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Abstract—Traditionally, Network Function Virtualization uses
Service Function Chaining (SFC) to place service functions
and chain them with corresponding flows allocation. With the
advent of Edge computing and IoT, a reliable composition of
latency-sensitive SFCs is needed to support applications in geo-
distributed cloud infrastructures. However, the optimal SFC
composition in this case becomes the NP-hard integer mulfi-
commodity-chain flow (MCCF) problem that has no known
approximation guarantees. In this paper, we present a novel
practical and near optimal SFC composition approach for geo-
distributed cloud infrastructures that also admits end-to-end
network QoS constraints such as latency, packet loss, etc.
Specifically, we propose a novel metapath composite variable
approach that reaches 99% optimality on average and takes
seconds for practically sized integer MCCF problems of US Tier-1
(~300 nodes) and regional (~600 nodes) infrastructure providers’
topologies. To ensure reliability, we compose SFCs with capacity
chance-constraints and backup policies. Using trace-driven sim-
ulations comprising of challenging disaster-incident conditions,
we show that our solution composes twice as many SFCs than
the state-of-the-art network virtualization methods.

I. INTRODUCTION

Nowadays, Network Function Virtualization (NFV) is an
attractive paradigm for network operators to dynamically place
virtualized network functions (e.g., firewalls, load-balancers,
etc.), chain them for a service flow routing and allocate corre-
sponding compute/network resources in a cloud infrastructure
by utilizing SFCs [1]. Recently, areas such as Microser-
vices [2], Mobile Edge Computing [3] and Computer Vision
Analytics [4] have also shown benefits of adopting the SFC
technology. With the advent of Edge (or Fog) computing that
augments cloud Application Programming Interfaces closer to
the end-user IoT devices, SFCs can be now ‘composed’ from
both core and edge cloud resources forming geo-distributed
chains to satisfy geo-location and latency requirements of their
functions [3], [5]. An example of a geo-distributed latency-
sensitive SFC which is utilized for the computer vision of
a real-time object tracking pipeline is shown in Figure 1.
The pre-processing and Human-Computer Interaction analysis
functions are placed for a low-latency access on edge servers,
and the tracking function is placed on a cloud server for the
compute-intensive processing [4].

However, geo-distributed SFCs can be subject to node
failures and congested network paths leading to their frequent
Quality of Service (QoS) demands violations [6]. In some
specific cases of natural or man-made disaster-incidents, they
can be subject to severe infrastructure outages [7]. Moreover,
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Fig. 1: Nlustrative example of the geo-distributed latency-sensitive SFC used
for the real-time object tracking pipeline [4].

computation and network QoS demands of SFCs can fluctuate
themselves [8]. Thus, a reliable SFC composition is needed
to cope proactively with both potential SFC demand fluctua-
tions [8] as well as possible infrastructure outages [6], [7].
At the same time, providing a reliable service chain com-
position is a hard problem to solve. First of all, this is
because the optimal SFC composition has known approxima-
tion guarantees only in some special cases where chaining
of service functions [9] and/or their ordering [10], [11] are
omitted. In the general case however, it requires solving of
the NP-hard integer MCCF problem to align flow splits with
supported hardware granularity [12]. It is also necessary to
support cases when service functions or their associated flows
are nonsplittable. This problem has no known approximation
guarantees and has been previously reported as the integer
NFV service distribution problem [13]. Secondly, its complex-
ity can be further exacerbated by incorporated reliability and
geo-location/latency aware mechanisms. The former aims to
cope proactively with both possible infrastructure outages as
well as SFC demand fluctuations, whereas the latter is needed
to satisfy QoS demands of geo-distributed latency-sensitive
SFCs.
QOur approach: In this paper, we propose a new reliable
service chain composition approach that can serve needs of
geo-distributed latency-sensitive SFCs at high-scale. First, our
approach involves ensuring reliability proactively. For this, we
compose SFCs with capacity chance-constraints (that handle
both SFC demand fluctuations as well as infrastructure outages
uncertainties) and with backup policies which further compli-
cate solution of the NP-hard integer MCCF problem. Secondly,
to cope with this problem solution intractabilities, we propose
a novel metapath-based composite variable approach that is
similar to other composite variable solutions [14] in terms of
its nature that aggregates multiple decisions within a single
binary variable.
Contributions: In this paper, we propose a novel practical
and near optimal SFC composition approach for practically
sized integer MCCF problems that admit end-to-end network
QoS constraints such as latency, packet loss, etc. Specifically,
our contributions are the following:



(1) We formulate the (master) NP-hard integer MCCF problem
previously adopted in NFV literature [13] but now with geo-
location and latency constraints as well as with probabilistic
capacity constraints for a reliable composition under uncer-
tainty of geo-distributed latency-sensitive SFCs. (Section III)
(2) We propose our first-of-its-kind metapath-based composite
variable approach that aggregates feasible mapping decisions
of each single-link SFC segment as a set of k-constrained
shortest metapaths. It then assigns SFC segments to their
associated metapaths either optimally by using generalized
assignment problem (GAP) [15] or suboptimally by using its
(polynomial) Lagrangian relaxation counterpart. (Section IV)
(3) Using trace-driven simulations of real US Tier-1 (~300
nodes) and regional (~600 nodes) infrastructure providers’
topologies, we first show how our SFC composition approach
achieves 99% optimality on average. In addition, we show that
it only takes time on the order of seconds for practically sized
problems in contrast with the master problem solution that
takes several hours. By recreating challenging disaster incident
scenarios as in [7], we lastly show how our approach can
compose twice as many sequentially incoming SFC requests
than the state-of-the-art solutions [16], [17]. (Section V)

