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ABSTRACT

Uniqueness of positive solutions to viscous Hamilton-Jacobi-Bellman
(HJB) equations of the form —Au(x) + }|Du(x)[" = f(x)—2, with f a
coercive function and / a constant, in the subquadratic case, that is,
y € (1,2), appears to be an open problem. Barles and Meireles
[Comm. Partial Differential Equations 41 (2016)] show uniqueness in
the case that f(x)~|x|” and \Df(x)|S|x|([H)+ for some >0, essen-
tially matching earlier results of Ichihara, who considered more gen-
eral Hamiltonians but with better regularity for f. Without enforcing
this assumption, to our knowledge, there are no results on unique-
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ness in the literature. In this short article, we show that the equation
has a unique positive solution for any locally Lipschitz continuous,
coercive f which satisfies |Df(x)| < k(1 + |f(x)|2_w) for some posi-
tive constant k. Since 2—% > 1, this assumption imposes very mild
restrictions on the growth of the potential f. We also show that this
solution fully characterizes optimality for the associated ergodic
problem. Our method involves the study of an infinite dimensional
linear program for elliptic equations for measures, and is very differ-
ent from earlier approaches. It also applies to the larger class of
Hamiltonians studied by Ichihara, and we show that it is well suited
to provide optimality results for the associated ergodic control prob-
lem, even in a pathwise sense, and without resorting to the para-
bolic problem.

35J60; 35P30; 35B40; 35B50

1. Introduction

We consider the viscous Hamilton-Jacobi-Bellman (HJB) equation

T= f(x)—4, (EP)

1
—Au(x) + ; |Du(x)

for (u,2) € C(RY) x R, with y > 1. Here, f € W,>°(R?) and is coercive. By coercive,
sometimes also called inf-compact, we refer to a function f whose sublevel sets {x €
R?: f(x) <r} are compact (or empty) for every r € R. As shown in [1], (EP) has a

classical solution u for any 1 < 1", where
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AY = sup {4 € R? : (EP) has a subsolution}. (1.1)

This equation which has a long history in the literature, has been studied in [2, 3] for
somewhat more general Hamiltonians, and was recently revisited by Barles in [1]. What
is of interest here, is to characterize the solutions of (EP) which are bounded from
below, that is, without loss of generality, the positive solutions. Naturally, when we refer
to this equation having a unique positive solution, we mean that the solution is unique
up to an additive constant. In the superquadratic case (y > 2), [1, Theorem 2.6] shows
that (EP) has a unique positive solution for any coercive f, and in addition, for this
solution, 4 = A". In the subquadratic case (y € (1,2)), [1] adopts assumption (H2) in
[2], which states that f satisfies a bound of the form

cMxlf—c < flx) < c(l+ |x|ﬂ), and |Df(x)| < 671(1 + |x|(ﬁ71)+) (1.2)

for some positive constants f§ and ¢ for all x € R. Without enforcing this assumption,
to our knowledge, there are no results on uniqueness in the literature, and therefore
also no verification of optimality results. Note that [3] introduces an additional stable
drift to study the subquadratic case.

There is substantial literature on viscous HJB equations, other than [1-3] mentioned
above. It is not our intent to review this literature, since it does not address the problem
studied in this article, but we should at least mention [4-11].

We adopt the following assumption for y € (1,2).

(A1) The function f is locally Lipschitz continuous and coercive, and there exists a con-
stant i, such that

Df@| < x(1+1F0PT) v xeRe.

We show that, under (Al), there exists a unique positive solution u to (EP). In
addition, this solution fully characterizes the ergodic control problem in the sense
that a stationary Markov control is optimal if and only if it agrees a.e. on RY with
the function &, in (2.18) (see Theorem 4.1). The method we follow covers the more
general Hamiltonians studied in [2, 3], and also improves the existing results for the
superquadratic case. This is discussed in Section 3.

