Policy-Based Function-Centric Computation
Offloading for Real-Time Drone Video Analytics

Dmitrii Chemodanovy, Chengyi Quf, Osunkoya Opeoluwaf, Songjie Wang, Prasad Calyam
Email: {dycbt4, cqy78, osoykp}.mail.missouri.edu, {wangso, calyamp}@missouri.edu; University of Missouri-Columbia, USA.

Abstract—Computer vision applications are increasingly used
on mobile Internet-of-Things (IoT) devices such as drones. They
provide real-time support in disaster/incident response or crowd
protest management scenarios by e.g., counting human/vehicles,
or recognizing faces/objects. However, deployment of such ap-
plications for real-time video analytics at geo-distributed areas
presents new challenges in processing intensive media-rich data
to meet users’ Quality of Experience (QoE) expectations, due to
limited computing power on the devices. In this paper, we present
a novel policy-based decision computation offloading scheme that
not only facilitates trade-offs in performance vs. cost, but also
aids in offloading decision to either an Edge, Cloud or Function-
Centric Computing resource architecture for real-time video
analytics. To evaluate our offloading scheme, we decompose an
existing computer vision pipeline for object/motion detection and
object classification into a chain of container-based micro-service
functions that communicate via a RESTful API. We evaluate
the performance of our scheme on a realistic geo-distributed
edge/core cloud testbed using different policies and computing
architectures. Results show how our scheme utilizes state-of-
the-art computation offloading techniques to Pareto-optimally
trade-off performance (i.e., frames-per-second) vs. cost factors
(using Amazon Web Services Lambda pricing) during real-time
drone video analytics, and thus fosters effective environmental
situational awareness.

Index Terms—Cloud/fog Computing, function-centric comput-
ing, drone video analytics, computation offloading policies.

I. INTRODUCTION

In the last few years, autonomous Unmanned Aerial Vehi-
cles (UAVs), also known as drones, have been widely used
in a large number of scenarios. The scenarios range from
urban and rural area control for prevention of crime, rescue
operations, traffic surveillance, and forest fire monitoring.
Most commercially used drones are embedded with a high-
resolution camera and used in surveillance systems to visualize
and monitor target environments, e.g., for tracking purposes.

Recent advances in computer vision and drone-based
technologies has enabled additional use cases, e.g. mo-
tion detection and object classification from drone-sourced
video streams. However, visual data processing involves
computation-intensive analysis of video streams, especially
when video is of high-resolution and needs to be analyzed

tThese authors contributed equally to this work.

This material is based upon work supported by the National Science
Foundation under Award Number: CNS-1647182 and the Army Research
Lab under Award Number: W911NF1820285. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation or the Army Research Lab.

978-1-7281-1434-7/19/$31.00 © 2019 IEEE

Object Glassification and

Caplure Video motion detection results

omécl Classification

 Desp Learning |
on classification |

ro-Process
 Woton |
| Dection ‘—> -
| Drane 3 - ',
| control

Edge Server

Station (GCS)

¢ ol
g — 5 4 =
;e — 2
: éﬂ Ground Control

Cloud Server

Edge Computing Cloud Computlng

Fig. 1: Overview of the computation offloading scheme on drone-based
video analytics

and matched against a large/distributed database of images.
Obviously, such a processing thus requires high-performance
computing (HPC) and adequate energy sources. It is not
practical for a typical drone system to handle these critical
computing/energy needs if visual data processing is performed
on-board. Thus, there is a need for an efficient computation
offloading to enable fast and accurate video analytics, e.g., for
object tracking and classification tasks.

Figure 1 shows an overview of a common computation
offloading scenario in a drone-based video surveillance sys-
tem. In this air-to-ground scenario, a programmable drone
is connected to a ground control station (GCS) at the in-
frastructure gateway through a wireless network e.g., based
on Wi-Fi, 4G/LTE or 5G technologies. The GCS itself is
connected to the edge/core cloud infrastructure that features
HPC resources such as GPUs. Thus, the GCS can offload
computations to either Edge or Cloud servers to analyze drone
video streams. However, if inadequate HPC resources are
available at the Edge server and a low-latency communication
between GCS and the processing site is needed (e.g., for real-
time drone control), new approaches need to be devised. Based
on our literature survey [1], there is a lack of mechanisms
to efficiently coordinate between the limited Edge computing
resources and Cloud HPC resources during real-time video
stream processing.

