


or by a first responder for a live remote medical consultation.35

The incident response and resource allocation decision making

e.g., ambulance routing to scene, medical supply replenishment

tracking, requires significant computational resources that can

be augmented on demand by a core cloud cluster (see Figure 1).

For such edge cloud network scenarios to be operational,40

traffic generated by the MANET needs to be handled dynami-

cally and with severe latency constraints. Geographical routing-

based approaches are generally suitable for these applications;

however, there is a lack of incident-supporting forwarding and

routing approaches in MANETs capable of providing sustinable45

high-speed data delivery to the edge cloud gateway [7]. Specif-

ically, there is a need to design a better performant greedy-

forwarding solutions that does not suffer from the local mini-

mum problem in presence of (non-arbitrary) node failures and

mobility. This problem is caused by the lack of global routing50

knowledge of the greedy forwarding algorithm [8, 9, 10] that

may deliver packets to nodes that do not have neighbors closer

to the destination than themselves.

Existing algorithms provide only partial solutions to the lo-

cal minimum problem and can be classified into stateful or state-55

less. Existing stateless greedy forwarding solutions may fail to

find a path even if it exists [8, 9], or they stretch such paths

significantly [10] by visiting almost all possible nodes to “des-

perately” find a way. Existing stateful greedy forwarding al-

gorithms instead (e.g., those relying on the network topology60

knowledge including spanning trees [11, 12] or partial paths [14])

are sensitive to frequent node failures and mobility [13, 14, 15],

a typical scenario within regions and infrastructures hit by a nat-

ural or man-made disaster. Consequently, such algorithms lead

to poor or unacceptable performance in incident-supporting ap-65

plications that need constant high-speed data transfer to provide

crucial real-time situational awareness.

Our contributions. To cope with above geographic routing

limitations, in this paper we present a novel Artificial Intelligent

(AI)-augmented geographic routing approach (AGRA). AGRA70

utilizes a knowledge about physical obstacles presence in a geo-

graphical area obtained from the satellite imagery (maps) avail-

able at the system’s dashboard by applying deep learning [16,

17]. Further, physical obstacle knowledge is used to build con-

ceptually different greedy forwarding approach that avoids the75

local minima problem while supporting high-speed data deliv-

ery, e.g., of high-definition data streams and multi-modal data,

across large regions of disaster incident scenes.

Our main theoretical contribution lays in our result pertain-

ing to a geographical routing model that guarantees local mini-80

mum avoidance as well as shortest path approximation in cloud-

supported (mobile) ad-hoc networks (Section 3). To our knowl-

edge, this is the first greedy forwarding algorithm that has the-

oretical guarantees on the path stretch length. Our stateless

greedy forwarding approach builds upon electrostatics princi-85

ples, in particular, we use the Green’s function [18] to model

packets as charges immersed in an electrostatic potential field

from source to destination, and we steer their route by charg-

ing regions containing obstacles accordingly, hence guarantee-

ing local minimum avoidance. Moreover, when packets are90

forwarded using gradient descent on Green’s function poten-

tial field (along lines of electrical force), we show a 3.291 path

stretch approximation bound. Note that proposed approach does

not require any strong assumptions on wireless ad-hoc network

such as symmetrical links or unit disk graphs.95

After showing such theoretical guarantees, we discuss how

we can cope with the practical limitations of our theoretical

approach proposing two novel algorithms, viz. Attractive Re-

pulsive Greedy Forwarding (ARGF) and Attractive Repulsive

Pressure Greedy Forwarding (ARPGF). Both algorithms use100

the notion of electrostatic repulsion to enhance greedy forward-

ing. ARGF does not theoretically guarantee the local minimum

avoidance due to the complexity of computing the exact theoret-

ical potential field on multiple obstacles of arbitrary shape and

due to discrete node distribution. For this reason, we extend105

ARGF with a known pressure recovery technique (ARPGF).

ARPGF guarantees delivery at expense of a small path stretch.

