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ABSTRACT 24 

Serial dependence – an attractive perceptual bias whereby a current stimulus is perceived to be 25 

similar to previously seen ones – is thought to represent the process that facilitates the stability 26 

and continuity of visual perception. Recent results demonstrate a neural signature of serial 27 

dependence in numerosity perception, emerging very early in the time course during perceptual 28 

processing. However, whether such a perceptual signature is retained after the initial processing 29 

remains unknown. Here, we address this question by investigating the neural dynamics of serial 30 

dependence using a recently developed technique that allowed a reactivation of hidden memory 31 

states. Participants performed a numerosity discrimination task during EEG recording, with task-32 

relevant dot-array stimuli preceded by a task-irrelevant stimulus inducing serial dependence. 33 

Importantly, the neural network storing the representation of the numerosity stimulus was 34 

perturbed (or pinged) so that the hidden states of that representation can be explicitly quantified. 35 

The results first show that a neural signature of serial dependence emerges early in the brain 36 

signals, starting soon after stimulus onset. Critical to the central question, the pings at a later 37 

latency could successfully reactivate the biased representation of the initial stimulus carrying the 38 

signature of serial dependence. These results provide one of the first pieces of empirical evidence 39 

that the biased neural representation of a stimulus initially induced by serial dependence is 40 

preserved throughout a relatively long period. 41 

 42 
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INTRODUCTION 47 

In perception, the incoming sensory information is noisy, and biological sensors like the eye are 48 

highly unstable (i.e., due to frequent eye and head movements). Yet, the brain provides us with a 49 

stable and seamless conscious experience of the visual world, and how the brain achieves this 50 

stability remains an open question. Recent studies suggest that one way to stabilize perception is 51 

to integrate stimulus information over time, in order to smooth out noise from neural signals 52 

(Fischer & Whitney, 2014; Burr & Cicchini, 2014). This operation may indeed represent a 53 

successful strategy (Burr & Cicchini, 2014; Cicchini et al., 2018), due to the stability of our 54 

visual environment over short timescales. However, in the experimental context where visual 55 

stimuli can be arbitrarily modulated, such operation predicts systematic biases in perceptual 56 

tasks, with current stimuli appearing more similar to previous ones – a bias that is commonly 57 

referred to as attractive serial dependence. 58 

A growing literature outlines several characteristics of serial dependencies in visual 59 

perception. First, such an attractive bias seems to generalize across many and very different 60 

visual features, starting from basic attributes such as orientation (Fischer & Whitney, 2014; 61 

Cicchini et al., 2017; Fritsche et al., 2017), position (Manassi et al., 2018), motion (Alais et al., 62 

2017), or numerosity (Corbett et al., 2011; Cicchini et al., 2014; Fornaciai & Park, 2018a; 63 

Fornaciai & Park, 2018b; Fornaciai & Park, 2019a; Fornaciai & Park, 2019b), to more complex 64 

attributes such as the ensemble representation of a visual scene (Manassi et al., 2017), the 65 

perception of visual variance (Suárez-Pinilla et al., 2018), or face perception (Liberman et al., 66 

2014; Taubert et al., 2016; Xia et al., 2016; Liberman et al., 2018). This suggests that serial 67 

dependence represents a global brain process affecting all aspects of perception. Second, serial 68 

dependencies are dependent on attention, mostly occurring when the object (Fischer & Whitney, 69 
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2014) or at least its spatial position (Fornaciai & Park, 2018a; Fornaciai & Park, 2018b) is 70 

attended by participants and/or relevant for a task. Finally, although the nature of serial 71 

dependence has been subject to debate (e.g., Fritsche et al., 2017; Alais et al., 2017; Bliss et al., 72 

2017), evidence suggests that it is a bias arising during perceptual processing, and not at later 73 

working memory encoding or decision stages (Cicchini et al., 2017; Fornaciai & Park, 2018a; 74 

Fornaciai & Park, 2018b; Manassi et al., 2018; Pascucci et al., 2019). However, this does not 75 

exclude the possibility that the initial perceptual bias interacts with subsequent stages and 76 

potentially gets amplified (Fritsche et al., 2017; Cicchini et al., 2017; Fornaciai & Park, 2018a). 77 

While the behavioral signature of serial dependence has been thoroughly investigated, 78 

much less is known about the neural mechanisms underlying the attractive bias. Results using 79 

functional magnetic resonance imaging (fMRI) have shown that, in the context of orientation 80 

perception, the bias arises in the primary visual cortex (St. John-Saaltink et al., 2017) – 81 

potentially implicating a very early sensory/perceptual mechanism, although due to the nature of 82 

the fMRI technique such an activity in early visual cortex may alternatively reflect re-entrant 83 

signals. Furthermore, in a previous study from our group using electroencephalography (EEG) 84 

(Fornaciai & Park, 2018a), we have demonstrated that a neural signature of serial dependence – 85 

in the context of numerosity perception – emerges very early (~50 ms) after stimulus onset, thus 86 

supporting the idea of a bias operating on the initial perceptual representation of the stimulus. 87 

Moreover, in that study, participants passively watched a sequence of dot arrays while paying no 88 

attention to their numerosity, only making a response to occasional oddball stimuli, which 89 

provides strong evidence that serial dependence occurs independently from a decision process. 90 

However, the rapid nature of such a paradigm did not allow us to track how the biased neural 91 

representation of numerosity evolves over time. Indeed, there is evidence that the behavioral 92 
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effect of serial dependence seems to increase over time, if a forced pause is introduced between 93 

the stimulus and response (Fritsche et al., 2017; Bliss et al., 2017). Such results were interpreted 94 

as an increasingly distorted stimulus representation during working memory storage, although it 95 

is not clear what process may be involved in that effect. 96 

Here, we aim to investigate how a visual representation affected by serial dependence 97 

evolves over time during an active perceptual decision-making task. More specifically, we tested 98 

whether or not the biasedness of a representation induced by the recent history of stimulation is 99 

retained throughout the time course of a trial. Participants performed a numerosity discrimination 100 

task during EEG recording, judging which stimulus contains more items between a “reference” 101 

and a “probe” dot-array. To induce serial dependence, a task-irrelevant “inducer” stimulus was 102 

presented before the task relevant ones, following the procedure used in previous studies (e.g., 103 

Fornaciai & Park, 2018a; Fornaciai & Park, 2018b). Additionally, we took advantage of the 104 

recent findings which demonstrated that activating a neuronal network by presenting brief, high-105 

energy neutral stimuli evokes a brain signal carrying the signature of information stored in such a 106 

network (Wolff et al., 2015; Wolff et al., 2017). Following this technique, we presented two 107 

bright flashes between the reference and probe, serving as “pings,” to reactivate the working 108 

memory representation of the reference stimulus affected by serial dependence. We reasoned that 109 

activity evoked by pings should reflect a stimulus representation carrying the signature of serial 110 

dependence. In other words, the activity evoked by the pings should reflect the current content of 111 

visual working/short-term memory (Wolff et al., 2015; Wolff et al., 2017), including the stored 112 

perceptual representation of the reference stimulus biased by serial dependence. We complement 113 

this pinging approach with a multivariate neural decoding technique to assess how patterns of 114 

brain activity evolve over time. 115 
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Our design and approach entertained the following hypothesis. If memory traces of the 116 

visual representation biased by serial dependence are preserved after the initial perceptual 117 

processing stage, then the neural pattern associated with this initial visual representation should 118 

be detectable (or decodable) at a later time point, when this trace of representation is reactivated 119 

by the pings. To preview, our results first show that serial dependence starts very early after 120 

stimulus onset, in line with previous findings and suggesting that the effect starts at the early 121 

level of perceptual processing. Second, the results show that the neural representation associated 122 

with this initial perceptual processing, when pinged, is detectable at a later time point, providing 123 

evidence that the biased representation remains stored throughout a relatively long retention 124 

period. 125 

 126 

METHODS 127 

Participants 128 

A total of 35 participants took part in the study. Participation in the study was rewarded with 129 

course credits or monetary compensation (10 USD/hour). All participants had normal or 130 

corrected-to-normal vision and were naïve to the purpose of the study. All participants signed an 131 

informed consent form before participation in the study. Experimental procedures were approved 132 

by the University of Massachusetts Internal Review Board, and are in line with the Declaration 133 

of Helsinki. A total of 8 subjects was excluded from data analysis (see below Exclusion criteria 134 

paragraph below), leaving 27 participants in the final group (20 females; mean age (± SD) = 22.5 135 

