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Optode Design Space Exploration for Clinically-robust

Non-invasive Fetal Oximetry

DANIEL D. FONG, VIVEK J. SRINIVASAN, KOUROSH VALI, and SOHEIL GHIASI,

University of California, Davis

Non-invasive transabdominal fetal oximetry (TFO) has the potential to improve delivery outcomes by pro-
viding physicians with an objective metric of fetal well-being during labor. Fundamentally, the technology is
based on sending light through the maternal abdomen to investigate deep fetal tissue, followed by detection
and processing of the light that returns (via scattering) to the outside of thematernal abdomen. The placement
of the photodetector in relation to the light source critically impacts TFO system performance, including its
operational robustness in the face of fetal depth variation. However, anatomical differences between pregnant
women cause the fetal depths to vary drastically, which further complicates the optical probe (optode) design
optimization. In this paper, we present a methodology to solve this problem. We frame optode design space
exploration as a multi-objective optimization problem, where hardware complexity (cost) and performance
across a wider patient population (robustness) form competing objectives. We propose a model-based ap-
proach to characterize the Pareto-optimal points in the optode design space, through which a specific design
is selected. Experimental evaluation via simulation and in vivo measurement on pregnant sheep support the
efficacy of our approach.
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1 INTRODUCTION

The current technique for monitoring fetal well-being during labor is to use cardiotocography,
which analyzes the temporal relationship between the fetal heart rate and uterine contractions.
Unfortunately, this approachwas adoptedwithout the support of a clinical trial and is plaguedwith
a high-rate of false positives (∼99.8% for cerebral palsy) [20]. This has led to a significant increase in
emergency C-sections, while the rates of adverse delivery outcomes have remained the same [1].
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Fig. 1. Patient variability issues related to variations in fetal depth between two pregnant women. Light cap-

tured by the optode on Patient 2, represented by the red arc between the light source (S) and photodetector

(D), does not traverse fetal tissues and causes the TFO performance to suffer.

In the United States, 1 of every 3 births result in a C-section [19], which is a major abdominal
surgery and can increase health risks to both mother and child, such as higher rates of chronic
lung conditions, type-1 diabetes, and other post-operative complications [6, 14, 21]. Notably, a large
proportion of these surgeries are performed in response to cardiotocography traces [2], making
it clear that this high-cost (increased C-sections) and low-benefit (no reduction in rates of harm)
fetal monitoring technique needs an alternative.
We have been working on the development of a non-invasive transabdominal fetal pulse oxime-

ter (TFO) to provide intrapartum1 fetal oxygenation and help physicians make well-informed deci-
sions regarding an emergency C-section. It does this by sending photons towards the fetus through
the maternal abdomen, and analyzing the changes in light intensity (signal) caused by fetal tissues
using an optical probe (optode). For reflectance-mode optodes, the placement of a detector relative
to the light source (source-to-detector or SD distance) helps to capture photons that traverse a par-
ticular depth of tissue. To probe shallow tissues, a small SD distance is sufficient. Deeper tissues
can be investigated by using a larger SD distance, but at the expense of capturing fewer photons
overall (decreased light intensity). As such, tuning this parameter can improve the quality of the
signal to investigate deep fetal tissue. However, anatomical differences between pregnant women
can cause the fetal depths to vary drastically, making the optimal SD separation different for each
patient, as illustrated in Figure 1. In fact, a preliminary study saw that differences in the fetal depth
between pregnant women had a large effect on the signal-to-noise ratio [36] which highlights that
challenges regarding patient variability must be addressed before clinical adoption.
Clinically-robust systems must be able to deliver sufficient performance across the wide-range

of patient variability, but often increase its design complexity. We suggest that designing such
a system in a cost-effective manner can be solved by framing it as a multi-objective optimization
problem, where each patient wants the maximum system performance for their particular physical
characteristics (robustness) and a designer wants to minimize the hardware complexity (cost) of
the system. In this paper, we propose a methodology that solves this problem by considering the
overall performance across the patient-population. We use this method to optimize the optode
design for TFO, towards developing a clinically-robust non-invasive fetal oximetry system that
addresses patient variability. Our contributions in this paper are the following:

1Occurring during labor and delivery.
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• We perform a Design Space Exploration (DSE) to characterize the system performance with
respect to patient variability and different optode designs.

• We propose a population-conscious approach to select a preferred Pareto-optimal optode
design that minimizes the number of detectors and maximizes the performance across the
population.

• We develop a TFO system prototype and present preliminary results captured on pregnant
sheep to highlight the in vivo feasibility to capture the fetal signal.

2 BACKGROUND

2.1 Multi-objective Optimization Problems

Multi-objective optimization problems (MOOP) are often presented in the context of needing to
make decisions based on a number of different criteria, where the goal is to identify one (or a set of)
feasible solutions that provide the best tradeoffs between objectives. The general form of a multi-
objective optimization problem is expressed as the joint optimization2 of n objective functions,
where the goal is to identify an optimal solution vector x that expresses the particular assignment
ofm decision variables and exists in the feasible solution set X .

Min f (x ) = ( f1 (x ), f2 (x ), . . . , fn (x ))
s.t. x = (α1,α2, . . . ,αm ) ∈ X

2.1.1 Pareto Optimality. Given the potential for conflicting objectives, a single optimal solu-
tion may not exist and thus tradeoffs must be considered. Since objectives are often not directly
comparable with each other, solutions are ranked using a dominance relationship. In particular, a
solution x1 ∈ X is said to dominate another solution x2 ∈ X if two conditions are met:

(1) x1 is at least as good as x2 for all objectives.
(2) x1 is strictly better than x2 in at least one objective.