II. RELATED WORK

SFC is traditionally used in NFV to place a set of mid-

dleboxes and chain relevant functions to steer traffic through
them [1]. Existing SFC solutions either separate the service
placement from the service chaining phase [9], [10], [11], or
jointly optimize both the two phases [8], [13].
SFC Optimality. In some special cases the optimal SFC
is shown to have approximation guarantees [9], [10], [11].
For instance, Cohen et al. [10] and Sang et al. [11] provide
near optimal approximation algorithms for the SFC problem
without chaining and ordering constraints. Tomassilli et al. [9]
propose the first SFC solution with the approximation guaran-
tees which admits ordering constraints, but still omits chaining
constraints. Guo et al. [18] show approximation guarantees
for SFCs with both ordering and chaining constraints, but
only under assumptions that available service chaining options
are of polynomial size. In the general case however, when
service functions need to be jointly placed and chained in a
geo-distributed cloud infrastructure with a corresponding com-
pute/network resource allocation, possible SFC compositions
are of exponential size. Thus, it becomes a linear topology
Virtual Network Embedding (VNE) [3], [19] and can be
formulated as the (NP-hard) MCCF problem with integrality
constraints with no known approximation guarantees [13].
Thus, Feng et al. [13] propose a heuristic algorithm whose
preliminary evaluation results in a small-scale network settings
(of ~10 nodes) shows promise for providing efficient solutions
to the integer MCCF problem in practical settings.

In this paper, we propose the first to our knowledge practical
and near optimal SFC composition approach in the general
case of joint service function placement and chaining in a
geo-distributed cloud infrastructure that also admits end-to-
end network QoS constraints such as latency, packet loss, etc.
To this aim, we propose a novel metapath composite variable
approach which reduces a combinatorial complexity of the

(master) integer MCCF problem. As a result, our approach
achieves 99% optimality on average and takes seconds to com-
pose SFCs for practically sized problems of US Tier—1 (~300
nodes) and regional (~600 nodes) infrastructure providers’
topologies, where master problem solution takes hours using
a High Performance Computing cloud server.
SFC Reliability. With the advent of edge networking and
growing number of latency sensitive services, recent works
also consider problems of geo-distributed [20] and edge
SEC [5]. Although these works mainly focuses on the new
load balancing and latency optimization techniques, they omit
an important reliability aspect of geo-distributed latency-
sensitive SFCs. The closest works related to ours is [§]
and [17]. Fei et al. [8] propose a prediction-based approach
that proactively handles SFC demand fluctuations. However,
their approach does not account for network/infrastructure
outages that mainly cause service function failures [6]. At
the same time, Spinnewyn et al. [17] propose a SFC solution
that ensures a sufficient infrastructure reliability, but neither
proactively nor reactively handles SFC demand fluctuations.
In contrast to [8] and [17], our reliable composition scheme
uniquely ensures reliability of geo-distributed latency-sensitive
SFCs via use of chance-constraints and backup policies to cope
with both SFC demand fluctuations and infrastructure outages.

III. MODELING RELIABLE SERVICE CHAIN COMPOSITION

In this section, we define the problem of joint SFC compo-
sition that can be formulated as the integer MCCF problem for
an augmented cloud infrastructure graph [13] which is a gener-
alization of a well-known multi-commodity flow problem [19].
To proactively ensure reliability of a SFC composition, we
use backup policies as well as probabilistic ‘chance’ capacity
constraints instead of deterministic ones. Thus, we use a
chance-constrained programming [21]. We also extend this
problem with geo-location and latency constraints to satisfy
all QoS demands of geo-distributed latency-sensitive SFCs.
Objective and example of the online chain composition.
Based on providers’ policies, the service chain composition
problem can be used to minimize (expected) values of dif-
ferent fitness functions F. One example of common fitness
functions is an additive function of service chain demands and
corresponding physical resource capacity ratios. Such function
is known to best balance the physical network load [19]. In
most cases service chain requests can be unknown in advance,
and using the load balancing fitness function allows to increase
the acceptance ratio of these requests. Such optimization is
also known as the ‘online optimization’ [16], [19].

Figure 2 shows an example of the online SFC composition
that minimizes the network load balancing function: by min-
imizing a sum of SFC demands and corresponding physical
resource capacity ratios, for a —b— c service chain we achieve
itsminimumvalueFEz%—1—25—1—}-%—&—%—1—%=3.Asa
result, we compose this service chain request with X, Y and
A physical nodes (e.g., servers) to place a, b and ¢ services,
respectively. To enable service communications a—b and b—c,
we chain them with X — B —Y and Y — B physical paths,
respectively. This also allows us to compose the subsequent
d — e request.
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Fig. 2: Illustrative example of the online composition of service chain
requests (SCR) on top of the capacitated physical network (numbers indicate
service demands and corresponding resource capacities).

In the rest of this paper, our objective is to minimize the
expected value of the load balancing fitness function Fjp
formally defined below (see Equation 1) for the case of SFC
demand and available physical resource uncertainties.
Service chain composition sets and variables. We model
each SFC a € A as a chain graph G* = (Ny, EY,).
service G is composed by a set Ny, of services and a set Ey;
of corresponding service communications (or service links)
representing logical network connectivities among elements in
N{;. Moreover, each SFC a has a set of backup resources B¢.
We then model the physical infrastructure on which the service
functions run as a physical network graph G = (Ng, Eyg),
composed by a set Ng of substrate nodes and a set Fg of
substrate edges.

We define two types of binary variables: one for the service
chain link mapping, and another for (node) service mapping.
Particularly, let binary variable f/(b,a) = 1 if a flow for
st € EY; service link of a backup b € B® of a SFCa € A
is assigned to the physical edge ij € Fs, i.c., f{(b,a) =1,
or 0 otherwise. Furthermore, let binary variable x7(b,a) = 1
if a service s € Ny, of a backup b € B* of a SFC a € A is
assigned to the physical node i € Ng, i.e., xf(b,a) = 1, and
0 otherwise. Having sets and variables defined, we now can
formulate the online service chain composition problem under
uncertainty using integer MCCF problem.