± 3.6 years). 136 

 137 

Apparatus and Stimuli 138 
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Stimuli were generated using the Psychophysics Toolbox (Pelli, 1997; Kleiner et al., 2007), for 139 

Matlab (version r2013b; The Mathworks, Inc.), and were presented on an LCD screen located at 140 

approximately 90 cm from the participant. The screen encompassed approximately 34×19 141 

degrees at the viewing distance of 90 cm, and was running at 144 Hz. 142 

 143 

Stimuli were dot-arrays, including black and white dots (50/50% in most of the cases; in case of 144 

odd numerosities the color of the exceeding dot was randomly assigned) presented on a gray 145 

background. A mixture of black and white dots was employed in order to keep the global 146 

luminance across the array approximately similar to the luminance of the gray background. 147 

Three different dot-array stimuli were presented on each trial in the main conditions of the study 148 

(in this order): a task-irrelevant “inducer” comprising either 11 or 23 dots, a reference stimulus 149 

always comprising 16 dots, and a probe stimulus with a variable numerosity from trial to trial (8, 150 

10, 13, 16, 20, 25, or 32 dots). The arrays were built in order to span similar ranges in three 151 

orthogonal dimensions: numerosity, size, and spacing, following the design previously used by 152 

DeWind et al. (2015) and Park et al. (2016). As the purpose of the study is to investigate serial 153 

dependence in numerosity perception, and since the effect of other non-numerical dimensions 154 

has been addressed elsewhere (Park et al., 2016; Fornaciai & Park, 2017; Fornaciai et al., 2017; 155 

Fornaciai et al., 2018), the different levels of non-numerical dimensions were collapsed together 156 

during data analysis. See DeWind et al. (2015) and Park et al. (2016) for more details about this 157 

stimulus construction procedure.  158 

Regarding the stimulus parameters, the minimum individual area of the dots was set to 159 

113 pixel2, equal to a diameter of 0.21 deg (12 pixel); the maximum value was instead 452 160 

pixel2, corresponding to a diameter of 0.42 deg (24 pixel). Regarding the field area, which refers 161 
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to the virtual circular area within which the dots were drawn, the minimum value was set to 162 

70,685 pixel2, corresponding to a diameter of 5.16 deg (300 pixel), while the maximum value 163 

was 223,960 pixel2, equal to a diameter of 10.32 deg (600 pixel).  164 

 165 

The “ping” stimulus (see Procedure below) that was flashed during the interval between the 166 

reference and probe stimulus was a white circle covering an area equal to the area of the 167 

preceding reference stimulus. 168 

 169 

  170 

FIGURE 1 – Experimental procedure. (A) Presentation procedure in the “no-ping trials.” While 171 

participants kept their gaze on a central fixation cross, a sequence of three dot arrays was 172 
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presented at the center of the screen. First, a task-irrelevant inducer stimulus (11 or 23 dots) was 173 

presented, followed by the reference stimulus (16 dots) after 750 ms, and then a probe stimulus 174 

(8-32 dots) after 2,450 ms. All the stimuli were presented on the screen for 250 ms each. At the 175 

end of the trial, participants were instructed to report whether the second (reference) or third 176 

(probe) array in the sequence contained more dots, by pressing the appropriate key on a 177 

standard keyboard. The period during which a response was accepted was marked by the 178 

fixation cross turning red, and was limited to 1,250 ms after probe onset, and participants were 179 

told to respond as fast as they can. After the end of the response period, the fixation cross 180 

returned black, and the next trial started after 1,500 ms. Before starting the experiment, 181 

participants were told that the first stimulus was not relevant for the task but anyway to pay 182 

attention to the entire sequence of the stimuli. (B) Presentation procedure in the “ping trials.” 183 

The sequence of inducer, reference, and probe dot arrays was identical to the no-ping trials, with 184 

the exception that two bright white circles were presented on the screen (duration = 100 ms) 185 

between the reference and probe. Finally, on some occasions only the inducer stimulus was 186 

presented on the screen (“catch” trials), and the fixation cross turned orange right after it (not 187 

shown in the figure). In those cases, participants were instructed to press the spacebar as fast as 188 

they can. Note that the stimuli depicted in the figure are not in scale. The timing measures 189 

reported in the figure refer to the inter-stimulus interval between different stimuli. 190 

 191 

Procedure 192 

The experiment took place in a quiet and dimly illuminated room. Throughout each block, three 193 

trial types were intermixed: “no-ping” trials, “ping” trials, and “catch” trials. The sequence of 194 

stimuli presented in the no-ping and ping trials is shown in Fig. 1. In all cases, participants 195 
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fixated on a central fixation point, while the sequence of stimuli was presented at the center of 196 

the screen. In the no-ping trials (Fig. 1A), a sequence of three stimuli was presented on the 197 

screen. First, a task-irrelevant inducer stimulus (11 or 23 dots), followed by the reference 198 

stimulus (16 dots) after 750 ms, and then a probe stimulus (8-32 dots) after 2,450 ms. All the 199 

stimuli were presented on the screen for 250 ms each. At the end of the trial, participants were 200 

instructed to report whether the reference or the probe stimulus contained more dots. Response 201 

time was limited to 1,250 ms after probe onset and was marked by the fixation cross turning red. 202 

Participants were instructed to respond as fast as they could. After the end of the response period, 203 

the fixation cross returned black, and the next trial started after 1,500 ms.   204 

In the ping trials, the sequence of inducer, reference, and probe stimuli was identical to 205 

the no-ping trials. However, two bright white circles were additionally presented on the screen 206 

(duration = 100 ms) between the reference and probe. In those cases, the sequence was as 207 

follows. First, the inducer was presented on the screen, followed by the reference stimulus after 208 

750 ms. Then, the reference stimulus was followed by a sequence of two white circle (ping) 209 

stimuli, and finally the probe stimulus. The inter-stimulus interval between different stimuli was 210 

in all cases 750 ms (Fig. 1B). To avoid presenting always similar sequences of stimuli, we 211 

included some catch trials intermixed with the other types of trial.  212 

In the catch trials, only the inducer stimulus was presented on the screen, and the fixation 213 

cross turned orange right after it. In those cases, participants were instructed to press a different 214 

button as fast as they could. Doing so, participants thus had to pay attention to the inducer in 215 

order to promptly provide a response in the case of a catch trial. Overall, the study comprised 10 216 

blocks of trials. Each block included 24 no-ping trials, 24 ping trials, and 6 catch trials, randomly 217 



 11 

ordered. Participants were free to take breaks between different blocks, and the procedure took 218 

about one hour. 219 

 220 

Electrophysiological recording and analysis 221 

EEG recording. While participants performed the task described above, the EEG was 222 

continuously recorded for the entire duration of the experiment. To this aim, we used a 64-223 

channel, extended coverage, triangulated equidistance cap (M10, EasyCap, GmbH), with a 224 

sampling rate of 1000 Hz (actiCHAmp, Brain Products, GmbH). During the experiment, the 225 

channels were referenced to the vertex (Cz). The electro-oculogram (EOG) was monitored by 226 

means of electrodes positioned below the left eye and lateral to the left and right canthi, in order 227 

to monitor artifacts due to blinks or eye movements, and exclude EEG epochs contaminated by 228 

artifactual activity. Across all the channels, impedance was usually kept below 15 kΩ, but on 229 

some occasions impedances up to 35 kΩ were tolerated. 230 

Preprocessing and ERPs. EEG data were analyzed offline using Matlab (version R2015b, 231 

The Mathworks, Inc.), exploiting the functions provided by the EEGLAB package (Delorme & 232 

Makeig, 2004) and the ERPLAB toolbox (Lopez-Calderon & Luck, 2014). Continuous data were 233 

first visually inspected to remove noisy segments, before proceeding with preprocessing. During 234 

the preprocessing, the EEG signals were high-pass filtered (0.1 Hz) and were re-referenced to the 235 

average value of all the 64 channels. The continuous EEG data were then segmented into epochs 236 

from -300 ms before to 2700 ms after stimulus onset time-locked to the onset of the reference 237 

stimulus, with a baseline correction using the pre-stimulus interval. We then performed an 238 

independent component analysis (ICA), in order to remove eye-movement and other muscular 239 

artifacts. After ICA, we further excluded trials containing eye-blink artifacts or other large 240 
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artifacts by applying the step-like artifact rejection tool provided by EEGLAB. Trials were 241 

rejected whenever activity from the eye-channel and a set of posterior channels of potential 242 

interest (i.e., based on previous studies; Iz, O9’, O10’ Oz, O1’, O2’, PO7’ PO8’; Fornaciai & 243 