The set of non-dominated solutions is called the Pareto-optimal set (or Pareto frontier) and repre-
sents the solutions that provide the best tradeoffs (e.g. improving f1 (x ) results in degrading f2 (x )).
Since it can be difficult to faithfully represent the ranking importance of various objectives, the
Pareto frontier is often presented to a designer who evaluates the tradeoffs and selects a preferred
solution. Thus, generating (or approximating) a set of diverse Pareto-optimal solutions is often the
goal of multi-objective optimization problems.
Design Space Explorations (DSE) are often used to generate a mapping between the objective

and solution spaces, which is used to check for dominance relationships. Afterwards, the solu-
tions are analyzed and filtered for Pareto-optimality before being presented to the designer. How-
ever, sometimes a designer wants a single Pareto-optimal solution to be suggested. In these cases,
scalarization techniques can be a useful tool. These approaches combine (or reduce) objectives
by incorporating some of the designer’s preferences to create a single-objective to optimize. Two
commonly-used techniques are the Weighted-Sums and ε-Constraint Methods.

2.1.2 Weighted-Sums Method. As the name implies, this technique combines multiple objec-
tives by taking the weighted sum of each objective’s product with a user-specified weighting
factor [32].

Min f (x ) =
n∑

i=1

wi ∗ fi (x )

s.t. x ∈ X
(1)

2Multiplying an objective function by −1 allows us to perform a maximization procedure, without losing the general
minimization semantics.
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While this approach is intuitive and simple to calculate, it can be difficult to select appropriate
weights that faithfully represent the relative importance of each objective in a desired region
of the solution space. This is evident when the units of each objective are not matched or are
incapable of being quantified. In these cases, ambiguous values may be assigned which can lead
to undesired solutions being presented.

2.1.3 ε-Constraint Method. In this approach, a single most-important objective is identified
and retained for optimization, while the others are turned into constraints with user-specified
bounds [13]. Solutions meeting those constraints are then solved for in the single-objective case
and presented as a Pareto-optimal point.

Min fi (x )
s.t. εL

k
≤ fk (x ) ≤ εU

k

x ∈ X
k = {1, . . . ,K } and k � i

Similarly, it can be difficult to find appropriate values for the lower- and upper- bounds (εL
k
and

εU
k
) such that feasible solutions exist. This can be solved by finding the feasible range of each fk (x )

first, and then applying appropriate bounds in an a posteriori manner. As such, these bounds can
be iteratively tightened, relaxed, or moved to identify solutions at different points in the feasible
solution space, at the cost of redundant calculations.

2.2 Overview of Pulse Oximetry

Pulse oximetry non-invasively estimates the relative amount of oxygenated hemoglobin in the
blood (arterial oxygen saturation or SpO2) by analyzing the changes in light intensity (of at least
two wavelengths) caused by pulsating arterial tissues. At its core, this is described by the Beer-
Lambert Law [3, 18] which relates the exponential decay of incident light intensity entering a
medium (I0) to the light intensity reaching a detector (Idet) using the optical properties and com-
position of the medium (μa ) and the path-length photons take to get to the detector (L).

Idet = I0 ∗ e (−μa∗L) (2)

This can be rewritten in terms of temporal changes in light absorption (ΔA) and expanded to
incorporate multiple tissues (i) with the Modified Beer-Lambert Law [8]:

ΔA(λ) = − ln(It1/It0) =
∑

i

Δμa,i (λ) ∗ 〈Li 〉 (3)

where It0 is the measured light intensity, of wavelength λ, captured at time t0, and It1 is the light
intensity at a later time t1. The expected path-length (〈Li 〉) is used here since discontinuities in the
refractive index between and within tissues cause photons to scatter and take a tortuous path to
the detector.
Since oxy- and deoxy- hemoglobin (HbO2 and Hb) absorb light at different levels in the red

and near-infrared spectrums, the relative light attenuation seen at these wavelengths changes
depending on how oxygenated the blood is. This is important for pulse oximetry, where the oxygen
saturation (SpO2 = [HbO2]/([HbO2] + [Hb])) is estimated using the modulation ratio R, which
is a ratio of the changes in light absorption (ΔA) from pulsating arterial tissues3 (Δμa ) at two

3Each heart contraction changes the arterial blood volume at systole and diastole, which results in temporal changes in
light intensity.
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Fig. 2. High-level diagram of our non-invasive, Transabdominal Fetal Pulse Oximetry (TFO) system. Some

of the light captured at the photodetectors carries fetal information and can be used to estimate the fetal

oxygen saturation.

wavelengths and is proportional to SpO2 [31].

R =
ΔAλ1

ΔAλ2

=
ln(Isystole,λ1/Idiastole,λ1 )

ln(Isystole,λ2/Idiastole,λ2 )
=

Δμa,λ1��〈L〉
Δμa,λ2��〈L〉

∝ SpO2 (4)

Calibrated pulse oximeters find thewavelength-specific proportionality factor between R and SpO2

using invasive blood-gas analysis measurements on a large number of healthy volunteers in con-
trolled desaturation experiments.

2.3 Transabdominal Fetal Pulse Oximetry

Transabdominal fetal pulse oximetry (TFO) is a fully non-invasive technique to estimate the fetal
oxygen saturation (SpO2) by using light to investigate the fetal tissues with a reflectance-mode
optical probe (optode), and is illustrated in Figure 2. This is performed by sending photons towards
the fetus at thematernal abdomen using an emitter. As photons propagate through the tissue, some
of them are extinguished (via absorption) or scattered from their initial trajectory, increasing their
path within the tissue and allowing it to diffuse towards deeper tissues. Some of the light that
reaches the fetus scatters towards the skin surface and is captured by a photodetector as a mixed
(maternal+fetal) signal. This mixed signal is then processed to extract the fetal contribution and
analyzed to estimate fetal SpO2 through conventional pulse oximetry. This involves identifying the
fetal photo-plethysmogram (PPG) at two wavelengths, which is characterized by small, repeated
dips in light intensity occurring at the fetal heart rate. In contrast, changes in light intensity due to
maternal tissues (noise) aremuch stronger and causes the fetal signal-to-noise ratio to be inadequate
unless the maternal noise is filtered from the mixed signal. Importantly, fetal heart rates (∼110-
240 bpm) are normally higher than the maternal heart rates (∼60-100 bpm) and allow a number of
different approaches to improve the fetal signal-to-noise ratio, and are discussed in Section 2.3.2.