1.1. Brief summary of the method
Consider the operator A : C2(RY) — C(R? x R?) defined by
Ag(x, &) = —Ag(x)+¢-Dg(x), (x,¢) € RY x R (1.3)

Let P(R? x R?) denote the space of probability measures on the Borel g-algebra of
R? x RY, denoted as B(R? x R?), endowed with the Prokhorov topology. We say that
1€ P(R? x RY) is infinitesimally invariant for the operator A if [ Ag du =0 for all
g € C}(RY), the latter denoting the functions in C?(RY) with compact support, and
denote the set of these probability measures by M. Let
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1 " A
Fio8) = ) +oclel with 7 i yjl. (1.4)

For u € P(RY x R¥) we use the simple notation
WE) = | ) ax,do)
RYxR4

and define
Mg = {peM :u(F)<oo}. (1.5)

In other words, My is the subset of M consisting of those probability measures under
which F is integrable. It is simple to show that M is always nonempty. Thus, since F
is coercive, the set

Mg, = {ueM :u(F) <r}

is compact for all » > 0 sufficiently large. Clearly, it is also convex.
Consider the minimization problem
o= ng/\f/t u(F). (LP)
The lower semicontinuity of i +— u(F) then implies that the infimum of (LP) is attained
in M. We let M}, denote the set of points in M which attain this infimum.

Our approach to the proof of uniqueness of positive solutions of (EP) is as follows:
First, we show that if (u, 1) € C2(R?) x R is any pair solving (EP), with u a positive
function, then A=/ and some measure ueM taking the form
p(dx, d&) = v(dx)dpux) (dS), with v e P(RY) and Opu(x) denoting the Dirac mass at
Du(x), attains the infimum in (LP), that is, it belongs to M. Next, we show that M}
is a singleton, thus establishing the uniqueness of a positive solution to (EP).

1.2. Notation

The standard Euclidean norm in RY is denoted by | - |, and N stands for the set of nat-
ural numbers. The closure, the boundary and the complement of a set A C R? are
denoted by A,DA, and A, respectively. The open ball of radius r in R centered at
x € RY, is denoted by B,(x), and B, is the ball centered at 0. We use a- := max(*a, 0)
fora € R.

For a Borel space Y, P(Y) denotes the set of probability measures on its Borel o-alge-
bra, and J, denotes the Dirac mass at y € Y. For u € P(Y) and a measurable function
g:Y — R which is integrable under u, we often use the simplifying nota-

tion ug) = [, dy.

2. Main results

Throughout this section we assume y € (1,2), unless otherwise explicitly mentioned.
Also, without loss of generality we assume that f > 1, and we scale a solution of (EP),
which is bounded from below, by an additive constant so that infps u = 1.
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We start with the very useful gradient estimate in [2, Theorem B.1], stated under
weaker regularity in [1, Theorem A.2] for (EP). It appears that the Bernstein approach
for this estimate originates in [11, Theorem A.1]. We need to use this estimate on small
balls, so we scale it as follows.

Corollary 2.1. There exists a constant C such that for any solution u of (EP) we have

sup |Du(z)] < C <r-»ﬁ+ sup  (f(2)—A)Y" + sup |Df(z)|1/<2>'1>> (2.1)

z€B,(x) Z€B,,(x) ZEB, (%)

for all x € R, and for all r > 0. In particular, under (A1), with perhaps a different constant
Co, we have

sup |Du(z)] < Gy <r~+1—|— sup (f(y)—/l)l/y> Vx € R4, Vr>0. (2.2)

ZE€B,(x) ZEBy,(x) +

Proof  Fix any x€RY For r>0, let ul(y):= r%u(x +ry) and
£:(y) := 7" (f(x + ry)—1). The function u, satisfies

—Auy(y)+%|Duy(y)I"’ = ) (2.3)

By [2, Theorem B.1], there exists a constant C such that any solution u, of (2.3) satisfies

sup |Duy(y)] < C <1+ sup (fr(y))l/y+ sup |Df,(y)|1/(27_1)> Vx € R%.

YEBi(x) YEB(x) T yeB)
from which (2.1) follows.
We continue by proving a useful lower bound for positive solutions of (EP). Define

I, = [f(x)]7, xeR%
Lemma 2.1. Assume (Al). Then, for every positive solution u of (EP), the following hold.

