enforcing
this assumption, to our knowledge, there are no results on unique-
ness in the literature. In this short article, we show that the equation
has a unique positive solution for any locally Lipschitz continuous,
coercive f which satisfies jDf ðxÞj � jð1þ jfðxÞj2�1=cÞ for some posi-
tive constant j. Since 2� 1

c > 1, this assumption imposes very mild
restrictions on the growth of the potential f. We also show that this
solution fully characterizes optimality for the associated ergodic
problem. Our method involves the study of an infinite dimensional
linear program for elliptic equations for measures, and is very differ-
ent from earlier approaches. It also applies to the larger class of
Hamiltonians studied by Ichihara, and we show that it is well suited
to provide optimality results for the associated ergodic control prob-
lem, even in a pathwise sense, and without resorting to the para-
bolic problem.
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1. Introduction

We consider the viscous Hamilton–Jacobi–Bellman (HJB) equation

�Du xð Þ þ 1
c
jDu xð Þjc ¼ f xð Þ�k; (EP)

for ðu; kÞ 2 C2ðRdÞ �R, with c> 1. Here, f 2 W1;1
loc ðRdÞ and is coercive. By coercive,

sometimes also called inf-compact, we refer to a function f whose sublevel sets fx 2
Rd : f ðxÞ � rg are compact (or empty) for every r 2 R. As shown in [1], (EP) has a
classical solution u for any k � k�, where
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k� :¼ sup k 2 Rd : EPð Þ has a subsolution
� �

: (1.1)

This equation which has a long history in the literature, has been studied in [2, 3] for
somewhat more general Hamiltonians, and was recently revisited by Barles in [1]. What
is of interest here, is to characterize the solutions of (EP) which are bounded from
below, that is, without loss of generality, the positive solutions. Naturally, when we refer
to this equation having a unique positive solution, we mean that the solution is unique
up to an additive constant. In the superquadratic case (c � 2), [1, Theorem 2.6] shows
that (EP) has a unique positive solution for any coercive f, and in addition, for this
solution, k ¼ k�. In the subquadratic case (c 2 ð1; 2Þ), [1] adopts assumption (H2) in
[2], which states that f satisfies a bound of the form

c�1jxjb�c � f xð Þ � c 1þ jxjb
� �

; and jDf xð Þj � c�1 1þ jxj b�1ð Þþ
� �

(1.2)

for some positive constants b and c for all x 2 Rd. Without enforcing this assumption,
to our knowledge, there are no results on uniqueness in the literature, and therefore
also no verification of optimality results. Note that [3] introduces an additional stable
drift to study the subquadratic case.
There is substantial literature on viscous HJB equations, other than [1–3] mentioned

above. It is not our intent to review this literature, since it does not address the problem
studied in this article, but we should at least mention [4–11].
We adopt the following assumption for c 2 ð1; 2Þ.
ðA1Þ The function f is locally Lipschitz continuous and coercive, and there exists a con-

stant j0 such that

jDf xð Þj � j0 1þ jf xð Þj2�1
c

� �
8 x 2 Rd:

We show that, under ðA1Þ, there exists a unique positive solution u to (EP). In
addition, this solution fully characterizes the ergodic control problem in the sense
that a stationary Markov control is optimal if and only if it agrees a.e. on Rd with
the function nu in (2.18) (see Theorem 4.1). The method we follow covers the more
general Hamiltonians studied in [2, 3], and also improves the existing results for the
superquadratic case. This is discussed in Section 3.

1.1. Brief summary of the method

Consider the operator A : C2ðRdÞ ! CðRd �RdÞ defined by

Ag x; nð Þ :¼ �Dg xð Þ þ n � Dg xð Þ; x; nð Þ 2 Rd �Rd: (1.3)

Let PðRd �RdÞ denote the space of probability measures on the Borel r-algebra of
Rd �Rd, denoted as BðRd �RdÞ, endowed with the Prokhorov topology. We say that
l 2 PðRd �RdÞ is infinitesimally invariant for the operator A if

Ð Ag dl ¼ 0 for all
g 2 C2

c ðRdÞ, the latter denoting the functions in C2ðRdÞ with compact support, and
denote the set of these probability measures by M. Let
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F x; nð Þ :¼ f xð Þ þ 1
c�
jnjc� ; with c� :¼ c

c� 1
: (1.4)

For l 2 PðRd �RdÞ we use the simple notation

l Fð Þ :¼
ð
Rd�Rd

F x; nð Þ l dx; dnð Þ;

and define

MF :¼ l 2 M : l Fð Þ<1
� �

: (1.5)

