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ABSTRACT

Serial dependence — an attractive perceptual bias whereby a current stimulus is perceived to be
similar to previously seen ones — is thought to represent the process that facilitates the stability
and continuity of visual perception. Recent results demonstrate a neural signature of serial
dependence in numerosity perception, emerging very early in the time course during perceptual
processing. However, whether such a perceptual signature is retained after the initial processing
remains unknown. Here, we address this question by investigating the neural dynamics of serial
dependence using a recently developed technique that allowed a reactivation of hidden memory
states. Participants performed a numerosity discrimination task during EEG recording, with task-
relevant dot-array stimuli preceded by a task-irrelevant stimulus inducing serial dependence.
Importantly, the neural network storing the representation of the numerosity stimulus was
perturbed (or pinged) so that the hidden states of that representation can be explicitly quantified.
The results first show that a neural signature of serial dependence emerges early in the brain
signals, starting soon after stimulus onset. Critical to the central question, the pings at a later
latency could successfully reactivate the biased representation of the initial stimulus carrying the
signature of serial dependence. These results provide one of the first pieces of empirical evidence
that the biased neural representation of a stimulus initially induced by serial dependence is

preserved throughout a relatively long period.

Keywords
Serial dependence; numerosity perception; visual stability; event related potentials; neural

decoding.
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INTRODUCTION

In perception, the incoming sensory information is noisy, and biological sensors like the eye are
highly unstable (i.e., due to frequent eye and head movements). Yet, the brain provides us with a
stable and seamless conscious experience of the visual world, and how the brain achieves this
stability remains an open question. Recent studies suggest that one way to stabilize perception is
to integrate stimulus information over time, in order to smooth out noise from neural signals
(Fischer & Whitney, 2014; Burr & Cicchini, 2014). This operation may indeed represent a
successful strategy (Burr & Cicchini, 2014; Cicchini et al., 2018), due to the stability of our
visual environment over short timescales. However, in the experimental context where visual
stimuli can be arbitrarily modulated, such operation predicts systematic biases in perceptual
tasks, with current stimuli appearing more similar to previous ones — a bias that is commonly
referred to as attractive serial dependence.

A growing literature outlines several characteristics of serial dependencies in visual
perception. First, such an attractive bias seems to generalize across many and very different
visual features, starting from basic attributes such as orientation (Fischer & Whitney, 2014;
Cicchini et al., 2017; Fritsche et al., 2017), position (Manassi et al., 2018), motion (Alais et al.,
2017), or numerosity (Corbett et al., 2011; Cicchini et al., 2014; Fornaciai & Park, 2018a;
Fornaciai & Park, 2018b; Fornaciai & Park, 2019a; Fornaciai & Park, 2019b), to more complex
attributes such as the ensemble representation of a visual scene (Manassi et al., 2017), the
perception of visual variance (Sudrez-Pinilla et al., 2018), or face perception (Liberman et al.,
2014; Taubert et al., 2016; Xia et al., 2016; Liberman et al., 2018). This suggests that serial
dependence represents a global brain process affecting all aspects of perception. Second, serial

dependencies are dependent on attention, mostly occurring when the object (Fischer & Whitney,
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2014) or at least its spatial position (Fornaciai & Park, 2018a; Fornaciai & Park, 2018b) is
attended by participants and/or relevant for a task. Finally, although the nature of serial
dependence has been subject to debate (e.g., Fritsche et al., 2017; Alais et al., 2017; Bliss et al.,
2017), evidence suggests that it is a bias arising during perceptual processing, and not at later
working memory encoding or decision stages (Cicchini et al., 2017; Fornaciai & Park, 2018a;
Fornaciai & Park, 2018b; Manassi et al., 2018; Pascucci et al., 2019). However, this does not
exclude the possibility that the initial perceptual bias interacts with subsequent stages and
potentially gets amplified (Fritsche et al., 2017; Cicchini et al., 2017; Fornaciai & Park, 2018a).
While the behavioral signature of serial dependence has been thoroughly investigated,
much less is known about the neural mechanisms underlying the attractive bias. Results using
functional magnetic resonance imaging (fMRI) have shown that, in the context of orientation
perception, the bias arises in the primary visual cortex (St. John-Saaltink et al., 2017) —
potentially implicating a very early sensory/perceptual mechanism, although due to the nature of
the fMRI technique such an activity in early visual cortex may alternatively reflect re-entrant
signals. Furthermore, in a previous study from our group using electroencephalography (EEG)
(Fornaciai & Park, 2018a), we have demonstrated that a neural signature of serial dependence —
in the context of numerosity perception — emerges very early (~50 ms) after stimulus onset, thus
supporting the idea of a bias operating on the initial perceptual representation of the stimulus.
Moreover, in that study, participants passively watched a sequence of dot arrays while paying no
attention to their numerosity, only making a response to occasional oddball stimuli, which
provides strong evidence that serial dependence occurs independently from a decision process.
However, the rapid nature of such a paradigm did not allow us to track how the biased neural

representation of numerosity evolves over time. Indeed, there is evidence that the behavioral
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effect of serial dependence seems to increase over time, if a forced pause is introduced between
the stimulus and response (Fritsche et al., 2017; Bliss et al., 2017). Such results were interpreted
as an increasingly distorted stimulus representation during working memory storage, although it
is not clear what process may be involved in that effect.

Here, we aim to investigate how a visual representation affected by serial dependence
evolves over time during an active perceptual decision-making task. More specifically, we tested
whether or not the biasedness of a representation induced by the recent history of stimulation is
retained throughout the time course of a trial. Participants performed a numerosity discrimination
task during EEG recording, judging which stimulus contains more items between a “reference”
and a “probe” dot-array. To induce serial dependence, a task-irrelevant “inducer” stimulus was
presented before the task relevant ones, following the procedure used in previous studies (e.g.,
Fornaciai & Park, 2018a; Fornaciai & Park, 2018b). Additionally, we took advantage of the
recent findings which demonstrated that activating a neuronal network by presenting brief, high-
energy neutral stimuli evokes a brain signal carrying the signature of information stored in such a
network (Wolff et al., 2015; Wolff et al., 2017). Following this technique, we presented two
bright flashes between the reference and probe, serving as “pings,” to reactivate the working
memory representation of the reference stimulus affected by serial dependence. We reasoned that
activity evoked by pings should reflect a stimulus representation carrying the signature of serial
dependence. In other words, the activity evoked by the pings should reflect the current content of
visual working/short-term memory (Wolff et al., 2015; Wolff et al., 2017), including the stored
perceptual representation of the reference stimulus biased by serial dependence. We complement
this pinging approach with a multivariate neural decoding technique to assess how patterns of