Park, 2017; Fornaciai & Park, 2018a) exceeded a threshold equal to 30 μV (in a time window 244 

spanning 400 ms, with 20 ms steps). This procedure led to an average (± SD) rejection rate of 245 

8.55% ± 10.94%. To create event-related potentials (ERPs), the epochs were selectively 246 

averaged, and low-pass filtered (30 Hz). Finally, ERPs were smoothed with a 100-ms sliding 247 

window in order to remove alpha noise, prior to computing the grand average.  248 

Time window of interest selection for the ERP analysis. Time windows of interest for the 249 

ERP analyses and statistical tests were chosen based on previous results. Previous ERP studies of 250 

numerosity perception have shown that the brain waves around 150-200 ms after stimulus onset 251 

are most sensitive to numerosity, and to modulations affecting perceived numerosity (Park et al., 252 

2016; Fornaciai et al., 2017; Fornaciai & Park, 2018c). Furthermore, previous results also show 253 

that a signature of serial dependence in numerosity perception emerges from ERPs around 200 254 

ms. Thus, when assessing the serial dependence effect on ERPs evoked by the reference 255 

stimulus, our statistical analysis focused on a broad 100-ms time window centered at 200 ms 256 

after reference onset. Unlike the ERPs evoked by the reference stimulus, we did not have 257 

specific predictions concerning precisely when the ERPs evoked by the neutral “ping” stimulus 258 

should carry information about the representation in working memory (Wolff et al., 2017). Thus, 259 

the time window of interest was chosen as a 100-ms window around the peak of the collapsed 260 

ERP evoked by the pings including the two inducer conditions, separately for the first and 261 

second ping. Single-subject ERPs were then averaged across these time windows, separately for 262 

the two inducer conditions, and tested with a paired t-test. 263 
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Multivariate pattern analysis in the time domain. To achieve a better description of the 264 

temporal dynamics of serial dependence during the numerosity discrimination task, we applied a 265 

multivariate pattern analysis in the time domain method (King & Dehaene, 2014), using the 266 

Neural Decoding Toolbox (Meyers, 2013). This method allows us to evaluate how neural 267 

activity patterns coming from multiple sensors across the scalp differ between different 268 

experimental conditions and combinations of stimuli, and how such patterns of activity 269 

generalize across time. In other words, we used this analysis to assess how serial dependence 270 

affects the pattern of brain activity evoked by the reference (or the ping) stimulus as a function of 271 

the preceding inducer stimulus, and whether and to what extent the serial dependence effect 272 

changes over time. This neural decoding analysis involved the training of a support vector 273 

machine (SVM) classifier on a subset of the data corresponding to specific conditions, and made 274 

predictions about which stimulus was presented in the remaining subset of data and across the 275 

entire time-course of activity. Conditions were based on the inducer stimulus presented on each 276 

trial, so that the activity to be decoded always corresponded to the reference, but with trials 277 

divided as a function of the inducer numerosity.  278 

Using this neural decoding approach, we thus evaluated whether and to what extent the 279 

pattern of brain activity evoked by the reference stimulus differs as a function of the inducer 280 

numerosity, and whether the activity evoked by the ping stimulus carries the signature of the 281 

biased reference representation. Brain responses were evaluated across the full epoch spanning 282 

from -300 to 2700 ms. Different comparisons were tested individually for each participant, 283 

training the SVM classifier with the responses (i.e., activity recorded at all the channels with the 284 

exception of the EOG channels) to the two class of stimuli at hand (i.e., trials divided as a 285 

function of inducer numerosity) and testing it on another subset of trials not used in the training 286 
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phase (using a leave-one-trial-out cross validation). To optimize the analysis, we followed a 287 

series of practices suggested by Grootswagers et al. (2017), to account for high noise in single 288 

trial EEG data and improve the decoding procedure. First, we created “pseudo trials” taking the 289 

average of randomly chosen groups of 12 trials, in order to improve signal to noise ratio. Second, 290 

to avoid overfitting, the number of features (i.e., channels) included in the analysis was limited to 291 

the five most significant ones, determined using a univariate ANOVA. Moreover, we averaged 292 

activity across large time windows to smooth out noise such as alpha oscillations (i.e., 100-ms 293 

time windows with 25 ms step). Finally, the decoding procedure was repeated 30 times for each 294 

participant using different subsets of data for training and testing (as well as different groups of 295 

trials to generate pseudo trials), and the average of the 30 runs was taken as the final estimate of 296 

the classification performance. The outcome of the decoding analysis was a temporal 297 

generalization plot showing the performance of the classifier at each time point, with 298 

classification accuracy (CA) reflecting how well the pattern classifier can discriminate two 299 

conditions (see Fig. 5A). Namely, activity along the diagonal of the temporal generalization 300 

matrix reflects the classification accuracy obtained by training and testing the classifier at the 301 

same time point, while off-diagonal decoding reflects the classification accuracy obtained by 302 

performing training at one time point and testing at all the different time points. This latter 303 

procedure allows to assess whether and to what extent a specific pattern of brain activity 304 

generalizes to activity at different time points (King & Dehaene, 2014). 305 

Time window of interest selection for the multivariate pattern analysis. Classification 306 

accuracies obtained from the multivariate pattern analysis were tested across several time 307 

windows of interest in order to assess the effects of inducer numerosity on the reference and ping 308 

stimuli. The analysis in this context was divided in two parts. The first part concerns the patterns 309 
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of activity along the diagonal of the temporal generalization matrix, where classification is 310 

performed by training and testing the classifier at the same time point; the second part concerns 311 

off-diagonal patterns of activity, revealing whether and to what extent a specific pattern 312 

generalizes over different times. This latter analysis, involving training and testing the classifier 313 

at different time points, allows to assess whether and to what extent the specific pattern of brain 314 

responses at one time point generalizes to different time points. This thus represents the crucial 315 

part of the analysis aimed to test our main hypothesis, concerning the stability over time of the 316 

reference representation biased by serial dependence. Time windows of interest corresponding to 317 

times around the reference onset were chosen according to our previous study (Fornaciai & Park, 318 

2018a). Namely, two time windows were selected, spanning 0-250 ms and 250-500 ms after 319 

reference onset. Time windows along the diagonal corresponding to the ping onsets were chosen 320 

to span a similar extent compared to the reference time windows (250 ms), starting from the ping 321 

onset. Off-diagonal time windows were chosen to span a broad temporal extent in order to 322 

capture how the reference representation gets reactivated by the pings. To this aim, we chose 8 323 

time windows (4 along the vertical dimension, and 4 along the horizontal dimension). Time 324 

windows chosen in this way spanned 0-250 and 250-500 ms corresponding to the reference time 325 

windows and from the onset to 500 ms after each of the two ping onsets. Corresponding time 326 

windows along the two off-diagonal directions were then collapsed together leaving a total of 4 327 

windows of interest. A depiction of all the time windows used for assessing the classification 328 

performance is reported in Fig. 5A, with windows along the diagonal identified by letters (A-D), 329 

and off-diagonal windows identified by numbers (1-4). Classification accuracy across these time 330 

windows was averaged separately for each participant. For the two early time windows 331 

corresponding to the reference (time windows A and B in Fig. 5A), the effect of inducer was 332 
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tested using one-sample t-tests against chance level performance (50%). In the later time 333 

windows, we used paired t-tests comparing the classification accuracy in the ping condition 334 

against the classification accuracy in the no-ping condition. Indeed, the effect of inducer at later 335 

time windows was expected only in the presence of pings, so that the no-ping condition served as 336 

a baseline for the ping condition. 337 

 338 

Behavioral data analysis 339 

Numerosity discrimination performance across ping and no-ping trials was analyzed separately 340 

for each subject, assessing the serial dependence effect by binning trials according to the inducer 341 

numerosity. In order to obtain a measure of accuracy and precision in the task, we fitted a 342 