We evaluate our algorithms using numerical simulations with

asymmetrical connectivity and obstacles of complex convex shape,

and with an event-driven simulations obtained considering an110

actual incident-supporting hierarchical cloud deployment. We

found that our ARGF and ARPGF algorithms outperforms re-

lated stateless greedy forwarding solutions such as Greedy For-

warding (originally called Compass routing) [8], Greedy Perime-

ter Stateless Routing (GPSR) [9] (face routing representative),115

and Gravity Pressure Greedy Forwarding (GPGF) [10] (pres-

sure forwarding representative). Although both ARPGF and

GPGF include local minimum recovery mechanism and guaran-

tee packets delivery at expense of path stretch and extra packet

header space, under practical Time To Live constraints, ARPGF120

outperforms GPGF. Moreover, we show that when the packet

time-to-leave, i.e., TTL ≤ 128 and under legitimate assump-

tions, both ARPGF and GPGF data could fit in the available IP

packet header space, hence they have minor overhead.

Despite the presence of a local minimum recovery mech-125

anism, GPSR performs worse than ARGF algorithm without

local minimum recovery policy. This is because of their unre-

alistic assumptions on the underlaying network graph, i.e. unit

disk or planar graph. Finally, our ns-3 [19] event-driven simula-

tions also confirms superior ARGF (and hence ARPGF) good-130

put performance compared to GPSR and other stateful reactive

routing protocols, such as Ad-hoc On-demand Distance Vector

(AODV) [24] and IEEE 802.11s standard Hybrid Mesh Net-

work Protocol (HWMP) [25], especially in challenging disaster

response conditions of severe node failures and high mobility.135

Our proposed general approach based on the Green’s func-

tion presents new opportunities to other known problems in the

ad-hoc wireless mesh networks. First, the emulated repulsive

field can be used in traffic steering algorithms by inducing ad-

ditional charges on heavy-loaded nodes to repulse unbalanced140

network traffic, and thereby improving the overall network uti-

lization. Second, by inducing additional electrostatic charges in

network segments of malicious or selfish behavior can improve

the overall security. Finally, to improve the overall ad-hoc wire-

less mesh network vitality, additional electrostatic charges can145

be induced on nodes with low battery levels.

The rest of the paper is organized as follows: In Section 2,

we motivate the local minimum problem and describe how deep
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Algorithm 1: Attractive/Repulsive Greedy Forwarding

/* Upon receiving a packet P at node e */

1 if e , dst then

2 next ← NIL

3 if e ∈ Rz and P ϕrep > ϕtotal(e, P, e. ~C, e.~R) then

/* Repulsion mode */

4 P ϕrep ← ϕtotal(e, P, e. ~C, e.~R)

5 n← argmin
n∈Nbrs(e)

ϕtotal(n, P, e. ~C, e.~R)

6 if ϕtotal(n, P, e. ~C, e.~R) < ϕtotal(e, P, e. ~C, e.~R) then

7 next ← n

8 f orward(P, next)

9 end

10 end

11 if next == NIL then

/* Attraction mode */

12 n← argmin
n∈Nbrs(e)

ϕd(n, P)

13 if ϕd(n, P) < ϕd(e, P) then

14 next ← n

15 f orward(P, next)

16 else

17 exception (“ARGF faced a local minimum”)

18 alert (“Potentially unknown obstacle detected”)

19 terminate

20 end

21 end

22 else

23 terminate

24 end

both Attractive and Repulsive forwarding fail to find next node

for forwarding, ARPGF switches to Pressure mode (line 21).

The key idea behind recovery in Pressure mode is to for-

ward packet to the closest to the destination neighbor among510

the least visited neighbors (line 23).

5. Evaluation Results

In this section, we establish the practicality of our electro-

statics-based approach by evaluating its performance in several

scenarios that result into the following salient findings:515

(i.a) Local obstacles knowledge is enough. Our repulsive greedy

forwarding approach is not affected by a lack of global knowl-

edge on obstacles’ position.

(i.b) Local obstacles introduce negligible storage and no net-

work overhead. To maintain a local knowledge on obstacles,520

our routing protocols only requires < 0.25 KB of storage space,

and hence, that information can be piggybacked and propagated

with the keep-alive beaconing message to update their position

at no (or negligible) additional network overhead.

(ii) Our ARPGF outperforms related stateless greedy forward-525

ing solutions [9, 10] in terms of delivery ratio, and the required

information to run it can fit in available IP packet header space

with 99% probability (i.e, its overhead is extremely low).

