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Abstract

Applications that cater to the needs of disaster incident response generate large amount of data and demand large computational
resource access. Such datasets are usually collected in the real-time at the incident scenes using different Internet of Things (IoT)
devices. Hierarchical clouds, i.e., core and edge clouds, can help these applications’ real-time data orchestration challenges as
well as with their IoT operations scalability, reliability and stability by overcoming infrastructure limitations at the ad-hoc wireless
network edge. Routing is a crucial infrastructure management orchestration mechanism for such systems. Current geographical
routing or greedy forwarding approaches designed for early wireless ad-hoc networks lack efficient solutions for incident-supporting
applications, given the high-speed and data delivery constant that edge cloud gateways impose. In this paper we present a novel
Artificial Intelligent (AI)-augmented geographic routing approach, that relies on an area knowledge obtained from the satellite
imagery (available at the edge cloud) by applying deep learning. In particular, we propose a stateless greedy forwarding that uses
such environment learning to proactively avoid the local minimum problem by diverting traffic with an algorithm that emulates
electrostatic repulsive forces. In our theoretical analysis, we show that our Greedy Forwarding achieves in the worst case a 3.291
path stretch approximation bound with respect to the shortest path, without assuming presence of symmetrical links or unit disk
graphs. We evaluate our approach with both numerical and event-driven simulations, and we establish the practicality of our
approach in a real incident-supporting hierarchical cloud deployment to demonstrate improvement of application level throughput
due to a reduced path stretch under severe node failures and high mobility challenges of disaster response scenarios.

Keywords: Incident-supporting application, IoT, geographic routing, local minimum
avoidance, electrostatics, deep learning

1. Introduction

Providing technologies in response to a natural or man-made
disaster is challenging, due to traditional infrastructure assump-
tions that may fail given the damage made by man or natural-
caused disasters. Additionally, there is a need to handle large
datasets from multiple incident scenes and disaster relief coor-
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dination between first responder agencies such as fire, pOliCC or Elgure 1: During maden.ts caused by disasters, large dataset generated on-
site needs large computation/storage resources. Consequently, data needs to

hospitals. be transferred to an edge cloud at a high constant speed through an incident-

Applications designed for disaster incident response may supporting wireless edge comprising Mobile Ad-Hoc Network (MANET).
benefit from the latest hierarchical cloud trends [1, 2, 3], i.e.,
core and edge clouds. Such technologies are integrated with
network virtualization and dynamic on-demand access to net-
working, computation and storage resource, wherever available. *
In particular, applications that provide visual situational aware-
ness are crucial for first responders, as they are based on data
collected in the real-time at the incident scenes using differ-
ent Internet of Things (IoT) devices, such as sensors, wearable
heads-up display devices, bluetooth beacons, etc [3].

In Figure 1 we illustrate our “Panacea’s Cloud” system de-
ployment, i.e., a hierarchical cloud setup that leverage IoT-based
incident-supporting application to provide real-time situational
awareness e.g., a medical triage communications for paramedics

and other first responders [4, 5, 6]. For an effective disaster in-
cident response, the design of the hierarchical cloud needs to
s overcome the challenges of application’s real-time data move-
ment and any infrastructure limitations at the network edge. To
cope with the potential lost of infrastructure in a disaster scene,
a mobile ad-hoc wireless network (MANET) needs to be oper-
ational for transferring media-rich visual information from the
a0 disaster scene as quickly as possible to the edge cloud gateway.
Such (visual) data can be used, e.g., by a medical application
context to transfer high-definition video streams generated by
paramedics’ wearable heads-up display devices from the dis-
aster triage scene to a dashboard located at the edge cloud,
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or by a first responder for a live remote medical consultation.
The incident response and resource allocation decision making
e.g., ambulance routing to scene, medical supply replenishment
tracking, requires significant computational resources that can ss
be augmented on demand by a core cloud cluster (see Figure 1).
For such edge cloud network scenarios to be operational,
traffic generated by the MANET needs to be handled dynami-
cally and with severe latency constraints. Geographical routing-
based approaches are generally suitable for these applications;ico
however, there is a lack of incident-supporting forwarding and
routing approaches in MANETS capable of providing sustinable
high-speed data delivery to the edge cloud gateway [7]. Specif-
ically, there is a need to design a better performant greedy-
forwarding solutions that does not suffer from the local mini-ios
mum problem in presence of (non-arbitrary) node failures and
mobility. This problem is caused by the lack of global routing
knowledge of the greedy forwarding algorithm [8, 9, 10] that
may deliver packets to nodes that do not have neighbors closer
to the destination than themselves. 110
Existing algorithms provide only partial solutions to the lo-
cal minimum problem and can be classified into stateful or state-
less. Existing stateless greedy forwarding solutions may fail to
find a path even if it exists [8, 9], or they stretch such paths
significantly [10] by visiting almost all possible nodes to “des-11s
perately” find a way. Existing stateful greedy forwarding al-
gorithms instead (e.g., those relying on the network topology
knowledge including spanning trees [11, 12] or partial paths [14])
are sensitive to frequent node failures and mobility [13, 14, 15],
a typical scenario within regions and infrastructures hit by a nat-iz
ural or man-made disaster. Consequently, such algorithms lead
to poor or unacceptable performance in incident-supporting ap-
plications that need constant high-speed data transfer to provide
crucial real-time situational awareness.
Our contributions. To cope with above geographic routingizs
limitations, in this paper we present a novel Artificial Intelligent
(AD-augmented geographic routing approach (AGRA). AGRA
utilizes a knowledge about physical obstacles presence in a geo-
graphical area obtained from the satellite imagery (maps) avail-
able at the system’s dashboard by applying deep learning [16,130
17]. Further, physical obstacle knowledge is used to build con-
ceptually different greedy forwarding approach that avoids the
local minima problem while supporting high-speed data deliv-
ery, e.g., of high-definition data streams and multi-modal data,
across large regions of disaster incident scenes. 135
Our main theoretical contribution lays in our result pertain-
ing to a geographical routing model that guarantees local mini-
mum avoidance as well as shortest path approximation in cloud-
supported (mobile) ad-hoc networks (Section 3). To our knowl-
edge, this is the first greedy forwarding algorithm that has the-140
oretical guarantees on the path stretch length. Our stateless
greedy forwarding approach builds upon electrostatics princi-
ples, in particular, we use the Green’s function [18] to model
packets as charges immersed in an electrostatic potential field
from source to destination, and we steer their route by charg-iss
ing regions containing obstacles accordingly, hence guarantee-
ing local minimum avoidance. Moreover, when packets are
forwarded using gradient descent on Green’s function poten-

tial field (along lines of electrical force), we show a 3.291 path
stretch approximation bound. Note that proposed approach does
not require any strong assumptions on wireless ad-hoc network
such as symmetrical links or unit disk graphs.

After showing such theoretical guarantees, we discuss how
we can cope with the practical limitations of our theoretical
approach proposing two novel algorithms, viz. Attractive Re-
pulsive Greedy Forwarding (ARGF) and Attractive Repulsive
Pressure Greedy Forwarding (ARPGF). Both algorithms use
the notion of electrostatic repulsion to enhance greedy forward-
ing. ARGF does not theoretically guarantee the local minimum
avoidance due to the complexity of computing the exact theoret-
ical potential field on multiple obstacles of arbitrary shape and
due to discrete node distribution. For this reason, we extend
ARGF with a known pressure recovery technique (ARPGF).
ARPGF guarantees delivery at expense of a small path stretch.

We evaluate our algorithms using numerical simulations with
asymmetrical connectivity and obstacles of complex convex shape,
and with an event-driven simulations obtained considering an
actual incident-supporting hierarchical cloud deployment. We
found that our ARGF and ARPGEF algorithms outperforms re-
lated stateless greedy forwarding solutions such as Greedy For-
warding (originally called Compass routing) [8], Greedy Perime-
ter Stateless Routing (GPSR) [9] (face routing representative),
and Gravity Pressure Greedy Forwarding (GPGF) [10] (pres-
sure forwarding representative). Although both ARPGF and
GPGF include local minimum recovery mechanism and guaran-
tee packets delivery at expense of path stretch and extra packet
header space, under practical Time To Live constraints, ARPGF
outperforms GPGF. Moreover, we show that when the packet
time-to-leave, i.e., TTL < 128 and under legitimate assump-
tions, both ARPGF and GPGF data could fit in the available IP
packet header space, hence they have minor overhead.