In this paper, we present a novel policy-based computational
offloading scheme that facilitates trade-offs in performance
vs. cost factors (based on users’ preferences) during real-time
drone video analytics by utilizing Edge, Cloud and Function-
Centric Computing architectures. The Function-Centric Com-
puting (FCC) architecture features decomposing applications
into microservice functions that can be deployed onto edge
resources in conjunction with core cloud platforms.



The contributions of this paper can be summarized as
follows:

e We describe a drone video analytics application that
supports Function-Centric Computing by decomposing
our video analytics pipeline into a chain of microservice
functions, and deploying the functions onto a mixture of
Edge/Cloud computing resources communicating via a
RESTful APIL

e We detail a novel offloading scheme that uses
policy-based decision making mechanism and supports
Function-Centric Computing strategy' to (Pareto) opti-
mally trade-off performance vs. cost factors among the
different computing architectures, with the purpose of
maximizing performance while reducing costs, and thus
to meet different users’ QoE requirements.

e We deploy an edge/cloud testbed that spans multiple
geographical locations and features HPC cloud resources
by utilizing GENI [2] and CloudLab [3] infrastructures
to evaluate different offloading strategies under realistic
application settings.

The rest of the paper is organized as follows: Section II
presents related work. In Section III, we discuss how our
computer vision application case study can be decomposed
into a service chain. In Section IV, we detail our novel policy-
based function-centric computational offloading scheme for
real-time drone video analytics. Section V describes our
testbed-based evaluation methodology, performance metrics
and results. Section VI concludes the paper.

II. RELATED WORKS

Drones Computation Offloading. Computation offloading
is widely used to overcome insufficient local capabilities of
resource-constrained (e.g., mobile) devices such as drones [4].
Computation offloading allows users to delegate jobs fully
or partially to a server, minimizes local resource utilization
(e.g., to save energy) and reduces time to obtain results.
Thus, the authors in [5] propose a simple decision algorithm
that offloads parts of the computation workload to a remote
server. The offloading is performed if the execution cost of
the computation operation is greater than the execution cost
of the offloading mechanism. Although, authors in [5] outline
a dynamic decision making scheme for the air-to-ground
scenario (from drones to ground control stations), they do
not capture interplay between multiple factors such as cost,
performance and others under realistic cloud infrastructure
settings [6]. Some of the recent approaches for drone video
analytics propose borrowing computing resources opportunis-
tically from other nearby drone clusters [7], [8]. However, due
to constrained drone resources (i.e., energy, compute, human
operations, etc.), offloading to the unconstrained infrastructure
sites e.g., by using Edge or Cloud computing paradigms can
be a more efficient way in common use cases.

Note that this strategy provides an additional offloading option to ensure a
cost-effective and performance-optimized solution for certain policy require-
ments in drone video analytics.

In our work, we assume a scenario when drones lack the

ability of processing functions with HPC demands and stream
video directly to the ground control station via a wireless
network connection. The ground control station subsequently
is in charge of selecting an appropriate offloading strategy, i.e.,
Edge, Cloud or Function-Centric Computing.
Real-time Drone Video Analytics. Real-time video analytics
is frequently applied for camera-equipped mobile devices. For
example, the authors in [9] use Edge or Cloud computing for
a face recognition by analyzing imagery data from mobile
phones or Google Glass devices. To improve video analytics
performance in terms of latency and reduce network bandwidth
demands, the authors in [10] cache few video frames on a
mobile device while sending triggered frames to a remote
server for recognizing and labeling. Recently, a similar ap-
proach has been also applied for drone-based systems where
the authors in [11] propose an adaptive video streaming and
content-aware compression to satisfy real-time drone video
analytics requirements. In the case when video analytics is
offloaded from the ground control station, the authors in [12]
show how Edge computing can greatly reduce drones’ network
bandwidth demands. Another proposed approach achieves a
low-latency video analytics performance by placing drone
ground control stations in heterogeneous networks [13].