Cumulative Gaussian curve to the distribution of response probabilities as function of probe 343 

numerosity, according to the Maximum Likelihood method (Watson, 1979). The point of 344 

subjective equality (PSE), which corresponds to the probe numerosity perceptually matching 345 

(i.e., indistinguishable from) the reference numerosity, was taken as a measure of accuracy in the 346 

task and of the reference perceived numerosity. The PSE was defined as the median of the best-347 

fitting cumulative Gaussian curve to all the data of each participant in each condition. To assess 348 

the level of performance, in order to exclude subjects showing insufficient performance, we used 349 

the just-noticeable difference (JND), which was calculated as the difference in numerosity 350 

between chance level (50%) responses and 75% “probe more numerous” responses. A finger 351 

error rate correction (5%) was applied to account for lapses of attention or random response 352 

errors independent from the stimuli (Wichmann & Hill, 2001). To assess serial dependence 353 

effects at the behavioral level, a paired t-test was performed comparing the distribution of PSEs 354 

corresponding to different inducer numerosity conditions, separately for no-ping and ping trials 355 
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in order to assess whether presenting the pings affected the effect. To compare the two 356 

conditions, we calculated a serial dependence effect index, which represent the difference in PSE 357 

between the 23-dot inducer condition and the 11-dot inducer condition. The distributions of 358 

serial dependence effect indexes across the two conditions was compared using a paired t-test. 359 

 360 

Exclusion criteria 361 

Due to the nature of the effect investigated in this work, we thoroughly checked both the 362 

behavioral and EEG data in order to exclude participants showing an insufficient level of 363 

performance and/or EEG data of insufficient quality. To this aim we excluded participants 364 

showing either very high JND in the behavioral task (JND > 10) or other indications that they 365 

may have not understood or complied with the task (i.e., opposite responses). Regarding the EEG 366 

data, participants were excluded during preprocessing based on either a too large number of 367 

rejected trials due to artifact (> 45%) or based on visual inspection of continuous data and/or 368 

ICA components (i.e., large portions of noisy data even after ICA correction, or too many large 369 

ICA components likely not related to brain signals). A total of 7 participants was excluded before 370 

data analysis based on behavioral (4) and/or EEG (3) data quality. One more participant was 371 

excluded after data analysis due to the failure of the decoding procedure, which showed 372 

systematically below-chance decoding accuracy in the majority of the tested time points.  373 

 374 

RESULTS 375 

Behavioral results 376 

 377 
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 378 

FIGURE 2 – Behavioral results. (A) Average PSEs in the two inducer conditions in the no-ping 379 

trials. (B) Average PSEs in the ping trials. In both cases, strong and significant attractive serial 380 

dependence effects were observed. ** p < 0.01, *** p < 0.001. Error bars are SEM. 381 

 382 

First, we analyzed the behavioral results to confirm that our specific design successfully induced 383 

attractive serial dependence biases, separately for the no-ping and ping condition. The reason to 384 

separate the two conditions is to assess whether reactivating the reference representation affected 385 

by serial dependence could modulate behavior, increasing or decreasing the effect. The 386 

behavioral results are shown in Fig. 2. As shown in the figure, we found strong attractive serial 387 

dependence effects in both conditions. Namely, the perceived numerosity of a 16-dot reference 388 

appeared to be significantly underestimated when it was preceded by an 11-dot inducer, 389 

compared to when it was preceded by a 23-dot inducer (t(26) = 3.3266, p = 0.0026, d = 0.64; 390 

t(26) = 4.1796, p < 0.001, d = 0.80, respectively for the no-ping and ping condition). Even if the 391 

effect seems slightly stronger in the ping condition (Fig. 2B), comparing the serial dependence 392 

effect across the two conditions revealed no significant difference (t(26) = 0.4076, p = 0.6869). 393 

This shows that while our paradigm is generally very sensitive to the attractive bias provided by 394 

the inducer, the presence of the pings does not systematically modulate the effect – in line with a 395 
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previous observation showing that reactivating a representation by means of pings does not 396 

affect behavior (Wolff et al., 2017). 397 

 398 

 399 

FIGURE 3 – Topographic plots (posterior view) of event-related activity. Distribution of activity 400 

across posterior channels, corresponding to the contrast between the 23-dot inducer condition 401 

and the 11-dot inducer condition. Plotting such a distribution of activity reveals a relatively 402 

strong effect of inducer starting from early latencies and peaking at around 250-300 ms after 403 

stimulus onset. The most involved channels appear to be a group of posterior channels centered 404 

around Iz. 405 

 406 

ERP results 407 

After confirming that our paradigm successfully induced serial dependence in numerosity 408 

perception, we analyzed the brain responses to the reference stimulus. First, we looked at the 409 

topographic distribution of brain activity in a relatively early time window consistent with 410 

previous studies (Fornaciai & Park, 2018a), collapsing no-ping and ping trials together. Fig. 3 411 

shows the distribution of activity representing the contrast between the two inducer conditions, 412 

across posterior channels. As shown in the figure, there was a relatively large difference in the 413 

responses to the same 16-dot reference as a function of the inducer numerosity emerging at 414 

relatively early latencies over posterior-inferior scalp locations. Such a difference – reflecting 415 

higher positive amplitude in the more numerous inducer condition – peaked at around 250-300 416 
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ms after stimulus onset, with activity centered at channel Iz (peak = 261 ms, contrast amplitude = 417 

0.484 µV).   418 

 419 

 420 

FIGURE 4 – Event-related potentials at channel Iz. (A) ERPs time-locked to the onset of the 421 

reference stimulus (collapsing together ping and no-ping trials), sorted by the numerosity of the 422 

preceding inducer stimulus (upper panel) and the contrast between the two waveforms (lower 423 

panel). (B) ERPs time-locked to the onset of the first ping in the ping condition (upper panel) and 424 

their contrast (lower panel). (C) ERPs time-locked to the onset of the second ping in the ping 425 

condition (upper panel) and their contrast (lower panel). Shaded areas represent the time 426 

windows used for a statistical test. In the case of brainwaves corresponding to the reference 427 

stimulus (A), the time window of interest was defined based on previous studies (see Methods). In 428 

the case of the activity evoked by the pings (B & C), time windows were chosen according to the 429 

peak of the two brainwaves collapsed together. n.s. = not significant, *** p < 0.001.  430 
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Then, in order to characterize the temporal effect of serial dependence on the ERPs, we plotted 433 

and analyzed the brainwaves at channel Iz, which appeared as the center of the occipital focus of 434 

activity. The brainwaves corresponding to different stimuli and latency windows are shown in 435 

Fig. 4. Note that for the purpose of ERP analysis at latencies around the reference onset, we 436 

collapsed together the ping and no-ping trials, as no difference is expected between the two 437 

conditions. Relatively early ERPs evoked by the reference stimulus (Fig. 4A) showed a clear 438 

attractive modulation, peaking at around 240 ms after stimulus onset. In other words, the 439 

amplitude of brain responses was modulated so that a larger inducer numerosity (23 dots) results 440 

in a more positive amplitude of the brainwaves evoked by the reference, compared to the less 441 

numerous inducer (11 dots) – which was consistent with what we observed at the behavioral 442 

level. The ERP effect of serial dependence was quantified in a 100-ms time window around 200 443 

ms after reference onset (marked with a shaded area in Fig. 4A) based on our previous finding 444 

(Fornaciai & Park, 2018a), and was tested using a paired t-test (between the two inducer 445 

conditions across participants). The results showed a significant difference between ERPs 446 

corresponding to different inducer numerosities (t(26) = 3.434, p < 0.001).  447 

Fig. 4B and 4C show the brainwaves corresponding to the two pings presented between 448 

the reference and the probe, in the ping condition. As illustrated, the bright flashes evoked a 449 

strong visual response starting early after stimulus onset. However, the difference between 450 

different inducer conditions appeared to be very small at the time of the first ping, while slightly 451 

stronger at the time of the second ping. A 100-ms time window around the peak of the activity of 452 

the inducer conditions collapsed together (peak = 125 ms and 137 ms after the onset of the first 453 

and second ping, respectively) did not show any significant difference between the two inducer 454 
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conditions, neither after the first ping nor after the second ping (paired t-test, t(26) = 0.9467, p = 455 