Despite the presence of a local minimum recovery mech-
anism, GPSR performs worse than ARGF algorithm without
local minimum recovery policy. This is because of their unre-
alistic assumptions on the underlaying network graph, i.e. unit
disk or planar graph. Finally, our ns-3 [19] event-driven simula-
tions also confirms superior ARGF (and hence ARPGF) good-
put performance compared to GPSR and other stateful reactive
routing protocols, such as Ad-hoc On-demand Distance Vector
(AODV) [24] and IEEE 802.11s standard Hybrid Mesh Net-
work Protocol (HWMP) [25], especially in challenging disaster
response conditions of severe node failures and high mobility.

Our proposed general approach based on the Green’s func-
tion presents new opportunities to other known problems in the
ad-hoc wireless mesh networks. First, the emulated repulsive
field can be used in traffic steering algorithms by inducing ad-
ditional charges on heavy-loaded nodes to repulse unbalanced
network traffic, and thereby improving the overall network uti-
lization. Second, by inducing additional electrostatic charges in
network segments of malicious or selfish behavior can improve
the overall security. Finally, to improve the overall ad-hoc wire-
less mesh network vitality, additional electrostatic charges can
be induced on nodes with low battery levels.

The rest of the paper is organized as follows: In Section 2,
we motivate the local minimum problem and describe how deep
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Figure 2: Satellite imagery examples of various physical obstacles which can
be used for training purposes including both man-made e.g., buildings (a) and
natural e.g., lakes or ponds (b).

learning can be applied to derive physical obstacle information
from the satellite imagery available at the edge cloud. In Sec-
tion 3, we introduce our theoretical electrostatic-based forward-
ing model to include physical obstacle knowledge, and show
how the repulsive field guarantees the shortest path approxima-
tion as well as the local minimum avoidance. Section 4 de-
scribes our practical approximation of the theoretical model.
Section 5 presents our evaluation methodology, performance
metrics and results that show effectiveness of our proposed ap-
proach. In Section 6, we discuss related work while Section 7
concludes the paper.

2. Problem Motivation and AI Relevance

On the one hand, in the highly mobile and highly node fail-
ure conditions during the disaster-incident response, we cannot
rely on the network topology knowledge such as routing tables,
spanning trees, etc. Thus, the most of the geographic routing
solutions designed for static sensor networks and available for
MANETsS today are poorly applicable for the disaster-incident
case. On the other hand, local minimum of the geographical
routing often appears near large physical obstacles (especially,195
of concave shapes) such as man-made (e.g., buildings) or natu-
ral (e.g., close to lakes or ponds). Figures 2a and 2b illustrates
these potential physical obstacles.

Fortunately, due to specific of the “Panacea’s Cloud”, we
have satellite maps available (pre-uploaded) at the edge cloud200
which contain information about disaster-incident area. Fig-
ure 3 shows maps of Joplin, MO area before and after tornado
damages made on May 22", 2011. The tornado response im-
agery of Joplin, MO is available at [20]. We can see how in-
formation (e.g., size and location) of the Joplin High School205
(see Figures 3a and 3b) and the Joplin Hospital (see Figures 3c
and 3d) buildings (and other physical objects) is slightly im-
pacted by the tornado disaster-incident. To benefit from the
maps availability, we need to address the following problems -
(i) how to extract information about potential physical obstaclesm
(e.g., buildings, lakes, etc) from the available maps of the disas-
ter scene; and (ii) how to use this knowledge within geographic
routing to improve its goodput (i.e., application layer through-
put) sufficient for the real-time visual situational awareness.

2.1. Obstacle Detector Architecture ze

The first problem can be solved by manually labeling all
potential obstacles on the map. However, due to disaster-scene

Figure 3: Satellite imagery of Joplin MO area including Joplin High School
(top row) and Joplin Hospital (bottom row) buildings before (a,c) and after (b,d)
tornado damages on May 22"/, 2011: we can see how captured on satellite
images information about size and location of buildings (and other physical
objects) was slightly impacted by the disaster incident.

scale and due to the fact that time is the most crucial factor for
the incident response, labelling physical obstacles on the map
all the time (i.e., the manual approach) can be intractable. Thus,
we are looking for automatization of that process.

The artificial intelligence, and more specifically the pattern
recognition areas today are capable to do that. The pattern
recognition field today comprise many approaches related to an
object detection (finding the object location and its size) in the
given image (e.g., satellite imagery). These approaches include:
Support Vector Machines, Nearest Neighbor, Deep Learning
and other techniques. Nowadays, most accurate detectors rely
on deep learning approaches [16, 17]. For instance, the You
Only Look Once (YOLO) [16] deep-learning detector predicts
objects in the image using only a single neural network com-
prised 26 layers which makes it easier to run on the resource-
constrained edge cloud. At the same time, it can have worse
performance compared to more sophisticated (more resource
eager) deep learning detectors [16, 17]. Note that alternatives to
object detection include also geographical object-based image
analysis [21] that relies on the spectral information extracted
from image pixels that may require additional and more ex-
pensive LiDAR hardware [3] not necessarily available during
incident response scenarios.

However, the deep learning object detectors may not find
obstacles or misclassify them in some cases. Thus, they still
require some human interaction i.e., labeling of some of the
detected and correctly classified or misclassified samples. To
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Figure 4: “Panacea’s Cloud” architecture: to cope the deep learning complexity
of the obstacle detector we are moving deep learning to the core cloud. The up-
to-date detector version then can be pre-uploaded to the edge cloud and used
off-line during disaster-incident response activities within a lost infrastructurezeo
region to enhance geographical routing.

cope with deep learning complexity, in our “Panacea’s Cloud”
architecture shown in Figure 4, we move deep learning to the
core cloud due to limited edge cloud storage and computation
resources. Further, we assume that training samples are col-2ss
lected and partly labeled during the previous incident responses
at the edge cloud. These samples are then used for supervised
or semi-supervised deep learning [22] to enhance performance
of the detector in future. The up-to-date detector version then
can be pre-uploaded to the edge cloud and used off-line during
disaster-incident response activities within a lost infrastructure27
region. Once detected, physical obstacles are then propagated
to the MANET through a gateway.

Note that in this paper, we do not focus on finding the best
(i.e., the most accurate) approach for the obstacle detection on
the satellite maps. Instead, we address the second problem —
how to utilize obtained physical obstacle knowledge in the geo-
graphical routing to support real-time visual situational aware-
ness under challenging disaster-incident conditions.

3. Repulsive Field Model

In this section, we describe a theoretical solution that can be
used to incorporate the physical obstacle’s knowledge extracted
from the maps within the geographical routing. We will use27s
an approximation of this theory as a design principle for our
algorithms described in subsequent sections.

Let us consider a wireless network with nodes uniformly
distributed over the continuous R? (or R in 3-dimensional case)
plane, with limited radio range. Let us also assume that our
wireless network is static and does not have any obstacles (voids).
In a greedy forwarding algorithm, nodes need to be aware of the
(euclidean) coordinates of the destination as well as of all their
neighbors [9, 10, 12, 13, 14]. Packets are then forwarded to the
neighbor closest to the destination.

We model greedy forwarding based on an analogy from the
electrostatics literature: specifically, we model a packet as a
positive electric charge (or test charge) and its movement from
the source with an electrostatic field created by the destination
(with point negative charge). Packets are forwarded towards
lines of force of the electrostatic field till they reach the desti-
nation. The potential field ¢ generated by the negative charge
at the destination on the test charge is modeled as:

p=-= (D

,
where r is a distance between the node which currently holds
a packet and the charge located at the destination, and Q rep-
resents the intensity of such a charge. Following the laws of
electrostatics, each node forwards its packets to the neighbor
with the lowest electrostatic energy i.e., the node with the low-
est electrostatic potential. When there are no obstacles between
the source and destination, nodes always forward packets to the
node closer to the destination. In this paper, we refer to this
potential field generated with Equation 1 as to attractive field.

In presence of obstacles, to generate the repulsive poten-
tial, we first ground each obstacle region making its surface
equipotential (zero potential) by generating additional charges
within this region. We then sum to the main potential described
in Equation 1, an additional potential created by each induced
charge. In the rest of this section we first show how nodes
would compute a potential for a single grounded spherical ob-
stacle region. We then extend our computation to a network
with multiple obstacles of arbitrary shapes. We finally show
how our proposed repulsive field model approximates the short-
est path.