Problem 1 (online SFC composition under uncertainty).
Given a set of SFCs represented as graphs G* = (N{, EY,)
and a physical network graph G (Ng, Eg), the online
service chain composition problem under SFC demands and
available physical resources uncertainties can be formulated

as follows:
=YY [ T Y T E [ & ] #2(b.a)
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TABLE I: Symbols and Notations

Service Chain Composition: Sets

A £8et of SECs that needs to be composed

B® £Set of backups for the SFC a

Ny, £Set of service functions composing the SFC a

EY, £Set of service communications in the SFC a that create a service chain

77;'5 £et of metapaths for the st (single-link) service chain segment of SFC a

T £Set of QoS demands for service functions such as CPU, memory, storage,

K £3et of end-to-end network QoS demands for SFC communications such as
latency, losses, jitter, etc

Ng £8et of physical nodes within the infrastructure

Es £5Set of physical links within the infrastructure

Service Chain C
x3 (b, a)

position: Variables
éBinary variable that equals to 1 if the service s backup b for the SFC a is
placed on the physical node i
(b a) —Bmdry variable that equals to 1 if the communication backup b between
services s and ¢ for the SFC a is placed on the physical link 7j
”k(b a)ZBinary variable that equals to 1 if the single-link chain segment st is
assigned to the metapath PS of the SFC a backup b

Dg7 £Random variable that corresponds to the SFC a service s SLO demand
TeT

DS, £Random variable that corresponds to the communication bandwidth demand
between services s and ¢ for the SFC a

C7 =Discrete random variable that corresponds to the possible physical node 4
capacity of 7 € T resource, i.e., C] € {0,C]

Cij £Discrete random variable that corresponds to the possible physical link j

capacity, i.e., C;; € {0,Cy;
Service Chain Composition: Parameters

gd3; £ Parameter that corresponds to the geographical distance between the desired
location of the service s in the SFC a and the physical node ¢ location
gDy £ Parameter that corresponds to the maximum allowable geographical distance

between the desired location of the service s for the SFC a and some
physical node location

wf. £ Pparameter that corresponds to the additive weight of the physical link
4j (or multiplicative when composed with log function) of the service
communication end-to-end £ € K QoS constraint (e.g., latency)

IC‘;,’” £ Parameter that corresponds to the communication end-to-end & € K QoS
constraint (e.g., latency) between services s and t of the SFC a
R ASFC reliability probability that a chance-constraint will be satisfied
K. £ Constant in a standard Normal distribution table corresponding to desired
« probability
ne’ éExpected (or mean) value of the SFC a service s QoS demand 7 € T
[T éExpected (or mean) value of the the communication bandwidth demand
Abf:twef:n services s and t for the SFC a
og” ZVariance of the SFC a service s SLO demand 7 € T'
ooy £ Variance of the the communication bandwidth demand between services s
Aand t for the SFC a
cy =Physical node ¢ capacity of 7 € T resource (e.g., CPU)
Cij éPhysical link 4j capacity
§ § § DS, 1 (b,a) < Cy;| > R,Vij € Es (5)
a€AbeBesteLY,

Specific QoS Constraints (Geo-Location, Latency, etc.):

gdsxi(b,a) < GD; Vi€ Ng,s € Nys,be B a € A,

> wf

ijeEEs

(6)

CF(ba) < KSF Vste B, beB%acAkeK (7)

Additional Policy Constraints (e.g., No-Consolidation):

2. 2.«

beBeseN{

(b,a) <1,Vi € Ng,ac€ A 8)

where symbols and notations of sets, parameters, variables
and functions are summarized in Table I.

SFC composition constraints discussion. Minimization of
F in Equation 1 is subject to a set of constraints which
contains both — basic composition constraints and constraints
specific to the geo-distributed latency-sensitive SFCs. The
basic constraints include service placement for a specified



number of duplicates (Equation 2), service chaining or well-
known multi-commodity flow constraints (Equation 4). Addi-
tional policy constraints for service chain composition prob-
lem are also acceptable. One such example is a common
‘no consolidated service placement’ constraint that prohibits
placement of two or more different services (or their backups)
belonging to the same service chain onto one physical node
(Equation 8). Note that this policy further complicates a
combinatorial complexity of the (NP-hard) integer MCCF
problem. In contrast to prior SFC composition problems [13],
[17], we now use probabilistic physical node and link capacity
constraints to ensure that physical resources satisfy SFC QoS
demands given some acceptable risk (Equations 3 and 5).
The specific geo-distributed latency-sensitive SFC con-
straints include physical node geo-location and service com-
munication end-to-end network QoS constraints such as la-
tency, packet loss, etc. (Equation 7).
Objective and chance-constraint deterministic equivalents.
Let us consider physical node capacity constraints (see Equa-
tion 16). The risk of a physical node outage is a random
discrete variable, hence the probability of a physical node
capacity feasibility is:

P Y S Dt <o =
aEAbGB‘ISGNa

=P |3 Y S DYai(ba) < C7 | - P,
a€AbeBeseNY,

where P; = 1— P, is the outage risk of a physical node 4. Thus,
our physical node capacity chance-constraint is the following:

P> > Y Diai(b,a) <C >§ ©)

aEAbEB“sEN“
We assume that SFC demands follow a
normal distribution D% ~  AN(u%7,0%7?). Hence,

X N N o) =N 3o X Y (08

a€AseNY a€AseNy, a€AseNy,
E aaiT 5 a
pssl

agdiT)). Moreover, we  assume
a1Fa€As1#seNY

the worst-case scenario that all SFC demands are
strongly correlated (i.e., pggl”™ = 1) ' Thus, given
any two SFCs a and a;, their total deviation is

0 =1/02+ 02 +2040a, = \/(0a +04,)? =00+ 0a,.