brain activity evolve over time.
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Our design and approach entertained the following hypothesis. If memory traces of the
visual representation biased by serial dependence are preserved after the initial perceptual
processing stage, then the neural pattern associated with this initial visual representation should
be detectable (or decodable) at a later time point, when this trace of representation is reactivated
by the pings. To preview, our results first show that serial dependence starts very early after
stimulus onset, in line with previous findings and suggesting that the effect starts at the early
level of perceptual processing. Second, the results show that the neural representation associated
with this initial perceptual processing, when pinged, is detectable at a later time point, providing
evidence that the biased representation remains stored throughout a relatively long retention

period.

METHODS

Participants

A total of 35 participants took part in the study. Participation in the study was rewarded with
course credits or monetary compensation (10 USD/hour). All participants had normal or
corrected-to-normal vision and were naive to the purpose of the study. All participants signed an
informed consent form before participation in the study. Experimental procedures were approved
by the University of Massachusetts Internal Review Board, and are in line with the Declaration
of Helsinki. A total of 8 subjects was excluded from data analysis (see below Exclusion criteria

paragraph below), leaving 27 participants in the final group (20 females; mean age (+ SD) = 22.5

+ 3.6 years).

Apparatus and Stimuli
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Stimuli were generated using the Psychophysics Toolbox (Pelli, 1997; Kleiner et al., 2007), for
Matlab (version r2013b; The Mathworks, Inc.), and were presented on an LCD screen located at
approximately 90 cm from the participant. The screen encompassed approximately 34x19

degrees at the viewing distance of 90 cm, and was running at 144 Hz.

Stimuli were dot-arrays, including black and white dots (50/50% in most of the cases; in case of
odd numerosities the color of the exceeding dot was randomly assigned) presented on a gray
background. A mixture of black and white dots was employed in order to keep the global
luminance across the array approximately similar to the luminance of the gray background.
Three different dot-array stimuli were presented on each trial in the main conditions of the study
(in this order): a task-irrelevant “inducer” comprising either 11 or 23 dots, a reference stimulus
always comprising 16 dots, and a probe stimulus with a variable numerosity from trial to trial (8,
10, 13, 16, 20, 25, or 32 dots). The arrays were built in order to span similar ranges in three
orthogonal dimensions: numerosity, size, and spacing, following the design previously used by
DeWind et al. (2015) and Park et al. (2016). As the purpose of the study is to investigate serial
dependence in numerosity perception, and since the effect of other non-numerical dimensions
has been addressed elsewhere (Park et al., 2016; Fornaciai & Park, 2017; Fornaciai et al., 2017,
Fornaciai et al., 2018), the different levels of non-numerical dimensions were collapsed together
during data analysis. See DeWind et al. (2015) and Park et al. (2016) for more details about this
stimulus construction procedure.

Regarding the stimulus parameters, the minimum individual area of the dots was set to
113 pixel?, equal to a diameter of 0.21 deg (12 pixel); the maximum value was instead 452

pixel?, corresponding to a diameter of 0.42 deg (24 pixel). Regarding the field area, which refers



162  to the virtual circular area within which the dots were drawn, the minimum value was set to

163 70,685 pixel?, corresponding to a diameter of 5.16 deg (300 pixel), while the maximum value

164  was 223,960 pixel?, equal to a diameter of 10.32 deg (600 pixel).

165

166  The “ping” stimulus (see Procedure below) that was flashed during the interval between the

167  reference and probe stimulus was a white circle covering an area equal to the area of the

168  preceding reference stimulus.
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171  FIGURE 1 — Experimental procedure. (A) Presentation procedure in the “no-ping trials.” While

172 participants kept their gaze on a central fixation cross, a sequence of three dot arrays was
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presented at the center of the screen. First, a task-irrelevant inducer stimulus (11 or 23 dots) was
presented, followed by the reference stimulus (16 dots) after 750 ms, and then a probe stimulus
(8-32 dots) after 2,450 ms. All the stimuli were presented on the screen for 250 ms each. At the
end of the trial, participants were instructed to report whether the second (reference) or third
(probe) array in the sequence contained more dots, by pressing the appropriate key on a
standard keyboard. The period during which a response was accepted was marked by the
fixation cross turning red, and was limited to 1,250 ms after probe onset, and participants were
told to respond as fast as they can. After the end of the response period, the fixation cross
returned black, and the next trial started after 1,500 ms. Before starting the experiment,
participants were told that the first stimulus was not relevant for the task but anyway to pay
attention to the entire sequence of the stimuli. (B) Presentation procedure in the “ping trials.”
The sequence of inducer, reference, and probe dot arrays was identical to the no-ping trials, with
the exception that two bright white circles were presented on the screen (duration = 100 ms)
between the reference and probe. Finally, on some occasions only the inducer stimulus was
presented on the screen (““catch’ trials), and the fixation cross turned orange right after it (not
shown in the figure). In those cases, participants were instructed to press the spacebar as fast as
they can. Note that the stimuli depicted in the figure are not in scale. The timing measures

reported in the figure refer to the inter-stimulus interval between different stimuli.

Procedure
The experiment took place in a quiet and dimly illuminated room. Throughout each block, three
trial types were intermixed: “no-ping” trials, “ping” trials, and “catch” trials. The sequence of

stimuli presented in the no-ping and ping trials is shown in Fig. 1. In all cases, participants
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fixated on a central fixation point, while the sequence of stimuli was presented at the center of
the screen. In the no-ping trials (Fig. 1A), a sequence of three stimuli was presented on the
screen. First, a task-irrelevant inducer stimulus (11 or 23 dots), followed by the reference
stimulus (16 dots) after 750 ms, and then a probe stimulus (8-32 dots) after 2,450 ms. All the
stimuli were presented on the screen for 250 ms each. At the end of the trial, participants were
instructed to report whether the reference or the probe stimulus contained more dots. Response
time was limited to 1,250 ms after probe onset and was marked by the fixation cross turning red.
Participants were instructed to respond as fast as they could. After the end of the response period,
the fixation cross returned black, and the next trial started after 1,500 ms.