(iii) The repulsive field (and hence both ARGF and ARPGF) im-

prove network’s goodput in challenged disaster incident wire-530

less edge networks3. By reducing a path stretch due to a phys-

3Improvement were observed when both coordinates and radius of physical

obstacles are known (see Section 5.2).

Algorithm 2: Attractive/Repulsive Pressure Forwarding

/* Upon receiving a packet P at node e */

1 if e , dst then

2 next ← NIL

3 if e ∈ Rz and P ϕrep > ϕtotal(e, P, e. ~C, e.~R) then

/* Repulsion mode */

4 P ϕrep ← ϕtotal(e, P, e. ~C, e.~R)

5 n← argmin
n∈Nbrs(e)

ϕtotal(n, P, e. ~C, e.~R)

6 if ϕtotal(n, P, e. ~C, e.~R) < ϕtotal(e, P, e. ~C, e.~R) then

7 next ← n

8 f orward(P, next)

9 end

10 end

11 if next == NIL and P ϕattr > ϕd(e, P) then

/* Attraction mode */

12 P ϕattr ← ϕd(e, P)

13 n← argmin
n∈Nbrs(e)

ϕd(n, P)

14 if ϕd(n, P) < ϕd(e, P) then

15 next ← n

16 f orward(P, next)

17 else

18 alert (“Potentially unknown obstacle detected”)

19 end

20 end

21 if next == NIL then

/* Pressure mode */

22 visitsmin ← min
n∈Nbrs(e)

P visits(n)

23 Candidates← {n ∈ Nbrs(e) and P visits(n) == visitsmin}

24 n← argmin
n∈Candidates

ϕtotal(n, P, e. ~C, e.~R)

25 P visits(n)← P visits(n) + 1

26 next ← n

27 f orward(P, next)

28 end

29 else

30 terminate

31 end

ical obstacles knowledge, ARGF (and hence ARPGF) results

into a higher network throughput than related solutions. The

first two results emerge from our numeric simulations, while

we found our third result analyzing using more realistic ns-3535

event-driven simulations (see Subsections 5.1 and 5.2).

5.1. Performance Tuning under Static Obstacles of Complex

Concave Shapes

Simulation Settings. Our simulation environment is composed

by an Ubuntu OS GNU/Linux x86 64 machine with an Intel(R)540

Xeon(R) processor with CPU 2.1 GHz and 1GB RAM. We gen-

erate a 1 km2 area and place nodes into each 10x10 m cell (for

a total of 10K nodes). To remove the “Unit Disk” graph as-

sumption, we set the radio range of each node from 50 to 40

m, unless stated differently. We then applied the random graph545

generation model G(n, 1−p) [10, 13] with probability p = 0.05.

With this parameters when two nodes are within the reciprocal

radio range, there is a 5% probability that one of these nodes

is not detected by the other. We refer to this condition as lack

of symmetrical link assumption, that in turn leads to a network550

asymmetrical connectivity.
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Figure 10: Ignoring the obstacle mutual electrostatic influence during a poten-

tial field computation leads to a lower (a) success ratio and/or (b, d) higher path

stretch (attenuation order n < 2). Performance of both ARGF and ARPGF does

not improve for attenuation order n ≥ 2.

We generate circular obstacles with a radius ranging from

10 to 100 m in random locations. When overlapping, such ob-

stacles create complex concave shapes, which stress greedy for-

warding to the limit [14]. We run our simulations with 0, 10,555

30, 50 and 100 obstacles that occupy ≈ 0%, 10%, 25%, 40%

and 60% of the available routing space, respectively.

Remark: Note that some of the recent similar solutions

demonstrate valuable performance degradation after only 30%560

of obstacles occupancy [13]. In a disaster scenario, this would

be common and such performance degradation unacceptable.

After setting up the environment, we attempt to deliver traf-

fic among 1000 random pairs < src, dst >. In this scenario, our565

main goal is to stress our greedy forwarding algorithms with

obstacles of complex concave shapes, and hence, we do not

use node mobility, as it leads to a frequent network partitioning

under high obstacle occupancy which hides greedy forwarding

algorithms’ potential.4 For the same reason, we do not gener-570

ate obstacles at the area edges. All our results show 99% con-

fidence interval over 50 trials, and our randomness lies in both

the source-destination pairs and the formed network topologies.