In contrast, our approach considers a possible decomposi-
tion of a real-time drone video analytics pipeline into individ-
ual object motion detection and its consequent classification
functions. Leveraging this decomposition outcome, we apply a
novel policy-based function-centric computational offloading
scheme that facilitates trade-offs in cost and performance
factors for real-time drone video analytics.

III. FUNCTION CHAIN FOR CLASSIFICATION OF MOVING
OBIJECTS

In this section, we introduce our computer vision application
that is used for the real-time drone video analytics and can
support our Function-Centric Computing approach in [1].

A. Overview

Our application performs the initial objects motion detection
(that can be also used for the drone real-time control) and
their consequent classification. The result of this analytics
is shown in Figure 2. To implement the function-centric
pipeline, we decompose our application into microservices
encapsulated with Docker containers and communicating via
a RESTful API. The microservices are implemented using the
python Flask package. The microservices expose OpenCV and
TensorFlow functions that carry out the processing required for
the application to complete execution. The application resides
within a Docker container that allows it to be quickly and
easily deployed on diverse nodes. Thus, we take advantage
by deploying the same container across all the nodes in our
infrastructure. This also allows us to independently execute
specific application functions at desired locations to evaluate
different computational offloading strategies later in Section V.



e
" B

7

=
teuck: 0.9587

Fig. 2: Example of the moving object classification results on the ground
surveillance video from the drone.

B. Implementation Details

Our overall drone video analytics pipeline is shown in
Figure 3 and has the following RESTful API endpoints:
The classifier endpoint. This endpoint (/objectClassifier)
features a YOLO v3 deep learning classifier running on
TensorFlow that was pre-trained on COCO [14]. It receives
a frame from an image as input and is able to quickly carry
out object recognition on it and return bounding boxes and
labels for all the objects that exist in the frame.
The frame processing endpoint. This endpoint (/framePro-
cessing) is responsible for extracting the sections of an image
that changed between succeeding frames in a video using
classic computer vision techniques. This endpoint combines
the output of the classifier (which is able to identify all the
objects in a frame but cannot tell those that moved between
frames) with its output by correlating the areas they both
identify. This allows it to only count objects whose positions
have changed from preceding frames, but also allows for
labeling them accordingly.

w
v

Client

Frame Frame
Server
4 A
GrayScaIin; Classifier

) 4
i / /  Motion / 3 iMoving Object /
/ . Detection Counter

Fig. 3: Image processing pipeline to investigate computation offloading.

The counts endpoint. This endpoint (/getCounts) serves as
an access point to view the outputs returned by the classifier
and frame processing endpoints.

The function chain definition endpoint. This endpoint (/set-
NextServer) is used to dynamically determine which server is

called to execute the next function. This allows for program-
matic access to define where the classifier is executed since
all infrastructure nodes support the same container image.

IV. PoLICY-BASED FUNCTION-CENTRIC COMPUTATIONAL
OFFLOADING SCHEME

In this section, we introduce our novel policy-based decision
offloading scheme that allows us to not only facilitate trade-
offs in performance vs. cost factors of real-time drone video
analytics, but also aids in decisions pertaining to the pertinent
data computation architecture, i.e., by selecting either edge,
cloud or function-centric computing for data processing. Note
that by Edge computing we assume data processing at the
server that has a low-latency connection to the ground control
station, and is sufficient to handle real-time drone control
operations - usually with latency of <5 ms [15].

A. Function-Centric Offloading: Policies and Algorithm

In our investigation scenario, a drone continuously flies to
capture video streams with a desired video resolution using
either a pre-configured route or via remote control. At the same
time, the drone streams the captured video to a ground control
station via a wireless network for real-time video analysis
as shown in Figure 1. We assume that the ground control
station needs to offload computations as it lacks sufficient local
HPC resources, such as GPU resources to classify moving
objects by using deep neural networks. In the following,
we first describe our supported policies, and then detail our
computational offloading algorithm implementation.

Policies. The supported policies that we consider include:
(1) the real-time control policy that requires a portion of
the video analytics corresponding to the remote control of
drones is performed at the edge with low-latency; (ii) the
cost/performance preference policy allows users to specify
whether they want to pay more for higher performance or not;
and (iii) the function-centric availability policy ensures that a
video analytics application is function-based and its individual
functions can be executed at different locations.