0.1762, and t(26) = 1.1617, p = 0.1280). 456 

 457 

Multivariate neural decoding results 458 

In order to assess whether the initial neural representation of the reference numerosity is retained 459 

in the memory traces (which are reactivated by the pings), we performed a multivariate pattern 460 

analysis in the time domain (e.g., see King & Dehaene, 2014 for a review). Although ERP 461 

analysis can show a signature of serial dependence, it is not sensitive enough to pick up subtle 462 

differences in the stimulus representation and does not provide a full characterization of the time 463 

course of the effect. A multivariate analysis, instead, has been shown to be much more sensitive 464 

to serial dependence biases, and allows a better characterization of the time-course of the effect 465 

(Fornaciai & Park, 2018a). Such a multivariate analysis involves training and testing a pattern 466 

classifier (i.e., support vector machine) in order to assess whether and to what extent it can 467 

predict the pattern of brain activity related to a particular condition. Moreover, assessing the 468 

temporal generalization of specific patterns of brain activity across different time windows 469 

allows us to assess how the—biased—representation of the reference stimulus evolves over time 470 

during a trial in the present study. More specifically, we compared the activity time-locked to the 471 

onset of the reference, dividing the trials according to the preceding inducer stimulus, resulting in 472 

two categories: 16 preceded by 11, and 16 preceded by 23. The analysis was performed 473 

separately for no-ping and ping trials, and the no-ping conditions was used as a comparison to 474 

assess the effect related to the pings.  475 

 476 
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 477 

FIGURE 5 – Decoding results. (A) Temporal generalization matrix, representing classification 478 

accuracies obtained by training the classifier at one time point and testing at all the time points. 479 

The temporal generalization shows how the specific pattern of brain activity at one time point 480 

generalizes at different time points, possibly showing the reactivation of the same representation 481 

and/or the same neural generator at different times. The dashed lines delimit the different 482 

temporal windows of interest used to perform statistical tests on the classification performance. 483 

Time windows of interest along the diagonal are marked with letters, while off-diagonal time 484 

windows are labeled with numbers. (B) Average classification accuracy across the off-diagonal 485 

windows, for the ping and no-ping condition. Error bars are SEM. Number labels on the x-axis 486 

refer to the numbering of time windows reported in panel A. n.s. = not significant, * p < 0.05, ** 487 

p < 0.01. 488 
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Figure 5A illustrates the results of the neural decoding analysis in terms of a temporal 490 

generalization matrix, which characterizes the degree to which patterns of neural activity evoked 491 

by the identical reference numerosity (16 dots) and the two pings can be dissociated as a function 492 
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are quantified in various time windows of interest. We first set two time windows corresponding 494 

to 0-250 (labeled as A in Fig. 5A) and 250-500 ms (labeled as B) after reference onset. Across 495 

these two time windows, we found significantly above chance decoding in the earlier time 496 

window (0-250 ms, average classification accuracy = 0.5291; one-sample t-test against chance 497 

level, t(26) = 3.0669, p = 0.005) but not in the later time window (250-500 ms, average 498 

classification accuracy = 0.5069, t(26) = 0.5918, p = 0.5591). However, while the decoding 499 

accuracy in the later window (B) was not significant, it was much stronger in the off-diagonal 500 

directions adjacent to such a later window (i.e., at time windows adjacent to window B, in the 501 

horizontal and vertical direction, similarly spanning 250 ms). We thus also tested the average 502 

decoding performance in these two windows. Doing so, we indeed found above chance 503 

classification accuracy (t(26) = 2.26, p = 0.033, and t(26) = 2.44, p = 0.22, respectively for the 504 

off-diagonal windows adjacent to the reference window in the vertical and horizontal direction), 505 

suggesting that activity from the earlier window generalizes to later time points corresponding to 506 

the late reference window. We then examined the time windows 1000-1250 ms and 1850-2100 507 

ms which correspond to a 250-ms window after the first and the second ping, respectively. The 508 

decoding classification accuracy after the first ping (labeled as C in Fig. 5A) was negligible 509 

(average classification accuracy = 0.5036, paired t-test against the no-ping condition: t(26) = 510 

0.5027, p = 0.6194); however, the classification accuracy after the second ping (labeled as D) 511 

was significantly higher than that in the absence of a ping stimulus (average classification 512 

accuracy = 0.5183, paired t-test against the no-ping condition: t(26) = 2.6667, p = 0.013).  513 

More importantly, the extent to which the neural patterns are generalized across time at 514 

later time windows (e.g., from reference to pings) was evaluated by observing off-diagonal time 515 

windows in the temporal generalization matrix. Generalized patterns across the off-diagonal 516 
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directions would indeed show whether the biased representation of the reference stimulus exists 517 

in the perceptual memory traces after the initial processing of it. To this aim, we focused on 518 

broad 500-ms time windows corresponding to the reference time windows, but shifted in time to 519 

the onset of the two pings (time windows labeled 1, 2, 3, and 4 in Fig. 5A) to capture the time 520 

windows in which the neural decoding classifier is trained with the neural activity pattern evoked 521 

by the reference numerosity and tested with the pattern evoked by the pings (and vice versa). In 522 

other word, these off-diagonal time windows allowed us to evaluate whether the pattern of serial 523 

dependence effects observed at the time of reference processing generalizes to activity evoked by 524 

the pings. As the temporal generalization matrix (Fig. 5A) is two-dimensional, there are two 525 

directions in which we could look for the generalization of patterns of brain activity: “horizontal” 526 

and “vertical.” Corresponding time windows along the two directions were collapsed together for 527 

statistical analyses.  528 

Comparisons concerning off-diagonal windows (ping versus no ping condition) are 529 

shown in Fig. 5B. As shown, average classification accuracies obtained in the ping condition 530 

were greater than those in the no-ping condition. The inducer-dependent pattern of neural 531 

activation evoked by the reference in the 0-250 ms time window was decodable by the neural 532 

activation pattern evoked by the first ping (paired t-test of ping vs. no-ping; t(26) = 2.10, one-533 

sided p = 0.0228) and by the pattern evoked by the second ping (t(26) = 2.24, p = 0.0171) (see 534 

the time windows labeled 1 and 2 in Fig. 5). The inducer-dependent pattern of neural activation 535 

evoked by the reference in the 250-500 ms time window was decodable by the pattern evoked by 536 

the first ping (t(26) = 2.16, p = 0.0202) and by the pattern evoked by the second ping (t(26) = 537 

2.57, p = 0.0081) (see the time windows labeled 3 and 4 in Fig. 5). In other words, the same 538 

differences between the neural activity patterns evoked by the reference under the two inducer 539 
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conditions could be used to distinguish the activity patterns evoked by the pings under the two 540 

inducer conditions. These results provide evidence for the reactivation of a stored representation 541 

of the initial reference stimulus. While these results show a significant difference between ping 542 

and no-ping activities, the average classification accuracy in the no-ping condition appeared to 543 

be below the theoretical chance level of 50%. Although puzzling at first glance, below-chance 544 

classification results have been previously interpreted in terms of dependence from subsample 545 

means in the context of cross-validation procedures (Jamalabadi et al., 2016). Namely, in the 546 

presence of a small effect size and a relatively small number of observations (trials), pulling out 547 

the subset of data used for testing the classifier from the training set during cross-validation 548 

could shift the means of the remaining training set to the opposite direction, making the trained 549 

classifier to predict the test set to be the other class. This in turn results in a classification error, 550 

and hence in below-chance classification accuracy. The possibility of these spurious effect thus 551 

makes it very important to use the “baseline” classification accuracy obtained in the no-ping 552 

condition to assess the effect provided by the pings, instead of using a fixed 50% chance level. 553 

Nevertheless, we performed an additional series of one-sample t-tests against the theoretical 554 

chance level of 50%. The results were significant in window 1 (t(26) = 2.12, p = 0.022) and 555 

window 4 (t(26) = 1.79, p = 0.043). 556 

 557 

DISCUSSION 558 

In the present study, we investigated the neural signature and dynamics of serial dependence 559 

across the time course of perceptual decision making. Specifically, we questioned whether the 560 

biased representation of the visual stimulus (due to serial dependence) is transient or whether it is 561 

retained in visual memory traces. To do so, we exploited a recently developed technique aimed 562 
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to reactivate hidden memory representations (Wolff et al., 2015; Wolff et al., 2017). Namely, the 563 

neural signal evoked by a brief, high-energy “ping” reflects the signature of underlying 564 

representations currently encoded in the neural network (i.e., for instance stored in working 565 

memory). Using a relatively long time-course in an active task, incorporating this pinging 566 

technique in combination with a neural decoding analysis, we characterized how serial 567 

dependence emerges and evolves throughout the time course of a trial. 568 

Our results first show that the specific paradigm used in this study successfully induces 569 

strong and systematic attractive serial dependence, virtually identical to a previous study 570 

employing a similar paradigm but in a faster rate of stimulus presentation (Fornaciai & Park, 571 