2.3.1 Patient Variability. Both anatomical and physiological differences between and within
patients can have large effects on the ability to capture the fetal signal using TFO. For example,
natural variations in the fetal depth change the distance photons must travel to reach the fetal
tissue, which highly affects the amount of fetal information captured at the photodetector and
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thus system performance. This can be caused by differences in the overall thickness of abdominal
tissue, spontaneous changes in fetal location, or through the progression of natural birth via la-
bor dynamics. In addition, the mother’s physiological systems can cause temporal changes in the
optical properties of superficial tissue, which can further complicate investigating the deep fetal
tissue. For example, thematernal heart contractions cause the blood-tissue volume in the superficial
tissue to increase slightly and causes the signal to reflect maternal characteristics. This systemic
noise makes it harder to distinguish the changes caused by deeper fetal tissues (i.e. fetal signal)
and requires a processing technique that can adapt to changes in physiology. Designing a system
that can account for both inter- and intra- patient variability is critical to the development of a
clinically-robust device.

2.3.2 Fetal Signal Extraction. To investigate the fetal tissue using TFO measurements, we must
first extract the fetal signal from the mixed signal measurement. To do this, we utilize a pair of
detectors at different SD distances (one near the source and another far away) to capture the rela-
tive difference of maternal-fetal influence at each detector, which is used to remove the maternal
noise seen in the mixed signal. To illustrate how this works, Equations (5) and (6) describe the
absorption seen at the near and far detectors respectively,

ΔAN = Δμa,mat ∗ 〈Lmat 〉N + Δμa, fet ∗ 〈Lfet〉N (5)

ΔAF = Δμa,mat ∗ 〈Lmat 〉F + Δμa, fet ∗ 〈Lfet〉F (6)

where subscripts N and F correspond to the near and far detectors, and 〈Lmat 〉 and 〈Lfet〉 rep-
resents the expected partial path-lengths a photon took through the maternal and fetal tissues,
respectively, to reach the detectors. When the near detector is sufficiently close to the source,
most of the photons it captures will have only traversed maternal tissues, namely 〈Lfet〉N ≈ 0. By
utilizing this difference in maternal-fetal information at the near-far detectors, we can extract the
fetal signal (ΔAfet) by:

ΔAfet = Δμa, fet ∗ 〈Lfet〉F = ΔAF − α ∗ ΔAN (7)

where α is a scaling factor that represents a difference in the partial path-lengths through the
maternal tissue seen at the two detectors, α = 〈Lmat 〉F /〈Lmat 〉N , which can be different for each
patient and is generally unknown [25, 34]. To account for this, we utilize adaptive noise cancel-
lation (ANC) techniques to implement Equation (7) and find ΔAfet, where the amount of noise to
be removed from a noisy signal (ΔAF ) is estimated using a noise reference (ΔAN ) and an adaptive
filter (α ) that is tuned by minimizing the error in an optimization parameter. The extracted fetal
signal, captured at two wavelengths, is then used with Equation (4) to estimate fetal SpO2 as in
conventional pulse oximetry calculations. Studies have shown that ANC is superior at extract-
ing the fetal signal [10, 33]. However, its performance in relation to the differences in fetal depth
remains unexplored and is investigated in this paper.

3 MOTIVATION AND PROBLEM STATEMENT

3.1 Addressing Patient Variability

As described earlier, an optimal optode design must strike a balance between signal strength and
sensitivity for a targeted tissue depth, but fetal depth variations (patient variability) can cause the
optimal design to be different between patients. Since patient characteristics are outside the realm
of control, improvements to the optode design must be made.
An effective-but-costly solution is to improve the optode’s dynamic range by increasing the

number of detectors and varying their SD distances to improve the range of fetal depths captured
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by the system. In an unlimited-resources scenario, an optode containing a large number of de-
tectors would capture photons across the entire maternal abdomen to maximize the range of fetal
depths investigated. This approach is impractical from a clinical viewpoint, has diminished returns
since many detectors will capture redundant or unhelpful information to extract the fetal signal,
and can drastically increase development time and costs. On the other hand, a resource-limited ap-
proach runs the risk of using an insufficient number of detectors, resulting in sub-optimal perfor-
mance across the population. Realistically, a balance must be made between these two approaches.

3.2 Problem Statement

A clinically-robust, non-invasive fetal oximetry system must be able to provide sufficient perfor-
mance across the wide-range of patient variability, in which the optode design plays a critical
role. However, designing an optode that both maximizes the performance across the population
and minimizes hardware complexity requires careful evaluation of the tradeoffs between designs.
In this paper, we seek to answer the following question:

“What are the optode design parameters that maximize TFO system performance across the patient
population and minimize the number of detectors on the optode?”