3.1. Electrical Images Solution for a single
Spherical Obstacle

To “ground” a single spherical obstacle we use the electrical
images method [18]. In particular, we induce a single positive
point charge inside the obstacle as shown in Figure 5. The po-
tential field generated by such point charge is modeled by the
following equation:

— @)
b+a

where b is a vector modeling the distance between the center of
the sphere and the destination node, and & is a vector modeling
the distance between the center of the sphere and the induced
charge. The value of the induced charge g is then: g = %Q,
where R is the radius of the sphere. The final location of the

-

. P 2
induced charge @ is instead: @ = % b.
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Figure 5: Electrical images method: a single negative point charge induces a
single positive point charge (image) inside a grounded sphere making its surface
equipotential (zero potential).

3.2. Green’s Function Solution for Obstacles of Arbitrary Shapgoo

Let us now consider a more general case of a network with
multiple obstacles of arbitrary shape. To model the positive
potential generated by such scenario, we use the Green’s func-
tion [18]:

G=-2 +x 3)
.

where y is the potential induced by the charges on the obsta-sos
cles within the network graph. We assume the origin of the
coordinate system at the destination node. The effect of such a
positive potential is then summed to the negative potential field
generated by the point negative charge at the destination to gen-
erate the line of force, and hence the trajectory of the packet. Insio
this paper, we refer to the potential field generated with Equa-
tion 3 (or its approximation) as to repulsive field. Thus, we have
the following result:

Fact 1. Given a network with a system of grounded conductors
and a single point charge at the destination, we can emulate a
unique potential field without a local minimum.

Proof. Letus assume by contradiction that we have a local min-
imum created by the Green’s function potential field for several
grounded obstacle surfaces and a negative point charge located
at the destination. Moreover, let us assume by contradiction that,,,
this potential field is also not unique. Having a local minimum
implies that all lines of force have to be directed inwards of the
local minimum, which is possible if and only if there is a point
or a surface that creates an additional negative potential field
besides the destination (see Figure 6). From the Green’s Recip-
rocation Theorem [18] we derive the closed-form expression forss
a potential between any point a located on the grounded surface
and a single point charge located at the destination as follows:

“

330

p(a) = - gg ¢sVG(a)dS

where ¢g is the potential on the surface S and ¢ is the po-
tential generated by a point charge located at the destination.
Note that Equation 4 can be rewritten in a discrete form as:
@la) = =3 ¢jsqjs- From the Equation 4 and its discrete
form we conclude that the potential field created by some ob-
stacle of arbitrary shape has always an opposite sign of the po-
tential field created by the point charge. This means that an ad-
ditional potential field is always positive when the point charge

local
minimum

Figure 6: A potential field has a local minimum if there is a point or a surface
which creates an additional negative potential field somewhere else besides the
destination, so that the lines of force are directed inwards the local minimum.

located at the destination is negative. In addition, based on
the Green’s function Uniqueness Theorem [18] such solution
is unique. |

Corollary 1. Repulsive greedy forwarding always avoids local
minimum.

Proof. Within a repulsive field, each node forwards packets to
the neighbor with minimum emulated potential energy. Based
on Fact 1, the line of force of such potential function can lead
only to the destination, or to infinity in case of a disconnected
network. Hence, if a path between the source and the destina-
tion exists, then packet delivery by repulsive greedy forwarding
is guaranteed. |

3.3. Path Stretch Approximation Bound

The goal of this subsection is to show a bound on the path
stretch obtained using repulsive greedy forwarding. To this
aim, we first show that the maximum path stretch arises only in
presence of a single spherical obstacle; we then estimate such
stretch upper bound using properties of the electrostatic poten-
tial field.

Fact 2. The maximum path stretch of repulsive forwarding arise
when both source and destination are located at the two extreme
points of a single obstacle’s diameter.

Proof. Since the potential field created by an obstacle is in-
versely proportional to the distance r to this obstacle (Equa-
tion 2), the closer the shortest path lies to an obstacle region,
the greater the strength of the obstacle’s potential field on such
packet. This means that the path stretch is as high as the path
gets closer to the obstacle. In the worst-case, the shortest path
length equals to half of the obstacle’s perimeter, e.g., when the
source and the destination are located on the opposite sides of
the obstacle’s diameter. From the Green’s function [18] we
know that the potential field generated by the grounded obsta-
cle is directly proportional to its volume. This means that the
greater is the obstacle’s volume (or area) and the shorter is its
perimeter, the higher is the possible path stretch. Finally, the
more obstacles we have in the forwarding region, the weaker
will be their potential fields due to secondary induced charges,
since the obstacle potential fields weaken each other. Due to
this fact and based on the isoperimetric property of a sphere
(circumference) [26], we conclude that repulsive greedy for-
warding shows a maximum path stretch only in the presence of
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Figure 7: (a) Potential field in presence of a single grounded sphere in polar
coordinate system: when the destination locates very close to the surface of a
sphere, the induced charge creates a potential field of a point dipole. (b) Using
electrostatic potential field properties and numerical calculations we estimated
the worst-case repulsive greedy forwarding (RGF) stretch of the shortest path
(SP) as ~ 3.2907221 + 1077,

a single spherical obstacle, when both source and destination
are located at opposite sides of the obstacle’s diameter. |

Corollary 2. Repulsive forwarding has a 3.291 path stretch

approximation bound with respect to the shortest path.

350
Proof. Based on Fact 2, the repulsive greedy forwarding max-
imum path stretch arise when a single spherical obstacle has
both source and destination located at opposite sides of its di-
ameter. The Green’s function (see Equation 3) of this obstacle
isG = % - % as shown in Figure 7a, where Q is a point charge
located at the destination; g = 1§+_Qi is a point induced charge 10-*®
cated within the obstacle (see Equation 2), and [ is the distance
between them. Since [ < r, using the cosine theorem and the

Taylor series expansion on [ we have:

n = A2+ £ rleoss = r - cosp + OP) 5"
ry = \/m =r+ Lcosp + O(P)

Similarly, g can be written as ¢ = Q — ﬁQ + O(1?), and hence,
using Equation 5 the Green’s function G in its first / approxi-
mation can be rewritten in polar coordinates as:

0-%0 0 OQlcosp—%)

= 6
r+ écosgb r? ©

G(r.¢) =

I
r— 5co08¢

Note that when r <« R, the potential field in Equation 6
becomes a potential field of a point dipole. Moreover, on the
obstacle’s circumference (e.g., when r = 2Rcos¢), Equation 637
equals to 0, which is also expected since a grounded conductor
(an obstacle) has a zero-potential surface.

Initially, packets are repelled away from the obstacle along
the source-destination line until they reach the minimum poten-
tial point, which we can find by differentiating Equation 6 with?7
respect to r and subsumed ¢ = 0 as following:

dG(r,0) 20l . 0l

dr 3 2R

=0 @)
Solving Equation 7 gives us r = 4R, and hence, initially packets*®
are repelled away from the obstacle on Ly = 2R distance. If
we model a path with the closed-form of packet trajectory ob-
tained by repulsive greedy forwarding, we can find its residual

length from the gradient symmetry of the electrostatic potential

field [18]:
dr rd¢

V,G(r.¢) — V4G(r.¢)
Further, by subsuming Equation 6 to Equation 8 we obtain the
following differential equation:

(®)

F+r

—2ctgp =0 )

2Rsing
where i = j—’. Moreover, r(0) = 4R (see Equation 7).

As both shortest path and repulsive greedy forwarding path
lengths are proportional to the obstacle’s size, without loss of
generality we can assume unitary obstacle diameter. Hence,
solving Equation 9 with R = % gives us the following packet
trajectory closed-form:

(10)

The maximum path stretch is then equal to # = 27L where L =
f;:z(rz + i’z)%d¢ + Ly is a length of the found trajectory. Note
that ¢; = 0, and ¢, = %” which can be found by subsuming
r=0to Equatlop 10, i.e., b.y solvmgfﬁ =185. . .
Solving the integral using numerical calculations, we esti-
mated the length of the trajectory to be L = 5.1690541 + 10~.
The maximum path stretch is then ~ 3.2907221+ 107 (see Fig-
ure 7b). We then conclude that - repulsive greedy forwarding
is an approximation algorithm for the shortest path. |

In the rest of this paper, we first present a practical algo-
rithms which incorporates repulsive field model. Using numer-
ical and event-driven simulations, we then show how a path
stretch minimization with proposed algorithms improves an over-
all network goodput.