In other words, MF is the subset of M consisting of those probability measures under
which F is integrable. It is simple to show that MF is always nonempty. Thus, since F
is coercive, the set

MF;r :¼ l 2 M : l Fð Þ � r
� �

is compact for all r> 0 sufficiently large. Clearly, it is also convex.
Consider the minimization problem

k :¼ inf
l2M

l Fð Þ: (LP)

The lower semicontinuity of l 7! lðFÞ then implies that the infimum of (LP) is attained
in M. We let M�

F denote the set of points in M which attain this infimum.
Our approach to the proof of uniqueness of positive solutions of (EP) is as follows:

First, we show that if ðu; kÞ 2 C2ðRdÞ �R is any pair solving (EP), with u a positive
function, then k ¼ k and some measure l 2 M taking the form
lðdx; dnÞ ¼ �ðdxÞdDuðxÞðdnÞ, with � 2 PðRdÞ and dDuðxÞ denoting the Dirac mass at
DuðxÞ, attains the infimum in (LP), that is, it belongs to M�

F . Next, we show that M�
F

is a singleton, thus establishing the uniqueness of a positive solution to (EP).

1.2. Notation

The standard Euclidean norm in Rd is denoted by j � j, and N stands for the set of nat-
ural numbers. The closure, the boundary and the complement of a set A 	 Rd are
denoted by A; @A, and Ac, respectively. The open ball of radius r in Rd, centered at
x 2 Rd, is denoted by BrðxÞ, and Br is the ball centered at 0. We use a6 :¼ maxð6a; 0Þ
for a 2 R.
For a Borel space Y, PðYÞ denotes the set of probability measures on its Borel r-alge-

bra, and dy denotes the Dirac mass at y 2 Y . For l 2 PðYÞ and a measurable function
g : Y ! R which is integrable under l, we often use the simplifying nota-
tion lðgÞ :¼ Ð

Yf dl.

2. Main results

Throughout this section we assume c 2 ð1; 2Þ, unless otherwise explicitly mentioned.
Also, without loss of generality we assume that f � 1, and we scale a solution of (EP),
which is bounded from below, by an additive constant so that infRd u ¼ 1.
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We start with the very useful gradient estimate in [2, Theorem B.1], stated under
weaker regularity in [1, Theorem A.2] for (EP). It appears that the Bernstein approach
for this estimate originates in [11, Theorem A.1]. We need to use this estimate on small
balls, so we scale it as follows.

Corollary 2.1. There exists a constant C such that for any solution u of (EP) we have

sup
z2Br xð Þ

jDu zð Þj � C r�
1

c�1 þ sup
z2B2r xð Þ

f zð Þ�kð Þ1=cþ þ sup
z2B2r xð Þ

jDf zð Þj1= 2c�1ð Þ
� �

(2.1)

for all x 2 Rd, and for all r> 0. In particular, under ðA1Þ, with perhaps a different constant
C0, we have

sup
z2Br xð Þ

jDu zð Þj � C0 r�
1

c�1 þ sup
z2B2r xð Þ

f yð Þ�k
� 	1=c

þ

� �
8x 2 Rd; 8r> 0: (2.2)

Proof. Fix any x 2 Rd. For r> 0, let urðyÞ :¼ r
2�c
c�1uðxþ ryÞ and

frðyÞ :¼ rc
� ðf ðx þ ryÞ�kÞ. The function ur satisfies

�Dur yð Þ þ 1
c
jDur yð Þjc ¼ fr yð Þ: (2.3)

By [2, Theorem B.1], there exists a constant C such that any solution ur of (2.3) satisfies

sup
y2B1 xð Þ

jDur yð Þj � C 1þ sup
y2B2 xð Þ

fr yð Þ
� 	1=c

þ þ sup
y2B2 xð Þ

jDfr yð Þj1= 2c�1ð Þ
� �

8x 2 Rd:

from which (2.1) follows.

We continue by proving a useful lower bound for positive solutions of (EP). Define

Cx :¼ f xð Þ½ 
� 1
c� ; x 2 Rd:

Lemma 2.1. Assume ðA1Þ. Then, for every positive solution u of (EP), the following hold.