4 PROPOSED APPROACH

We suggest that this question can be addressed by approaching it as amulti-objective optimization
problem, where our competing objectives are to maximize the performance for each patient and to
minimize the number of components in the system. To identify Pareto-optimal solutions, the sys-
tem performance for each patient characteristic is compared over different optode designs. How-
ever, outliers in patient characteristics might lead to designs that are less beneficial for more com-
mon situations. To address this, we propose a population-conscious methodology which identifies
a Pareto-optimal solution that maximizes the potential benefit for a majority of the patients while
minimizing the number of additional components. It does this by optimizing for a population-based
performance metric and turning the number of components into a user-specified constraint.
Given the broad nature of patient variability and the many design choices involved with devel-

oping a TFO system, we focus this investigation on several key parameters, which are described
and defined below:

System parameters, x: represents a potential solution or particular assignment of design
parameters. Since the optode plays a crucial role in addressing patient variability, we
focus on parameters directly related to improving the optode design, namely the number
of detectors and their SD distances. As previously mentioned, increasing the number of
detectors and varying their SD distance improves the dynamic range of fetal depths an
optode can achieve by capturing photons that traverse a wider variety of paths through
the underlying tissue. Other system parameters, were assigned fixed values to focus the
scope of investigation and improve computational feasibility.

Patient characteristics, pi: defines the particular characteristics of the i th patient in the pop-
ulation Ppop . Given the broad nature of characteristics that can cause measurement vari-
ability, we focus on the fetal depth and maternal heart rate seen in near-term pregnant
women. Intuitively, increased fetal depth has an adverse effect on the ability to detect the
fetal signal, since light intensity decays with increased distance photons must travel, as
described by Equation (2).

System performance, si (x) = s (pi, x ): describes the system performance on the ith patient
using a system with design parameters x . In the case of TFO, we define system perfor-
mance as the maximum fetal signal-to-noise ratio (SNR) captured on an optode and use
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it interchangeably with the term ‘performance’ throughout this paper. We use the maxi-
mum SNR as an objective measure to compare solutions since optodes can have a different
number of near-far detector combinations.

Hardware complexity, k(x): is the function that describes the hardware complexity (costs)
for the system.We letk (x ) express the number of detectors on the optode x , since it directly
relates to increased resource-usage and development effort (complexity of designing an
embedded system that interacts with each of the detectors).

Using this notation, our overarching goal is to optimize the set of objective functions (si (x )
and k (x )), to identify the optode design parameters (x ) that addresses issues related to patient
variability amongst near-term pregnant women (Ppop ):

Min (k (x ),−s1 (x ),−s2 (x ), . . . ,−sN (x ))
s.t. x ∈ X and pi ∈ Ppop for i = 1, 2, . . . ,N

(8)

where N is the number of different patient characteristics to account for in the population set Ppop
and X is the set of feasible solutions.
Using the proposed method, we simplify this ‘N + 1’ -objective optimization problem by defin-

ing a single population-performance metric (Spop (x )) to optimize and turn k (x ) into a constraint.

Max Spop (x ) =
∑

i wi ∗ si (x )
s.t. k (x ) ≤ ε

x ∈ X
i ∈ {1, 2, . . . ,N }

(9)

To create the population-performance metric (Spop (x )), we must provide patient-specific
weights (wi ) that reflect the relative incidence of particular characteristics (pi ). We do this by using
the distribution of pi across Ppop as the weighting function, which provides an objective measure
of the relative importance between designing a system for common- vs uncommon- cases. After-
wards, Pareto-optimal solutions are found by setting an upper-bound ε on the number of detectors
potential optodes can have (k (x )) and optimizing for Spop (x ). To select a preferred Pareto-optimal
design, we vary the bounds of k (x ) and identify the solution that provides the best return-on-
investment, namely identifying the point at which performance-benefits taper-off for each addi-
tional detector (diminishing returns).

4.0.1 Discretization/Clustering. Evaluating the system performance si (x ) for a given solution x
and patient characteristicpi can be computationally expensive. Since similar patient characteristics
and system parameters often result in similar performance, quantizing the exploration parameters
into discrete values can help improve the computational efficiency while still providing useful
solutions. In addition, heuristic-based searched methods can also be used to improve the efficiency
at which the solution space is explored when optimizing parameters [17].

5 CASE STUDY: OPTODE DESIGN OPTIMIZATION FOR TFO

To highlight its efficacy, we use the proposed approach to optimize the optode design for non-
invasive fetal oximetry and present it as a case study. To do this, we perform an optode design space
exploration to evaluate the relationships that optode design (x ) and patient characteristics (pi )
have on system performance (s (pi ,x )). We take a model-based approach to quantify the system
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Table 1. Dimensions of Patient Variability Investigated

in This Exploration

Patient Idx
Fetal Depth

(cm)
Maternal Heart Rate

(bpm)
Pt1 2.0

60 90 120

Pt2 2.5
Pt3 3.0
Pt4 3.5
Pt5 4.0
Pt6 4.5
Pt7 5.0

performance for given patient and optode parameters, and in doing so, determine the operational
limits for feasible designs.

5.1 Exploration Scope

To evaluate system performance, we vary pi and x within reasonable bounds to provide useful
results in a computationally feasible manner.

5.1.1 Range of Patient Characteristics (Ppop ). To investigate the appropriate range of fetal
depths and maternal heart rates, we first look at their incidence in the target patient population,
namely near-term pregnant mothers. For simplicity, only singleton pregnancies are considered.
Studies have reported that the average depth of a fetus is 2.9 cm with a standard deviation of
±0.8 cm (minimum: 1.7 cm) [7] and the expected values for the MHR are 81 bpm (with a standard
deviation of ±3.97 bpm) during the relevant stage of pregnancy [26]. To provide a wide-set of pa-
tient characteristics considered in our exploration, we explore fetal depths ranging from 2–5 cm
and vary the maternal heart rates between 60–120 bpm, thus covering a majority (∼93%) of the
values reported in these studies. Since the system performance on a patient with a fetal depth
3.0 cm will be similar to another patient with 3.1 cm, we explore fetal depths in 0.5 cm increments.
In the same way, we look at the maternal heart rates of 60 bpm, 90 bpm, and 120 bpm. These as-
pects of patient variability can be seen in Table 1. Note that in this paper we restrict ourselves to
exploring only fetal depth and maternal heart rate but acknowledge that the general problem is
more complicated, with many other factors of patient variability that are not considered in this
investigation.