4. Practical Repulsive Forwarding

In the previous section, we have shown how to use physi-
cal obstacle information within geographic routing to avoid the
local minima by greedy forwarding packets as if they are hy-
pothetically immersed in a potential field generated by a point
charge at the destination. Obstacles were modeled as conduc-
tors with zero potential surface resulting in additional repulsing
fields. Herein, we describe how we approximate the Green’s
function to capture the potential field generated by multiple
randomly shaped obstacles. We first compute our approxima-
tion assuming global knowledge of all obstacles at every node.
Next, we extend our solution to a local knowledge case: nodes
are only aware of obstacles present at some specified distance
called “repulsion zone”. Then, we discuss how our forward-
ing algorithm can be coupled with existing stateless local mini-
mum recovering scheme called “Pressure” proposed in [10] for
a guarantee delivery .

'As we show later guaranteed delivery is possible only if there is no path
length limit such as e.g., Time To Live (TTL).
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Why do we need an approximation? Our repulsion field builds
upon the continuous R? (or R?) plane; a discrete node distribu-
tion instead creates discontinuity of potential fields which can
form artificial local minima. For example, nodes may be scat-
tered in a way of creating artificial voids (i.e., not radio-covered
space without physical obstacles). Moreover, to find a closed-
form of the potential induced on every node on the network,
the Green’s function requires an integration over the obstacles’
surface with respect to every other obstacle, including the im-
pact of secondary charges. Solving such an integral (at every

forwarding decision) may be unfeasible, due to complex obsta-,,,

cle shapes or by the dynamic nature of the network. The mir-
ror effect further complicates the computation of the repulsive
potential field induced by the obstacles: when an object is lo-
cated between two mirrors, infinite number of images (induced

charges) appear. Similarly, secondary charges recursively in-,,

duce progressively weaker additional fields, to be included in
the Green’s function solution.

Next, we show the impact of the secondary charges by ap-
proximating any obstacle shape to a circle (a sphere) with a
point charge located on its center of mass. For our approxima-
tion of the obstacle electrostatic field we require:

Sign: the potential induced by each obstacle region has to
be positive, i.e., each obstacle is replaced with a positive point
charge to repulse a packet.

Direction: the potential induced has to be greater inside,
and smaller outside than a potential field created by a negative
point charge located at the destination. This is necessary to
correctly drive the packet in direction of the destination.

Intensity: the total potential filed must be equal to 0 at co.

The above requirements allow the greedy forwarding algo-

rithm to use a gradient descent on the repulsion field to converge
to the destination by forwarding packets to the neighbor whose
electrostatic energy is minimum. We describe the local minima
recovering mechanism in Section 4.3.2.
Obstacles’ shape approximation. We approximate the po-
tential field of an obstacle by circumscribing it to a circle (or
sphere) j to capture the worst path stretch it can cause (see
Fact 2). Having the set of obstacle’s pixels the detector (see
Section 2) computes the center and the radius of the circum-
scribing circle. We locate the center of the circle with the cen-
ter of mass of such an obstacle. To locate the coordinates of the
center of mass C; we average the coordinates of the N pixels §;
of the obstacle as follows:

Xp. = ﬁlxb'f
Ci=™N

_ Z,{L)’Si (11)
yC,' - N

We then assign to the radius of the circumscribing circle R, the
distance between the center C; and the furthest (border) pixel,
which can be computed as follows:

R; = maxdist(C;,S)). (12)
i=LN

Remark: Note that instead of using an Al-based obsta-

cle detectors over satellite imagery at edge clouds, the pro-

posed Repulsive field can be used in conjunction with existing
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Figure 8: Use of border conditions in A to find values ¢ jl”‘l.

dynamic obstacle detection algorithms (e.g., localization tech-

niques based on node’s signal strength) running within MANETs [23].

To this aim, Equations 11 and 12 can use coordinates of obsta-
cle’s border nodes. The cons of a dynamic obstacle detection is
the overhead as well as the dependency on the network aware-
ness, which can be aggravated by the geographic routing per-
formance under node failure and mobility conditions.
Obstacle’s Potential Approximation. To neglect the impact
of self-induced charges we approximate the potential field of
the obstacle with a decaying potential whose strength magni-
tude is a parameter n. To approximate the potential field of the
circumscribed circle, we place a positive point charge g; in the
obstacle center C;. We approximate the potential field gener-
ated by the obstacle with a potential whose strength diminishes
with the ri
. ln—l
0i= (3
J

where /"~! is a normalizing constant with units of length ele-
vated to the power of n — 1. To minimize the impact of the
secondary induced charges in presence of several obstacles, we
could use n > 1. Note how a potential of a negative point charge
located at the destination always depends merely on the dis-
tance ry (n = 1).

4.1. Computing Electrostatic Potential with Obstacles Global
Knowledge

Let us assume that all nodes are aware of both the center
and the radius of each obstacle j, < Cj,R; >. This assumption
is suitable for routing schema in which the global knowledge of
the topology is available, or in the case of a static known man-
made or natural obstacle, such as a building or a pond. With
such information, we can compute the electrostatic potential at
any node e as:

ln 1
Qe = — (14)
|rd_rc erj_reln

where 77 is a radius vector directed towards the destination, 7;
is a radius vector directed towards the obstacle’s center C;, and
7, is a radius vector directed towards the node e. To compute
q_,-l”‘1 we equate the electrical fields created by the obstacle j
and the destination d on the obstacle’s border, so that they are
equal in magnitude and opposite in direction, i.e., ﬁ(pd = —ﬁp s
where: . o 0
{thd = —W("d —7a) (15)

6 >
¢) = g = )
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Figure 9: Attractive/Repulsive Greedy Forwarding (ARGF) example: ARGF,q;
starts in Artraction mode until it reaches the repulsion zone; at node b (located
outside the repulsion zone), ARGF returns back to its Attraction mode. ARGF
can again switch to the Repulsion mode with guaranteed progress towards des-
tination. At node d, ARGF returns to the Attraction mode and continue for-
warding in this mode to destination.

From Equation 15 we derive the dependence of qjl"’l by O (see
Figure 8): “

0

n—1

QRr%+l
e (16)
T (P By 2
4.2. Computing Electrostatic Potential without Global Knowl-as
edge of Obstacles’s location

In this section we describe a simple method to compute for-
warding decisions based solely on local knowledge of obsta-
cles’ location. This is motivated by the need to reduce net-
work overhead and to optimize memory and storage needed to**°
deal with the propagation and storage of obstacles information
(especially in case of large-scale networks). In our evaluation
section, we quantify how such local knowledge is enough for
a performant greedy forwarding strategy with minimum path
stretch. Note how, since the electrostatic field intensity dimin-*®
ishes with distance, when computing the potential, forwarding
nodes do not need to consider obstacles “far away”.

To find the distance at which the obstacle’s contribution to
the total potential field is still significant, i.e., the obstacle’s re-
pulsion zone R, we first decompose the second term of Equa-**°
tion 14 with a Taylor series expansion obtaining:
qjln—l nqjln—l
R Rn+1

f@R) = (r=R)+O(r — R

7
and then we neglect the first two terms of higher order and sub- g
stitute R, to  in Equation 17. The radius of repulsion zone is
therefore:

R.=(l+ Lig (18)
n

Thus, nodes need only to store obstacles located closer than R;._
Once a node moves further away from an obstacle’s R_, it can
remove its states concerning that obstacle. On contrary, when

a new node arrives within the obstacle’s repulsion zone R_, the
information about such obstacle is should be received. As we
show in Section 5, such information can be exchanged among,
neighbors during their regular position beaconing communica-
tion with negligible additional overhead (i.e., using the same
packet).