As a results, we can substitute our objective and chance-
constraints in Equations 3 and 5 with the following linear
deterministic equivalents:

Kga’?
Py y (e T
a€AbeB* \seN{T€TIENs
(10)
pg + K £ Ut
TE D PR Ry

steEEijEES

'Note that such assumption is also valid when SFC demands are not
correlated or their correlation coefficients are unknown. In these cases, linear
deterministic equivalents of chance-constraints always satisfy availability
requirements 2 and can result in even higher (actual) availability at expense
of worse resource utilization.

D2 DK ot wiab) <

{CT R< P

acAbe BaseNE 0, otherwise (1)
Vi € Ng, 7 €T
Z Z Z(Mﬁff R ast> (a b)é{giij<.Pij7

a€ Abe Boste BS ,otherwise” (12)
Vij € Eg

where K r is a constant in a standard Normal distribution

table, R € (O 1) is the service chain reliability that reflects an
acceptable risk, and P; (or F;;) is a probability that physical
node ¢ (or link 77) is available, i.e., C] = C7 (or Cy; = C’T)
Note that if SFC demands do not follow normal d1str1but10n
deterministic equivalents of Problem 1 objective and chance-
constraints can be different.
SFC reliability and chance-constraints discussion. It is
known that chance-constrained programming is less effective
than multi-stage recourse programming to model uncertain-
ties [21]. This is because to provide the same reliability level
chance-constrained SFC composition under-provision more
physical resources than its recourse programming alternative.
On the other hand, solving a recourse program for the SFC
composition is intractable even with moderately small network
sizes. This is due to the fact that solving it requires com-
putations over an exponential number of scenarios, ¢.e., the
problem is equivalent to an integer program of exponential
size [17]. To avoid considering an exponential number of
scenarios, we use a policy-based reliability for the SFC compo-
sition instead. Specifically, we allow for policy specifications
of chance-constraints acceptable risks and service backups.
For instance, by decreasing an acceptable risk and/or in-
creasing number of backups, we can leverage the overall
probability of a SFC disruption that requires its re-composition
(e.g., migration of virtual resources) during its maintenance.
For example, given a risk of 5%, i.e., R = 0.95, and 5
services for a single SFC, the lower bound probability that
its demands will be satisfied is P, = R® = 0.95° ~ 0.77
not considering inter-service communication demands and not
allowing backup resources. Thus, approximately in 1 out of 5
cases the service chain needs to be re-composed. Alternatively,
if we at least duplicate the service chain physical resources
(i.e., compose 2 service chain backups), the lower bound
probability that SFC demands will be satisfied by at least one
of the duplicates becomes P, = 1 — (1 — R®)? ~ 0.95. As
a result, the service chain needs to be re-composed only in 1
out of 20 cases. However, the tighter reliability policies (i.e.,
the lower acceptable risk or the higher number of backups),
the less feasible solutions are available as well as the worse
objective value of the optimal solution, and thus, the worse
performance of the online service chain composition. We show
such reliability/performance trade-offs of our approach using
trace-driven simulations in Section V.
MCCF-based SFC composition intractabilities. When deter-
ministic equivalents of the objective in Equation 1 as well as of
capacity chance-constraints are known, we can use any integer
programming solver (e.g., CPLEX [22]) for Problem 1 to
reliably compose all (known at a time) service chain requests.
However, due to NP-hardness of this composition, the solution
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Fig. 3: Illustrative example of the augmented with metalinks physical
network which represent feasible service a, b and ¢ placements; numbers
indicate fitness function values - red and black values annotate service
placement and service chaining via some physical link, respectively.

can be intractable for large-scale cloud/edge infrastructures.
To improve its scalability limitations, existing column genera-
tion [16], heuristic [17] and metaheuristic [17] approaches can
be used (often at expense of the master problem optimality).
In the next section, we propose a near optimal metapath
composite variable approach that simplifies a combinatorial
complexity of the SFC composition outlined in Problem 1.

IV. SERVICE CHAIN COMPOSITION VIA METAPATHS

In this section, we aim to simplify the combinatorial com-
plexity of the integer MCCF-based SFC composition problem.
Similarly to existing composite variable schemes [14], our
goal is to create a binary variable that composes multiple
(preferably close to optimal) decisions. To this end, we build
upon a known result in optimization theory: all network flow
problems can be decomposed into paths and cycles [23]. We
first introduce our notion of metapath and its relevance to the
constrained shortest path problem [24], [25], [26]. We then
use the constrained shortest metapaths to create variables with
composite decisions for the SFC composition problem and
discuss scalability improvements of this approach.
Metalinks and metapaths. Before defining the metapath, it
is useful to introduce the idea of ‘metalinks’. Metalinks have
been widely adopted in prior NFV/VNE literature to solve
optimally graph matching problems [13], [16]. A metalink
is an augmentation link in a network graph. In our case, it
represents the (potential) feasible placement of some service
a on some physical node A, as shown in Figure 3. Formally,
we have:

Definition 1 (metalink). A link si for SFC a € A belongs to
the set of metalinks EY, if and only if the service s € Ny, of
SFC a can be placed onto the node i € Ng.

Building on the definition of a metalink, we can define a
metapath as the path that connects any two services through
the physical network augmented with metalinks. For example,
consider following metapaths a— A—Y —band a— A—B—b
shown in Figure 3. Formally, we have:

Definition 2 (metapath). The path Pfjt is a metapath between
services s and t for SFC a € A if and only if Vkl € Pff :
kl € EsV kl € {si,tj}.

Intuitively, metapath Pfjt is formed by exactly two metalinks
that connect s and ¢ to the physical network and an arbitrary
number of physical links kl € Eg.