(a)  There exist positive constants r and K such that

inf u(x+Txy) > « [f(x)]™ VxeR (2.4)
yeb,
(b)  There exists a positive constant My such that
|Du(x)[* d
— < M Vx € R°. 2.5
< M fln) e @5)
Proof. Note that by (A1) there exists some R > 0 such that
IDf(xa)| < 20[f(xa)] 7 Vx € B (2.6)

Choose r positive and small enough such that r < 8'70 We claim that the assertion in
part (a) holds for this r. To prove this, we use contradiction. Suppose that
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P

)}ngy u(xy + Iy, y) [f(xn)]_ — 0 (2.7)
along some sequence {x,},. C RY, such that |x,| — oo as n — oo. We write (EP) as
—Au(x) 4+ b(x) - Du(x) = f(x)—4,
with b(x) =1 \Du|""2Du(x). Simplifying the notation, let T, =T, = [f(x,)] ", and
define the sequence of scaled functions

_ Ut Ly _ Jent+Twy)—4
= ————5 b)) = Tuwbla+Twy), and fu(y) = —F—"—,
o) 7 f(xn)

Uy (y

for y € R? and n € N. Then we obtain from (EP) that
—Aun(y) + bu(y) - Dun(y) = fu(y). (2.8)

Integrating (2.6), we obtain

[f(xn + Tup)] = [f ()] 7 > —2;0 ly| T, (2.9)

Computing also the lower bound inherited from (2.6), and combining it with (2.9),
we obtain

»
G) f(x0) < fxn+Tny) < 2" f(xy) Vy€By, Vx, € B (2.10)

This shows that f, and f, ! are bounded in By uniformly in n € N. To establish a
bound for b,, on B,,, it is enough to show that, for some constant C, we have

Du(x, + Twy)| < C+TH7) = (14 [f(a)]") Vy€ B (2.11)
By (2.2) we have

sup |[Du(x, +Tny)| < Co ((2Fnr)~,11 + sup (f(xn + F,y)—i)i”)
Bz, B4r
’ " y (2.12)
-G <(2r) T )]+ sup (e + rm-z);).
yEBy,
Thus (2.11) follows by (2.10) and (2.12).
Therefore, since, as we have shown, f,, fn’1 and b,, are bounded in B,, uniformly in
n € N, then, by using for example [12, Lemma 3.6], we see that equation (2.8) contra-
dicts the hypothesis in (2.7) that inf,cp u,(y) — 0. This completes the proof of
part (a).
Moving to part (b), let  be as chosen in the proof of part (a). We have shown above
that

Iy)—

< 0. (2.13)
XE]Rd YEByy f(‘x)

On the other hand, using the estimate (2.12) on B,/,, with r and R as in part (a), we
have



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 1471

|Du<x)|2 CO . 77%1 % . - Uy 5
u(x)f (x) = u(x)f (x) <( /2) T (x)] +yS€BR (f(x +Tyy) }°)+)

*—2

/)i F) ™ “ [F(x+T)]™ flx+Tuy)
2Cy | (r/2) w(x) -I-yeg e 70

for all x € RY. Therefore, (2.5) follows by (2.4) and (2.13). This completes the proof. [

IN

Remark 2.1. The estimate in Lemma 2.1 is not suitable for the superquadratic case.
A different scaling can be used when y > 2. First, we replace (Al) by

DF < o1+ 1FF) vxeR (2.14)

Then, under (2.14), we obtain

inf u(x+Tcy) > x [f(x)]7= Vxe R
yeB,

1—y
for some positive constants r and k. To prove this, we use I'y = [f(x)], and follow
the proof of Lemma 2.1.
To continue, we need the following notation.

Notation 2.1. For >0, we let x, be a concave C*(R) function such that ,(t) = ¢ for
t <r, and y.(t) =0 for t > 3r. Then y, and —y". are nonnegative, and the latter is
supported on [r, 3r]. In addition, we select y, so that

—_

701 < = vt>o. (2.15)

~

This is always possible. For example, we can specify ' as

t—r
— if r<t<—,
,
" 1 3r 5r
t) =< — if —<t<=—,
X’” 2r 2~ 2
3 0t 5r
———= if —<t<3r
r r? 2

Recall the definitions in (1.4), (1.5) and (LP).

Lemma 2.2. Assume (Al). For any positive solution u € C*(R?) of (EP) with eigenvalue
Aand u € Mg, we have

ez = | (S

In particular, A < J.