4.3. Greedy Forwarding Algorithms

Note how, due to discrete node distribution and since we
approximate the Green’s function of the real obstacles to a po-
tential of spherical regions, Equations 14 and 16 do not guar-
antee avoidance of a local minimum. To this end, we first pro-
pose a solution that alternates forwarding in both attractive and
repulsive fields, viz. Attractive Repulsive Greedy Forwarding
(ARGF), to increase the chance of escaping or avoiding all lo-
cal minima and deliver a packet with the minimum path stretch.
To guarantee 100% packet delivery, we then extend ARGF with
stateless Pressure local minimum recovery scheme proposed
in [10]. The resulting Attractive Repulsive Pressure Greedy
Forwarding (ARPGF) applies recovery when in pressure mode
to both attractive and repulsive fields (details in Section 4.3.2).

4.3.1. Attractive/Repulsive Greedy Forwarding

Algorithm 1 outlines how each node forwards packets us-
ing the Attractive Repulsive Greedy Forwarding (ARGF) strat-
egy, when either local or global information about obstacles
are known. Figure 9 illustrates the following forwarding pro-
cess: upon receiving a packet to be forwarded, node e checks
if the packet should proceed further in Repulsion mode or in
Attractive mode. To this end, ARGF first check that e in repul-
sion zone R, and that previously found potential in Repulsion
mode attached to the packet P_p,., (which is initially set to
max value) is greater than current potential of e (line 3)%. If
the latter applies, e stores its potential in packet header (line 4)
and computes neighbors Nbrs potential ¢, (line 5) using its
information about known obstacle centers e.C and their radius
e.R via Equations 14 and 16.

If no neighbor n found has a potential ¢,,,,; lower than node
e potential, or if e is not in R, e switches to an Attraction mode,
where it computes its neighbors’ potential ¢, using Equation 1
(line 12). If both Repulsion and Attractive modes are unavail-
able to find next hop, ARGF returns a potentially detected ob-
stacle condition and terminates.

4.3.2. A/R Pressure Greedy Forwarding

Although empirically (as we show in Section 5) our ARGF
outperforms traditional Greedy Forwarding in terms of packet
delivery, it does not theoretically guarantee 100% packet de-
livery. To his end, we devised Attractive Repulsive Pressure
Greedy Forwarding (ARPGF), which builds upon a known Gravity-
Pressure scheme that has been shown to provide guarantee packet
delivery [10].

Algorithm 2 outlines how each node forwards packets using
Attractive Repulsive Pressure Greedy Forwarding (ARPGF):
the algorithm also starts as by alternating Repulsive and Attrac-
tive fields in ARGF, when it needs to forward packets. How-
ever, similarly to the last known potential of Repulsion field
@rep» it also saves the last known potential in the Attractive field
variable ¢, (line 12) to ensure in possibility of progress in Az-
tractive mode e.g., after resuming from Pressure mode. When

2This statement is important to ensure that packets can progress in Repulsion
mode towards the destination without possibility of returning to previous local
minimum of repulsive field.
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Algorithm 1: Attractive/Repulsive Greedy Forwarding

Algorithm 2: Attractive/Repulsive Pressure Forwarding

/+ Upon receiving a packet P at node e x/
1 if e # dst then
2 next < NIL
3 ife € R, and P_prep > Groraile, P, e.d e.ﬁ) then
/* Repulsion mode */
4 Pf‘prep « ‘Pmml(ev P, e.C_", eﬁ)
5 n« g%}:i:}(e) Grotai(n, P, 8.6, e.ﬁ)
6 if ©ro1a1(n, P, e.C, e.l?) < Qrotai(e, P, e.C, e.l?) then
7 next « n
8 forward(P, next)
9 end
10 end
11 if next == NIL then
/+ Attraction mode */
S R L
13 if pq(n, P) < ¢q(e, P) then
14 next <« n
15 forward(P, next)
16 else
17 exception (“ARGEF faced a local minimum”)
18 alert (“Potentially unknown obstacle detected”)
19 terminate
20 end
21 end
22 else
23 terminate
24 end

both Attractive and Repulsive forwarding fail to find next node
for forwarding, ARPGF switches to Pressure mode (line 21).

The key idea behind recovery in Pressure mode is to for-
ward packet to the closest to the destination neighbor among
the least visited neighbors (line 23).

5. Evaluation Results

In this section, we establish the practicality of our electro-
statics-based approach by evaluating its performance in several
scenarios that result into the following salient findings:

(i.a) Local obstacles knowledge is enough. Our repulsive greedy5 %
forwarding approach is not affected by a lack of global knowl-
edge on obstacles’ position.

(i.b) Local obstacles introduce negligible storage and no net-
work overhead. To maintain a local knowledge on obstacles,
our routing protocols only requires < 0.25 KB of storage space,
and hence, that information can be piggybacked and propagateds+
with the keep-alive beaconing message to update their position
at no (or negligible) additional network overhead.

(i) Our ARPGF outperforms related stateless greedy forward-
ing solutions [9, 10] in terms of delivery ratio, and the required
information to run it can fit in available IP packet header space®*
with 99% probability (i.e, its overhead is extremely low).

(iii) The repulsive field (and hence both ARGF and ARPGF) im-
prove network’s goodput in challenged disaster incident wire-

less edge networks®. By reducing a path stretch due to a phys-
550

3Improvement were observed when both coordinates and radius of physical
obstacles are known (see Section 5.2).

/+ Upon receiving a packet P at node e x/
1 if e # dst then
2 next «— NIL
3 ife € R, and P_prep > rorai(e, P, e.d e.ﬁ) then
/* Repulsion mode */
4 Pfsarep A\ ‘Pmml(& P, 6-67 eﬁ)
5 ne« 32%}3}(6) Grotal(n, P, e.d e.ﬁ)
6 if ©ro1a1(n, P, e.C, e.ﬁ) < @rotaile, P, e.C, e.l?) then
7 next « n
8 forward(P, next)
9 end
10 end
11 if next == NIL and P _@q1r > @q(e, P) then
/+ Attraction mode */
12 Pfgouttr — Qod(es P)
13 n« 32%1;3(6') @a(n, P)
14 if ¢4(n, P) < @4(e, P) then
15 next «n
16 forward(P, next)
17 else
18 ‘ alert (“Potentially unknown obstacle detected”)
19 end
20 end
21 if next == NIL then
/* Pressure mode */
22 VISitSpin < ne]r\;lbirr;(e) P_visits(n)
23 Candidates «— {n € Nbrs(e) and P_visits(n) == visitSy,}
a nedmmin ool Pe.Coe R
25 P_visits(n) « P_visits(n) + 1
26 next « n
27 forward(P, next)
28 end
29 else
30 ‘ terminate
31 end

ical obstacles knowledge, ARGF (and hence ARPGF) results
into a higher network throughput than related solutions. The
first two results emerge from our numeric simulations, while
we found our third result analyzing using more realistic ns-3
event-driven simulations (see Subsections 5.1 and 5.2).

5.1. Performance Tuning under Static Obstacles of Complex
Concave Shapes

Simulation Settings. Our simulation environment is composed
by an Ubuntu OS GNU/Linux x86_64 machine with an Intel(R)
Xeon(R) processor with CPU 2.1 GHz and 1GB RAM. We gen-
erate a | km? area and place nodes into each 10x10 m cell (for
a total of 10K nodes). To remove the “Unit Disk™ graph as-
sumption, we set the radio range of each node from 50 to 40
m, unless stated differently. We then applied the random graph
generation model G(n, 1 —p) [10, 13] with probability p = 0.05.
With this parameters when two nodes are within the reciprocal
radio range, there is a 5% probability that one of these nodes
is not detected by the other. We refer to this condition as lack
of symmetrical link assumption, that in turn leads to a network
asymmetrical connectivity.
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Figure 10: Ignoring the obstacle mutual electrostatic influence during a poten-585
tial field computation leads to a lower (a) success ratio and/or (b, d) higher path
stretch (attenuation order n < 2). Performance of both ARGF and ARPGF does
not improve for attenuation order n > 2.

We generate circular obstacles with a radius ranging from
10 to 100 m in random locations. When overlapping, such ob-**
stacles create complex concave shapes, which stress greedy for-
warding to the limit [14]. We run our simulations with 0, 10,
30, 50 and 100 obstacles that occupy =~ 0%, 10%, 25%, 40%
and 60% of the available routing space, respectively.

595

Remark: Note that some of the recent similar solutions
demonstrate valuable performance degradation after only 30%
of obstacles occupancy [13]. In a disaster scenario, this would
be common and such performance degradation unacceptable.