(a) There exist positive constants r and j such that

inf
y2Br

u x þ Cx yð Þ � j f xð Þ½ 
c
��2
c� 8x 2 Rd: (2.4)

(b) There exists a positive constant M0 such that

jDu xð Þj2
u xð Þ � M0 f xð Þ 8x 2 Rd: (2.5)

Proof. Note that by ðA1Þ there exists some R> 0 such that

jDf xnð Þj � 2j0 f xnð Þ
 �c�þ1
c� 8x 2 Bc

R: (2.6)

Choose r positive and small enough such that r � c�
8j0

. We claim that the assertion in
part (a) holds for this r. To prove this, we use contradiction. Suppose that
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inf
y2Br

u xn þ Cxnyð Þ f xnð Þ
 �2�c�
c� ��!

n!1 0 (2.7)

along some sequence fxngn2N 	 Rd, such that jxnj ! 1 as n ! 1. We write (EP) as

�Du xð Þ þ b xð Þ � Du xð Þ ¼ f xð Þ�k;

with bðxÞ :¼ 1
c jDujc�2DuðxÞ. Simplifying the notation, let Cn � Cxn ¼ ½f ðxnÞ
�

1
c� , and

define the sequence of scaled functions

un yð Þ :¼ u xn þ Cnyð Þ
f xnð Þ
 �c��2

c�
; bn yð Þ :¼ Cn b xn þ Cnyð Þ; and fn yð Þ :¼ f xn þ Cnyð Þ�k

f xnð Þ ;

for y 2 Rd and n 2 N. Then we obtain from (EP) that

�Dun yð Þ þ bn yð Þ � Dun yð Þ ¼ fn yð Þ: (2.8)

Integrating (2.6), we obtain

f xn þ Cnyð Þ
 �� 1
c�� f xnð Þ
 �� 1

c� � � 2j0
c�

jyj Cn: (2.9)

Computing also the lower bound inherited from (2.6), and combining it with (2.9),
we obtain

2
3

� �c�

f xnð Þ � f xn þ Cnyð Þ � 2c
�
f xnð Þ 8y 2 B4r; 8xn 2 Bc

R: (2.10)

This shows that fn and f�1
n are bounded in B4r uniformly in n 2 N. To establish a

bound for bn on B2r, it is enough to show that, for some constant C, we have

jDu xn þ Cnyð Þj � C 1þ C1�c�
n

� 	
¼ C 1þ f xnð Þ
 �1=c� �

8y 2 B2r: (2.11)

By (2.2) we have

sup
y2B2r

jDu xn þ Cnyð Þj � C0 2Cnrð Þ� 1
c�1 þ sup

y2B4r

f xn þ Cnyð Þ�k
� 	1=c

þ

� �
¼ C0 2rð Þ� 1

c�1 f xnð Þ
 �1
c þ sup

y2B4r

f xn þ Cnyð Þ�k
� 	1=c

þ

� �
:

(2.12)

Thus (2.11) follows by (2.10) and (2.12).
Therefore, since, as we have shown, fn, f�1

n and bn are bounded in B2r uniformly in
n 2 N, then, by using for example [12, Lemma 3.6], we see that equation (2.8) contra-
dicts the hypothesis in (2.7) that inf y2Br unðyÞ ! 0. This completes the proof of
part (a).
Moving to part (b), let r be as chosen in the proof of part (a). We have shown above

that

sup
x2Rd

sup
y2B4r

f x þ Cxyð Þ�k
f xð Þ <1: (2.13)

On the other hand, using the estimate (2.12) on Br=2, with r and R as in part (a), we
have
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jDu xð Þj2
u xð Þf xð Þ � C0

u xð Þf xð Þ r=2ð Þ� 1
c�1 f xð Þ½ 
1c þ sup

y2Br

f x þ Cxyð Þ�k
� 	1=c

þ

� �2

� 2C0 r=2ð Þ� 1
c�1

f xð Þ½ 
c
��2
c�

u xð Þ þ sup
y2Br

f xþ Cxyð Þ
 �c��2
c�

u xð Þ
f x þ Cxyð Þ

f xð Þ

0
@

1
A

for all x 2 Rd. Therefore, (2.5) follows by (2.4) and (2.13). This completes the proof. w

Remark 2.1. The estimate in Lemma 2.1 is not suitable for the superquadratic case.
A different scaling can be used when c � 2. First, we replace ðA1Þ by

jDf xð Þj � j0 1þ jf xð Þj4c�3
3c�2

� �
8x 2 Rd: (2.14)

Then, under (2.14), we obtain

inf
y2Br

u x þ Cx yð Þ � j f xð Þ½ 
 c
3c�2 8x 2 Rd:

for some positive constants r and j. To prove this, we use Cx ¼ ½f ðxÞ
 1�c
3c�2, and follow

the proof of Lemma 2.1.
To continue, we need the following notation.