2018b). Specifically, we observed a relative under- or over-estimation of the reference stimulus 572 

as a function of the inducer numerosity, in line with the attractive effect observed in previous 573 

studies (Corbett et al., 2011; Cicchini et al., 2014; Fornaciai & Park, 2018a; Fornaciai & Park, 574 

2018b; Fornaciai & Park, 2019a; Fornaciai & Park, 2019b).  575 

As in the behavioral results, the ERPs evoked by the reference stimulus were modulated 576 

by the numerosity of the preceding stimulus, showing a signature of serial dependence consistent 577 

with our previous study (Fornaciai & Park, 2018a). Such a signature likely reflects a distorted 578 

encoding of stimulus numerosity according to the numerosity of the preceding inducer stimulus, 579 

with a clear attractive pattern – i.e., the amplitude of brain signals evoked by the reference is 580 

higher (more positive) following an inducer containing a larger numerosity, compared to an 581 

inducer containing fewer items. Such an effect peaks at around 200-250 ms, consistently with 582 

recent studies investigating the dynamics of numerosity processing (i.e., Hyde & Spelke, 2009; 583 

Park et al., 2016; Fornaciai et al., 2017; Fornaciai & Park, 2018c), and with the timing of serial 584 

dependence in our previous study (Fornaciai & Park, 2018a). ERPs evoked by the two pings, on 585 
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the other hand, show little or no effect (i.e., did not reliably distinguish the two inducer 586 

conditions), despite the large visually evoked potentials induced by the bright flashes (Fig. 587 

4B&C). 588 

To test our central hypothesis concerning the temporal evolution of neural representation 589 

of these numerosity stimuli, we employed a multivariate neural decoding analysis, which has 590 

previously proven to be sensitive in distinguishing subtle experimental manipulations (Fornaciai 591 

& Park, 2018a; Fornaciai & Park, 2018c). Such an analysis allows to assess the pattern of brain 592 

activity corresponding to a specific stimulation condition, and how such a pattern can 593 

successfully predict the stimulus presented in another specific condition. Looking at a brief 594 

epoch around the onset of the reference stimulus (Fig. 5A, time window A and B), it is clear that 595 

a signature of serial dependence emerges very early after stimulus onset, consistent with previous 596 

results (Fornaciai & Park, 2018a). Comparing the present results with our previous study, 597 

however, the decoding accuracy remains high only at relatively early latencies after the reference 598 

onset (0-250 ms), while our previous data showed that the effect is amplified at later latencies. 599 

Instead, in the current data, there was an increase in decoding accuracy in the off-diagonal 600 

direction (see the area simultaneously adjacent to windows A and B in Fig. 5A), illustrating the 601 

generalization of the classification across time points close to the reference representation. This 602 

result suggests that the pattern of activity corresponding to the initial (0-250 ms) processing stage 603 

(and likely the same neural generator) remains sustained at subsequent latencies up until 500 ms 604 

after stimulus onset. In other words, while in our previous work (Fornaciai & Park, 2018a) we 605 

observed a series of two potentially distinct processing stages rapidly unfolding after stimulus 606 

presentation (0-200 and 200-450 ms), here we observed just one of them spanning the first 250 607 

ms and then lingering up until 500 ms. Such a difference between the current and the previous 608 
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results may be due to the large differences in the paradigms employed. Indeed, the two 609 

paradigms differed in terms of stimulus timing (much longer interstimulus interval in the present 610 

work), task (oddball detection vs. numerosity discrimination), and the attended feature (color of 611 

the stimuli in the oddball task vs. numerosity in the present task), which by themselves can 612 

modulate the brain responses recorded with EEG (e.g., Strüber & Polich, 2002; Nakata et al., 613 

2005; Potts, 2004; Senkowski & Herrmann, 2002; Zani & Proverbio, 1995; Koivisto et al., 2009; 614 

Zhang & Luck, 2009). In particular, a longer intestimulus interval can significantly delay evoked 615 

responses linked to stimulus processing (Nakata et al., 2005), or even affect the pattern of 616 

responses evoked by a stimulus (Strüber & Polich, 2002). Although previous results on the effect 617 

of interstimulus interval concern very different stimuli and tasks, some of the differences may be 618 

driven by the much slower paradigm employed in the present study as opposed to the rapid 619 

stimulus presentation in Fornaciai & Park (2018a). In other words, the slower presentation rate in 620 

the current paradigm may have made activity at subsequent processing stages (for instance 621 

related to the reactivation of working memory traces in order to perform the task) to be delayed 622 

at later latencies closer to the presentation of the second stimulus. However, due to the large 623 

differences in both the stimulus dynamics and the task used, it is difficult to precisely pinpoint 624 

the reason for such different results.  625 

Similarly to the ERP analysis, the first ping was ineffective in distinguishing the two 626 

inducer conditions (Fig. 5A, time window C). This lack of significant decoding along the 627 

diagonal shows that, at least for the first ping, the stimulation did not evoke any distinctive 628 

pattern of activity carrying the serial dependence effect. In contrast, the second ping did result in 629 

successful decoding (Fig. 5A, at time window D), suggesting that the pattern of activity evoked 630 

by this second ping carries information about the reference affected by the serial dependence 631 
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effect. However, the pattern of effects seems to spread across a relatively broad area around the 632 

ping onset. The fact that we observe a signature of serial dependence only at the time of the 633 

second (not the first) ping and with activity spread around this presentation time can be 634 

interpreted in several ways. First, predictability and expectations concerning the timing of the 635 

second ping and the end of the trial may explain the spread of the effect to time points even prior 636 

to the ping presentation and a stronger effect of the second ping. Indeed, the timing of the pings 637 

was consistent across trials, which made it possible to predict the presentation of the second ping 638 

after seeing the first one; in turn, expectations may have caused a sharpening of the pattern of 639 

brain activity (e.g., see De Lange et al., 2018 for a review), making the underlying serial 640 

dependence effect more easily decodable. Second, the effect emerging exclusively at the second 641 

ping may reflect the increase of the serial dependence effect over time observed in previous 642 

studies (Fritsche et al., 2017; Bliss et al., 2018), although the magnitude of the effect in our 643 

behavioral results is comparable to previous results employing much shorter presentation times 644 

(Fornaciai & Park, 2018b). Additionally, increased attention towards the end of the trial may 645 

have played a role in amplifying the responses to the second ping (e.g., Müller et al., 2006), 646 

resulting in stronger signals related to the serial dependence effect. Finally, considering that the 647 

second ping is closer to the end of the trial, neural activity evoked by the second ping may reflect 648 

a decision-stage representation (i.e., the activity of perceptual decision circuits) in line with a 649 

recently proposed framework of serial dependence (Pascucci et al., 2019). According to this 650 

proposition, serial dependence would emerge because of “perceptual decision” or “read-out” 651 

templates persisting from the processing of past stimuli to the representation of current ones. 652 

Such decision templates are for instance represented by the set of read-out weights of low-level 653 

activity at a higher-order decision stage, with the lingering template from a previous stimulus 654 
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biasing the representation of a current one. In the context of the present results, the activity found 655 

at the time of the second ping may thus reflect activity arising at such perceptual decision stage, 656 

related to the reactivated decision template. Following the previous points, the fact that we 657 

observe this effect only at the time of the second ping may be related to predictions and 658 

expectations about the timing of the incoming probe stimulus. Indeed, the predictability of the 659 

stimulus timing may have induced an anticipated activation of the perceptual decision circuits, in 660 

order to speed up and facilitate the representation of the incoming probe stimulus, in line with 661 

the idea that expectations can speed up perception (e.g., Pinto et al., 2015). 662 