Algorithm. To offload computations, the ground control sta-
tion executes our policy-based function-centric scheme shown
in Figure 4 and outlined in Algorithm 1.

We start by checking if HPC resources are available at the
Edge (line 4). Thus, if Edge computing doesn’t introduce any
bottleneck for the video analytics, and if the drone real-time
control P.real_time is not required, we use P.preference to
decide between offloading to the Edge or to the Cloud. This is
because due to a lower latency we can expect slightly higher
performance by analyzing video at the Edge (line 9), which
is however more expensive than processing in the Cloud (line
6) based on the common (serverless) pricing models such as
AWS Lambda [16].

At the same time, if no HPC resources are available at
the Edge (i.e., Edge computing is a bottleneck) and the

2Due to the mobility issues and limited power supply of drones in flight,
we assume in our work that the serverless pricing model is more beneficial
than its server-based counterpart for (short-term) video analytics tasks.



Require
Real-time Control

Require
Real-time Control

Yes
Yes

FCC allowed
for the
application

Preferred

Options

Lower cost

% Cloud Q, Edge Function-Centric
Computing C

Fig. 4: Tllustration showing our policy-based function-centric computation
offloading scheme for real-time drone video analytics.

Higher FPS

real-time control P.real_time is required, we check whether
the application for video analytics can be performed using
function-centric computing P.fcc_availability (line 17) to
improve both its performance and the cost w.r.t. the resource
limited Edge computing. This is due to the fact that function-
based processing depends on both processing data size and the
time it takes to process this data [16]. Hence, by interfacing
Edge and Cloud computing in this case, we can sufficiently
speed up the data processing at the Edge and reduce the total
cost.

Remark. Algorithm 1 uses IP addresses and ports of the
corresponding video analytics services running at the Edge
and Cloud servers. However, in the case of having multiple
Edge/Core clouds, our algorithm can be used in conjunction
with other existing schemes to optimize either Fdge [17],
Cloud [18] or both (e.g., simultaneously via use of service
function chaining [19]) server selections.

V. PERFORMANCE EVALUATION

In this section, we evaluate the different computational of-
floading strategies experimentally and show how our proposed
scheme allows to (Pareto-)optimally trade-off performance vs.
cost factors of the real-time drone video analytics. Specifically,
we evaluate benefits of our policy-based function-centric com-
putation offloading scheme for real-time drone video analytics
to classify moving objects as discussed in Section III. To this
aim, we outline our geo-distributed edge/core cloud testbed
setup that uses GENI [2] and CloudLab [3] infastructures and
features function-centric computing capabilities.
Experimental Setup. In our experiments, we use the ground
surveillance video of VGA resolution (640 x 480) to analyze

Algorithm 1: Policy-based Function-Centric Offloading

Input: Video:= video data to analyze; P:= set of policies; Edge:= IP:Port;
Cloud:=1P:Port; Edgep pc:= 1 if Edge HPC is available, O otherwise

Output: U RI:= offloading RESTful API URI; Data:= JSON data to offload

1 begin

2 URI < http://

3 Data <+ Video

4 if EdgerC == 1 then

5 if P.real_time == 0 and P.preference == cost then

6

7

8

| URI +~ URI U Cloud

end

else
9 | URI + URIU Edge
10 end
11 URI < URI U /fullVideoProcessing
12 end
13 else
14 if P.real_time == 0 then
15 | URI < URI U Cloud U HullVideoProcessing
16 end
17 else if P.fcc_availability == 1 then
18 URI <+ URI U Edge U /functionCentricProcessing
19 Data < Data U {"NextFunction” : Cloud}
20 end
21 else
22 | URI <+~ URI U Edge U /fullVideoProcessing
23 end
24 end
25 end

and classify moving objects (e.g., cars, trucks, etc.) observed
by the drone as shown in Figure 1. The example of a processed
video frame is shown in Figure 2, and both our application and
the video itself are publicly available at [20].

Our geo-distributed edge/core cloud testbed setup includes
1 virtual machine (VM) and 1 server reserved in the GENI
rack at the Missouri InstaGENI site as shown in Figure 5, 1
VM reserved in the GENI rack at the Wisconsin InstaGENI
site and finally 1 server with HPC capabilities reserved at the
CloudLab Wisconsin site.