600

After setting up the environment, we attempt to deliver traf-
fic among 1000 random pairs < src, dst >. In this scenario, our
main goal is to stress our greedy forwarding algorithms with
obstacles of complex concave shapes, and hence, we do not
use node mobility, as it leads to a frequent network partitioning®®
under high obstacle occupancy which hides greedy forwarding
algorithms’ potential.* For the same reason, we do not gener-
ate obstacles at the area edges. All our results show 99% con-
fidence interval over 50 trials, and our randomness lies in both
the source-destination pairs and the formed network topologies.®"
Comparison Methods and Metrics. To empirically evaluate
which potential field best approximates an obstacle of arbitrary
shape, we tested the performance of both ARGF and ARPGF
under different potential field attenuation orders n. We then
leverage our finding (n = 2 for ARGF and n = 1 for ARPGF)*"®
in our other experiments.

4Note how mobility does not affect stateless greedy forwarding under the
assumption that #; < t, where #; is time needed to greedy forward a packetgy
to the next hop, and 1, is time needed for the node to move out of its neighbor
radio range. To convince the reader that this is a practical assumption, we later
apply (high) mobility in our event-driven simulations.
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Figure 11: Local knowledge on obstacles maintenance for both ARGF (with
n = 2) and ARPGF (with n = 1 - the largest repulsion zone) requires low
storage (a); even for < 1% of nodes (b) which store up to 7 unique obstacles
the storage space needed is 7 - 0.018 < 0.25 KB.

We compare our ARGF and ARPGF algorithms with three

other stateless greedy forwarding exiting approaches, that is,
the original Greedy Forwarding (GF) algorithm (also known as
compass routing [8]), a face routing algorithm, GPSR [9] and a
gravity pressure forwarding algorithm GPGF [10]. In addition,
we also compare ARGF algorithm coupled with GPSR using a
face routing recovery policy, which we call ARPSR. The related
solutions are compared across two metrics: the packet delivery
success ratio, i.e., the number of delivered packets divided by
the total number of attempted delivery (counting only cases in
which a path for < src, dst > pair exists), and the average path
stretch, calculated as the average path length ratio of delivered
packets and the shortest paths computed with a simple Breadth-
First Search algorithm. Finally, we also compare packet header
sizes, which are dynamic for ARPGF and GPGF.
(i.a) Local obstacle knowledge is enough. During the po-
tential field formation w.r.t. the different attenuation order n,
we found that based on local obstacles knowledge, both ARGF
and ARPGF perform similarly (aside from a better path stretch
for n < 2) to the case when all obstacles are known a priori
(Figures 10a,10b,10c and 10d). A path stretch difference under
n < 2 is due to a potential field approximation inaccuracy: we
ignore an obstacle’s mutual influence by disregarding the sec-
ondary induced charges (creating artificial local minima), while
local obstacles knowledge mitigates this problem. We can see
how both global and local versions of ARGF show the low-
est path stretch and the highest success ratio for n = 2, which
match with the attenuation order of a point dipole, and there-
fore in line with our theoretical model (see Equation 6). At
the same time, the local version of ARPGF shows the lowest
path stretch when n = 1, as in this case we gain the best ratio
between secondary induced charges mitigation and the radius
of repulsion zone, which achieves maximum length decreasing
the number of Attractive/Repulsive field alternations during the
Pressure recovery mode. We use n = 2 for ARGF and n = 1
for ARPGF results for the rest of experiments.

(i.b) Local obstacles introduce no network overhead. To
maintain information about local obstacles for our repulsive
field, we need to store them and periodically exchange with the
neighbors. The (3D) GPS coordinates of the obstacle location
in the worst case (i.e., without converting them to grid coordi-
nates) takes no more than 12 bytes (4 bytes for each coordinate).
To store obstacle radius we need no more than 4 bytes. Finally,
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Figure 12: (a) All pressure forwarding algorithms (i.e., GPGF and ARPGF)
have a guaranteed packet delivery when there is no TTL policy. Due to the
asymmetrical links and no Unit Disk graph guarantees, ARGF (without lo-
cal minimum recovery) outperforms GPSR — known face routing algorithm.
These results are confirmed also by our event-driven simulations. (b) Recover-.
ing from a local minimum in GPGF and ARPGF may stretch path significantly;
however, applying a Repulsion field to GPGF (using ARPGF algorithm) shows

a lower path stretch.

to distinguish obstacles we can also store its id which takes no
more than 2 bytes (up to 65K unique obstacles). To exchange665
that information we can use the following packet payload struc-
ture shown in Table 1. Figure 11a shows how maintenance of
the local knowledge for both ARGF (with n = 2) and ARPGF
(with n = 1) on obstacles requires low amount of the node stor-
age space (i.e., even in rear cases of storing 7 unique obstacles
as shown in Figure 11b we need 7 - 0.018 < 0.25 KB). Thus,s7
local obstacle information can be exchanged during a period-
ical node’s neighbors beaconing to update their position at no
additional network overhead (i.e., within a single packet).

Table 1: Obstacle Data Exchange Packet Payload
675

Obstacle Center Radius
ID coordinates
[ 2nbytes | 12-nbytes [ 4nbytes |

(ii) ARPGF can fit its data in the available IP header space.
Our simulations show how all pressure forwarding algorithms®
(i.e., GPGF and ARPGF) have a guaranteed packet delivery
when there is no path length restrictions, such as a set time to
leave (TTL) — see Figure 12a. However, both ARPGF and
GPGF lead to large path stretches when obstacles occupy most
of the available space, i.e., the ARPGF and GPGF average pathgg
lengths are ~ 6 and 8 times larger than a shortest path, re-
spectively (Figure 12b.) Although Repulsive field usage allows
ARPGEF to have a path stretch lower than GPGF (paths are 1.5
longer), these path stretches may force large end-to-end delays
and network congestions that may jeopardize applications us-,
age. We can also see how the packet delivery of the face routing
algorithms (i.e., GPSR and EPSR) degrades due to asymmet-
rical links and variation of the nodes’ radio range, leading to
disconnected planar graphs (these results are in line with previ-
ous works [36]. Surprisingly, ARGF without a local minimum
recovery outperforms GPSR with the local minimum recovery.,,
These results are in line with our event-driven simulations in
ns-3 (Section 5.2).

In the last two simulated scenarios, where 100 obstacles are
present on = 60% of the area, we first limit the path length set-
ting different TTL policies (for a maximum of 256 path length),

11

Table 2: ARGF Packet Header

Source Destination | Repulsive
coordinates | coordinates potential
[ 3bytes [ 3bytes | 4bytes |

Table 3: ARPGF Packet Header

Source Destination Repulsive Attractive Node; , Node; ,
coordinates | coordinates potential potential ID visits
[ 3bytes | 3bytes [ 4bytes | 4bytes [ nbytes | nbytes |

having fixed the average node degree (nodes’ radio range rang-
ing from 50 to 40 m). We then set TTL to 128, and we vary
the average node degree by reducing an interval of node’s ra-
dio range distribution by 10 m, until all nodes have a minimal
network connectivity radio range of 10 m. As expected, the
repulsion field usage allows ARPGF to achieve the best packet
delivery ~ 90% (Figure 13a) that gradually decreases as the net-
work become less dense (see Figure 13c). We can also see how
in 99% of the cases, both GPGF and ARPGTF fits their required
data for greedy forwarding in the available IP packet header
space, as long as the TTL < 128 (see Figures 13b and 13d). We
computed the packet header sizes under the following assump-
tions:

e 2D or 3D node coordinates have total size of 3 bytes; this
can be achieved by e.g., converting GPS coordinates into
coordinates of a finite grid which spans regions covered
by the network as in [14].

e Both node ID and number of nodes visits have size of
1byte. As the path length is limited by the TTL, we
cannot visit more than TTL-1 nodes during the Pressure
packet recovery phase. Hence, it is possible to find a hash
function of e.g., an IP address to map a node’s ID be-
tween 0 and 255, with a minimum collision probability.
When operating in same subnetwork, we can just use the
last byte of an IP address as a node ID.

Let us know analyze the overhead of ARGF and ARPGF;
with the above assumption, we need total of 6 bytes (to store
source and destination coordinates) + 4 bytes (to store last po-
tential in Repulsion mode), so only 10 bytes an extra space for
ARGF protocol (seeTable 2). ARPGF header size is then 10
bytes (as for ARGF) + 4 bytes (to store last potential in Afttrac-
tion mode) + 2-n bytes (to node visits during Pressure recovery)
= 14 + 2 - n bytes, where n - number of unique node visits (see
Table 3). Having 40 bytes of available space in packet header
allows ARPGF track up to 13 unique nodes during Pressure
recovery.