5.1.2 Range of Feasible Optode Design Parameters (X ). In this exploration, we look at the
number of detectors on an optode and their relative placement to the light source. Since the
fetal signal is extracted using ANC, a minimum of 2 detectors are needed on the optode. As
for the upper-bound, we define our feasible solution space to have a maximum of 8 detectors,
since a semi-infinite number of detectors would be computationally prohibitive to explore and
clinically impractical. As for their SD distances, a brief survey of large monolithic photodiodes
found that they often include at least one dimension of 1 cm. Since the mid-point is used to define
the SD distance, we allow detectors to have different SD distances ranging from 0.5–7.5 cm,
in 1 cm increments. We define individual detectors by their SD distance, and assign identifiers
shown in Figure 3 which are used to describe individual optode designs. We denote xmax as the
design that uses all 8 possible detectors, and represents the solution that captures the widest
range of fetal depths, but also uses the most detectors. Since it is computationally-prohibitive
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Fig. 3. Detector indexes and their SD distances are shown on the left, and several examples of optode designs

on the right.

Fig. 4. A high-level view of the interactions that occur within our patient and system models.

to identify the theoretical-maximum population-performance value, this optode provides an
empirical-maximum for the population-performance value (Spop (xmax )) achievable.

5.2 Modeling the Patient and System

To help with the exploration, we developed patient and system models that encapsulate the explo-
ration parameters and provides a way to evaluate their interaction. A high-level overview of their
interactions can be seen in Figure 4.

5.2.1 Patient Model (pi ). Our patient models can be broken up into patient variability submod-
ules and a light-transport module that models photon propagation through tissue to generate the
temporal and spatial distribution of the light intensity signal coming from the patient.

Fetal Depth. A key characteristic of patient variability seen in TFO are the differences in fetal
depth between pregnantmothers. To capture this variability, we generated tissuemodels specific to
each patient that represents the different tissue types typically seen by a TFO system. In particular,
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Table 2. Optical Properties of Tissue Model

Tissue Layer
μa (cm−1) μ ′s (cm

−1)
g (unitless) n (unitless) z (cm) Ref.

λ735nm λ850nm λ735nm λ850nm
Maternal dermal 0.170 0.125 23.0 17.7 0.9 1.4 0.15 [27]

Maternal subderm 0.085 0.088 12.0 11.1 0.9 1.4 0.9–3.9 [27]

Maternal uterus 0.160 0.100 10.8 8.15 0.9 1.4 0.85 [24]

Amniotic fluid 0.025 0.042 0.1 0.1 0.9 1.334 0.1 [23]

Fetal scalp 0.157 0.157 6.81 6.23 0.9 1.3 0.2 [15]

Fetal arterial 0.175 0.155 35.0 30.0 0.9 1.3 0.1 [35]

Fetal skull 0.210 0.215 10.9 9.1 0.9 1.3 0.15 [15, 16]

Fetal brain 0.187 0.132 12.2 9.8 0.9 1.3 100 [4, 16]

the tissue model includes seven, semi-infinite layers of tissue, namely the mother’s dermal, subder-
mal and uterine layers, a layer of amniotic fluid, and the fetal scalp, arterial, skull, and brain tissues.
The optical properties4 and thickness for each tissue type are shown in Table 2 and were character-
ized in the literature using a combination of in vivo and ex vivo samples. To account for the different
fetal depths seen in our patient population, we vary the thickness of the mother’s subdermal tissue
layer, which is the most variable tissue at the abdomen and is comprised of mostly lipids or fat [16].

Maternal Heart Rate. Another key characteristic of patient variability seen in TFO are changes in
the tissue content, caused by physiological systems in the body. In this submodule, we consider sev-
eral temporally recurring signals that can interfere with extracting the fetal information, namely
maternal heart rate (MHR), fetal heart rate (FHR), respiration rate (RR), and Mayer waves (THM),
and model them by modulating the light intensity at respective rates to consider their effects on
system performance. As previously mentioned, we varied the MHR (60 bpm, 90 bpm, and 120 bpm)
and kept the other signals at a steady, but typical, level to focus the scope of this investigation. In
particular, they are FHR (168 bpm), RR (0.5 Hz), and THM (0.1 Hz).

Light Transport Model. To accurately model the stochastic process of light transport through
highly-scattering tissues, we utilize a well-verified Monte Carlo algorithm [30] that injects pho-
ton packets into the multi-layered tissue model and follows their propagation till it escapes at
the tissue surface or is extinguished due to absorption. Briefly, the algorithm works by specify-
ing the wavelength, initial position, and direction of a photon packet. A propagation length is
randomly sampled from an exponential distribution generated using the optical properties of the
current tissue a photon is traversing. After considering the probabilistic effects of light absorption,
a scattering direction is calculated using the Henyey-Greenstein scattering phase function (while
considering Fresnel’s equations at tissue boundaries), and the process is repeated until all photons
have either exited the tissue or are absorbed. We modified the original source-code to also record
the tissue layers a photon traverses and report on the number of photons exiting the tissue at the
surface. This allows us to characterize the fetal signal sensitivity across the tissue surface and ap-
ply temporal variations in the signal caused by physiological systems according to the tissues each
photon traverses. A total of 540-million photons were simulated per wavelength across the patient
population. For context, simulating the light propagation of 100-million photons took 13.5 hrs to
complete on a computer using an Intel i7 3 GHz processor. While computationally expensive, this

4A description of the optical properties for biological tissues can be found in [16].
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large amount was necessary to accurately model the light-tissue response with our system, which
requires the signal to converge at far SD distances.