In the ping trials, the sequence of inducer, reference, and probe stimuli was identical to
the no-ping trials. However, two bright white circles were additionally presented on the screen
(duration = 100 ms) between the reference and probe. In those cases, the sequence was as
follows. First, the inducer was presented on the screen, followed by the reference stimulus after
750 ms. Then, the reference stimulus was followed by a sequence of two white circle (ping)
stimuli, and finally the probe stimulus. The inter-stimulus interval between different stimuli was
in all cases 750 ms (Fig. 1B). To avoid presenting always similar sequences of stimuli, we
included some catch trials intermixed with the other types of trial.

In the catch trials, only the inducer stimulus was presented on the screen, and the fixation
cross turned orange right after it. In those cases, participants were instructed to press a different
button as fast as they could. Doing so, participants thus had to pay attention to the inducer in
order to promptly provide a response in the case of a catch trial. Overall, the study comprised 10

blocks of trials. Each block included 24 no-ping trials, 24 ping trials, and 6 catch trials, randomly

10



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

ordered. Participants were free to take breaks between different blocks, and the procedure took

about one hour.

Electrophysiological recording and analysis
EEG recording. While participants performed the task described above, the EEG was
continuously recorded for the entire duration of the experiment. To this aim, we used a 64-
channel, extended coverage, triangulated equidistance cap (M10, EasyCap, GmbH), with a
sampling rate of 1000 Hz (actiCHAmp, Brain Products, GmbH). During the experiment, the
channels were referenced to the vertex (Cz). The electro-oculogram (EOG) was monitored by
means of electrodes positioned below the left eye and lateral to the left and right canthi, in order
to monitor artifacts due to blinks or eye movements, and exclude EEG epochs contaminated by
artifactual activity. Across all the channels, impedance was usually kept below 15 k€, but on
some occasions impedances up to 35 kQ were tolerated.

Preprocessing and ERPs. EEG data were analyzed offline using Matlab (version R2015b,
The Mathworks, Inc.), exploiting the functions provided by the EEGLAB package (Delorme &
Makeig, 2004) and the ERPLAB toolbox (Lopez-Calderon & Luck, 2014). Continuous data were
first visually inspected to remove noisy segments, before proceeding with preprocessing. During
the preprocessing, the EEG signals were high-pass filtered (0.1 Hz) and were re-referenced to the
average value of all the 64 channels. The continuous EEG data were then segmented into epochs
from -300 ms before to 2700 ms after stimulus onset time-locked to the onset of the reference
stimulus, with a baseline correction using the pre-stimulus interval. We then performed an
independent component analysis (ICA), in order to remove eye-movement and other muscular

artifacts. After ICA, we further excluded trials containing eye-blink artifacts or other large
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artifacts by applying the step-like artifact rejection tool provided by EEGLAB. Trials were
rejected whenever activity from the eye-channel and a set of posterior channels of potential
interest (i.e., based on previous studies; Iz, 09°, 010’ Oz, O1’, 02’, PO7’ POS8’; Fornaciai &
Park, 2017; Fornaciai & Park, 2018a) exceeded a threshold equal to 30 uV (in a time window
spanning 400 ms, with 20 ms steps). This procedure led to an average (= SD) rejection rate of
8.55% + 10.94%. To create event-related potentials (ERPs), the epochs were selectively
averaged, and low-pass filtered (30 Hz). Finally, ERPs were smoothed with a 100-ms sliding
window in order to remove alpha noise, prior to computing the grand average.

Time window of interest selection for the ERP analysis. Time windows of interest for the
ERP analyses and statistical tests were chosen based on previous results. Previous ERP studies of
numerosity perception have shown that the brain waves around 150-200 ms after stimulus onset
are most sensitive to numerosity, and to modulations affecting perceived numerosity (Park et al.,
2016; Fornaciai et al., 2017; Fornaciai & Park, 2018c). Furthermore, previous results also show
that a signature of serial dependence in numerosity perception emerges from ERPs around 200
ms. Thus, when assessing the serial dependence effect on ERPs evoked by the reference
stimulus, our statistical analysis focused on a broad 100-ms time window centered at 200 ms
after reference onset. Unlike the ERPs evoked by the reference stimulus, we did not have
specific predictions concerning precisely when the ERPs evoked by the neutral “ping” stimulus
should carry information about the representation in working memory (Wolff et al., 2017). Thus,
the time window of interest was chosen as a 100-ms window around the peak of the collapsed
ERP evoked by the pings including the two inducer conditions, separately for the first and
second ping. Single-subject ERPs were then averaged across these time windows, separately for

the two inducer conditions, and tested with a paired t-test.
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Multivariate pattern analysis in the time domain. To achieve a better description of the
temporal dynamics of serial dependence during the numerosity discrimination task, we applied a
multivariate pattern analysis in the time domain method (King & Dehaene, 2014), using the
Neural Decoding Toolbox (Meyers, 2013). This method allows us to evaluate how neural
activity patterns coming from multiple sensors across the scalp differ between different
experimental conditions and combinations of stimuli, and how such patterns of activity
generalize across time. In other words, we used this analysis to assess how serial dependence
affects the pattern of brain activity evoked by the reference (or the ping) stimulus as a function of
the preceding inducer stimulus, and whether and to what extent the serial dependence effect
changes over time. This neural decoding analysis involved the training of a support vector
machine (SVM) classifier on a subset of the data corresponding to specific conditions, and made
predictions about which stimulus was presented in the remaining subset of data and across the
entire time-course of activity. Conditions were based on the inducer stimulus presented on each
trial, so that the activity to be decoded always corresponded to the reference, but with trials
divided as a function of the inducer numerosity.