Notation 2.1. For r> 0, we let vr be a concave C2ðRÞ function such that vrðtÞ ¼ t for
t � r, and v0rðtÞ ¼ 0 for t � 3r. Then v0r and �v00r are nonnegative, and the latter is
supported on ½r; 3r
. In addition, we select vr so that

jv00r tð Þj � 1
t

8t> 0: (2.15)

This is always possible. For example, we can specify v00r as

v00r tð Þ ¼

t�r
r2

if r � t � 3r
2
;

1
2r

if
3r
2
� t � 5r

2
;

3
r
� t
r2

if
5r
2
� t � 3r:

8>>>>>>><
>>>>>>>:

Recall the definitions in (1.4), (1.5) and (LP).

Lemma 2.2. Assume ðA1Þ. For any positive solution u 2 C2ðRdÞ of (EP) with eigenvalue
k and l 2 MF , we have

l Fð Þ�k ¼
ð
Rd�Rd

1
c�

jnjc��n � Du xð Þ þ 1
c
jDu xð Þjc

� �
l dx; dnð Þ � 0: (2.16)

In particular, k � k.

Proof. Since u is coercive by Lemma 2.1 (a), it follows that vrðuÞ�r�1 is compactly sup-
ported. Thus we have
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ð
Dvr uð Þ�n � Dvr uð Þ� 	

dl ¼ 0 8l 2 M;

by the definition of M. On the other hand, we have

Dvr uð Þ�n � Dvr uð Þ ¼ v00r uð ÞjDuj2 þ v0r uð Þ Du�n � Duð Þ
¼ v00r uð ÞjDuj2 þ v0r uð Þ kþ 1

c
jDujc�f�n � Du

� �

¼ v00r uð ÞjDuj2 þ v0r uð Þ k�f� 1
c�
jnjc�

� �

þv0r uð Þ 1
c�
jnjc��n � Duþ 1

c
jDujc

� �
:

Therefore,ð
v0r uð Þ f þ 1

c�
jnjc��k

� �
dl ¼

ð
v00r uð ÞjDuj2 dl

þ
ð
v0r uð Þ 1

c�
jnjc��n � Duþ 1

c
jDujc

� �
dl

for all l 2 M. By Lemma 2.1 we have jDuj2
u � M0f for some constant M0. Using this

together with (2.15), we obtainð
v00r uð ÞjDuj2 dl �

ð
1 x:u xð Þ�rf g

jDu xð Þj2
u xð Þ dl

� M0

ð
1 x:u xð Þ�rf g f xð Þ dl !

r!1 0;

since
Ð
f dl<1 by the definition of MF . Thus letting r % 1, and applying the mono-

tone convergence theorem, we obtain (2.16), thus completing the proof. w

It is convenient to express the operator A in (1.3) in terms of a family of operators
fLngn2Rd defined by

Lng xð Þ :¼ �Dg xð Þ þ n � Dg xð Þ; g 2 C2 Rdð Þ: (2.17)

It is clear from the Legendre–Fenchel transform

max
n2Rd

n � p� 1
c�
jnjc�

� �
¼ 1

c
jpjc;

that, for any solution u of (EP), we have

max
n2Rd

Lnu xð Þ� 1
c�
jnjc�


 �
¼ �Du xð Þ þ 1

c
jDu xð Þjc ¼ f xð Þ�k;

and that the maximum is realized at nðxÞ ¼ jDuðxÞjc�2DuðxÞ.
The next lemma applies to any c> 1.

Lemma 2.3. Let c> 1. Let u be a coercive solution of (EP) with eigenvalue k. Define

nu xð Þ :¼ jDu xð Þjc�2 Du xð Þ: (2.18)
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Then, there exists a Borel probability measure �u on BðRdÞ, such that

lu dx; dnð Þ :¼ �u dxð Þdnu xð Þ dnð Þ 2 M; (2.19)

and ð
Rd�Rd

F x; nð Þ lu dx; dnð Þ � k: (2.20)

In particular, k � k.