5.2. Incident-Supporting Application Case Study Results

Simulation Settings. To evaluate the impact of the path stretch
on the performance of higher layer protocols under potentially
failing and mobile MANET nodes, we compared two state-
less greedy forwarding algorithms — i.e., the proposed ARGF
and the known face routing GPSR protocol [9]. For our com-
parison, we used its implementation [27] on the ns-3 simula-
tor [19]. Note that in this simulation we do not use the pressure
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Figure 13: Success ratio and header size. (a,c) In presence of 100 obstacles (= 60% of obstacles occupancy) and under various TTL path length restrictions as well
as for various network densities (with TTL= 128) ARPGF outperforms related greedy forwarding algorithms by showing the highest success ratio. (b,d) Under the
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Figure 14: Al-augmented geographical routing evaluation using recreated dis-
aster scenes of damages by a tornado at the Joplin High School (a) and at the
Joplin Hospital (b) buildings in Joplin, MO (2011): a paramedic acts as a source

Table 4: Simulation Environment Settings

sending data to the gateway (universal sink) over a resilient ad-hoc network.
Video streams gathered on-site are sent over a TCP session to the dashboard
located in an edge-cloud for further data processing in conjunction with a core
cloud. (a), we evaluate our approach under severe failures, (b) under high mo-
bility. We assume that the information regarding a damaged buildings (e.g.,705
its center coordinates and radius) was provided from the edge-cloud through
a Gateway using proposed obstacle detector (see Section 2) on pre-uploaded
satellite maps.
forwarding mode to evaluate impact on throughput of the pro-
posed repulsion field. To compare with stateful ad-hoc routing730
solutions, we use the known reactive Ad-Hoc On Demand Dis-
tance Vector (AODV) protocol [24]. We also use Hybrid Wire-
less Mesh Network (HWMP) protocol of 802.11s standard [25]
which combines reactive (with AODV) as well as proactive
routing (using the spanning tree algorithm).
o e . .735

We use realistic disaster scenes of damaged by tornado Joplin
High School and Joplin Hospital buildings in Joplin, MO (2011)
to evaluate performance of stateless greedy forwarding algo-
rithms under mobility and (severe) node failures. To recreate
these disaster scenes, we used the available satellite maps of

. . . 740
Joplin, MO, tornado response imagery [20]. In our disaster-
incident scenario, we simulate the 5 Mbps high-definition video
streaming over a TCP connection from a heads-up display de-
vice worn by a paramedic e.g., Google Glass acting as a visual
data source. s

The paramedic stays for 3 minutes at each patient location
and moves at a jogging speed (2.8 m/s) between these locations.
The simulations are designed to cause a geographical routing to
face a local minimum when the paramedic source is near the
second (first scenario) or third (second scenario) patient loca-
tions. Aside from the source mobility, in the node failure sim-
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Topology: Physical/Link layers:

Number of nodes: 30 - 40 Frequency: 2.4 GHz
Grid placement: 50- 150 m |Tx power: 20 dBm
1°" obstacle size: 600 x 300 m|Tx gain: 6dB
2" obstacle size 400 x 400 m|Rx gain: 0dB
Radio range: 250 m Detection threshold: -68.8 dBm
Avg node degree: ~3-10 Delay prop. model: CONSTANT SPEED

Overall settings: Loss prop. model: TWO-RAY
Node failure period: ~ 0.033 Hz |Technology: 802.11g/s
Node failure probability: 0.05-0.5 [Modulation: OFDM
Mobile nodes speed: 5-20m/s |Data rate: 54 Mbps
Time at each location: 180 sec Transport/App layers:
Src speed: 2.8 m/s Transport protocol: TCP
Simulation time: 720 - 780 s |Payload: 1448 bytes
Beaconing frequency: 1-4Hz Application bit rate: 5 Mbps

ulation scenario (see Figure 14a), nodes around an obstacle can
fail for the next 30 seconds® with a probability sampled from
the interval [5%, 50%] (from low to severe node failures). Un-
der these failure conditions, the goodput degrades due to losses
(e.g., caused by packet collisions) that increase with the path
length or path reconstruction of the stateful routing approaches.
Note that when nodes fail for continues periods, any “store and
forward” solution is inadequate [28, 29]. We evaluate the im-
pact of nodes mobility in a second simulation scenario (see Fig-
ure 14b), where paramedics can communicate with the gateway
only through moving vehicles on the road which speed is sam-
pled uniformly from the interval [5,20] m/s (from low ~ 10
mph to high ~ 40 mph mobility cases).

Finally, nodes are placed on a grid ranging from 50 - 150
m step, each node has a radio range of 250 m, and an obstacle
(a building) is located approximately in the center of this grid.
Each node has roughly 3 — 10 neighbors for resilience purposes.
Table 4 summarizes our simulation details.
(iii) The repulsive field improves a network’s goodput. For
low node failures (5%), ARGF delivers all packets with a TCP
throughput of ~ 3 Mbps (Figure 15a). GPSR instead has a 20%
failure rate in delivering packets. When GPSR enters the recov-
ering mode it uses planarization which, in turn, can significantly
stretch paths. As a result, GPRS shows lower TCP throughput

3Such behavior is expected due to possibility of an intermittently available
power supply, or due to a physical damage caused by rescue workers near the
disaster scene.
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Figure 15: Time fraction of the TCP throughput (top row) and congested window (CWND) size (bottom row) averaged over 1 and 15 seconds, respectively, under
(a, ) low node failures (5%) and (b, f) severe node failures (50%) and under (c,g) low node mobility (5 m/s) and (d,h) high node mobility (20 m/s): half of the time
GPSR faces a local minimum showing two times worth throughput and lower CWND than ARGF due to higher path stretch caused by GPSR planarization. Both
AODYV and HWMP stateful routing solutions show worse throughput level within a disaster scene, due to its challenging conditions. As expected, performance of

all algorithms degrades as we increase node failures or high node mobility.

(< 2 Mbps) than ARGF due to a lower congestion window size
(see Figure 15e), and only 40% of the time it shows similarzso
performance. Under severe node failure conditions (nodes fail
50% of the time they receive a packet to forward), we observe
similar behaviors (Figure 15b): GPSR experiences lower TCP
throughput 40% of the time compared to ARGF, caused again
by the congestion window size (see Figure 15f) when GPSR7ss
faces a local minimum. Under such severe failures, both GPSR
and ARGEF fail to deliver packets = 45% and 35% of the time.

For low node mobility (5 m/s), both ARGF and GPSR de-
liver all packets with a TCP throughput of ~ 1 — 2 Mbps (Fig-
ure 15c). However, when GPSR enters the recovering mode
near patient location 3 (after ~ 500 sec), due to its planariza-
tion (which stretches paths), it shows lower TCP throughput .
(£ 1 Mbps) than ARGF. That is in line with a lower conges-
tion window size (see Figure 15g). At the same time, 60%
of the time (first 500 sec) it shows similar performance. Un-
der high node mobility conditions (20 m/s), we again observe
similar behaviors (Figure 15d): GPSR experiences lower TCP,
throughput 40% of the time compared to ARGF, caused again
by the planarization when GPSR faces a local minimum. That
is confirmed by congestion window size (see Figure 15f) . Un-
der such high mobility, both GPSR and ARGF are able to still
deliver all packets, which makes geographical routing more at-,
tractive disaster-incident response activities which benefit from
the real-time situational awareness.

Even though both AODV and HWMP have advantages over
pure proactive stateful routing solutions, in a challenged disas-
ter scenario they do not show acceptable throughput level, lead-,
ing to service outages caused by disconnections (from 20% to
90% percent of the time). Recent solutions in stateful greedy
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forwarding literature can help cope with some disaster incident
challenges [13, 14]. For example, recent stateful greedy for-
warding solutions have shown promising results under severe
node failures [14]. However, we found no stateful greedy for-
warding algorithm which can cope with both severe node fail-
ures and high mobility.

The superior performance of ARGF is due to its knowl-
edge about a static physical obstacle located within the disaster
scene, which in most cases allows local minima avoidance by
using our proposed Repulsion forwarding.