Using this neural decoding approach, we thus evaluated whether and to what extent the
pattern of brain activity evoked by the reference stimulus differs as a function of the inducer
numerosity, and whether the activity evoked by the ping stimulus carries the signature of the
biased reference representation. Brain responses were evaluated across the full epoch spanning
from -300 to 2700 ms. Different comparisons were tested individually for each participant,
training the SVM classifier with the responses (i.e., activity recorded at all the channels with the
exception of the EOG channels) to the two class of stimuli at hand (i.e., trials divided as a

function of inducer numerosity) and testing it on another subset of trials not used in the training
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phase (using a leave-one-trial-out cross validation). To optimize the analysis, we followed a
series of practices suggested by Grootswagers et al. (2017), to account for high noise in single
trial EEG data and improve the decoding procedure. First, we created “pseudo trials” taking the
average of randomly chosen groups of 12 trials, in order to improve signal to noise ratio. Second,
to avoid overfitting, the number of features (i.e., channels) included in the analysis was limited to
the five most significant ones, determined using a univariate ANOVA. Moreover, we averaged
activity across large time windows to smooth out noise such as alpha oscillations (i.e., 100-ms
time windows with 25 ms step). Finally, the decoding procedure was repeated 30 times for each
participant using different subsets of data for training and testing (as well as different groups of
trials to generate pseudo trials), and the average of the 30 runs was taken as the final estimate of
the classification performance. The outcome of the decoding analysis was a temporal
generalization plot showing the performance of the classifier at each time point, with
classification accuracy (CA) reflecting how well the pattern classifier can discriminate two
conditions (see Fig. S5A). Namely, activity along the diagonal of the temporal generalization
matrix reflects the classification accuracy obtained by training and testing the classifier at the
same time point, while off-diagonal decoding reflects the classification accuracy obtained by
performing training at one time point and testing at all the different time points. This latter
procedure allows to assess whether and to what extent a specific pattern of brain activity
generalizes to activity at different time points (King & Dehaene, 2014).

Time window of interest selection for the multivariate pattern analysis. Classification
accuracies obtained from the multivariate pattern analysis were tested across several time
windows of interest in order to assess the effects of inducer numerosity on the reference and ping

stimuli. The analysis in this context was divided in two parts. The first part concerns the patterns
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of activity along the diagonal of the temporal generalization matrix, where classification is
performed by training and testing the classifier at the same time point; the second part concerns
off-diagonal patterns of activity, revealing whether and to what extent a specific pattern
generalizes over different times. This latter analysis, involving training and testing the classifier
at different time points, allows to assess whether and to what extent the specific pattern of brain
responses at one time point generalizes to different time points. This thus represents the crucial
part of the analysis aimed to test our main hypothesis, concerning the stability over time of the
reference representation biased by serial dependence. Time windows of interest corresponding to
times around the reference onset were chosen according to our previous study (Fornaciai & Park,
2018a). Namely, two time windows were selected, spanning 0-250 ms and 250-500 ms after
reference onset. Time windows along the diagonal corresponding to the ping onsets were chosen
to span a similar extent compared to the reference time windows (250 ms), starting from the ping
onset. Off-diagonal time windows were chosen to span a broad temporal extent in order to
capture how the reference representation gets reactivated by the pings. To this aim, we chose 8
time windows (4 along the vertical dimension, and 4 along the horizontal dimension). Time
windows chosen in this way spanned 0-250 and 250-500 ms corresponding to the reference time
windows and from the onset to 500 ms after each of the two ping onsets. Corresponding time
windows along the two off-diagonal directions were then collapsed together leaving a total of 4
windows of interest. A depiction of all the time windows used for assessing the classification
performance is reported in Fig. SA, with windows along the diagonal identified by letters (A-D),
and off-diagonal windows identified by numbers (1-4). Classification accuracy across these time
windows was averaged separately for each participant. For the two early time windows

corresponding to the reference (time windows A and B in Fig. 5A), the effect of inducer was
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tested using one-sample t-tests against chance level performance (50%). In the later time
windows, we used paired t-tests comparing the classification accuracy in the ping condition
against the classification accuracy in the no-ping condition. Indeed, the effect of inducer at later
time windows was expected only in the presence of pings, so that the no-ping condition served as

a baseline for the ping condition.

Behavioral data analysis

Numerosity discrimination performance across ping and no-ping trials was analyzed separately
for each subject, assessing the serial dependence effect by binning trials according to the inducer
numerosity. In order to obtain a measure of accuracy and precision in the task, we fitted a
Cumulative Gaussian curve to the distribution of response probabilities as function of probe
numerosity, according to the Maximum Likelihood method (Watson, 1979). The point of
subjective equality (PSE), which corresponds to the probe numerosity perceptually matching
(i.e., indistinguishable from) the reference numerosity, was taken as a measure of accuracy in the
task and of the reference perceived numerosity. The PSE was defined as the median of the best-
fitting cumulative Gaussian curve to all the data of each participant in each condition. To assess
the level of performance, in order to exclude subjects showing insufficient performance, we used
the just-noticeable difference (JND), which was calculated as the difference in numerosity
between chance level (50%) responses and 75% “probe more numerous” responses. A finger
error rate correction (5%) was applied to account for lapses of attention or random response
errors independent from the stimuli (Wichmann & Hill, 2001). To assess serial dependence
effects at the behavioral level, a paired t-test was performed comparing the distribution of PSEs

corresponding to different inducer numerosity conditions, separately for no-ping and ping trials
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in order to assess whether presenting the pings affected the effect. To compare the two
conditions, we calculated a serial dependence effect index, which represent the difference in PSE
between the 23-dot inducer condition and the 11-dot inducer condition. The distributions of

serial dependence effect indexes across the two conditions was compared using a paired t-test.

Exclusion criteria

Due to the nature of the effect investigated in this work, we thoroughly checked both the
behavioral and EEG data in order to exclude participants showing an insufficient level of
performance and/or EEG data of insufficient quality. To this aim we excluded participants
showing either very high JND in the behavioral task (JND > 10) or other indications that they
may have not understood or complied with the task (i.e., opposite responses). Regarding the EEG
data, participants were excluded during preprocessing based on either a too large number of
rejected trials due to artifact (> 45%) or based on visual inspection of continuous data and/or
ICA components (i.e., large portions of noisy data even after ICA correction, or too many large
ICA components likely not related to brain signals). A total of 7 participants was excluded before
data analysis based on behavioral (4) and/or EEG (3) data quality. One more participant was
excluded after data analysis due to the failure of the decoding procedure, which showed

systematically below-chance decoding accuracy in the majority of the tested time points.