7*—‘S-Du(x)%—%|Du(x)|h’> u(dx,dé) > o. (2.16)

Proof. Since u is coercive by Lemma 2.1 (a), it follows that y,(u)—r—1 is compactly sup-
ported. Thus we have
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[ 4z, 00-¢ Dr) au = 0 e,
by the definition of M. On the other hand, we have
Ay, () =& Dy, (u) = oy (w)|Duf* + 13(u)(Au—E - Du)

1 ,

= £ (w)|Dul + 7(u) <z +3 \Dul —f—¢ - Du)
1,
= Z1(w)Duf* + 7 (u) (;u_f_y_*w )
/ 1 y* 1 y
+1 ()| < |€]" =& Du+~|Dul" ).
v Y
Therefore,
1, ..+
[t (71 =2) au= [ wipur au
/ 1 ¥ 1 y

+ | 1 () yﬁlél’ —f~Du+;|Du| du

for all p € M. By Lemma 2.1 we have % < Myf for some constant M,. Using this
together with (2.15), we obtain
|Dux)|*

u(x)

S Mojﬂ{x:u(x)>r} f(x) d,u r:)oo 0’

JX/;(M)|DM|2 d/“‘ < J]l{x:u(x)>r}

since [fdu < oo by the definition of Mp. Thus letting r /" 0o, and applying the mono-
tone convergence theorem, we obtain (2.16), thus completing the proof. O

It is convenient to express the operator A in (1.3) in terms of a family of operators
{L¢}:cpe defined by

Leg(x) = —Ag(x)+&-Dg(x), g€ CH(RY). (2.17)

It is clear from the Legendre-Fenchel transform
1, . 1,
max | ¢- ——f')z— "
max (&p==21e) = bl
that, for any solution u of (EP), we have

1, . 1 ” )
max {ﬁgu(x)——*ﬁy] = —Au(x)+—|Du(x)|" = f(x)—4,
¢er? v v
and that the maximum is realized at &(x) = |Du(x)|""*Du(x).

The next lemma applies to any y > 1.

Lemma 2.3. Let y > 1. Let u be a coercive solution of (EP) with eigenvalue /. Define
Eu(x) = |Du(x)|"" Du(x). (2.18)
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Then, there exists a Borel probability measure v, on B(R?), such that
p,(dx,d¢) == v, (dx)de, ) (dE) € M, (2.19)

and
|, Fwo m@xa < 2 .20
RxR4

In particular, 2. < .

Proof. Using the definition in (2.17), we write
Leou(x) = —Au(x)+ |Du(x)[Du(x) = F(x, )~ (221)

Since u is coercive, we can apply [13, Theorem 1.2] to assert the existence of a unique
v, € P(RY) which satisfies

J Lewf(x) v(dx) = 0 vf e CHRY). (2.22)
]Rd

Thus (2.19) follows from (2.22) and the definition of ,, whereas (2.20) follows by
integrating (2.21) with respect to v, using a cutoff function as in the proof of Lemma
2.2, which shows that [.L: g(x) du, < 0 for any positive function g € CY(RY). 0

Remark 2.2. Lemma 2.3 can also be established by a simple probabilistic argument.
Viewing (2.19) as a Foster-Lyapunov equation, it is well known that the coercivity of u
implies that the diffusion with extended generator L¢ () is positive recurrent. The
measure v, can then be specified as the unique invariant probability measure of
this diffusion.

We now discuss some properties of the set M of infinitesimally invariant measures
which are needed for the proof of Theorem 2.1 below. It is clear that every u € M can
be disintegrated into a probability measure v(dx) € P(R?) and a Borel measurable
probability kernel 1(x,d¢) on R x B(RRY). We denote this disintegration by u = v ®n.
For v®n € M, define 7(x) := [pa& n(x,d&). Then 7 : R? — R? is a Borel measurable
map. It is straightforward to verify that v ® 0. is in M. Since, by convexity, we have

|| Jeruanas = [ meor v,
RYxR4 R¢
it is clear that the infimum in (LP) is attained at some u € M whose disintegration
results in a kernel 5(x, - ) which is Dirac for each x € R?. Then, # can be represented
as a Borel measurable map v: RY — R and vice-versa. We denote the class of such
measures as M, and abusing the notation we represent them as y = v ®v. Consider
such a u=v®v in M N Mp. It follows by (2.16) that de\v(x)P’* n(dx) < oo. Since
y*>2, this implies that [r[v(x)|* n(dx) < oo, and thus v has density ¢ € L@ V(RY)
with respect to the Lebesgue measure by [14, Theorem 1.1].

We continue with our main theorem. Recall the definition of A* in (1.1), and that
My, denotes the subset of M consisting of points that attain the infimum in (LP).