Constrained shortest metapaths. Having defined metapaths,
let us consider a simple case of the SFC composition prob-
lem - composition of a single-link chain (i.e., two services
connected via a single virtual link): the optimal composition
of a single-link chain can be seen as the constrained shortest
(meta)path problem that connects two services via the aug-
mented physical network, where all physical links have arbi-

trary fitness values of a service chaining (virtual link mapping)
and all metalinks have arbitrary fitness values of a service
placement divided by the number of neighboring services (i.e.,
by 1 for a single-link chain). In our example, shown in Figure
3, the optimal single-link SFC a — b composition can be
represented by the constrained shortest metapath a— A—Y —b
that satisfies all SFC composition constraints with the overall
fitness function of 3. Further, we prove our intuition formally:
Theorem IV.1. (The optimal single-link SFC composition)
The optimal single-link chain composition is the constrained
shortest metapath.

Proof. Assume the contrary. Let Lq(s,t) be the optimal ob-
jective value of the single-link service chain st composition
and Lo (s,t) be a length of the constrained shortest metapath
P5. We need to show that Ly # Lo:

Case 1 (L1 < Lo): In this case, L (s, t) solution is mapping
of services s and t to physical nodes 7 and j, respectively,
and a service link st to a physical path P(i,j) as defined
in the service chain composition problem. Without loss of
generality, we can assume that the optimal solution of the
service chain composition problem is feasible. Hence, s and ¢
mappings are sz and ¢j metalinks by Definition 1, respectively.
Furthermore, let us define the path P, = P(si, P(i,7),jt)
which by Definition 2 is a metapath. As the optimal solution
is feasible, P, satisfies all constraints of the single-link chain
st composition. Hence, P; is a constrained metapath whose
length Lq(s,t) is shorter than Lo(s,t) contradicting that P
is the constrained shortest metapath.

Case 2 (L1 > Lo): In this case, we can present metapath
Py as P, = P(si, P(i,j),jt), where si and ¢j are metalinks,
and P(i,j) is a physical path (see Definition 1). Let us map
services s and ¢ on physical nodes ¢ and j, respectively,
and service link st on a physical path P(i,5). As Py is
the constrained metapath, this mapping is feasible with the
objective value Lo(s,t) less than L;(s,t) contradicting that
L1 (s, t) is the optimal objective value of the single-link service
chain st composition. ]

Corollary IV.1. (The optimal single-link SFC composition
complexity) The optimal single-link SFC composition has a
pseudo-polynomial complexity.

Proof. Based on Theorem IV.1, the optimal single-link SFC
is the constrained shortest metapath which is by Definition 2
the constrained shortest path in the augmented network graph.
However, it is known that the constrained-shortest path can be
found in pseudo-polynomial time [26]. ]

We conclude that constrained shortest metapaths are good
candidates to perform composite decisions, i.e., to optimally
decide on a single-link SFC composition in terms of its
services placement and chaining with a single binary variable.
Multiple-link chain composition via metapath. While ob-
serving Figure 3, we can notice how using only a single
constrained shortest metapath per a single-link segment of
a multiple-link SFC a — b — ¢ can lead to an unfeasible
composition: as the optimal a —b composition is a—A—Y —b
metapath, and the optimal b — ¢ composition is b— B — X —c¢
metapath - service b has to be simultaneously placed on Y
and B physical nodes. Thus, we cannot stitch these metapath,



and we need to find more than one constrained shortest
metapath per a single-link chain. In our composite variable
approach, we find k-constrained shortest metapaths (to create
k binary variables) per each single-link segment of a multi-
link service chain. To find metapaths any constrained shortest
path algorithm can be used [24], [25], [26]. In this paper, we
build upon the path finder proposed in our prior work that is
an order of magnitude faster than recent solutions [24].

To further benefit from constrained shortest metapaths
and simplify the chain composition problem, we offload its
constraints (either fully or partially) to either metalinks or
the path finder. Specifically, geo-location and an arbitrary
number of end-to-end network (e.g., latency) QoS constraints
can be fully offloaded to metalinks and to the path finder,
respectively. At the same time, capacity constraints of the
SFC composition problem are global and can be only partially
offloaded. Once k-constrained shortest paths have been found
for each single-link service chain segment, we can solve GAP
problem [15] to assign each single-link chain segment to
exactly one constrained shortest metapath and stitch these
metapaths as described below.

Allowable fitness functions for metapath-based variables.
In general, fitness functions qualify for our metapath compos-
ite variable approach if they are comprised from either additive
or multiplicative terms. The above requirement fits for most
SEC objectives [1], and other objectives can also qualify if
well-behaved (e.g., if their single-link chain fitness values can
be minimized by a path finder). As the load balancing fitness
function Fp in Equation 1 qualifies, we compute its single-

link chain value E [F-S-ta] for k metapath as following:

E[r] = SE || fdeato)

Z;;a {UEESE[ ] TEE;E[CT]M o),

sta
uwwePy

where deg(s) corresponds to the service s degree, i.e.,
deg(s) = 1 for s € {in,out} services that handle input and
processed output data of SFCs, respectively; and deg(s) = 2
otherwise. Note that in NFV in and out are dummy services
that corresponds to the flow source and sink physical nodes
and have no computation demands. The first and the last terms
represent the fitness values of metalinks, and the middle term
corresponds to the sum of physical links’ fitness values.