RESULTS

Behavioral results
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FIGURE 2 — Behavioral results. (A) Average PSEs in the two inducer conditions in the no-ping
trials. (B) Average PSEs in the ping trials. In both cases, strong and significant attractive serial

dependence effects were observed. ** p < (.01, *** p < 0.001. Error bars are SEM.

First, we analyzed the behavioral results to confirm that our specific design successfully induced
attractive serial dependence biases, separately for the no-ping and ping condition. The reason to
separate the two conditions is to assess whether reactivating the reference representation affected
by serial dependence could modulate behavior, increasing or decreasing the effect. The
behavioral results are shown in Fig. 2. As shown in the figure, we found strong attractive serial
dependence effects in both conditions. Namely, the perceived numerosity of a 16-dot reference
appeared to be significantly underestimated when it was preceded by an 11-dot inducer,
compared to when it was preceded by a 23-dot inducer (t(26) = 3.3266, p = 0.0026, d = 0.64;
t(26) =4.1796, p < 0.001, d = 0.80, respectively for the no-ping and ping condition). Even if the
effect seems slightly stronger in the ping condition (Fig. 2B), comparing the serial dependence
effect across the two conditions revealed no significant difference (t(26) = 0.4076, p = 0.6869).
This shows that while our paradigm is generally very sensitive to the attractive bias provided by

the inducer, the presence of the pings does not systematically modulate the effect — in line with a
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previous observation showing that reactivating a representation by means of pings does not

affect behavior (Wolff et al., 2017).
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FIGURE 3 — Topographic plots (posterior view) of event-related activity. Distribution of activity

across posterior channels, corresponding to the contrast between the 23-dot inducer condition
and the 11-dot inducer condition. Plotting such a distribution of activity reveals a relatively

strong effect of inducer starting from early latencies and peaking at around 250-300 ms after

stimulus onset. The most involved channels appear to be a group of posterior channels centered

around Iz.

ERP results

After confirming that our paradigm successfully induced serial dependence in numerosity
perception, we analyzed the brain responses to the reference stimulus. First, we looked at the
topographic distribution of brain activity in a relatively early time window consistent with
previous studies (Fornaciai & Park, 2018a), collapsing no-ping and ping trials together. Fig. 3
shows the distribution of activity representing the contrast between the two inducer conditions,
across posterior channels. As shown in the figure, there was a relatively large difference in the
responses to the same 16-dot reference as a function of the inducer numerosity emerging at
relatively early latencies over posterior-inferior scalp locations. Such a difference — reflecting

higher positive amplitude in the more numerous inducer condition — peaked at around 250-300
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FIGURE 4 — Event-related potentials at channel Iz. (A) ERPs time-locked to the onset of the
reference stimulus (collapsing together ping and no-ping trials), sorted by the numerosity of the
preceding inducer stimulus (upper panel) and the contrast between the two waveforms (lower
panel). (B) ERPs time-locked to the onset of the first ping in the ping condition (upper panel) and
their contrast (lower panel). (C) ERPs time-locked to the onset of the second ping in the ping
condition (upper panel) and their contrast (lower panel). Shaded areas represent the time
windows used for a statistical test. In the case of brainwaves corresponding to the reference
stimulus (A), the time window of interest was defined based on previous studies (see Methods). In
the case of the activity evoked by the pings (B & C), time windows were chosen according to the

peak of the two brainwaves collapsed together. n.s. = not significant, *** p < 0.001.

20



433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

Then, in order to characterize the temporal effect of serial dependence on the ERPs, we plotted
and analyzed the brainwaves at channel 1z, which appeared as the center of the occipital focus of
activity. The brainwaves corresponding to different stimuli and latency windows are shown in
Fig. 4. Note that for the purpose of ERP analysis at latencies around the reference onset, we
collapsed together the ping and no-ping trials, as no difference is expected between the two
conditions. Relatively early ERPs evoked by the reference stimulus (Fig. 4A) showed a clear
attractive modulation, peaking at around 240 ms after stimulus onset. In other words, the
amplitude of brain responses was modulated so that a larger inducer numerosity (23 dots) results
in a more positive amplitude of the brainwaves evoked by the reference, compared to the less
numerous inducer (11 dots) — which was consistent with what we observed at the behavioral
level. The ERP effect of serial dependence was quantified in a 100-ms time window around 200
ms after reference onset (marked with a shaded area in Fig. 4A) based on our previous finding
(Fornaciai & Park, 2018a), and was tested using a paired t-test (between the two inducer
conditions across participants). The results showed a significant difference between ERPs
corresponding to different inducer numerosities (t(26) = 3.434, p < 0.001).

Fig. 4B and 4C show the brainwaves corresponding to the two pings presented between
the reference and the probe, in the ping condition. As illustrated, the bright flashes evoked a
strong visual response starting early after stimulus onset. However, the difference between
different inducer conditions appeared to be very small at the time of the first ping, while slightly
stronger at the time of the second ping. A 100-ms time window around the peak of the activity of
the inducer conditions collapsed together (peak = 125 ms and 137 ms after the onset of the first

and second ping, respectively) did not show any significant difference between the two inducer
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conditions, neither after the first ping nor after the second ping (paired t-test, t(26) = 0.9467, p =

0.1762, and t(26) = 1.1617, p = 0.1280).

Multivariate neural decoding results

In order to assess whether the initial neural representation of the reference numerosity is retained
in the memory traces (which are reactivated by the pings), we performed a multivariate pattern
analysis in the time domain (e.g., see King & Dehaene, 2014 for a review). Although ERP
analysis can show a signature of serial dependence, it is not sensitive enough to pick up subtle
differences in the stimulus representation and does not provide a full characterization of the time
course of the effect. A multivariate analysis, instead, has been shown to be much more sensitive
to serial dependence biases, and allows a better characterization of the time-course of the effect
(Fornaciai & Park, 2018a). Such a multivariate analysis involves training and testing a pattern
classifier (i.e., support vector machine) in order to assess whether and to what extent it can
predict the pattern of brain activity related to a particular condition. Moreover, assessing the
temporal generalization of specific patterns of brain activity across different time windows
allows us to assess how the—biased—representation of the reference stimulus evolves over time
during a trial in the present study. More specifically, we compared the activity time-locked to the
onset of the reference, dividing the trials according to the preceding inducer stimulus, resulting in
two categories: 16 preceded by 11, and 16 preceded by 23. The analysis was performed
separately for no-ping and ping trials, and the no-ping conditions was used as a comparison to