The crucial point for testing our main hypothesis, however, concerns the reactivation of 663 

the reference representation induced by the pings. Such a reactivation has to be searched in the 664 

off-diagonal direction in the temporal generalization matrix (Fig. 5A). Our results show that the 665 

pings successfully reactivate the reference representation, carrying the signature of serial 666 

dependence. Interestingly, significant effects emerge not only at off-diagonal times 667 

corresponding to the early window of the reference stimulus (off-diagonal windows 1 and 2, 668 

which are aligned with the early window A in Fig. 5A), but also at times corresponding to the 669 

later window (off-diagonal windows 3 and 4, which are aligned with the early window B in Fig. 670 

5A), where there is actually little or no effect at the time of reference processing along the 671 

diagonal. Even if activity in the late window after reference onset provides a relatively poor 672 

classification of inducer conditions, the effect may be amplified at later latencies, especially 673 

when such a pattern gets reactivated by the pings.  674 

In general, however, caution is in order when interpreting these results, as our main 675 

decoding analysis shows relatively low classification accuracies, especially at off-diagonal 676 

windows corresponding to activity reactivated by the pings. Considering the nature of the effect 677 
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tested and the specific analysis used, such low classification accuracies are however not 678 

surprising. First we need to consider that serial dependence is a relatively subtle behavioral 679 

effect, causing in our specific case an under-/over-estimation of about 1 dot in a dot-array of 16 680 

dots. It is reasonable to hypothesize that any difference at the neural level would be similarly if 681 

not more subtle. Moreover, we used large temporal windows to average classification accuracies 682 

at different time points, especially in the off-diagonal direction, which may have diluted the 683 

effect. Future studies with more specific predictions may achieve better results by using narrower 684 

windows. Nevertheless, at least in the context of the later windows corresponding to the pings, 685 

the no-ping condition provides a control by showing that in the absence of these stimuli the serial 686 

dependence effect is not decodable from neural signals at late latencies, thus suggesting that the 687 

effect evoked by the pings is genuine rather than an artifact. 688 

In summary, the current findings suggest that there are multiple patterns of activity 689 

involved in the serial dependence effect. First, consistently with previous reports (Fornaciai & 690 

Park, 2018a), the effect of serial dependence develops during a relatively short interval 691 

immediately after the onset of the stimulus, suggesting that may arise directly at the earliest level 692 

of perception. Regarding this point, however, the fact that the decoding analysis does not provide 693 

information about the direction of the effect (i.e., attractive versus repulsive), leaves open the 694 

possibility that the very early activity may be driven by other sensory/perceptual processes, like 695 

adaptation. Adaptation resulting from very short visual stimulation has been indeed observed 696 

when serial dependence is suppressed by means of visual backward masking (Fornaciai & Park, 697 

2019a). However, the fact that ERP results show an attractive effect within the early window of 698 

activity (around 200 ms after stimulus onset) suggests that the decoding results within this same 699 

window may similarly reflect an attractive effect. 700 
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After the relatively early processing, then, the effect is evident in possibly two distinct 701 

processes. On the one hand, the off-diagonal pattern of activity indicates that—borrowing the 702 

interpretation of King & Dehaene (2014)—the same neural generators yield the pattern of 703 

activation for the initial biased representation and the pattern of activation evoked by the pings. 704 

One parsimonious interpretation is that the exact same trace of the initial biased representation 705 

gets stored throughout a trial (and is reactivated by the pings later). On the other hand, the 706 

diagonal pattern of activity especially around and after the second ping indicates—again 707 

according to King & Dehaene (2014)—a distinct set of neural generators decoding the two 708 

inducer conditions. The functional role of this second mechanism remains to be studied, as we 709 

can only speculate as discussed above. Nevertheless, both diagonal and off-diagonal patterns 710 

found in the neural decoding analyses lend support for at least two distinct processing stages 711 

involved in the representation of serial dependence in the time course of a trial, which serves as 712 

an important starting point for future research.  713 

 714 

CONCLUSION 715 

The present results advance our knowledge of the neural underpinnings of the serial dependence 716 

effect, by showing the dynamics of its neural signature over a relatively long temporal interval. 717 

We show that serial dependence starts very early after stimulus onset, similarly to what has been 718 

demonstrated before with a passive-viewing paradigm. We further show that the representation 719 

of a stimulus affected by serial dependence can be reactivated by task-irrelevant pings. The 720 

effect of pinging memory has two results: on the one hand, it reactivates a memory 721 

representation that remains similar to the stimulus representation generated immediately after its 722 

onset. This suggests that once the bias is induced during perceptual processing, a trace of the 723 
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biased stimulus representation is stored throughout a relatively long epoch. Second, it highlights 724 

a different, later processing stage, which likely reflects the involvement of possibly a different 725 

neural generator yielding a distinctive pattern of activity, but still carrying the signature of serial 726 

dependence. The present results thus show that serial dependence directly alters the perceptual 727 

representation of a stimulus, and propagates throughout subsequent processing stages.  728 

 729 

Author contributions 730 

M.F. and J.P. designed the study. M.F. collected the data. M.F. and J.P. analyzed the data, 731 

interpreted the results, wrote the manuscript and revised it. 732 

 733 

Conflict of interest 734 

The authors declare no conflict of interest. 735 

 736 

Acknowledgements 737 

We thank Jihyun Hwang, Camryn Boutin, and Brianna Chamberlain for their assistance in EEG 738 

data collection. This study was supported by the National Science Foundation CAREER Award 739 

BCS1654089 to J. P. 740 

 741 

REFERENCES 742 

Alais, D., Leung, J., & Van der Burg, E. (2017). Linear Summation of Repulsive and Attractive 743 

Serial Dependencies: Orientation and Motion Dependencies Sum in Motion Perception. The 744 

Journal of Neuroscience, 37(16), 4381–4390. https://doi.org/10.1523/JNEUROSCI.4601-745 

15.2017 746 



 35 

Bliss, D. P., Sun, J. J., & D’Esposito, M. (2017). Serial dependence is absent at the time of 747 

perception but increases in visual working memory. Scientific Reports, 7(1). 748 

https://doi.org/10.1038/s41598-017-15199-7 749 

Burr, D., & Cicchini, G. M. (2014). Vision: Efficient adaptive coding. Current Biology, 24(22), 750 

R1096–R1098. https://doi.org/10.1016/j.cub.2014.10.002 751 

Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space 752 

reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the 753 

National Academy of Sciences, 111(21), 7867–7872. 754 

https://doi.org/10.1073/pnas.1402785111 755 

Cicchini, G. M., Mikellidou, K., & Burr, D. (2017). Serial dependencies act directly on 756 

perception. Journal of Vision, 17(14), 6. https://doi.org/10.1167/17.14.6 757 

Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2018). The functional role of serial dependence. 758 

Proceedings of the Royal Society B: Biological Sciences, 285(1890), 20181722. 759 

https://doi.org/10.1098/rspb.2018.1722 760 

Corbett, J. E., Fischer, J., & Whitney, D. (2011). Facilitating stable representations: Serial 761 

dependence in vision. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016701 762 

de Lange, F. P., Heilbron, M., & Kok, P. (2018). How Do Expectations Shape Perception? 763 

Trends in Cognitive Sciences, 22(9), 764–779. https://doi.org/10.1016/j.tics.2018.06.002 764 



 36 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial 765 

EEG dynamics including independent component analysis. Journal of Neuroscience 766 

Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 767 

DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the approximate 768 

number system to quantify the contribution of visual stimulus features. Cognition, 142, 769 

247–65. https://doi.org/10.1016/j.cognition.2015.05.016 770 

Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 771 

17(5), 738–743. https://doi.org/10.1038/nn.3689 772 

Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in 773 

early visual cortex. NeuroImage, 157, 429–438. 774 

https://doi.org/10.1016/j.neuroimage.2017.05.069 775 

Fornaciai, M., Farrell, A., & Park, J. (2018). Looking for more food or more people? Task 776 

context influences basic numerosity perception. Cortex. 777 

https://doi.org/10.1016/j.cortex.2018.05.021 778 

Fornaciai, M., & Park, J. (2018b). Serial dependence in numerosity perception. Journal of 779 

Vision, 18(9), 15. https://doi.org/10.1167/18.9.15 780 

Fornaciai, M., & Park, J. (2017). Distinct Neural Signatures for Very Small and Very Large 781 