Theorem 2.1. Assume (Al). The following hold.
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(a)  For any positive solution u of (EP) with eigenvalue A we have
:uu(F) = }“ = I = ;"*7

with u,, as in Lemma 2.3.
(b)  The set My, is a singleton.
(c)  There exists a unique positive solution of (EP).

Proof. By Lemma 2.1 every positive solution of (EP) is coercive. Therefore, the first two
equalities in part (a) follow by Lemmas 2.2 and 2.3. By [1, Theorem 2.6], there exists a
solution with eigenvalue /* which is bounded from below. This of course implies 2 =
/" thus completing the proof of part (a).

Let v, and &, be as in Lemma 2.3. Let 4 = v ® v be any element of M} N M. By the
discussion in the paragraph preceding the theorem, v has a density ¢ € L¥/(@~D(RY)
with respect to the Lebesgue measure. Let ¢, denote the density of v,, which, as well
known, is strictly positive. Let

P Pu . _ 1
= , = , voi= {v+ , and v = —(v+u,).
il v+ Lt S+ )
It is straightforward to verify that 7®¥v € M N Mp.

By optimality, we have

1 . 1
o< | pf dv——j o du——j ) dv,
RY 2 Re 2 RY
L 1
| jevrtoal g [ wa-s [ el an e
R? 2 Jge

JR?

N Rd<|‘: VL G G ) dB < o

by convexity. Thus 7 ® ¥ € M. Since p, is strictly positive, (2.23) implies that v = &,
on the support of ¢. It is clear that if v is modified outside the support of ¢, then the
modified measure is also infinitesimally invariant for A. Therefore v ® &, € M7. The
uniqueness of a probability measure satisfying (2.22) then implies that v = v, which in
turn implies (since v = &, on the support of v) that v = ¢, a.e. in R?. This completes
the proof of part (b).

Turning to part (c), existence of a positive solution follows from [1, Theorem 2.6]. By
part (b), for any positive solutions u and w, we have &, = ¢, ae. in RY, implying that
Du = Dw on R? Thus the solution is unique up to an additive constant. This com-
pletes the proof. O

3. More general Hamiltonians

In this section we consider viscous equations taking the form
—Au(x) + H(x,Du) = f(x)—24, (3.1)

with more general Hamiltonians H. We adopt the following assumptions.
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(A2) The function f is in C*(R?) and is coercive. The Hamiltonian H satisfies
the following.

i. He CRYx (RY\{0})), and p — H(x,p) is strictly convex for all x € R,
ii. There exist constants hg >0 and y>1, such that

ho'lpl'~ho < Hxp) < ho(lpl +1) , ID:H(xp)l < hy'(1+ |pf).
The hypothesis (A2) is equivalent to (A2') below for the Lagrangian L, which is

related to H via the Fenchel-Legendre transform, that is,
H(x,p) = sup (é-p—L(x,é)).
EeRr?
(A2") The function f is in C*(RY) and is coercive. The Lagrangian L satisfies
the following.

i LeC(RYx (RY\{0})),and & — L(x, &) is strictly convex for all x € RY.
ii. There exist constants Iy >0 and y* > 1, such that

B b < L) < bl +1) . DL < KH(1+1e).
In addition, under (A2) or (A2'), there exists positive constants h; and ; such that
mlpl™ =" < [DpH(x,p)| < hit(jpl™ +1)

- . (3.2)
Wt < e < (1 )

for all(x, p, &) € R*, and
H(xap) +L(X, (:) Z 6 'P,

with equality if and only if £ = D,H(x, p) or p = D¢L(x, &).

The model above is slightly more general than the model in [2, 3]. A more restrictive
assumption on H is used in [2], while H does not depend on x in [3]. For the proper-
ties mentioned above see [2, Theorem 3.4] and [3, Proposition 4.1].

As mentioned earlier, [2] imposes the assumptions in (1.2) for f, for both the subqua-
dratic and superquadratic cases. Barles in [1] uses (1.2) only for the subquadratic case,
while [3] does not consider unbounded f for the subquadratic case. Analogous is the
model in [5, Section 4.6].

The results for this Hamiltonian are essentially the same as those in Section 2. We
need the following ramification of [2, Theorem B.1] analogous to Corollary 2.1 valid for
solutions of (3.1).

Corollary 3.1. Assume (A2). Then, there exists a constant C such that any solution u of
(3.1) satisfies (2.1).