assess the effect related to the pings.
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FIGURE 5 — Decoding results. (A) Temporal generalization matrix, representing classification
accuracies obtained by training the classifier at one time point and testing at all the time points.
The temporal generalization shows how the specific pattern of brain activity at one time point
generalizes at different time points, possibly showing the reactivation of the same representation
and/or the same neural generator at different times. The dashed lines delimit the different
temporal windows of interest used to perform statistical tests on the classification performance.
Time windows of interest along the diagonal are marked with letters, while off-diagonal time
windows are labeled with numbers. (B) Average classification accuracy across the off-diagonal
windows, for the ping and no-ping condition. Error bars are SEM. Number labels on the x-axis
refer to the numbering of time windows reported in panel A. n.s. = not significant, * p < 0.05, **

p < 0.01.

Figure 5A illustrates the results of the neural decoding analysis in terms of a temporal
generalization matrix, which characterizes the degree to which patterns of neural activity evoked
by the identical reference numerosity (16 dots) and the two pings can be dissociated as a function

of two inducer numerosities (11 or 23 dots) that was presented prior to the reference. The results
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are quantified in various time windows of interest. We first set two time windows corresponding
to 0-250 (labeled as A in Fig. 5A) and 250-500 ms (labeled as B) after reference onset. Across
these two time windows, we found significantly above chance decoding in the earlier time
window (0-250 ms, average classification accuracy = 0.5291; one-sample t-test against chance
level, t(26) = 3.0669, p = 0.005) but not in the later time window (250-500 ms, average
classification accuracy = 0.5069, t(26) = 0.5918, p = 0.5591). However, while the decoding
accuracy in the later window (B) was not significant, it was much stronger in the off-diagonal
directions adjacent to such a later window (i.e., at time windows adjacent to window B, in the
horizontal and vertical direction, similarly spanning 250 ms). We thus also tested the average
decoding performance in these two windows. Doing so, we indeed found above chance
classification accuracy (t(26) =2.26, p = 0.033, and t(26) = 2.44, p = 0.22, respectively for the
off-diagonal windows adjacent to the reference window in the vertical and horizontal direction),
suggesting that activity from the earlier window generalizes to later time points corresponding to
the late reference window. We then examined the time windows 1000-1250 ms and 1850-2100
ms which correspond to a 250-ms window after the first and the second ping, respectively. The
decoding classification accuracy after the first ping (labeled as C in Fig. 5A) was negligible
(average classification accuracy = 0.5036, paired t-test against the no-ping condition: t(26) =
0.5027, p = 0.6194); however, the classification accuracy after the second ping (labeled as D)
was significantly higher than that in the absence of a ping stimulus (average classification
accuracy = 0.5183, paired t-test against the no-ping condition: t(26) = 2.6667, p = 0.013).

More importantly, the extent to which the neural patterns are generalized across time at
later time windows (e.g., from reference to pings) was evaluated by observing off-diagonal time

windows in the temporal generalization matrix. Generalized patterns across the off-diagonal
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directions would indeed show whether the biased representation of the reference stimulus exists
in the perceptual memory traces after the initial processing of it. To this aim, we focused on
broad 500-ms time windows corresponding to the reference time windows, but shifted in time to
the onset of the two pings (time windows labeled 1, 2, 3, and 4 in Fig. 5A) to capture the time
windows in which the neural decoding classifier is trained with the neural activity pattern evoked
by the reference numerosity and tested with the pattern evoked by the pings (and vice versa). In
other word, these off-diagonal time windows allowed us to evaluate whether the pattern of serial
dependence effects observed at the time of reference processing generalizes to activity evoked by
the pings. As the temporal generalization matrix (Fig. 5A) is two-dimensional, there are two
directions in which we could look for the generalization of patterns of brain activity: “horizontal”
and “vertical.” Corresponding time windows along the two directions were collapsed together for
statistical analyses.

Comparisons concerning off-diagonal windows (ping versus no ping condition) are
shown in Fig. 5B. As shown, average classification accuracies obtained in the ping condition
were greater than those in the no-ping condition. The inducer-dependent pattern of neural
activation evoked by the reference in the 0-250 ms time window was decodable by the neural
activation pattern evoked by the first ping (paired t-test of ping vs. no-ping; t(26) = 2.10, one-
sided p = 0.0228) and by the pattern evoked by the second ping (t(26) =2.24, p = 0.0171) (see
the time windows labeled 1 and 2 in Fig. 5). The inducer-dependent pattern of neural activation
evoked by the reference in the 250-500 ms time window was decodable by the pattern evoked by
the first ping (t(26) = 2.16, p = 0.0202) and by the pattern evoked by the second ping (t(26) =
2.57, p=0.0081) (see the time windows labeled 3 and 4 in Fig. 5). In other words, the same

differences between the neural activity patterns evoked by the reference under the two inducer
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540  conditions could be used to distinguish the activity patterns evoked by the pings under the two
541  inducer conditions. These results provide evidence for the reactivation of a stored representation
542  of the initial reference stimulus. While these results show a significant difference between ping
543  and no-ping activities, the average classification accuracy in the no-ping condition appeared to
544  be below the theoretical chance level of 50%. Although puzzling at first glance, below-chance
545  classification results have been previously interpreted in terms of dependence from subsample
546  means in the context of cross-validation procedures (Jamalabadi et al., 2016). Namely, in the
547  presence of a small effect size and a relatively small number of observations (trials), pulling out
548 the subset of data used for testing the classifier from the training set during cross-validation

549  could shift the means of the remaining training set to the opposite direction, making the trained
550 classifier to predict the test set to be the other class. This in turn results in a classification error,
551 and hence in below-chance classification accuracy. The possibility of these spurious effect thus
552 makes it very important to use the “baseline” classification accuracy obtained in the no-ping
553  condition to assess the effect provided by the pings, instead of using a fixed 50% chance level.
554  Nevertheless, we performed an additional series of one-sample t-tests against the theoretical
555  chance level of 50%. The results were significant in window 1 (t(26) =2.12, p =0.022) and
556  window 4 (t(26) = 1.79, p = 0.043).