5.2.2 System Model (x). Our system model is comprised of three submodules, namely a multi-
detector optode, an embedded optode control and data handling system, and the fetal signal re-
covery algorithm. Since this work is focused on exploring the optode design, we discuss the multi-
detector optode’s design variables in more detail and briefly describe the other modules and their
relevance to system performance.

Multi-detector Optode. In our model, the multi-detector optode is represented as a combination
of emitters and detectors. Emitters generate photons which traverse the tissue, and are represented
by their peak wavelength, radiative power, and beam profiles. Since oximetry requires two wave-
lengths of light to be used, wemodeled a dual-wavelength, high-power LEDwith peakwavelengths
at 735 nm and 850 nm, which were shown in previous work to sufficiently propagate to the deeper
tissues [9]. We set these high-power LEDs to output 600 mW of radiative power with a gauss-
ian beam profile. These parameters were sent to the patient model, which models the light-tissue
interaction, and returns the spatial- and temporally- varying light intensity signal that interacts
with our photodetectors.
Photodetectors are sensors that translate incident light into an electrical signal, and are repre-

sented by their responsivity, active area, and SD distance. Responsivity (Amps per Watt or A/W)
represents the amount of electrical current or photocurrent (A) that is produced when a partic-
ular wavelength of radiative power (W) interacts with its photosensitive active area (cm2). The
SD distance defines the spatial coordinates of the detector on the optode and is used to determine
the level of light intensity hitting its active area. To capture enough light that contains fetal in-
formation, we represented the photodetectors as monolithic Si-photodiodes with a large active
area (3 cm2) with typical responsivity levels of 0.5 A/W and 0.6 A/W for the wavelengths 735 nm
and 850 nm, respectively. We varied the number of detectors and SD distances to create different
optode designs. The photocurrent generated by each detector was then transferred to the optode
control module.

Embedded Optode Control and Data Handling System. Our embedded optode control and data
acquisition system helps model the translation of the analog photocurrent into a digitally sampled
signal for processing by our fetal signal recovery algorithm. An overview of the different compo-
nents and their interactions can be seen in Figure 4. Briefly, the current generated at each of the
detectors goes through an acquisition (Rx) pipeline which includes a transimpedance amplifier
(TIA) to translate the current signal to a voltage, an analog band-pass filter with center point at
the lock-in frequency, a demodulator to shift the synchronous signal back to base-band, a second-
stage gain circuit, and an analog-to-digital converter to digitize the signal before being processed
by the fetal signal extraction algorithm.

Fetal Signal Extraction Algorithm. To evaluate system performance, we must extract the fetal
signal using measurements from the various combinations of available detectors on the optode
(see Section 2.3.2). This is done through adaptive noise cancellation using the Least-Mean Squares
(LMS) algorithm, which attempts to extract the fetal signal for each near-far detector combina-
tion. In brief, the LMS algorithm uses gradient descent to iteratively optimize an adaptive filter
that identifies the fetal signal using the mean-squared error as its cost function. Since differ-
ent optodes can have a different number of near-far detector combinations, we use the maxi-
mum SNR calculated on an optode to objectively compare the system performance of different
designs.
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Fig. 5. An example of the signals used to evaluate system performance. Signals from the near-far detectors

(D2-D5) are on the left and the extracted fetal signal on the right.

5.2.3 Modeling Patient-System Interaction. We first generated all possible optode designs in the
feasible set of solutions, and simulated their interactionwith each patientmodel for ameasurement
window of 70 seconds using the Simulink framework (MathWorks, Inc.). We allowed the measured
signals to converge in the first 10 seconds (which was sufficient time to allow the response of the
analog/digital filters to settle) and used the remaining measurements to extract the fetal signal and
evaluate the performance for each optode design (x ) and patient characteristic (pi ). This process
was performed for both wavelengths of light, namely 735 nm and 850 nm. An example of the
measurements taken and the signal extraction can be seen in Figure 5.

5.3 Identifying a Population-conscious Design

After characterizing the optode design space, we focus on identifying the Pareto-optimal points
that improves the performance for a majority of the patients and minimizes hardware complexity.
The first step in our proposed approach involves generating the population-performance metric
(Spop (x )) using a weighted-value of each patient-specific performance objective (si (x )). Afterwards,
Spop (x ) is optimized while the number of detectors (k (x )) is constrained within user-specified
bounds.

5.3.1 Generating the Population-PerformanceMetric (Spop (x )). In our proposedmethod, we cre-
ate a population-performancemetric (Spop (x )) based-on the weighted-summation of each patient’s
system performance (si (x )) using the population-distribution as its weighting function, namely
Spop (x ) =

∑N
i wi ∗ si (x ). This sets the relative importance of each patient-specific performance

objective with respect to the incidence of their particular characteristics in the population. Since
TFO measurements are particularly sensitive to changes in fetal depth, we focus on capturing the
effects of fetal depth variations across the patient population. We do this by using a normal distri-
bution with a mean of 2.9 cm fetal depth and variance of 0.64 cm2 [7] as the weighting function to
generate each patient-specific weight (wi ). These values are shown in Figure 6 and used for corre-
sponding patients. The sum of all patient’s weighted-objective functions were then calculated as
Spop (x ), as previously described in Equation (9).