Numerosities. Frontiers in Human Neuroscience, 11(January), 1–14. 782 

https://doi.org/10.3389/fnhum.2017.00021 783 



 37 

Fornaciai, M., & Park, J. (2018a). Attractive Serial Dependence in the Absence of an Explicit 784 

Task. Psychological Science, 29(3), 437–446. https://doi.org/10.1177/0956797617737385 785 

Fornaciai, M., & Park, J. (2018c). Early Numerosity Encoding in Visual Cortex Is Not Sufficient 786 

for the Representation of Numerical Magnitude. Journal of Cognitive Neuroscience, 30(12), 787 

1788–1802. https://doi.org/10.1162/jocn_a_01320 788 

Fornaciai, M., & Park, J. (2019b). Serial dependence generalizes across different stimulus 789 

formats, but not different sensory modalities. Vision Research, 160, 108–115. 790 

https://doi.org/10.1016/j.visres.2019.04.011 791 

Fornaciai, M., & Park, J. (2019a). Spontaneous repulsive adaptation in the absence of attractive 792 

serial dependence. Journal of Vision, 19(5), 1–15. 793 

https://doi.org/https://doi.org/10.1167/19.5.21 794 

Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite Effects of Recent History on 795 

Perception and Decision. Current Biology, 27(4), 590–595. 796 

https://doi.org/10.1016/j.cub.2017.01.006 797 

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2016). Decoding Dynamic Brain Patterns 798 

from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time 799 

Series Neuroimaging Data. Journal of Cognitive Neuroscience, 26(3), 1–21. 800 

https://doi.org/10.1162/jocn_a_01068 801 



 38 

Hyde, D. C., & Spelke, E. S. (2009). All Numbers Are Not Equal: An Electrophysiological 802 

Investigation of Small and Large Number Representations. Journal of Cognitive 803 

Neuroscience, 21(6), 1039–1053. https://doi.org/10.1162/jocn.2009.21090 804 

Jamalabadi, H., Alizadeh, S., Schönauer, M., Leibold, C., & Gais, S. (2016). Classification based 805 

hypothesis testing in neuroscience: Below-chance level classification rates and overlooked 806 

statistical properties of linear parametric classifiers. Human Brain Mapping, 37(5), 1842–807 

1855. https://doi.org/10.1002/hbm.23140 808 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the 809 

temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210. 810 

https://doi.org/10.1016/j.tics.2014.01.002 811 

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new 812 

in Psychtoolbox-3? Perception ECVP 2007 Abstract Supplement, 36(14), 1–16. 813 

https://doi.org/10.1068/v070821 814 

Koivisto, M., Kainulainen, P., & Revonsuo, A. (2009). The relationship between awareness and 815 

attention: Evidence from ERP responses. Neuropsychologia, 47(13), 2891–2899. 816 

https://doi.org/10.1016/j.neuropsychologia.2009.06.016 817 

Liberman, A., Fischer, J., & Whitney, D. (2014). Serial dependence in the perception of faces. 818 

Current Biology : CB, 24(21), 2569–74. https://doi.org/10.1016/j.cub.2014.09.025 819 



 39 

Liberman, A., Manassi, M., & Whitney, D. (2018). Serial dependence promotes the stability of 820 

perceived emotional expression depending on face similarity. Attention, Perception, & 821 

Psychophysics, 80(6), 1461–1473. https://doi.org/10.3758/s13414-018-1533-8 822 

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of 823 

event-related potentials. Frontiers in Human Neuroscience, 8. 824 

https://doi.org/10.3389/fnhum.2014.00213 825 

Manassi, M., Liberman, A., Chaney, W., & Whitney, D. (2017). The perceived stability of 826 

scenes: Serial dependence in ensemble representations. Scientific Reports, 7(1). 827 

https://doi.org/10.1038/s41598-017-02201-5 828 

Manassi, M., Liberman, A., Kosovicheva, A., Zhang, K., & Whitney, D. (2018). Serial 829 

dependence in position occurs at the time of perception. Psychonomic Bulletin & Review. 830 

https://doi.org/10.3758/s13423-018-1454-5 831 

Meyers, E. M. (2013). The Neural Decoding Toolbox. Frontiers in Neuroinformatics, 7(May), 8. 832 

https://doi.org/10.3389/fninf.2013.00008 833 

Müller, M. M., Andersen, S., Trujillo, N. J., Valdes-Sosa, P., Malinowski, P., & Hillyard, S. A. 834 

(2006). Feature-selective attention enhances color signals in early visual areas of the human 835 

brain. Proceedings of the National Academy of Sciences, 103(38), 14250–14254. 836 

https://doi.org/10.1073/pnas.0606668103 837 



 40 

Nakata, H., Inui, K., Wasaka, T., Tamura, Y., Kida, T., & Kakigi, R. (2005). Effects of ISI and 838 

stimulus probability on event-related go/nogo potentials after somatosensory stimulation. 839 

Experimental Brain Research, 162(3), 293–299. https://doi.org/10.1007/s00221-004-2195-4 840 

Park, J., Dewind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and Direct Encoding 841 

of Numerosity in the Visual Stream. Cerebral Cortex, 26(2), 748–763. 842 

https://doi.org/10.1093/cercor/bhv017 843 

Pascucci, D., Mancuso, G., Santandrea, E., Della Libera, C., Plomp, G., & Chelazzi, L. (2019). 844 

Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. 845 

PLOS Biology, 17(3), e3000144. https://doi.org/10.1371/journal.pbio.3000144 846 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers 847 

into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366 848 

Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. a F., & Seth, A. K. (2015). Expectations 849 

accelerate entry of visual stimuli into awareness. Journal of Vision, 15(8), 13. 850 

https://doi.org/10.1167/15.8.13 851 

Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and 852 

Cognition, 56(1), 5–13. https://doi.org/10.1016/j.bandc.2004.03.006 853 

Senkowski, D., & Herrmann, C. S. (2002). Effects of task difficulty on evoked gamma activity 854 

and ERPs in a visual discrimination task. Clinical Neurophysiology, 113(11), 1742–1753. 855 

https://doi.org/10.1016/S1388-2457(02)00266-3 856 



 41 

St. John-Saaltink, E., Kok, P., Lau, H. C., & de Lange, F. P. (2016). Serial Dependence in 857 

Perceptual Decisions Is Reflected in Activity Patterns in Primary Visual Cortex. Journal of 858 

Neuroscience, 36(23), 6186–6192. https://doi.org/10.1523/JNEUROSCI.4390-15.2016 859 

Strüber, D., & Polich, J. (2002). P300 and slow wave from oddball and single-stimulus visual 860 

tasks: inter-stimulus interval effects. International Journal of Psychophysiology, 45(3), 861 

187–196. https://doi.org/10.1016/S0167-8760(02)00071-5 862 

Suárez-Pinilla, M., Seth, A. K., & Roseboom, W. (2018). Serial dependence in the perception of 863 

visual variance. Journal of Vision, 18(7), 4. https://doi.org/10.1167/18.7.4 864 

Taubert, J., Van der Burg, E., & Alais, D. (2016). Love at second sight: Sequential dependence 865 

of facial attractiveness in an on-line dating paradigm. Scientific Reports, 6(1), 22740. 866 

https://doi.org/10.1038/srep22740 867 

Watson, A. B. (1979). Probability summation over time. Vision Research, 19(5), 515–522. 868 

https://doi.org/10.1016/0042-6989(79)90136-6 869 

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and 870 

goodness of fit. Perception & Psychophysics, 63(8), 1293–1313. 871 

https://doi.org/10.3758/BF03194544 872 

Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in visual 873 

working memory using electroencephalography. Frontiers in Systems Neuroscience, 874 

9(September), 1–12. https://doi.org/10.3389/fnsys.2015.00123 875 



 42 

Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states 876 

underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864–871. 877 

https://doi.org/10.1038/nn.4546 878 

Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of 879 

attractiveness. Journal of Vision, 16(15), 28. https://doi.org/10.1167/16.15.28 880 

Zani, A., & Proverbio, A. M. (1995). ERP signs of early selective attention effects to check size. 881 

Electroencephalography and Clinical Neurophysiology, 95(4), 277–292. 882 

https://doi.org/10.1016/0013-4694(95)00078-D 883 

Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual 884 

processing. Nature Neuroscience, 12(1), 24–25. https://doi.org/10.1038/nn.2223 885 