Proof. Using the definition in (2.17), we write

Lnu xð Þu xð Þ ¼ �Du xð Þ þ jDu xð Þjc�2Du xð Þ ¼ F x; nð Þ�k: (2.21)

Since u is coercive, we can apply [13, Theorem 1.2] to assert the existence of a unique
�u 2 PðRdÞ which satisfiesð

Rd
Lnu xð Þf xð Þ �u dxð Þ ¼ 0 8f 2 C2

c Rdð Þ: (2.22)

Thus (2.19) follows from (2.22) and the definition of lu, whereas (2.20) follows by
integrating (2.21) with respect to �u using a cutoff function as in the proof of Lemma
2.2, which shows that

Ð
RdLnuðxÞgðxÞ dlu � 0 for any positive function g 2 C2ðRdÞ. w

Remark 2.2. Lemma 2.3 can also be established by a simple probabilistic argument.
Viewing (2.19) as a Foster–Lyapunov equation, it is well known that the coercivity of u
implies that the diffusion with extended generator LnuðxÞ is positive recurrent. The
measure �u can then be specified as the unique invariant probability measure of
this diffusion.

We now discuss some properties of the set M of infinitesimally invariant measures
which are needed for the proof of Theorem 2.1 below. It is clear that every l 2 M can
be disintegrated into a probability measure �ðdxÞ 2 PðRdÞ and a Borel measurable
probability kernel gðx; dnÞ on Rd �BðRdÞ. We denote this disintegration by l ¼ �~ g.
For �~ g 2 M, define gðxÞ :¼ Ð

Rdn gðx; dnÞ. Then g : Rd ! Rd is a Borel measurable
map. It is straightforward to verify that �~ d

g
is in M. Since, by convexity, we haveð

Rd�Rd
jnjcl dx; dnð Þ �

ð
Rd
jg xð Þjc � dxð Þ;

it is clear that the infimum in (LP) is attained at some l 2 M whose disintegration
results in a kernel gðx; � Þ which is Dirac for each x 2 Rd. Then, g can be represented
as a Borel measurable map v : Rd ! Rd, and vice-versa. We denote the class of such
measures as M, and abusing the notation we represent them as l ¼ �~ v. Consider
such a l ¼ �~ v in M \MF . It follows by (2.16) that

Ð
Rd jvðxÞjc� gðdxÞ < 1. Since

c� > 2, this implies that
Ð
Rd jvðxÞj2 gðdxÞ < 1, and thus � has density . 2 Ld=ðd�1ÞðRdÞ

with respect to the Lebesgue measure by [14, Theorem 1.1].
We continue with our main theorem. Recall the definition of k� in (1.1), and that

M�
F denotes the subset of M consisting of points that attain the infimum in (LP).

Theorem 2.1. Assume ðA1Þ. The following hold.
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(a) For any positive solution u of (EP) with eigenvalue k we have

lu Fð Þ ¼ k ¼ k ¼ k�;

with lu as in Lemma 2.3.
(b) The set M�

F is a singleton.
(c) There exists a unique positive solution of (EP).

Proof. By Lemma 2.1 every positive solution of (EP) is coercive. Therefore, the first two
equalities in part (a) follow by Lemmas 2.2 and 2.3. By [1, Theorem 2.6], there exists a
solution with eigenvalue k� which is bounded from below. This of course implies k ¼
k� thus completing the proof of part (a).
Let �u and nu be as in Lemma 2.3. Let l ¼ �~ v be any element of M�

F \M. By the
discussion in the paragraph preceding the theorem, � has a density . 2 Ld=ðd�1ÞðRdÞ
with respect to the Lebesgue measure. Let .u denote the density of �u, which, as well
known, is strictly positive. Let

f :¼ q
qþ qu

; fu :¼ qu
qþ qu

; v :¼ fvþ funu ; and � :¼ 1
2

� þ �uð Þ:

It is straightforward to verify that � ~ v 2 M \MF .
By optimality, we have

0 �
ð
Rd
jvjc� d�� 1

2

ð
Rd
jvjc� d�� 1

2

ð
Rd
jnujc

�
d�u

¼
ð
Rd
jf vþ fu nujc

�
d� � 1

2

ð
Rd
jvjc� d� � 1

2

ð
Rd
jnujc

�
d�u

¼
ð
Rd

jf vþ fu nujc
��f jvjc��fu jnujc

�
� �

d� � 0

(2.23)

by convexity. Thus � ~ v 2 M�
F . Since qu is strictly positive, (2.23) implies that v ¼ nu

on the support of .. It is clear that if v is modified outside the support of ., then the
modified measure is also infinitesimally invariant for A. Therefore �~ nu 2 M�

F . The
uniqueness of a probability measure satisfying (2.22) then implies that � ¼ �u, which in
turn implies (since v ¼ nu on the support of �) that v ¼ nu a.e. in Rd. This completes
the proof of part (b).
Turning to part (c), existence of a positive solution follows from [1, Theorem 2.6]. By

part (b), for any positive solutions u and w, we have nu ¼ nw a.e. in Rd, implying that
Du ¼ Dw on Rd. Thus the solution is unique up to an additive constant. This com-
pletes the proof. w

3. More general Hamiltonians

In this section we consider viscous equations taking the form

�Du xð Þ þ H x;Duð Þ ¼ f xð Þ�k; (3.1)

with more general Hamiltonians H. We adopt the following assumptions.
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ðA2Þ The function f is in C2ðRdÞ and is coercive. The Hamiltonian H satisfies
the following.

i. H 2 C2ðRd � ðRd n f0gÞÞ, and p 7! Hðx; pÞ is strictly convex for all x 2 Rd.
ii. There exist constants h0 > 0 and c> 1 , such that

h�1
0 jpjc�h0 � H x; pð Þ � h0 jpjc þ 1

� 	
; jDxH x; pð Þj � h�1

0 1þ jpjc� 	
:

The hypothesis ðA2Þ is equivalent to ðA20Þ below for the Lagrangian L, which is
related to H via the Fenchel–Legendre transform, that is,

H x; pð Þ ¼ sup
n2Rd

n � p�L x; nð Þ� 	
:

ðA20Þ The function f is in C2ðRdÞ and is coercive. The Lagrangian L satisfies
the following.

i. L 2 C2ðRd � ðRd n f0gÞÞ, and n 7! Lðx; nÞ is strictly convex for all x 2 Rd.
ii. There exist constants l0 > 0 and c�> 1 , such that

l�1
0 jnjc��l0 � L x; nð Þ � l0 jnjc� þ 1

� �
; jDxL x; nð Þj � l�1

0 1þ jnjc�
� �

:

In addition, under ðA2Þ or ðA20Þ, there exists positive constants h1 and l1 such that

h1jpjc�1�h�1
1 � jDpH x; pð Þj � h�1

1 jpjc�1 þ 1
� 	

;

l1jnjc
��1�l�1

1 � jDnL x; nð Þj � l�1
1 jnjc��1 þ 1
� �

;
(3.2)

for all x; p; nð Þ 2 R3d, and

H x; pð Þ þ L x; nð Þ � n � p;
with equality if and only if n ¼ DpHðx; pÞ or p ¼ DnLðx; nÞ.

The model above is slightly more general than the model in [2, 3]. A more restrictive
assumption on H is used in [2], while H does not depend on x in [3]. For the proper-
ties mentioned above see [2, Theorem 3.4] and [3, Proposition 4.1].

As mentioned earlier, [2] imposes the assumptions in (1.2) for f, for both the subqua-
dratic and superquadratic cases. Barles in [1] uses (1.2) only for the subquadratic case,
while [3] does not consider unbounded f for the subquadratic case. Analogous is the
model in [5, Section 4.6].
The results for this Hamiltonian are essentially the same as those in Section 2. We

need the following ramification of [2, Theorem B.1] analogous to Corollary 2.1 valid for
solutions of (3.1).

Corollary 3.1. Assume ðA2Þ. Then, there exists a constant C such that any solution u of
(3.1) satisfies (2.1).

Proof. A closer inspection of the proof of [2, Theorem B.1] reveals that the following is
established. Let g 2 C2ðRdÞ be a coercive function. There exists a function C :
ð0;1Þ2 ! ð0;1Þ such that if u 2 C3ðRdÞ satisfies
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�D Duð Þ � c1 1þ jDujc þ jDgj� 	
;

jDujc � c2 jDuj þ jgj� 	
;

(3.3)

for a pair of positive constants (c1, c2), then

sup
y2B1 xð Þ

jDu yð Þj � C c1; c2ð Þ 1þ sup
y2B2 xð Þ

g yð Þð Þ1=cþ þ sup
y2B2 xð Þ

jDg yð Þj1= 2c�1ð Þ� �
(3.4)

for all x 2 Rd. We use scaling. With u a solution of (3.1), we define
urðyÞ :¼ r

2�c
c�1uðxþ ryÞ. Using ðA2Þ (ii) and (3.2), we deduce that ur and g � rc

�ðf ðxþ
ryÞ�kÞ satisfy (3.3) for all r 2 ð0; 1
 and for constants c1 and c2 which do not depend
on r. The result then follows by (3.4).