5.3.2 Constraining the Development Costs (k (x )). After generating the population-performance
metric, we identify the Pareto-optimal design points by optimizing for Spop (x ) while constraining
the development costs k (x ), as shown in Equation (9). Since we are focused on minimizing k (x ),
we set the initial upper-bound ε to be the ideal (minimum) number of detectors (i.e. 2 detectors)
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Fig. 6. Patient-specific weights used to generate the Population-performance metric in the proposed ap-

proach. These weights set the relative importance of each performance objective with respect to the inci-

dence of their patient characteristics within the population.

which represented the most stringent case. After optimizing for Spop , this bound was iteratively
relaxed (increased) to identify designs that may provide a better population-performance but use
more detectors. To select a single preferred-solution, we looked at the differences in the population-
performance for each additional detector and searched for the point at which performance benefits
had diminishing returns (i.e. ≤2 dB improvement per additional detector).

6 RESULTS AND DISCUSSION

6.1 Characterizing the Optode Design Space

The system performance was characterized for a total of 247 different optode designs over 7 dif-
ferent fetal depths and 3 different MHRs using 2 different wavelengths of light. To show the high-
dimensionality of the explored problem, a randomly selected sample of optode designs (x ) and
their objective functions (si (x ) and k (x )) are shown in Figure 7.
To highlight the effects that patient variability has on system performance, we use the results

from xmax which captures the widest range of fetal depths among the feasible solutions. The effect
of fetal depth is shown in Figure 8(A). The performance shown at each fetal depth was averaged
overMHR and shown for both wavelengths investigated. Similarly, Figure 8(B) displays the change
in performance with respect to maternal heart rate, which was averaged over fetal depth. As ex-
pected, these results show that the fundamental ability to detect the fetal signal decreases as the
fetus gets deeper, likely due to the fact that the increased distance causes less photons to traverse
the fetal tissue and make it back to the surface for detection. In addition, these results also show
that the operational limit for the system are patients with fetal depths of 5 cm using 735 nm light.
While this represents only∼1.6% of the population, a variety of unexplored parameters could be in-
vestigated to improve this, such as using more sensitive optical sensors or using a higher radiative
power. On the other hand, the effect that maternal heart rate has on the signal is less concerning
since the performance across the population is well above unity (0 dB) and supports the use of our
fetal signal extraction technique. Since the design optimization primarily focuses on addressing
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Fig. 7. Objective functions (si (x ) and k (x )) for a random selection of optode designs (x). These graphs show

the high-dimensionality of performance values considered for each optode design.

Fig. 8. Patient variability effects on TFO System Performance using xmax . The system performance values

shown at each fetal depth (A) was averaged over maternal heart rate (MHR). Similarly, values shown at each

MHR (B) was averaged over each fetal depth.

fetal depth variations, we use the mean performance across MHR to compare different optodes
using the proposed method.
Figure 9 displays a heat-map of the SNR at individual near-far detector combinations on the

xmax optode, and shows how the optimal near-far detector location changes as the fetal depth
increases. Importantly, this image also highlights how the inclusion (or exclusion) of particular SD
distances can impact the performance captured by an optode on different patients.
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Fig. 9. A heat map of the signal-to-noise ratio (dB) for different patients at each near-far detector com-

bination on xmax . As shown, the optimal near-far detector location changes as the fetal depth increases.

In addition, the inclusion/exclusion of particular SD distances affects the overall performance seen across

patients.
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Fig. 10. Population-performance for all optode designs with respect to number of detectors.

Table 3. Population-conscious Optode Designs Identified using the Proposed Method

Optode Design Detectors No. of Detectors Population-Performance
xmax (D1, D2, D3, D4, D5, D6, D7, D8) 8 63.30 dB
x4 (D1, D2, D3, D4, D5, D7, D8) 7 63.30 dB
x15 (D1, D2, D3, D4, D7, D8) 6 63.30 dB
x47 (D1, D2, D3, D7, D8) 5 63.30 dB
x108* (D1, D2, D7, D8) 4 63.30 dB
x169* »(D1, D2, D8)« 3 63.19 dB

x226* (D1, D8) 2 51.62 dB
∗Pareto-optimal designs.

6.2 Pareto-optimal Solutions

Population-performance metrics were generated for all 247 optodes using the proposed method
and are shown with respect to the number of detectors in Figure 10. The optode designs that
maximized the population-performance were identified for different amounts of detectors, and are
shown in Table 3. The Pareto-optimal solutions (Spop (x )) are marked with asterisks. These results
show that the population performance achieved using the maximal 8 detectors (xmax ) can also be
achieved by carefully placing 4 detectors at appropriate locations on the optode according to x108.
However, since the population performance benefit between 3 and 4 detectors is only 0.11 dB, we
select x169 as the preferred Pareto-optimal optode design. When compared with the optode design
used in the current state of the art [36] (x156 = (D3,D5,D6,D8)), we see that the proposed approach
selects a design that provides a much better population-performance (Spop (x156) = −0.13 dB). In
particular, these results suggest that the optode design x169 is able to address issues related to
patient variability using only 3 detectors.
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Fig. 11. A comparison of Equal weighting vs Population-based weighting methods for designs x168 and x181.
For visual clarity, only 735 nm results are displayed. Total performance is the sum of each patient specific

(fetal depth) performance. As shown, the poor performance for fetal depths of 5 cm is mitigated in the

proposed population-based weighting method, by considering the percentage of the population that has

fetal depths of 5 cm (∼1.6%), which allows for the selection of an optode that provides better performance

for the population.

To highlight the beneficial effect that population-based weighting has in the proposed approach,
we consider the case when only two of the explored optode designs are available (x168 and x181)5

and compare the results when each patient performance is treated equally, namely wi = 1. Each
design’s patient-specific weighted-performance (wi ∗ si (x )) is shown in Figure 11. As seen in the
equal-weighting method, although x168 performs similarly as x181 across most patients, it performs
terribly on fetal depths of 5 cm, and results with x181 being selected as the preferred design. How-
ever, only ∼1.6% of the population have these large fetal depths. The proposed population-based
weighting accounts for this by appropriately scaling the impact each patient’s performance has
to the overall population, and instead suggests x168 as the preferred design. As we can see for the
more common fetal depths, x168 provides better performance than x181, which supports the efficacy
of the proposed method to select designs that maximizes the performance for the population.