557

558 DISCUSSION

559  In the present study, we investigated the neural signature and dynamics of serial dependence
560 across the time course of perceptual decision making. Specifically, we questioned whether the
561  biased representation of the visual stimulus (due to serial dependence) is transient or whether it is

562  retained in visual memory traces. To do so, we exploited a recently developed technique aimed
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to reactivate hidden memory representations (Wolff et al., 2015; Wolff et al., 2017). Namely, the
neural signal evoked by a brief, high-energy “ping” reflects the signature of underlying
representations currently encoded in the neural network (i.e., for instance stored in working
memory). Using a relatively long time-course in an active task, incorporating this pinging
technique in combination with a neural decoding analysis, we characterized how serial
dependence emerges and evolves throughout the time course of a trial.

Our results first show that the specific paradigm used in this study successfully induces
strong and systematic attractive serial dependence, virtually identical to a previous study
employing a similar paradigm but in a faster rate of stimulus presentation (Fornaciai & Park,
2018b). Specifically, we observed a relative under- or over-estimation of the reference stimulus
as a function of the inducer numerosity, in line with the attractive effect observed in previous
studies (Corbett et al., 2011; Cicchini et al., 2014; Fornaciai & Park, 2018a; Fornaciai & Park,
2018b; Fornaciai & Park, 2019a; Fornaciai & Park, 2019b).

As in the behavioral results, the ERPs evoked by the reference stimulus were modulated
by the numerosity of the preceding stimulus, showing a signature of serial dependence consistent
with our previous study (Fornaciai & Park, 2018a). Such a signature likely reflects a distorted
encoding of stimulus numerosity according to the numerosity of the preceding inducer stimulus,
with a clear attractive pattern — i.e., the amplitude of brain signals evoked by the reference is
higher (more positive) following an inducer containing a larger numerosity, compared to an
inducer containing fewer items. Such an effect peaks at around 200-250 ms, consistently with
recent studies investigating the dynamics of numerosity processing (i.e., Hyde & Spelke, 2009;
Park et al., 2016; Fornaciai et al., 2017; Fornaciai & Park, 2018c), and with the timing of serial

dependence in our previous study (Fornaciai & Park, 2018a). ERPs evoked by the two pings, on
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the other hand, show little or no effect (i.e., did not reliably distinguish the two inducer
conditions), despite the large visually evoked potentials induced by the bright flashes (Fig.
4B&C).

To test our central hypothesis concerning the temporal evolution of neural representation
of these numerosity stimuli, we employed a multivariate neural decoding analysis, which has
previously proven to be sensitive in distinguishing subtle experimental manipulations (Fornaciai
& Park, 2018a; Fornaciai & Park, 2018c). Such an analysis allows to assess the pattern of brain
activity corresponding to a specific stimulation condition, and how such a pattern can
successfully predict the stimulus presented in another specific condition. Looking at a brief
epoch around the onset of the reference stimulus (Fig. 5A, time window A and B), it is clear that
a signature of serial dependence emerges very early after stimulus onset, consistent with previous
results (Fornaciai & Park, 2018a). Comparing the present results with our previous study,
however, the decoding accuracy remains high only at relatively early latencies after the reference
onset (0-250 ms), while our previous data showed that the effect is amplified at later latencies.
Instead, in the current data, there was an increase in decoding accuracy in the off-diagonal
direction (see the area simultaneously adjacent to windows A and B in Fig. 5A), illustrating the
generalization of the classification across time points close to the reference representation. This
result suggests that the pattern of activity corresponding to the initial (0-250 ms) processing stage
(and likely the same neural generator) remains sustained at subsequent latencies up until 500 ms
after stimulus onset. In other words, while in our previous work (Fornaciai & Park, 2018a) we
observed a series of two potentially distinct processing stages rapidly unfolding after stimulus
presentation (0-200 and 200-450 ms), here we observed just one of them spanning the first 250

ms and then lingering up until 500 ms. Such a difference between the current and the previous
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results may be due to the large differences in the paradigms employed. Indeed, the two
paradigms differed in terms of stimulus timing (much longer interstimulus interval in the present
work), task (oddball detection vs. numerosity discrimination), and the attended feature (color of
the stimuli in the oddball task vs. numerosity in the present task), which by themselves can
modulate the brain responses recorded with EEG (e.g., Striiber & Polich, 2002; Nakata et al.,
2005; Potts, 2004; Senkowski & Herrmann, 2002; Zani & Proverbio, 1995; Koivisto et al., 2009;
Zhang & Luck, 2009). In particular, a longer intestimulus interval can significantly delay evoked
responses linked to stimulus processing (Nakata et al., 2005), or even affect the pattern of
responses evoked by a stimulus (Striiber & Polich, 2002). Although previous results on the effect
of interstimulus interval concern very different stimuli and tasks, some of the differences may be
driven by the much slower paradigm employed in the present study as opposed to the rapid
stimulus presentation in Fornaciai & Park (2018a). In other words, the slower presentation rate in
the current paradigm may have made activity at subsequent processing stages (for instance
related to the reactivation of working memory traces in order to perform the task) to be delayed
at later latencies closer to the presentation of the second stimulus. However, due to the large
differences in both the stimulus dynamics and the task used, it is difficult to precisely pinpoint
the reason for such different results.