For the model in (3.1), we define

F x; nð Þ :¼ f xð Þ þ L x; nð Þ; (3.5)

and MF and k as in (1.5) and (LP), respectively, relative to F in (3.5). We also let

nu xð Þ :¼ DpH x; pð Þ: (3.6)

Recall that M�
F is the set of measures in M that attain the infimum in (LP).

Theorem 3.1. Assume ðA1Þ–ðA2Þ and c 2 ð1; 2Þ. Then

(a) The conclusions of Lemma 2.1 hold.
(b) For any positive solution u 2 C2ðRdÞ of (3.1) with eigenvalue k and l 2 MF ,

we have

l Fð Þ�k ¼
ð
Rd�Rd

L x; nð Þ�n � Du xð Þ þ 1
c
jDu xð Þjc

� �
l dx; dnð Þ � 0; (3.7)

and there exists a Borel probability measure �u on BðRdÞ, such that, with nu as
defined in (3.6), we have

lu dx; dnð Þ :¼ �u dxð Þdnu xð Þ dnð Þ 2 M; (3.8)

and ð
Rd�Rd

F x; nð Þ lu dx; dnð Þ ¼ k:

In particular, k ¼ k.
(c) We have M�

F ¼ flug , with lu as in (3.8).
(d) There exists at most one positive solution of (3.1).

Proof. Part (a) follows as in Lemma 2.1 with a slight modification. Instead of (2.8), we
use the inequality

�Dun yð Þ þ nn;u yð Þ � Dun yð Þ � fn yð Þ;
with nn;uðyÞ :¼ Cn nuðxn þ CnyÞ, and nu as in (3.6). Then we apply (3.2) and
Corollary 3.1, and follow the proof of Lemma 2.1.
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For part (b), we define

G x; n; pð Þ :¼ H x; pð Þ�n � pþ L x; nð Þ � 0;

and write

Du xð Þ�n � Du xð Þ ¼ kþ H x;Duð Þ�f xð Þ�n � Du xð Þ
¼ k�L x; nð Þ�f xð Þ� 	þ G x; n;Duð Þ;

and following the proof of Lemma 2.2, we obtainð
Rd�Rd

L x; nð Þ þ f xð Þ� 	
l dx; dnð Þ�k ¼

ð
Rd�Rd

G x; n;Du xð Þð Þ l dx; dnð Þ � 0:

The remaining assertions in (b) follow by Lemma 2.3, with nu as defined in (3.6).
Part (c) follows as in Lemma 2.3 with a slight difference. For c> 2 we don’t know a

priori that jnj2 is integrable under a measure in MF . So instead of the densities f and
fu we use the Radon–Nikodym derivatives. w

Part (d) follows from parts (b) and (c). This concludes the proof.

Remark 3.1. Theorem 3.1 does not address existence of a positive solution to (3.1). For
Hamiltonians not depending on x, existence is asserted in [3]. In general, under some
additional assumptions, we can show that there exists a positive solution to (3.1). In
addition to ðA1Þ–ðA2Þ, we also assume that for any bounded C2 domain D, there exists
a constant b> 0 satisfying the following: for every e> 0 there exists d> 0 such that

jH x; nð Þ�bjnjcj � e jnjc þ dist x; @Dð Þð Þ�c�
� �

; whenever dist x; @Dð Þ< d and n 2 Rd:

(3.9)

This is same as [15, (2.23)]. It then follows from [15, Theorem 2.15] that there exists
a unique vD 2 C2ðDÞ and a constant cD satisfying

�DvD xð Þ þH x;DvD xð Þð Þ ¼ f xð Þ�cD in D; and lim
x!@D

vD xð Þ ¼ 1: (3.10)

Furthermore, cD is characterized as follows:

cD ¼ sup c 2 R : 9v 2 W1;2 Dð Þ \ L1 Dð Þ such that �Dv xð Þ þH x;Dv xð Þð Þ�f xð Þ þ c � 0
� �

:

Thus cD is monotone decreasing as a function of D. Denote by (vn, cn) the solution
pair of (3.10) corresponding to D ¼ Bn, and let xn 2 Arg min vn. It follows from the
equation above that

�cn�H xn; 0ð Þ þ f xnð Þ ¼ �Dvn xnð Þ � 0;

which implies that

cn � �min
Rd

f�h0ð Þ�:

Let c ¼ limn!1 cn which exists by the above estimate. It also clear that vn attains its
minimum in a compact set independent of n. Thus we can follow a standard argument
(see [1, Theorem 2.6]) to show that vn�minRdvn ! v as n ! 1, and

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1477



�Dv xð Þ þH x;Dv xð Þð Þ ¼ f xð Þ�c in Rd:

Assumption (3.9) is satisfied by a large class of Hamiltonian. For instance, consider

H x; nð Þ ¼ b xð Þ � nþ 1
c
jnjc

for some bounded function b. Then we can choose b ¼ 1
c above. Note that (3.9) follows

from the estimate

b xð Þ � n � ejnjc þ Ce�
1

c�1

� e jnjc þ Ce�
c

c�1

� �
;

where the constant C depends on jjbjj1 and c. Now choose d ¼ C�c�1
c e.

