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Abstract—Computer vision applications are increasingly used
on mobile Internet-of-Things (IoT) devices such as drones. They
provide real-time support in disaster/incident response or crowd
protest management scenarios by e.g., counting human/vehicles,
or recognizing faces/objects. However, deployment of such ap-
plications for real-time video analytics at geo-distributed areas
presents new challenges in processing intensive media-rich data
to meet users’ Quality of Experience (QoE) expectations, due to
limited computing power on the devices. In this paper, we present
a novel policy-based decision computation offloading scheme that
not only facilitates trade-offs in performance vs. cost, but also
aids in offloading decision to either an Edge, Cloud or Function-
Centric Computing resource architecture for real-time video
analytics. To evaluate our offloading scheme, we decompose an
existing computer vision pipeline for object/motion detection and
object classification into a chain of container-based micro-service
functions that communicate via a RESTful API. We evaluate
the performance of our scheme on a realistic geo-distributed
edge/core cloud testbed using different policies and computing
architectures. Results show how our scheme utilizes state-of-
the-art computation offloading techniques to Pareto-optimally
trade-off performance (i.e., frames-per-second) vs. cost factors
(using Amazon Web Services Lambda pricing) during real-time
drone video analytics, and thus fosters effective environmental
situational awareness.

Index Terms—Cloud/fog Computing, function-centric comput-
ing, drone video analytics, computation offloading policies.

I. INTRODUCTION

In the last few years, autonomous Unmanned Aerial Vehi-

cles (UAVs), also known as drones, have been widely used

in a large number of scenarios. The scenarios range from

urban and rural area control for prevention of crime, rescue

operations, traffic surveillance, and forest fire monitoring.

Most commercially used drones are embedded with a high-

resolution camera and used in surveillance systems to visualize

and monitor target environments, e.g., for tracking purposes.

Recent advances in computer vision and drone-based

technologies has enabled additional use cases, e.g. mo-

tion detection and object classification from drone-sourced

video streams. However, visual data processing involves

computation-intensive analysis of video streams, especially

when video is of high-resolution and needs to be analyzed
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Fig. 1: Overview of the computation offloading scheme on drone-based
video analytics

and matched against a large/distributed database of images.

Obviously, such a processing thus requires high-performance

computing (HPC) and adequate energy sources. It is not

practical for a typical drone system to handle these critical

computing/energy needs if visual data processing is performed

on-board. Thus, there is a need for an efficient computation

offloading to enable fast and accurate video analytics, e.g., for

object tracking and classification tasks.

Figure 1 shows an overview of a common computation

offloading scenario in a drone-based video surveillance sys-

tem. In this air-to-ground scenario, a programmable drone

is connected to a ground control station (GCS) at the in-

frastructure gateway through a wireless network e.g., based

on Wi-Fi, 4G/LTE or 5G technologies. The GCS itself is

connected to the edge/core cloud infrastructure that features

HPC resources such as GPUs. Thus, the GCS can offload

computations to either Edge or Cloud servers to analyze drone

video streams. However, if inadequate HPC resources are

available at the Edge server and a low-latency communication

between GCS and the processing site is needed (e.g., for real-

time drone control), new approaches need to be devised. Based

on our literature survey [1], there is a lack of mechanisms

to efficiently coordinate between the limited Edge computing

resources and Cloud HPC resources during real-time video

stream processing.

In this paper, we present a novel policy-based computational

offloading scheme that facilitates trade-offs in performance

vs. cost factors (based on users’ preferences) during real-time

drone video analytics by utilizing Edge, Cloud and Function-

Centric Computing architectures. The Function-Centric Com-

puting (FCC) architecture features decomposing applications

into microservice functions that can be deployed onto edge

resources in conjunction with core cloud platforms.



The contributions of this paper can be summarized as

follows:

• We describe a drone video analytics application that

supports Function-Centric Computing by decomposing

our video analytics pipeline into a chain of microservice

functions, and deploying the functions onto a mixture of

Edge/Cloud computing resources communicating via a

RESTful API.

• We detail a novel offloading scheme that uses

policy-based decision making mechanism and supports

Function-Centric Computing strategy1 to (Pareto) opti-

mally trade-off performance vs. cost factors among the

different computing architectures, with the purpose of

maximizing performance while reducing costs, and thus

to meet different users’ QoE requirements.

• We deploy an edge/cloud testbed that spans multiple

geographical locations and features HPC cloud resources

by utilizing GENI [2] and CloudLab [3] infrastructures

to evaluate different offloading strategies under realistic

application settings.

The rest of the paper is organized as follows: Section II

presents related work. In Section III, we discuss how our

computer vision application case study can be decomposed

into a service chain. In Section IV, we detail our novel policy-

based function-centric computational offloading scheme for

real-time drone video analytics. Section V describes our

testbed-based evaluation methodology, performance metrics

and results. Section VI concludes the paper.