Proof. A closer inspection of the proof of [2, Theorem B.1] reveals that the following is
established. Let g € C>(R?) be a coercive function. There exists a function C :
(0,00)* — (0,00) such that if ¢ € C*(IR?) satisfies



1476 @ A. ARAPOSTATHIS ET AL.

—D(Ag)
|Do|”

c(1+ |Dg[" + |Dg|) ,
o (|Ae] +1gl) ,

for a pair of positive constants (cy, ¢,), then

<
< (3.3)

sup  |Du(y)| < C(cl,c2)(1 + sup (g(y))i/“" + sup |Dg(y)|1/(27"1>> (3.4)
YEB(x) YEB,(x) YEB;(x)

for all xe€ RY. We use scaling. With u a solution of (3.1), we define
u(y) == rvz‘%iu(x—&— ry). Using (A2) (ii) and (3.2), we deduce that u, and g = (f(x +
ry)—A) satisfy (3.3) for all r € (0,1] and for constants ¢; and ¢, which do not depend
on r. The result then follows by (3.4).

For the model in (3.1), we define

F(x,¢) = f(x)+L(x ), (3.5)
and My and / as in (1.5) and (LP), respectively, relative to F in (3.5). We also let
Su(x) = DpH(x,p). (3.6)

Recall that M, is the set of measures in M that attain the infimum in (LP).
Theorem 3.1. Assume (A1)-(A2) and y € (1,2). Then
(a)  The conclusions of Lemma 2.1 hold.

(b)  For any positive solution u € C*(R?) of (3.1) with eigenvalue A and u € Mg ,
we have

1 \
We=2 = | (Lee)=eDuts) +5 Dutl ) w(dede) = 0. ()
RYxR? v
and there exists a Borel probability measure v, on B(R?), such that, with &, as

defined in (3.6), we have
/“Lu(d-x» dé) = Vu(d-x)éiu(x)(df) e M, (3.8)

and
| Fwe m@xd = 7
RYxR4

In particular, ) = ).
(c) We have My = {u,} , with u, as in (3.8).
(d)  There exists at most one positive solution of (3.1).

Proof. Part (a) follows as in Lemma 2.1 with a slight modification. Instead of (2.8), we
use the inequality

—Auy(y) + Eau(V) - Dun(y) = fa(¥),

with &,,(y) = T, &u(x,+T,y), and &, as in (3.6). Then we apply (3.2) and
Corollary 3.1, and follow the proof of Lemma 2.1.
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For part (b), we define
G(x,¢,p) == H(x,p)—¢-p+L(x, &) > 0,
and write
Au(x)—¢ - Du(x) = A+ H(x,Du)—f(x)—¢ - Du(x)
= (A—L(x,&)—f(x)) + G(x, &, Du),

and following the proof of Lemma 2.2, we obtain

|, (e 5w) wexag—2 = | 6nEDul) udxdd) = o
RYxR? RYxR?
The remaining assertions in (b) follow by Lemma 2.3, with ¢, as defined in (3.6).
Part (c) follows as in Lemma 2.3 with a slight difference. For y >2 we don’t know a
priori that |¢|” is integrable under a measure in M. So instead of the densities { and
(., we use the Radon-Nikodym derivatives. O
Part (d) follows from parts (b) and (c). This concludes the proof.

Remark 3.1. Theorem 3.1 does not address existence of a positive solution to (3.1). For
Hamiltonians not depending on x, existence is asserted in [3]. In general, under some
additional assumptions, we can show that there exists a positive solution to (3.1). In
addition to (A1)-(A2), we also assume that for any bounded C* domain D, there exists
a constant ff > 0 satisfying the following: for every ¢ > 0 there exists > 0 such that

|H(x, &)—BIE)| < 8<|£|""' + (dist(x, (’9D))_7*), whenever dist(x,dD) < and ¢ € R?.
(3.9)

This is same as [15, (2.23)]. It then follows from [15, Theorem 2.15] that there exists
a unique vp € C*(D) and a constant cp, satisfying

—Avp(x) + H(x,Dvp(x)) = f(x)—cp in D, and liI})quD(x) = o0. (3.10)

Furthermore, cp is characterized as follows:

cp = sup {c€R :3Ive W"(D)NL>¥(D) such that —Av(x) + H(x, Dv(x))—f(x) + ¢ < 0}.