Comparison Methods and Metrics. To empirically evaluate

which potential field best approximates an obstacle of arbitrary575

shape, we tested the performance of both ARGF and ARPGF

under different potential field attenuation orders n. We then

leverage our finding (n = 2 for ARGF and n = 1 for ARPGF)

in our other experiments.

4Note how mobility does not affect stateless greedy forwarding under the

assumption that t1 ≪ t2, where t1 is time needed to greedy forward a packet

to the next hop, and t2 is time needed for the node to move out of its neighbor

radio range. To convince the reader that this is a practical assumption, we later

apply (high) mobility in our event-driven simulations.
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Figure 11: Local knowledge on obstacles maintenance for both ARGF (with

n = 2) and ARPGF (with n = 1 - the largest repulsion zone) requires low

storage (a); even for ≤ 1% of nodes (b) which store up to 7 unique obstacles

the storage space needed is 7 · 0.018 < 0.25 KB.

We compare our ARGF and ARPGF algorithms with three580

other stateless greedy forwarding exiting approaches, that is,

the original Greedy Forwarding (GF) algorithm (also known as

compass routing [8]), a face routing algorithm, GPSR [9] and a

gravity pressure forwarding algorithm GPGF [10]. In addition,

we also compare ARGF algorithm coupled with GPSR using a585

face routing recovery policy, which we call ARPSR. The related

solutions are compared across two metrics: the packet delivery

success ratio, i.e., the number of delivered packets divided by

the total number of attempted delivery (counting only cases in

which a path for < src, dst > pair exists), and the average path590

stretch, calculated as the average path length ratio of delivered

packets and the shortest paths computed with a simple Breadth-

First Search algorithm. Finally, we also compare packet header

sizes, which are dynamic for ARPGF and GPGF.

(i.a) Local obstacle knowledge is enough. During the po-595

tential field formation w.r.t. the different attenuation order n,

we found that based on local obstacles knowledge, both ARGF

and ARPGF perform similarly (aside from a better path stretch

for n ≤ 2) to the case when all obstacles are known a priori

(Figures 10a,10b,10c and 10d). A path stretch difference under600

n ≤ 2 is due to a potential field approximation inaccuracy: we

ignore an obstacle’s mutual influence by disregarding the sec-

ondary induced charges (creating artificial local minima), while

local obstacles knowledge mitigates this problem. We can see

how both global and local versions of ARGF show the low-605

est path stretch and the highest success ratio for n = 2, which

match with the attenuation order of a point dipole, and there-

fore in line with our theoretical model (see Equation 6). At

the same time, the local version of ARPGF shows the lowest

path stretch when n = 1, as in this case we gain the best ratio610

between secondary induced charges mitigation and the radius

of repulsion zone, which achieves maximum length decreasing

the number of Attractive/Repulsive field alternations during the

Pressure recovery mode. We use n = 2 for ARGF and n = 1

for ARPGF results for the rest of experiments.615

(i.b) Local obstacles introduce no network overhead. To

maintain information about local obstacles for our repulsive

field, we need to store them and periodically exchange with the

neighbors. The (3D) GPS coordinates of the obstacle location

in the worst case (i.e., without converting them to grid coordi-620

nates) takes no more than 12 bytes (4 bytes for each coordinate).

To store obstacle radius we need no more than 4 bytes. Finally,

10



604025100
0

0.2

0.4

0.6

0.8

1

% of obstacles occupation

su
cc

es
s 

ra
ti

o

 

 

GF

GPSR

GPGF

ARGF

ARPSR

ARPGF

(a)

604025100
1

2

4

8

% of obstacles occupation
p
at

h
 s

tr
et

ch

 

 

GF

GPGF

GPSR

ARGF

ARPSR

ARPGF

(b)

Figure 12: (a) All pressure forwarding algorithms (i.e., GPGF and ARPGF)

have a guaranteed packet delivery when there is no TTL policy. Due to the

asymmetrical links and no Unit Disk graph guarantees, ARGF (without lo-

cal minimum recovery) outperforms GPSR — known face routing algorithm.