6.3 Preliminary In Vivo Results

To establish in vivo feasibility, we developed a non-invasive fetal oximetry system and captured
measurements on a pregnant sheep animal model6 as a step towards working with pregnant
women.

6.3.1 Experimental Setup. Near-term pregnant ewes, that were scheduled for a planned C-
section, were utilized for this study. Prior to data acquisition, anesthesia was induced and

5x168 = (D1, D2, D7) and x181 = (D1, D5, D8).
6Pregnant sheep are often utilized as an animal model for human pregnancy due to their similarities with human
physiology.
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Fig. 12. Pictures of the multi-detector optode (left) used with our system (inset) to capture signals on preg-

nant sheep (right).

abdominal region was shaved as part of the preparation for surgery. A lingual pulse oximeter
captured the maternal heart rate during the measurements using our system. After palpating for
the fetal location, our TFO system’s optode was placed directly above the fetus and several minutes
of data was captured. Afterwards, the fetal lamb was delivered via C-section, allowed to recover,
and confirmed alive. All procedures described here were approved by an Institutional Animal Care
and Use Committee.
To capture the signals on the pregnant sheep, we developed a TFO system that consisted of a

dual-detector optode, embedded control system, and custom software (written in Java) that cap-
tured and displayed measurements in real-time, and is shown in Figure 12. Our dual-detector op-
tode contained a pair of near and far detectors (Si-photodiodes) with SD distances of 4 cm and
7 cm respectively and total active areas of 1 cm2 and 3 cm2 respectively. To extract the fetal signal,
we used adaptive noise cancellation with the LMS algorithm where the measurements at the near
and far detectors provide the noise-reference and noise-corrupted-signal, respectively.

6.3.2 Experimental Results. Measurements captured on pregnant sheep using our system can
be seen in Figure 13. The signals at the near and far detectors can be seen in the top and middle
rows respectively, and the extracted fetal signal is shown in the bottom row. To visualize the signal
over the entire measurement period, we display each of their spectrograms7 in Figure 13(B). Yel-
low lines in the spectrogram indicate strong frequency components of the measured signal (and
their harmonics) and are annotated with the physiological source. As shown, the maternal signal
(∼1.25 Hz) can be seen in the spectrograms of both near and far detectors. After extracting the fetal
signal from the mixed signal measurements at the far detector, we can see that the maternal noise
has been reduced and the fetal signal can be seen at (∼3.7 Hz). Due to limitations of the experi-
mental protocol, the fetal heart rate was not taken at the same time as the TFO measurements.
However, discussions with clinicians and surgical staff confirmed that the only physiological

7A spectrogram displays the changes in the frequency content of a signal over time.
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Fig. 13. Measurements captured at the near (top row) and far detectors (middle row) on the pregnant sheep

are used to extract the fetal signal (bottom row), and are displayed in the time-domain (A) and frequency-

domain (B). Yellow lines in the spectrogram indicate strong frequency components of the measured signal

(and their harmonics) and are annotated with the physiological source.

signal present around ∼3.7 Hz is the fetal heart rate, improving our confidence that the fetal signal
was captured. These results show that our system is able to capture in vivo measurements of the
fetal signal on near-term pregnant sheep and highlight its feasibility towards future experiments
involving pregnant women.

7 RELATEDWORKS

A large multi-center clinical study found that transcervical fetal pulse oximetry provided physi-
cians with a better understanding of fetal well-being [12]. This semi-invasive method estimated
fetal SpO2 by placing a pulse oximeter through the birth canal and onto fetal tissues. As such,
several research groups have been working on the development of a fully non-invasive system,
which is faced with several additional challenges including light attenuation, mixed-signal mea-
surements, and patient variability.
Several studies have used Monte Carlo simulations to model photon transport in non-invasive

fetal oximetry to investigate the maternal-fetal signal contribution [5, 9, 11, 29, 36], which showed
the large influence tissue geometries have on the fetal signal sensitivity. Some were complemented
with measurements across optical phantoms (which mimic the optical properties of tissue) [10,
29] and showed the validity of the simulation results using representative physical models. Others
have emulated the mixed-signal measurements through a variety of means to investigate various
techniques to extract the fetal signal [10, 28, 33]. Furthermore, some have tried to estimate fetal
oxygenation using other spectroscopic techniques, namely near-infrared spectroscopy, by char-
acterizing the expected path-length photons take for specific tissue models [22]. This technique
does not rely on pulsating arterial tissue, but makes assumptions on (or requires estimations of)
the expected path-lengths photons traversing the tissue have and can be drastically different for
different fetal depths. In a preliminary study involving pregnant mothers, investigators saw that
differences in fetal depth had a large effect on the signal-to-noise ratio, where ∼70% of participants
had a SNR < 2 [36], highlighting the effects that patient variability can have on performance. Ad-
dressing these variability issues has been largely unexplored and was the focus of this paper.
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8 CONCLUSION AND FUTURE WORK

In this paper, we proposed a methodology to help with the design of a clinically-robust system that
addresses patient variability, which is framed as a multi-objective optimization problem. We used
the proposed approach to optimize the design of an optode for non-invasive fetal oximetry, and
presented both simulated and in vivo measurements captured on pregnant sheep to support the
approach. We are currently working on an improved experimental protocol involving pregnant
sheep to simultaneously capture the fetal signal via other modalities while using our TFO system
to establish ground-truth measurements.
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