Thus ¢p is monotone decreasing as a function of D. Denote by (v,, ¢,) the solution
pair of (3.10) corresponding to D = B,, and let x, € Arg min v,. It follows from the
equation above that

—Cu—H(x,0) +f(x0) = —Avy(x,) < 0,
which implies that
c, > —midn (f—ho)_.
R

Let ¢ = lim,_. ¢, which exists by the above estimate. It also clear that v, attains its
minimum in a compact set independent of n. Thus we can follow a standard argument
(see [1, Theorem 2.6]) to show that v,—minyav, — v as n — oo, and
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—Av(x) + H(x,Dv(x)) = f(x)—c in R%.
Assumption (3.9) is satisfied by a large class of Hamiltonian. For instance, consider
1.,
H(x,&) = b(x)- §+;|£|’

for some bounded function b. Then we can choose § =1 above. Note that (3.9) follows
from the estimate

IN

b(x)-& < g|é] +Cem
e(jef + o),

where the constant C depends on ||b||, and y. Now choose 6 = C 7 ¢.

3.1. Remarks on the superquadratic case

Cirant in [3] is adopting (A2), except that in his model the Hamiltonian does not
depend on x, that is, H(x,p) = H(p). He also assumes that f and Df have at most poly-
nomial growth. He shows that there always exists a positive solution to (3.1), and that
this has at least linear growth.

For this model we can establish that [|u]> Du< oo for all € Mg, and that there-
fore, (3.7) holds. However, the proof of this differs from the proof of Lemma 2.2. We
choose instead a smooth concave function y such that y(s) =s for s <0, and y(s) =1
for s > 2, and we scale it by defining y,(s) := t + y(s—t) for t € R. Since y > 2, and Du
has polynomial growth, while u has at least linear growth, we can follow the argument
in the proof of [16, Theorem 4.1] to conclude that [|u|* Du< oo for all u € Mg. In
[3], the set of admissible controls are required to satisfy limsup,_, w = 0. This
is an unnecessary restriction on the class of admissible controls, and can be avoided.
Without assuming that H(p) is strictly convex, which might result in non-uniqueness
for u, the approach summarized above, shows that &, is an optimal Markov control and
the corresponding infinitesimal measure is a minimizer of (LP). Thus, we have a strong
notion of optimality as explained in Section 4. Under the additional assumption that
H(p) is strictly convex, the positive solution u, and therefore also the optimal Markov
control are unique.

4. Implications for the ergodic control problem

The problem (EP) is associated with an ergodic control problem for the diffusion X =
(Xt) ;>0 given by the It6 stochastic differential equation

dX, = —¢, dt + V2 dW,, X, =x € R“. (4.1)

This equation is specified on a complete, filtered probability space (Q, &, P, (F:),50)>
with (W;),., an (&,)-adapted d-dimensional Brownian motion. An admissible control
is an R%valued (§)-progressively measurable process &= (&), such that
IE)UOT £, dt] < oo for all T>0, and we let A denote the class of such controls. The
running cost function is given by F in (1.4).
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In [2], optimality is established via the study of the parabolic problem. In view of the
optimality results concerning (LP), we can state a stronger version of optimality. We
state this result for the model in (EP), noting that an identical argument can be used to
establish this for (3.1) under (A2). We let IEf denote the expectation operator for the
diffusion in (4.1) controlled by ¢ € A with initial condition X, = x.

Theorem 4.1. Assume (A1). Let u € C*(R?) be the unique positive solution of (EP) in
the subquadratic case, or as in Section 3.1 for the superquadratic case. With &, as in
(2.18), we have

T
J F(X:, &) dt] > J = limsup E}
0

T—o00

liminf inf IE}

] 4.2
T—oo ¢eAAd  © (42)

T
L F(X;, E,(X,) dt].

Moreover, (4.2) holds without the expectation operators in the a.s. pathwise sense. In
addition a Markov control v : R? — RY is optimal, if and only if it agrees with &, a.e.
in RY.

Proof. The inequality in (4.2) follows from the fact that limit points of mean empirical
measures in P(R? x R?) are infinitesimal measures for the operator A (see Lemma
3.4.6 and Theorem 3.4.7 in [17]) together with the definition of /. in (LP). The equality
follows by the ergodicity of the process under the control &, and the fact that F is inte-
grable under the invariant probability measure as asserted in Lemma 2.3. The pathwise
results also follow from results in [17] referenced above. The verification part follows
from Theorem 2.1. O
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