6. Related Work

Physics in computer networks. Applying physics laws to solve
computer network problems is not a novelty. The first success-
ful attempt, to our knowledge is the popular result by Shannon,
who created the basics of information theory relying on the en-
tropy definition from physics [30]. To justify network effects
new models such as “small world” effect, cluster models, net-
work correlation, random graph model, network growth model
and many others have been developed. All these models rely on
physics to some extent. A survey of these models can be found
in [31].

Narrowing our attention to routing and forwarding schemes
using potential fields, we found a few routing and forwarding
schemes using potential fields similarly to ours [32, 33, 34].
Their solution is aimed to balance the network load by the nat-
ural property of electrostatic lines of force to be geo-spatially
dispersed. In [32], the authors use the aforementioned property
to select a path trajectory so that a greedy forwarded packet can
reach the destination without facing a local minimum. In [33]
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authors use numerical calculations to optimize network loadses
for one-to-many and many-to-many communication patterns.
However, both schemes do not address the local minimum prob-
lem due to presence of obstacles directly and can benefit from
using our approach. In [34], the authors use a potential field
to repulse traffic in excess from heavy loaded sensors to re-sno
duce congestion. Our proposed approach can be used similarly
to directly deal with congestions and other disaster incident-
supporting geographical routing problems.
Geographic routing and MANET. The literature on geographic
routing and greedy forwarding is also vast, and here we aress
trying to focus on the most valuable works that help to high-
light our contributions. Many geographic routing algorithms
that can recover from a local minimum have been proposed.
One of the first geographic routing solutions which guarantees
delivery were Greedy Perimeter Stateless Routing (GPSR) [9]sso
and GFG [35]. To recover from a local minimum both proto-
cols use face routing which requires strong assumptions such
as unit disk and planar graphs. However, planar graphs can be
disconnected when graphs have arbitrary shapes, nodes are mo-
bile and real physical obstacles appear [36]. Kim et al. [36]ess
proposes solution which overcomes planar graph limitations in
practice by introducing Cross-Link Detection Protocol (CLDP),
complication unneeded in our approach. As later works have
show [12, 13], CLDP requires expensive signaling to detect
and remove crossed edges. Authors in [12] proposed Greedysso
Distributed Spanning Tree Routing (GDSTR) which requires
less expensive distributed spanning tree construction (to main-
tain one or several spanning trees) to guarantee delivery and
recover from a local minimum, also extended to a 3D case [37].
Kleinberg et al. [11] also use spanning trees for greedy embed-sss
ding, i.e., for an assignment of virtual coordinates to greedy
forward a packet without facing a local minimum. More re-
cent works [13, 14, 15] show that spanning trees are sensitive
to dynamic topologies and mobility. Moreover, most of afore-
mentioned solutions were designed for static sensor networkssoo
which are limited in dynamics. Our approach obtain better path
stretch results, also works in 3D spaces, but does not require the
time and space complexity of spanning trees constructions.
More recent protocols such as MTD and WEAVE [13, 14]
can cope with topology dynamics to some extent. For exam-eos
ple MTD requires construction of Delaunay triangulation (DT)
graphs for local minimum recovery. When topology changes,
nodes may loose their Delaunay neighbors which needed for
recovery from a local minimum. Contrary to ours, all of the
aforementioned protocols are stateful — i.e., they rely on global
or partial topology knowledge and therefore their performance
degrades under node mobility or failures — common for dis-e1o
aster scenarios. Moreover, all these algorithms build around
greedy forwarding and hence, they can benefit from using our
repulsive field to proactively avoid local minima created by ob-
stacles. To our knowledge, we are the first to introduce a the-
oretical solution to the local minimum avoidance that approx-eis
imates with a bound the shortest path in ad-hoc networks by
creating conceptually different forwarding decision rules.
Geographic routing and Internet. Geographic routing has
been also proposed for Internet [10, 15, 38] that is less dynamic
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than wireless ad-hoc networks. Thus, the authors in [10] build
upon work of Kleinberg et al. [11] and show that due to inac-
curate greedy embedding caused by topology dynamics, pack-
ets can stuck in a local minimum. To this aim, they propose
the Gravity Pressure Greedy Forwarding (GPGF) [10] protocol
which is shown to have guaranteed packet delivery on graphs
of an arbitrary shape. To recover from local minimum, GPGF
counts number of node visits (storing that information in packet
headers) to press packets from local minima until greedy for-
warding can resume. The key idea beyond pressure recovery is
a greedy forwarding gradient descent property — once packet
reaches a location closer to the destination, there is no way how
packet can be forwarded back to the previous location of a lo-
cal minimum. However, such recovery needs expensive packet
header space [15] and can stretch path significantly.

AGRA: Al-augmented geographic routing. In this paper, we
propose to use a conceptually different repulsive field for geo-
graphic routing to benefit from a static physical obstacle knowl-
edge obtained by using deep learning-based detectors [16, 17]
over available at the edge satellite maps. The proposed ap-
proach based on the electrostatic potential of Green’s function
theoretically guarantees avoidance of a local minimum as well
as shortest path approximation. The electrostatic field guiding
packets has a gradient descent property, with minimum at the
destination. This means that greedy forwarding can be also
complemented with the gravity pressure mode of GPGF for a
local minimum avoidance. Our proposed algorithms Attractive
Repulsive Greedy Forwarding (ARGF) and Attractive Repul-
sive Pressure Greedy Forwarding (ARPGF) use both repulsive
and attractive fields to greedy forward a packet (in 2D or 3D Eu-
clidean spaces), and as shown in our simulations, such greedy
forwarding synergy enhances the path stretching property of
GPGF (and hence the delivery ratio (limited by the packet’s

Time To Live), making ARPGF suitable for the incident-supporting

wireless edge (i.e., ad hoc) networks. Due to the static obsta-
cle knowledge, proposed algorithms can cope better with high
mobility and severe node failures, which results in an over-
all greater goodput during disaster scenarios, crucial for most
of incident-supporting situational awareness applications. In
the absence of any obstacles knowledge, the performance of
such proposed algorithms degrades down to their respective
predecessor performances, i.e., ARGF to GF [8] and ARPGF
to GPGFE.

7. Conclusion

In this work, we addressed the lack of suitable geograph-
ical routing approaches for IoT-based incident-supporting ap-
plications in edge computing, that can provide constant high-
speed data delivery to an edge cloud gateway to enhance their
scalability, reliability and stability. Specifically, we presented
a novel Al-augmented geographic routing approach (AGRA),
which relies on the physical obstacle information obtained from
satellite imagery (available at the edge cloud) by applying deep
learning. We then proposed a novel repulsive field strategy
based on electrostatic potential of Green’s function to incor-
porate physical obstacle knowledge within geographic routing.
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Our approach theoretically guarantees avoidance of a local min-
ima as well as shortest path approximation. Due to inaccura-
cies in the obstacles’ potential field approximation and the dis-"
crete node distribution, in practice the approach cannot guaran-
tee the local minima avoidance. To this end, we introduced a
novel Attractive Repulsive Greedy Forwarding (ARGF) algo-
rithm which can alternately forward packets in both repulsive’™
and attractive field modes, to maximize the chances of escap-
ing from, or avoiding local minima. Furthermore, to guarantee
packet delivery, we coupled our ARGF algorithm with a known
gravity pressure recovery algorithm. As emulating both repul-990
sive and attractive fields allows gradient descent to the destina-
tion, the recovery schema can be applied to also minimize the
path stretch. Using extensive simulations, we have shown that
our proposed algorithms outperforms related stateless greedy995
forwarding solutions in terms of packet delivery success ratio
and path stretch. Considering an actual incident-supporting hi-
erarchical cloud deployment scenario, we have also analyzeq000
how ARGF has better goodput performance than other state-
less face routing solutions (such as, GPSR) as well as stateful
reactive mesh routing (i.e., AODV and HWMP).
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The main original contributions are:

We propose an Artificial Intelligence (Al)-augmented geographical routing approach (AGRA). Our approach uses deep
learning over satellite imagery available at the edge clouds to enable IoT-based incident-supporting applications.

We leverage a novel repulsive forwarding technique that theoretically guarantees local minimum avoidance and approxi-
mates the shortest path algorithm with a 3.291 path stretch bound

Using both large scale numerical and NS-3 event-driven simulations we show how our proposed approach outperformes
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