II. RELATED WORKS

Drones Computation Offloading. Computation offloading

is widely used to overcome insufficient local capabilities of

resource-constrained (e.g., mobile) devices such as drones [4].

Computation offloading allows users to delegate jobs fully

or partially to a server, minimizes local resource utilization

(e.g., to save energy) and reduces time to obtain results.

Thus, the authors in [5] propose a simple decision algorithm

that offloads parts of the computation workload to a remote

server. The offloading is performed if the execution cost of

the computation operation is greater than the execution cost

of the offloading mechanism. Although, authors in [5] outline

a dynamic decision making scheme for the air-to-ground

scenario (from drones to ground control stations), they do

not capture interplay between multiple factors such as cost,

performance and others under realistic cloud infrastructure

settings [6]. Some of the recent approaches for drone video

analytics propose borrowing computing resources opportunis-

tically from other nearby drone clusters [7], [8]. However, due

to constrained drone resources (i.e., energy, compute, human

operations, etc.), offloading to the unconstrained infrastructure

sites e.g., by using Edge or Cloud computing paradigms can

be a more efficient way in common use cases.

1Note that this strategy provides an additional offloading option to ensure a
cost-effective and performance-optimized solution for certain policy require-
ments in drone video analytics.

In our work, we assume a scenario when drones lack the

ability of processing functions with HPC demands and stream

video directly to the ground control station via a wireless

network connection. The ground control station subsequently

is in charge of selecting an appropriate offloading strategy, i.e.,

Edge, Cloud or Function-Centric Computing.

Real-time Drone Video Analytics. Real-time video analytics

is frequently applied for camera-equipped mobile devices. For

example, the authors in [9] use Edge or Cloud computing for

a face recognition by analyzing imagery data from mobile

phones or Google Glass devices. To improve video analytics

performance in terms of latency and reduce network bandwidth

demands, the authors in [10] cache few video frames on a

mobile device while sending triggered frames to a remote

server for recognizing and labeling. Recently, a similar ap-

proach has been also applied for drone-based systems where

the authors in [11] propose an adaptive video streaming and

content-aware compression to satisfy real-time drone video

analytics requirements. In the case when video analytics is

offloaded from the ground control station, the authors in [12]

show how Edge computing can greatly reduce drones’ network

bandwidth demands. Another proposed approach achieves a

low-latency video analytics performance by placing drone

ground control stations in heterogeneous networks [13].

In contrast, our approach considers a possible decomposi-

tion of a real-time drone video analytics pipeline into individ-

ual object motion detection and its consequent classification

functions. Leveraging this decomposition outcome, we apply a

novel policy-based function-centric computational offloading

scheme that facilitates trade-offs in cost and performance

factors for real-time drone video analytics.

III. FUNCTION CHAIN FOR CLASSIFICATION OF MOVING

OBJECTS

In this section, we introduce our computer vision application

that is used for the real-time drone video analytics and can

support our Function-Centric Computing approach in [1].

A. Overview

Our application performs the initial objects motion detection

(that can be also used for the drone real-time control) and

their consequent classification. The result of this analytics

is shown in Figure 2. To implement the function-centric

pipeline, we decompose our application into microservices

encapsulated with Docker containers and communicating via

a RESTful API. The microservices are implemented using the

python Flask package. The microservices expose OpenCV and

TensorFlow functions that carry out the processing required for

the application to complete execution. The application resides

within a Docker container that allows it to be quickly and

easily deployed on diverse nodes. Thus, we take advantage

by deploying the same container across all the nodes in our

infrastructure. This also allows us to independently execute

specific application functions at desired locations to evaluate

different computational offloading strategies later in Section V.
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Fig. 6: Cloud High-Performance Computing (HPC), Edge Computing, Function-Centric Computing (FCC) and Edge HPC Cumulative Distribution Function
(CDF) results of (a) Frames-Per-Second (FPS), (b) packet Round-Trip-Time (RTT) and (c) processing cost per frame (based on Amazon Lambda Pricing [16]).
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Fig. 7: Cloud High-Performance Computing (HPC), Edge Computing, Function-Centric Computing (FCC) and Edge HPC comparison results of (a) average
Round-Trip-Time (RTT) and average Frames-Per-Second (FPS), (b) average processing cost per frame (based on Amazon Lambda Pricing [16]) and average
FPS, and (c) average cost and average RTT.

Our future work involves consideration of additional factors

e.g. energy consumption on the drone devices and network

bandwidth fluctuations to expand our offloading scheme inves-

tigations. Energy consumption is a critical factor determining

the flight time of drone devices, while network quality affects

the latency in transmitting data between drone and the edge,

and between the edge and the cloud. These factors need to be

combined with the cost and performance factors to evaluate

the overall trade-offs.
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