Problem 2 (SFC composition via metapaths). Given a set
of SFCs a € A represented as graphs G* = (N, E{,),
a physical network graph G = (Ng, Eg), and having set
of k-constrained shortest metapaths P € P3t and their
corresponding fitness function values F‘Sta found for each
virtual link st € EY, in the SFC a, let a binary variable
”k(b a) =1 if the szngle -link chain segment st is assigned
to the metapath P‘St‘? of the backup b € B®* of SFC a € A,
or 0 otherwise. The SFC composition problem via metapaths

can be formulated as follows:

mind >, > > E[Ff] /G0

a€AbeBestcEY, P:]wePbt

(14)

subject to
Metapath Stitching (Assignment) Constraints:
-1, t=1wn
Z Zﬂk Z JZk L, t = out 15)
Prirepst P;;,gePfS 0, otherwise
Vit € {in,out} Vitj € E};,b€e B*ae A
Node Capacity Chance-Constraints:
> 2 2 Diydegt) | 3. fii(ba) +
a€EAbEB*tENSE Ploepst
' " (16)
+ > a0 <C]| >RVjeNs,reT
Piraepl
Link Capacity Chance-Constraints:
S S Y Dt <Culzn
aEAbGBastEE{‘}{PS“I 'PS’ ( )
quPf;,?
Yuv € Eg

where symbols and notations of sets, parameters, variables
and functions are summarized in Table I.

We remark that in and out are services that handles input
and processed output data of SFCs, respectively. Note also
that deterministic equivalents for the objective coefficients and
capacity constraints in Equations 14, 16 and 17 are similar to
deterministic equivalents of Problem 1.

A. SFC Composition via Lagrangian Relaxation

Aside from solving the NP-hard (GAP) Problem 2, we also
propose its better scalable alternative. In particular, we solve
the GAP using its polynomial Lagrangian relaxation by com-
promising both its optimality and feasibility guarantees [15].
Our approach: Problem 2 has two types of constraints -
stitching (assignment) and capacity constraints. The assign-
ment constraints (Equation 15) represent flow conservation
constraints for metalinks ¢j € EY,. Hence, these constraints
form the totally unimodular constraint matrix. When having
the linear objective function (Equation 14), this property
allows us to relax integrality constraints on fzfsfk(b, a) variable
in the incapacitated service chain composition case (when
capacity constraints are omitted). As a result, we can solve
the above problem using (polynomial) Linear Programming.
Lower Bound Algorithm. Similarly to [27], we use the
unimodularity property benefits and push capacity constraints
(see Equations 11 and 12) to the objective. To this end, let us
denote g;” = R — P} and g5 = R — IP,,,, functions for each
constraint in Equations 16 and 17, respectively. Let us define
uy” and uY as the Lagrangian multipliers specified for each
iteration of the subgradient method [27]; we now can define
(deterministic) Lagrangian weights as following:

wift = P +ul’ ((u" + K pot™) /deg(s)+
a) (18)
st
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We then can solve the following linear program £ with any
LP solver:

C=min| Y > > > wij

a€AbE BesteEY, Pl € Pst

1Sjk b a’)
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0, R> P, 0, R> Py
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subject to constraints in Equation 15. Note that to improve
LB while solving £, we can also fix all variables f7" =
whose node (or link) mappings do not satisfy reliability, i.e.,
if R> P, or R> Pj (orleluvePSt“'R>Pm,).

If solution of £ satlsﬁes GAP capacny constraints, we can

stop and report optimal (or suboptimal) solution to GAP.
However, if £ solution is unfeasible to the primal GAP
problem, we can project it back to the feasible space using
some polynomial heuristic algorithm to get an upper bound
(UB) of the primal GAP problem.
Upper Bound Algorithm. In this paper, we propose a new
(polynomial) greedy regret lower bound replication (GRLBR)
algorithm that we found fast enough for our large scale
GAP problem with flow assignment constraints. We build
our GRLBR algorithm upon both lower bound replication
and greedy regret algorithms proposed earlier in [27], and its
pseudo code is outlined in Algorithm 1.

GRLBR starts by detecting the largest regret service chain
segment st of SFC o’ (lines 5-12), i.e., the segment with the
largest difference between the first best and the second best
corresponding lagrangian weights wfjg for its potential feasi-
ble assignments. If there are no feasible metapaths assignments
for st of a that satisfy both assignment and capacity constraints
(see Equations 15, 16 and 17), we stop and report no feasible
solution (lines 6-8). Once, st of a’ is found, we add it to the
priority queue Q. based on its langrangian weight w‘gm (line
13). We then retrieve and remove the head of this queue and try
to map it to the LB metapath solution first (lines 19-20), or to
the lowest lagrangian weight metapath Psta’ ijkr (lines 22-23),
or report no feasible solution and terminate, otherwise (lines
17-18). Finally, we allocate corresponding metapath solution
resources for the service chain st segment of o’ and add all its
adjacent segments (lines 25-26). Once ), is empty, all service
chain segments of SFC a’ for its backup " have been placed.
We then mark 4" backup of SFC a’ as mapped and remove it
from further consideration by GRLBR (lines 28-31). Note that
at any time (. contains only two elements due to a linear
service chain topology.

Subgradient method. Having LB and UB algorithms out-
lined, we use them within the general subgradient method to
iteratively improve LB and UB as in [27]. To this end we
start with zero u; and us lagrangian multiplier vectors. At
each iteration we track if LB solution is feasible, and if so
we terminate our subgradient algorithm. Moreover, if LB has
been improved, i.e., if LB, > LB, and LB is not feasible,
we project LB solution back to the feasible space with our
GRLBR algorithm to obtain new U B,,.,, solution and update
existing U B solution if UB¢,, < UB. If WUB-LB|| < €or

. . . . [|LB|
number of iterations is exceeded, we terminate the subgradient

Algorithm 1: GRLBR

Input: f 1 (a, b):= solution of La; wilf:= lagrangian weights; PS¢ € P!
= set of k-constrained shortest melapaths and their corresponding fitness
values Fff,f found for each virtual link st € EY,