3.1. Remarks on the superquadratic case

Cirant in [3] is adopting ðA2Þ, except that in his model the Hamiltonian does not
depend on x, that is, Hðx; pÞ ¼ HðpÞ. He also assumes that f and Df have at most poly-
nomial growth. He shows that there always exists a positive solution to (3.1), and that
this has at least linear growth.
For this model we can establish that

Ð juj2 Dl<1 for all l 2 MF , and that there-
fore, (3.7) holds. However, the proof of this differs from the proof of Lemma 2.2. We
choose instead a smooth concave function v such that vðsÞ ¼ s for s � 0, and vðsÞ ¼ 1
for s � 2, and we scale it by defining vtðsÞ :¼ t þ vðs�tÞ for t 2 R. Since c � 2, and Du
has polynomial growth, while u has at least linear growth, we can follow the argument
in the proof of [16, Theorem 4.1] to conclude that

Ð juj2 Dl<1 for all l 2 MF . In
[3], the set of admissible controls are required to satisfy limsupT!1

Ex½uðXtÞ

T ¼ 0. This

is an unnecessary restriction on the class of admissible controls, and can be avoided.
Without assuming that H(p) is strictly convex, which might result in non-uniqueness
for u, the approach summarized above, shows that nu is an optimal Markov control and
the corresponding infinitesimal measure is a minimizer of (LP). Thus, we have a strong
notion of optimality as explained in Section 4. Under the additional assumption that
H(p) is strictly convex, the positive solution u, and therefore also the optimal Markov
control are unique.

4. Implications for the ergodic control problem

The problem (EP) is associated with an ergodic control problem for the diffusion X ¼
ðXtÞt�0 given by the Itô stochastic differential equation

dXt ¼ �nt dt þ
ffiffiffi
2

p
dWt; X0 ¼ x 2 Rd: (4.1)

This equation is specified on a complete, filtered probability space ðX;F;P; ðFtÞt�0Þ,
with ðWtÞt�0 an ðFtÞ-adapted d-dimensional Brownian motion. An admissible control
is an Rd-valued ðFtÞ-progressively measurable process n ¼ ðntÞt�0, such that
E½Ð T0 jntjc

�
dt
<1 for all T> 0, and we let A denote the class of such controls. The

running cost function is given by F in (1.4).

1478 A. ARAPOSTATHIS ET AL.



In [2], optimality is established via the study of the parabolic problem. In view of the
optimality results concerning (LP), we can state a stronger version of optimality. We
state this result for the model in (EP), noting that an identical argument can be used to
establish this for (3.1) under ðA2Þ. We let Ex

n denote the expectation operator for the
diffusion in (4.1) controlled by n 2 A with initial condition X0 ¼ x.

Theorem 4.1. Assume ðA1Þ. Let u 2 C2ðRdÞ be the unique positive solution of (EP) in
the subquadratic case, or as in Section 3.1 for the superquadratic case. With nu as in
(2.18), we have

lim inf
T!1

inf
n2AA

Ex
n

ðT
0
F Xt; ntð Þ dt

" #
� k ¼ lim sup

T!1
Ex

nu

ðT
0
F Xt; nu Xtð Þð Þ dt

" #
: (4.2)

Moreover, (4.2) holds without the expectation operators in the a.s. pathwise sense. In
addition a Markov control v : Rd ! Rd is optimal, if and only if it agrees with nu a.e.
in Rd.

Proof. The inequality in (4.2) follows from the fact that limit points of mean empirical
measures in PðRd �RdÞ are infinitesimal measures for the operator A (see Lemma
3.4.6 and Theorem 3.4.7 in [17]) together with the definition of k in (LP). The equality
follows by the ergodicity of the process under the control nu and the fact that F is inte-
grable under the invariant probability measure as asserted in Lemma 2.3. The pathwise
results also follow from results in [17] referenced above. The verification part follows
from Theorem 2.1. w
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