These results are confirmed also by our event-driven simulations. (b) Recover-

ing from a local minimum in GPGF and ARPGF may stretch path significantly;

however, applying a Repulsion field to GPGF (using ARPGF algorithm) shows

a lower path stretch.

to distinguish obstacles we can also store its id which takes no

more than 2 bytes (up to 65K unique obstacles). To exchange

that information we can use the following packet payload struc-625

ture shown in Table 1. Figure 11a shows how maintenance of

the local knowledge for both ARGF (with n = 2) and ARPGF

(with n = 1) on obstacles requires low amount of the node stor-

age space (i.e., even in rear cases of storing 7 unique obstacles

as shown in Figure 11b we need 7 · 0.018 < 0.25 KB). Thus,630

local obstacle information can be exchanged during a period-

ical node’s neighbors beaconing to update their position at no

additional network overhead (i.e., within a single packet).

Table 1: Obstacle Data Exchange Packet Payload

Obstacle Center Radius

ID coordinates

2·n bytes 12·n bytes 4·n bytes

(ii) ARPGF can fit its data in the available IP header space.

Our simulations show how all pressure forwarding algorithms635

(i.e., GPGF and ARPGF) have a guaranteed packet delivery

when there is no path length restrictions, such as a set time to

leave (TTL) — see Figure 12a. However, both ARPGF and

GPGF lead to large path stretches when obstacles occupy most

of the available space, i.e., the ARPGF and GPGF average path640

lengths are ≈ 6 and 8 times larger than a shortest path, re-

spectively (Figure 12b.) Although Repulsive field usage allows

ARPGF to have a path stretch lower than GPGF (paths are 1.5

longer), these path stretches may force large end-to-end delays

and network congestions that may jeopardize applications us-645

age. We can also see how the packet delivery of the face routing

algorithms (i.e., GPSR and EPSR) degrades due to asymmet-

rical links and variation of the nodes’ radio range, leading to

disconnected planar graphs (these results are in line with previ-

ous works [36]. Surprisingly, ARGF without a local minimum650

recovery outperforms GPSR with the local minimum recovery.

These results are in line with our event-driven simulations in

ns-3 (Section 5.2).

In the last two simulated scenarios, where 100 obstacles are

present on ≈ 60% of the area, we first limit the path length set-655

ting different TTL policies (for a maximum of 256 path length)

Table 2: ARGF Packet Header

Source Destination Repulsive

coordinates coordinates potential

3 bytes 3 bytes 4 bytes

Table 3: ARPGF Packet Header

Source Destination Repulsive Attractive Node1..n Node1..n

coordinates coordinates potential potential ID visits

3 bytes 3 bytes 4 bytes 4 bytes n bytes n bytes

having fixed the average node degree (nodes’ radio range rang-

ing from 50 to 40 m). We then set TTL to 128, and we vary

the average node degree by reducing an interval of node’s ra-

dio range distribution by 10 m, until all nodes have a minimal660

network connectivity radio range of 10 m. As expected, the

repulsion field usage allows ARPGF to achieve the best packet

delivery ≈ 90% (Figure 13a) that gradually decreases as the net-

work become less dense (see Figure 13c). We can also see how

in 99% of the cases, both GPGF and ARPGF fits their required665

data for greedy forwarding in the available IP packet header

space, as long as the TTL ≤ 128 (see Figures 13b and 13d). We

computed the packet header sizes under the following assump-

tions:

• 2D or 3D node coordinates have total size of 3 bytes; this670

can be achieved by e.g., converting GPS coordinates into

coordinates of a finite grid which spans regions covered

by the network as in [14].

• Both node ID and number of nodes visits have size of

1byte. As the path length is limited by the TTL, we675

cannot visit more than TTL-1 nodes during the Pressure

packet recovery phase. Hence, it is possible to find a hash

function of e.g., an IP address to map a node’s ID be-

tween 0 and 255, with a minimum collision probability.

When operating in same subnetwork, we can just use the680

last byte of an IP address as a node ID.