Output: U B := upper bound to GAP problem; ffjtk (a, b):= feasible solution to

GAP problem
1 begin
/* Step 0: initialize */
2 A+~ A
3 B'* « B*VYa € A
4 while A’ ¢ 0 do
/+ Step 1: find highest regret virtual link sta’ */
5 forall st € E“ and a € A’ do
6 if ﬂPfjt,:l Pf;ﬁ is feasible then
7 terminate and report no feasible solution
8 end
9 ijkl,. < arg rmn{w”k Pff,f is feasible}
10 Psta mln{w”k wz]k’(sm) P{}t;? is feasible, ijk #
ik pq}
11 end
12 sta’ + argmax {psta}
stEE2,ac A’
/+ Step 2: allocate all service chain segments that
contains sta’ */
13 Put sta’ to the prlomy queue Q,/ <+ {sta’, wqjtg/}
14 b mm{B’a }
15 while Q,/ ¢ 0 do
16 st <+ retrleve and remove Q,/’s head
17 if ﬂPfJ‘,f Pf;,? is feasible then
18 lermlnate and report no feasible solution
19 else if P:J',j : ”k(a b ) == 1 is feasible then
20 UB + UB+ Fff,g
21 else
22 Psta’ ikl mgmln{w Pfﬁf is feasible}
23 UB <+ UB + FS “
24 end
25 allocate corresponding physical resources for st
26 add adjacent virtual links of st and their best lagrangian weights
to Qa/
27 end
/+ Step 3: mark b’ backup of a’ SFC as allocated and
go to Step 1 */
28 B « BY — ¥
» it B’ € 0 then
30 A — A —a
31 end
32 end
33 end

algorithm. At the end of each iteration w; and us are calculated
w.r.t. to their objective gradient. More implementation details
as well as best practices on the subgradient method can be
found in [27].

V. PERFORMANCE EVALUATION

In this section, we evaluate performance of our reliable
SFC composition approach under challenging disaster incident
conditions that can cause severe infrastructure outages [7].
Thus, we evaluate its performance against the state-of-the-art
NFV/VNE solutions of the (master) integer MCCF problem.
General Settings. For our simulations, we use an HPC Cloud
server with two Intel Xeon E5-2683 v3 14-core CPUs at 2.00
GHz (total 56 virtual cores), 256GB RAM, and running the
Ubuntu 16.04 allocated in NSF CloudLab platform [30]. We
solve math programs with IBM ILOG CPLEX [22]. We use
both Internet Topology Zoo [28] and Atlas [29] databases to
re-create the US Tierl and regional providers’ networks as
shown in Figure 4. We assume that each topology has nodes
and links with uniformly distributed computation capacity



(a) (b)
Fig. 4: Simulation data sets: (a) network infrastructure that spans 7 Tier-1
US providers and comprises of 286 Point of Presence (PoP) nodes and 534
links; and (b) network infrastructure that spans 56 regional US providers and
comprises of 596 PoP nodes and 1253 links.

from 5 to 50 TFlops and bandwidth from 1 to 10 Gbps,
respectively. Note that the lowerbound 5 TFlops performance
can simulate limited network edge servers, whereas 50 TFlops
can simulate HPC cloud servers. Moreover, we assume that
latency of each physical link is proportional to its propagation
delay computed as its geographical length divided by the
speed of light in fiber. Finally, we compute physical resources’
outage risk w.r.t. to the geographical proximity to the disaster
incident epicenter as discussed in [7]. All our results show
95% confidence intervals, and our randomness lays both in
SFEC requests and in disaster incident events.

SFC request settings. We generate a pool of 50 SFCs
composed by 2 to 20 services, unless stated differently. Based
on a common object tracking application [4], each SFC has
equal chances to express its either High-Performance (HPC)
or regular computing demands shown in Table II. As in [7],
we assume a strong correlation between SFC demands and the
disaster incident intensity. Using natural disaster data sets and
their associated infrastructure outage risks specified in [7], we
use the following geo-location policies: All services handling
incoming raw data must be placed within a range of two
disaster incident region radiuses from its epicenter. When there
are no disaster incidents, these services as well as services that
output processing data have to be placed within 200 miles out
of the random geographic locations picked within the US.

TABLE II: An example set of demands for different SFC types

Expected Data
Collection Size
1-10 GB
10-100 GB

Expected Expected
Comp. Time | Data Rate
10-100 ms/frame | 10-100 Mbps
10-100 ms/frame| 0.1 - 1 Gbps

Demands | Expected Computation

Type Demand per Function
Regular 0.5-5 TFlops
HPC 1-10 TFlops

Composition Metrics. We compare performance of our
metapath-based SFC composition in Problem 2 (referred as
MpSC) against its (polynomial) Lagrangian relaxation coun-
terpart (referred as MpLG). We also compare MpSC' against
the VNE/NFV state-of-the-art solutions of the (master) integer
MCCEF problem (i.e., Problem 1): IBM CPLEX branch-and-
bound version [22] (optimal, but has the highest combinatorial
complexity), branch-and-price column generation [16] and
recent isomorphism detection [17] approaches (suboptimal,
but have lower combinatorial complexities). We refer to the
branch-and-bound solution of the master problem as Opt, to
the column (or path in case of SFCs) generation approach as
PgSC, and to the isomorphism detection as 1s0SC.
Assumptions. To evaluate the online optimization perfor-
mance of our approach, we assume the most difficult case:
all SFC requests arrive sequentially (¢.e., unknown in advance)
and do not allow a service consolidation, :.e., only one service
in a chain can be placed onto the same physical server.

S 20 P—P—P—P—p— | =, 5T MpSC.Tierl MpSC.Region
E 10 ? 107 ‘VMpLG,'I‘ierl-bMpLG,Reginn ’,
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Fig. 5: Service chain (SC) composition optimality gap (a) and time (b)
results in presence of no disaster incidents (R = 0).

Results. Our evaluation results fall under three salient thrusts
of findings: (i) our metapath approach gains more than 99%
optimality on average and is up to 3 orders of magnitude
faster than the master problem solution; (ii) our metapath
approach can secure up to 2 times more SFCs in comparison
to the state-of-the-art NFV/VNE approaches under challenging
disaster incident conditions; and (iii) policies allow to trade-
off between a SFC reliability and its composition optimality.