Similarly to the ERP analysis, the first ping was ineffective in distinguishing the two
inducer conditions (Fig. 5A, time window C). This lack of significant decoding along the
diagonal shows that, at least for the first ping, the stimulation did not evoke any distinctive
pattern of activity carrying the serial dependence effect. In contrast, the second ping did result in
successful decoding (Fig. 5A, at time window D), suggesting that the pattern of activity evoked

by this second ping carries information about the reference affected by the serial dependence
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effect. However, the pattern of effects seems to spread across a relatively broad area around the
ping onset. The fact that we observe a signature of serial dependence only at the time of the
second (not the first) ping and with activity spread around this presentation time can be
interpreted in several ways. First, predictability and expectations concerning the timing of the
second ping and the end of the trial may explain the spread of the effect to time points even prior
to the ping presentation and a stronger effect of the second ping. Indeed, the timing of the pings
was consistent across trials, which made it possible to predict the presentation of the second ping
after seeing the first one; in turn, expectations may have caused a sharpening of the pattern of
brain activity (e.g., see De Lange et al., 2018 for a review), making the underlying serial
dependence effect more easily decodable. Second, the effect emerging exclusively at the second
ping may reflect the increase of the serial dependence effect over time observed in previous
studies (Fritsche et al., 2017; Bliss et al., 2018), although the magnitude of the effect in our
behavioral results is comparable to previous results employing much shorter presentation times
(Fornaciai & Park, 2018b). Additionally, increased attention towards the end of the trial may
have played a role in amplifying the responses to the second ping (e.g., Miiller et al., 2006),
resulting in stronger signals related to the serial dependence effect. Finally, considering that the
second ping is closer to the end of the trial, neural activity evoked by the second ping may reflect
a decision-stage representation (i.e., the activity of perceptual decision circuits) in line with a
recently proposed framework of serial dependence (Pascucci et al., 2019). According to this
proposition, serial dependence would emerge because of “perceptual decision” or “read-out”
templates persisting from the processing of past stimuli to the representation of current ones.
Such decision templates are for instance represented by the set of read-out weights of low-level

activity at a higher-order decision stage, with the lingering template from a previous stimulus
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biasing the representation of a current one. In the context of the present results, the activity found
at the time of the second ping may thus reflect activity arising at such perceptual decision stage,
related to the reactivated decision template. Following the previous points, the fact that we
observe this effect only at the time of the second ping may be related to predictions and
expectations about the timing of the incoming probe stimulus. Indeed, the predictability of the
stimulus timing may have induced an anticipated activation of the perceptual decision circuits, in
order to speed up and facilitate the representation of the incoming probe stimulus, in line with
the idea that expectations can speed up perception (e.g., Pinto et al., 2015).

The crucial point for testing our main hypothesis, however, concerns the reactivation of
the reference representation induced by the pings. Such a reactivation has to be searched in the
off-diagonal direction in the temporal generalization matrix (Fig. 5SA). Our results show that the
pings successfully reactivate the reference representation, carrying the signature of serial
dependence. Interestingly, significant effects emerge not only at off-diagonal times
corresponding to the early window of the reference stimulus (off-diagonal windows 1 and 2,
which are aligned with the early window A in Fig. 5A), but also at times corresponding to the
later window (off-diagonal windows 3 and 4, which are aligned with the early window B in Fig.
5A), where there is actually little or no effect at the time of reference processing along the
diagonal. Even if activity in the late window after reference onset provides a relatively poor
classification of inducer conditions, the effect may be amplified at later latencies, especially
when such a pattern gets reactivated by the pings.

In general, however, caution is in order when interpreting these results, as our main
decoding analysis shows relatively low classification accuracies, especially at off-diagonal

windows corresponding to activity reactivated by the pings. Considering the nature of the effect
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tested and the specific analysis used, such low classification accuracies are however not
surprising. First we need to consider that serial dependence is a relatively subtle behavioral
effect, causing in our specific case an under-/over-estimation of about 1 dot in a dot-array of 16
dots. It is reasonable to hypothesize that any difference at the neural level would be similarly if
not more subtle. Moreover, we used large temporal windows to average classification accuracies
at different time points, especially in the off-diagonal direction, which may have diluted the
effect. Future studies with more specific predictions may achieve better results by using narrower
windows. Nevertheless, at least in the context of the later windows corresponding to the pings,
the no-ping condition provides a control by showing that in the absence of these stimuli the serial
dependence effect is not decodable from neural signals at late latencies, thus suggesting that the
effect evoked by the pings is genuine rather than an artifact.

In summary, the current findings suggest that there are multiple patterns of activity
involved in the serial dependence effect. First, consistently with previous reports (Fornaciai &
Park, 2018a), the effect of serial dependence develops during a relatively short interval
immediately after the onset of the stimulus, suggesting that may arise directly at the earliest level
of perception. Regarding this point, however, the fact that the decoding analysis does not provide
information about the direction of the effect (i.e., attractive versus repulsive), leaves open the
possibility that the very early activity may be driven by other sensory/perceptual processes, like
adaptation. Adaptation resulting from very short visual stimulation has been indeed observed
when serial dependence is suppressed by means of visual backward masking (Fornaciai & Park,
2019a). However, the fact that ERP results show an attractive effect within the early window of
activity (around 200 ms after stimulus onset) suggests that the decoding results within this same

window may similarly reflect an attractive effect.
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After the relatively early processing, then, the effect is evident in possibly two distinct
processes. On the one hand, the off-diagonal pattern of activity indicates that—borrowing the
interpretation of King & Dehaene (2014)—the same neural generators yield the pattern of
activation for the initial biased representation and the pattern of activation evoked by the pings.
One parsimonious interpretation is that the exact same trace of the initial biased representation
gets stored throughout a trial (and is reactivated by the pings later). On the other hand, the
diagonal pattern of activity especially around and after the second ping indicates—again
according to King & Dehaene (2014)—a distinct set of neural generators decoding the two
inducer conditions. The functional role of this second mechanism remains to be studied, as we
can only speculate as discussed above. Nevertheless, both diagonal and off-diagonal patterns
found in the neural decoding analyses lend support for at least two distinct processing stages
involved in the representation of serial dependence in the time course of a trial, which serves as

an important starting point for future research.

CONCLUSION

The present results advance our knowledge of the neural underpinnings of the serial dependence
effect, by showing the dynamics of its neural signature over a relatively long temporal interval.
We show that serial dependence starts very early after stimulus onset, similarly to what has been
demonstrated before with a passive-viewing paradigm. We further show that the representation
of a stimulus affected by serial dependence can be reactivated by task-irrelevant pings. The
effect of pinging memory has two results: on the one hand, it reactivates a memory
representation that remains similar to the stimulus representation generated immediately after its

onset. This suggests that once the bias is induced during perceptual processing, a trace of the
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biased stimulus representation is stored throughout a relatively long epoch. Second, it highlights
a different, later processing stage, which likely reflects the involvement of possibly a different
neural generator yielding a distinctive pattern of activity, but still carrying the signature of serial
dependence. The present results thus show that serial dependence directly alters the perceptual

representation of a stimulus, and propagates throughout subsequent processing stages.
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