Let us know analyze the overhead of ARGF and ARPGF;

with the above assumption, we need total of 6 bytes (to store

source and destination coordinates) + 4 bytes (to store last po-

tential in Repulsion mode), so only 10 bytes an extra space for685

ARGF protocol (seeTable 2). ARPGF header size is then 10

bytes (as for ARGF) + 4 bytes (to store last potential in Attrac-

tion mode) + 2·n bytes (to node visits during Pressure recovery)

= 14 + 2 · n bytes, where n - number of unique node visits (see

Table 3). Having 40 bytes of available space in packet header690

allows ARPGF track up to 13 unique nodes during Pressure

recovery.

5.2. Incident-Supporting Application Case Study Results

Simulation Settings. To evaluate the impact of the path stretch

on the performance of higher layer protocols under potentially695

failing and mobile MANET nodes, we compared two state-

less greedy forwarding algorithms — i.e., the proposed ARGF

and the known face routing GPSR protocol [9]. For our com-

parison, we used its implementation [27] on the ns-3 simula-

tor [19]. Note that in this simulation we do not use the pressure700
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Figure 15: Time fraction of the TCP throughput (top row) and congested window (CWND) size (bottom row) averaged over 1 and 15 seconds, respectively, under

(a, e) low node failures (5%) and (b, f) severe node failures (50%) and under (c,g) low node mobility (5 m/s) and (d,h) high node mobility (20 m/s): half of the time

GPSR faces a local minimum showing two times worth throughput and lower CWND than ARGF due to higher path stretch caused by GPSR planarization. Both

AODV and HWMP stateful routing solutions show worse throughput level within a disaster scene, due to its challenging conditions. As expected, performance of

all algorithms degrades as we increase node failures or high node mobility.

(< 2 Mbps) than ARGF due to a lower congestion window size

(see Figure 15e), and only 40% of the time it shows similar

performance. Under severe node failure conditions (nodes fail750

50% of the time they receive a packet to forward), we observe

similar behaviors (Figure 15b): GPSR experiences lower TCP

throughput 40% of the time compared to ARGF, caused again

by the congestion window size (see Figure 15f) when GPSR

faces a local minimum. Under such severe failures, both GPSR755

and ARGF fail to deliver packets ≈ 45% and 35% of the time.

For low node mobility (5 m/s), both ARGF and GPSR de-

liver all packets with a TCP throughput of ≈ 1 − 2 Mbps (Fig-

ure 15c). However, when GPSR enters the recovering mode

near patient location 3 (after ≈ 500 sec), due to its planariza-760

tion (which stretches paths), it shows lower TCP throughput

(≤ 1 Mbps) than ARGF. That is in line with a lower conges-

tion window size (see Figure 15g). At the same time, 60%

of the time (first 500 sec) it shows similar performance. Un-

der high node mobility conditions (20 m/s), we again observe765

similar behaviors (Figure 15d): GPSR experiences lower TCP

throughput 40% of the time compared to ARGF, caused again

by the planarization when GPSR faces a local minimum. That

is confirmed by congestion window size (see Figure 15f) . Un-

der such high mobility, both GPSR and ARGF are able to still770

deliver all packets, which makes geographical routing more at-

tractive disaster-incident response activities which benefit from

the real-time situational awareness.

Even though both AODV and HWMP have advantages over

pure proactive stateful routing solutions, in a challenged disas-775

ter scenario they do not show acceptable throughput level, lead-

ing to service outages caused by disconnections (from 20% to

90% percent of the time). Recent solutions in stateful greedy

forwarding literature can help cope with some disaster incident

challenges [13, 14]. For example, recent stateful greedy for-780

warding solutions have shown promising results under severe

node failures [14]. However, we found no stateful greedy for-

warding algorithm which can cope with both severe node fail-

ures and high mobility.

The superior performance of ARGF is due to its knowl-785

edge about a static physical obstacle located within the disaster

scene, which in most cases allows local minima avoidance by

using our proposed Repulsion forwarding.

6. Related Work

Physics in computer networks. Applying physics laws to solve790

computer network problems is not a novelty. The first success-

ful attempt, to our knowledge is the popular result by Shannon,

who created the basics of information theory relying on the en-

tropy definition from physics [30]. To justify network effects

new models such as “small world” effect, cluster models, net-795

work correlation, random graph model, network growth model

and many others have been developed. All these models rely on

physics to some extent. A survey of these models can be found

in [31].