We assess the performance of our SFC composition algo-
rithms by specifying the fraction of successfully composed
SFCs over the total requested chains (composition ratio).
Similarly, we assess the reliability of these algorithms by com-
puting a fraction of the number of composed SFCs disrupted
during disaster incidents over the total number of composed
SFCs (disruption ratio). In addition, we also use an optimality
gap metric which we define as a gap in % between Opt and
all other algorithms. Finally, we use a composition time metric
to access scalability performance of our metapath approach.
MpSC gains more than 99% optimality on average and
is up to 3 orders of magnitude faster than Opt. To
estimate the baseline performance of our metapath approach,
we first assume a scenario without disasters (i.e., no outage
risks and R = 0) where capacity chance constraints becomes
deterministic yielding the largest feasible space (i.e., leading
to a higher combinatorial complexity of the master problem).
Figure 5a shows how its optimality depends on the number
of generated metapaths per single service chain (SC) request.
We can see how, when this number exceeds >80 times the
number of physical nodes, the performance of MpSC flattens.
On the other hand, when either the SFC size increases or
the reliability requirements get tighter in a disaster incident
scene, M pSC achieves optimality most of the time and shows
99% optimality on average. Note also how MpLG shows
significantly worse performance with respect to MpSC; this
is due to use of greedy heuristics used to recover feasible
solutions. However, MpLG can be beneficial for large SFCs
(of > 25 services) as it is polynomial.

For the rest of our evaluation, we fix the number of
metapaths generated per SFC request to 80 and 120 times the
number of physical nodes for MpSC and MpLG, respec-
tively. These values of metapaths are picked to allow both
MpSC and MpLG to compose large SFCs. For instance,
with these settings M pSC'is almost three orders of magnitude
faster than the optimal solution (Opt) as shown in Figure 5b.
For small SFCs (i.e., < 5 services) we found, however, no
significant scalability improvements of MpSC and MpLG
over Opt. This is due to the fact that generating metapaths
is time-consuming expensive. Thus, for small service chains,



IMpsC,Tier! [IMlisoSC,Tierl [MMPeSC,Tierl |~ |MpSC,Region [25]1s0SC,Region |\|PgSC,Region

. . 2
Disaster Incident

Disaster Incident ¥

(@) (b)

[B=1.Tier1 [MllB=2.Tier1 [MlB=3 Tierl | ~|B=1Region [|B=2,Region |\\\|B=3Region

2 1 9 1
IS 3
& 0.8 81 & 0.8
g b H £
206 £ Ee 206
. 2 2 =
Y7y HE - \E [ A — S04y -1
E L Z5d | I T
£ 0.2 il Ml 8ol 1
O g £ E Q
U 0 == = i wn O
A 08 09 095 098 099 08 09 095 098 099
SC Reliability (R) SC Reliability (R)
(© (@)

Fig. 6: Service chain (SC) composition ratio (a,c) and disruption ratio (b,c)
results under different natural disaster-incidents with reliability R = 0.8 (first
row), and M pSC results under hurricane disaster-incidents (second row).

it is recommended to avoid use of metapath-based composite
variables and merely consider the Opt policy instead. For the
rest of our evaluation, we only use the MpSC' service chain
composition algorithm.

MpSC can secure up to 2 times more SFCs than
PathGen and IsoSC under challenging disaster-incident
conditions. Furthermore, we can see how our MpSC' outper-
forms PgSC' and 1s0SC by securing up to 2 times more SFCs
under challenging disaster-incident conditions of tornadoes
and hurricanes as shown in Figures 6a and 6b with the
service chain reliability R = 0.8. This is due to the fact
that MpSC reaches the optimality most of the time while
being sufficiently scalable. At the same time, PgSC' is limited
by the performance of the SFC composition algorithm (that
commonly uses a two-stage composition) to get the initial
feasible solution [16]. Moreover, it is also known that column
generation approaches such as PgSC' converge slowly to
the optimal for integer problems [15]. In contrast to PgSC,
Is0SC doesn’t need an initial feasible solution, but can fail
to find one or not converge to the optimal solution for the
predefined amount of iterations [17].

Policy-based SFC reliability trade-offs. Further, to achieve
a desired level of reliability during SFC composition (i.e.,
proactively), the capacity chance-constraints acceptable risk
(i.e., 1 — R) and/or the number of backups policies can be
adjusted appropriately. As shown for MpSC' in Figures 6¢
and 6d, increasing either chance-constraints reliability R or the
number of backups decreases the number of composed SFCs
by either prohibiting more physical resources for allocation
or utilizing more physical resources for SFC backups. On
the other hand, such a strategy can significantly minimize the
number of disrupted SFCs, therefore minimizing their outages.

VI. CONCLUSION

In this paper, we presented the reliable SFC composition
approach for geo-distributed latency-sensitive SFCs. To the
best of our knowledge, we present the first practical and near

optimal approach for the general NP-hard SFC composition
case [13]. To ensure reliability of SFCs, we handle both their
demand fluctuations and possible infrastructure outages during
the composition via use of capacity chance-constraints and
service backups policies. We have addressed NP-hardness lim-
itations of the (master) integer MCCF-based SFC composition
problem by proposing a novel metapath composite variable
approach that uses either (NP-hard) GAP or its (polynomial)
Lagrangian relaxation counterpart. Using realistic trace-driven
simulations with US Tier-1 and regional infrastructure topolo-
gies, we have shown that our metapath composite variable
approach reaches 99% optimality on average, is up to 3 orders
of magnitude faster than the master problem solution for
practically sized problems and can compose twice as many
SFCs than related NFV/VNE methods.
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