Narrowing our attention to routing and forwarding schemes800

using potential fields, we found a few routing and forwarding

schemes using potential fields similarly to ours [32, 33, 34].

Their solution is aimed to balance the network load by the nat-

ural property of electrostatic lines of force to be geo-spatially

dispersed. In [32], the authors use the aforementioned property805

to select a path trajectory so that a greedy forwarded packet can

reach the destination without facing a local minimum. In [33]
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authors use numerical calculations to optimize network load

for one-to-many and many-to-many communication patterns.

However, both schemes do not address the local minimum prob-810

lem due to presence of obstacles directly and can benefit from

using our approach. In [34], the authors use a potential field

to repulse traffic in excess from heavy loaded sensors to re-

duce congestion. Our proposed approach can be used similarly

to directly deal with congestions and other disaster incident-815

supporting geographical routing problems.

Geographic routing and MANET. The literature on geographic

routing and greedy forwarding is also vast, and here we are

trying to focus on the most valuable works that help to high-

light our contributions. Many geographic routing algorithms820

that can recover from a local minimum have been proposed.

One of the first geographic routing solutions which guarantees

delivery were Greedy Perimeter Stateless Routing (GPSR) [9]

and GFG [35]. To recover from a local minimum both proto-

cols use face routing which requires strong assumptions such825

as unit disk and planar graphs. However, planar graphs can be

disconnected when graphs have arbitrary shapes, nodes are mo-

bile and real physical obstacles appear [36]. Kim et al. [36]

proposes solution which overcomes planar graph limitations in

practice by introducing Cross-Link Detection Protocol (CLDP),830

complication unneeded in our approach. As later works have

show [12, 13], CLDP requires expensive signaling to detect

and remove crossed edges. Authors in [12] proposed Greedy

Distributed Spanning Tree Routing (GDSTR) which requires

less expensive distributed spanning tree construction (to main-835

tain one or several spanning trees) to guarantee delivery and

recover from a local minimum, also extended to a 3D case [37].

Kleinberg et al. [11] also use spanning trees for greedy embed-

ding, i.e., for an assignment of virtual coordinates to greedy

forward a packet without facing a local minimum. More re-840

cent works [13, 14, 15] show that spanning trees are sensitive

to dynamic topologies and mobility. Moreover, most of afore-

mentioned solutions were designed for static sensor networks

which are limited in dynamics. Our approach obtain better path

stretch results, also works in 3D spaces, but does not require the845

time and space complexity of spanning trees constructions.

More recent protocols such as MTD and WEAVE [13, 14]

can cope with topology dynamics to some extent. For exam-

ple MTD requires construction of Delaunay triangulation (DT)

graphs for local minimum recovery. When topology changes,850

nodes may loose their Delaunay neighbors which needed for

recovery from a local minimum. Contrary to ours, all of the

aforementioned protocols are stateful — i.e., they rely on global

or partial topology knowledge and therefore their performance

degrades under node mobility or failures — common for dis-855

aster scenarios. Moreover, all these algorithms build around

greedy forwarding and hence, they can benefit from using our

repulsive field to proactively avoid local minima created by ob-

stacles. To our knowledge, we are the first to introduce a the-

oretical solution to the local minimum avoidance that approx-860

imates with a bound the shortest path in ad-hoc networks by

creating conceptually different forwarding decision rules.

Geographic routing and Internet. Geographic routing has

been also proposed for Internet [10, 15, 38] that is less dynamic

than wireless ad-hoc networks. Thus, the authors in [10] build865

upon work of Kleinberg et al. [11] and show that due to inac-

curate greedy embedding caused by topology dynamics, pack-

ets can stuck in a local minimum. To this aim, they propose

the Gravity Pressure Greedy Forwarding (GPGF) [10] protocol

which is shown to have guaranteed packet delivery on graphs870

of an arbitrary shape. To recover from local minimum, GPGF

counts number of node visits (storing that information in packet

headers) to press packets from local minima until greedy for-

warding can resume. The key idea beyond pressure recovery is

a greedy forwarding gradient descent property — once packet875

reaches a location closer to the destination, there is no way how

packet can be forwarded back to the previous location of a lo-

cal minimum. However, such recovery needs expensive packet

header space [15] and can stretch path significantly.

AGRA: AI-augmented geographic routing. In this paper, we880

propose to use a conceptually different repulsive field for geo-

graphic routing to benefit from a static physical obstacle knowl-

edge obtained by using deep learning-based detectors [16, 17]

over available at the edge satellite maps. The proposed ap-

proach based on the electrostatic potential of Green’s function885

theoretically guarantees avoidance of a local minimum as well

as shortest path approximation. The electrostatic field guiding

packets has a gradient descent property, with minimum at the

destination. This means that greedy forwarding can be also

complemented with the gravity pressure mode of GPGF for a890

local minimum avoidance. Our proposed algorithms Attractive

Repulsive Greedy Forwarding (ARGF) and Attractive Repul-

sive Pressure Greedy Forwarding (ARPGF) use both repulsive

and attractive fields to greedy forward a packet (in 2D or 3D Eu-

clidean spaces), and as shown in our simulations, such greedy895

forwarding synergy enhances the path stretching property of

GPGF (and hence the delivery ratio (limited by the packet’s

Time To Live), making ARPGF suitable for the incident-supporting

wireless edge (i.e., ad hoc) networks. Due to the static obsta-

cle knowledge, proposed algorithms can cope better with high900

mobility and severe node failures, which results in an over-

all greater goodput during disaster scenarios, crucial for most

of incident-supporting situational awareness applications. In

the absence of any obstacles knowledge, the performance of

such proposed algorithms degrades down to their respective905

predecessor performances, i.e., ARGF to GF [8] and ARPGF

to GPGF.

7. Conclusion

In this work, we addressed the lack of suitable geograph-

ical routing approaches for IoT-based incident-supporting ap-910

plications in edge computing, that can provide constant high-

speed data delivery to an edge cloud gateway to enhance their

scalability, reliability and stability. Specifically, we presented

a novel AI-augmented geographic routing approach (AGRA),

which relies on the physical obstacle information obtained from915

satellite imagery (available at the edge cloud) by applying deep

learning. We then proposed a novel repulsive field strategy

based on electrostatic potential of Green’s function to incor-

porate physical obstacle knowledge within geographic routing.
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Our approach theoretically guarantees avoidance of a local min-920

ima as well as shortest path approximation. Due to inaccura-

cies in the obstacles’ potential field approximation and the dis-

crete node distribution, in practice the approach cannot guaran-

tee the local minima avoidance. To this end, we introduced a

novel Attractive Repulsive Greedy Forwarding (ARGF) algo-925

rithm which can alternately forward packets in both repulsive

and attractive field modes, to maximize the chances of escap-

ing from, or avoiding local minima. Furthermore, to guarantee

packet delivery, we coupled our ARGF algorithm with a known

gravity pressure recovery algorithm. As emulating both repul-930

sive and attractive fields allows gradient descent to the destina-

tion, the recovery schema can be applied to also minimize the

path stretch. Using extensive simulations, we have shown that

our proposed algorithms outperforms related stateless greedy

forwarding solutions in terms of packet delivery success ratio935

and path stretch. Considering an actual incident-supporting hi-

erarchical cloud deployment scenario, we have also analyzed

how ARGF has better goodput performance than other state-

less face routing solutions (such as, GPSR) as well as stateful

reactive mesh routing (i.e., AODV and HWMP).940
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HIGHLIGHTS

The main original contributions are:

• We propose an Artificial Intelligence (AI)-augmented geographical routing approach (AGRA). Our approach uses deep

learning over satellite imagery available at the edge clouds to enable IoT-based incident-supporting applications.

• We leverage a novel repulsive forwarding technique that theoretically guarantees local minimum avoidance and approxi-

mates the shortest path algorithm with a 3.291 path stretch bound

• Using both large scale numerical and NS-3 event-driven simulations we show how our proposed approach outperformes

classical geographic routing algorithms performance, e.g., goodput and enable real-time situational awareness from the

IoT devices located at the disaster scene.

• The source code of both numerical and event-driven NS-3 simulations will be available under GNU license at a public

GitHub repository upon acceptance.