Both VMs have 1 core CPU, 1 GB RAM and emulate drone
ground control stations with limited computation capabilities
that accept video streams from drones and decide on their
computational offloading strategy. Our server at Missouri
Instageni has 12 cores Intel Xeon CPU and 16 GB RAM and
acts as an Edge server without HPC capabilities for the ground
control station at the Missouri site. Our server at CloudLab
Wisconsin has 2 X 20 cores Intel Xeon Silver CPUs, 192
GB of EEC RAM and 12 GB NVidia Tesla P100 GPU and
acts both as a Cloud server for the ground control station
at the Missouri site and as an Edge server with HPC for
the ground control station at the Wisconsin site. Finally, both
servers feature Docker containers and allow us to execute a
particular video analytics function without running an entire
video analytics pipeline described in Section III.
Comparison Methods and Metrics. We compare perfor-
mance of our moving object classifier using 3 types of
computational offloading strategies such as: common cloud
computing (Cloud HPC), novel edge computing with and
without HPC capabilities (Edge/Edge HPC) and our function-
centric computing (FCC) [1]. As our application is imple-
mented using Docker containers, we can execute both the
application functions at one place i.e., use either edge or cloud



_o|GPU: I12GB Nvidia Tesla P100

(CPU: 2x20 cores Intel Xeon Silver
u a [RAM: EEC 192GB S

CPU: I core
____________________ Edge/Cloud fass: 165
""" HPC - GPU: No M
GCSH2 Y N4
IA . >
NE Wisconsin
| InstaGENI
- - CPU: I core “_ "\‘ ‘
Missouri RaM: 1GB -
Py ICPU_: 12 cores Intel Xeon \
InstaGENI (GLU: No RAM: 16GB W
e o|GPU: No

INTERNET.

Fi g. 5: The geo-distributed edge/core cloud testbed for drones ground control
stations (GCSs) provisioned in GENI and CloudLab platforms that spans
Missouri InstaGENI, Wisconsin InstaGENI and CloudLab Wisconsin sites.

Exploring Networks
of the Future

server, or each function at different servers i.e., use both edge
and cloud servers. Our ground control station first decides on
the offloading strategy and then sends RESTful API calls to
corresponding server location(s). We remark that - to test the
scenario of checking whether the Edge server is capable of
HPC, we move our ground control station to the Wisconsin
site that is geographically close to our cloud server.

We measure the performance of each of these computa-
tional offloading strategies by using a ‘processed Frames-Per-
Second’ (FPS) metric (the higher the better). Moreover, we
use the ‘round-trip-time’ (RTT) metric (the lower the better) to
access the ability of the chosen offloading strategy to perform
real-time control of the drone e.g., to follow road traffic as
well as its cost as described below. Finally, to assess the
frame processing cost (the lower the better) of each offloading
strategy such as edge computing, cloud computing and FCC,
we use AWS Lambda pricing model [16] that accounts for
product of processing data size and the time of its processing,
as shown in Equations 1, 2 and 3, respectively.

w; - 6.25125-1076 1

Codge = . o 1
e 128 - 1024 (Fps; ~ "tedge) (1)
w; - 16.67-1076 1
oud = 000 1004 \ps, " letowat) @)
w;-6.25125-1076 1
c cc — = . _ tte .
! 198 1000 Jpgy  tledse)t N
wi 1667100 1 .
. oty — et
10241020 fps; [ tedge ~ Tcloud

where w; is a size of frame ¢ in KB, fps; is a frame rate at
which frame ¢ was processed and 7ttc44c/cloud 1S the RTT
between the ground control station and the corresponding
edge/cloud server.

Remark. We refer to an offloading strategy to be Pareto-
optimal if there is no other alternative offloading strategy that
makes any one factor (e.g., cost or performance) better off
without making at least one factor worse off.

(i) Edge/Cloud HPC are Pareto-optimal choice w.r.t. cost
and performance factors if no real-time control is needed.
While observing Figure 6b, we can notice how Cloud com-
puting cannot be used in situations when we use drone video
analytics for its real-time control due a high RTT (> 20ms).
However, when we are not concerned about the drone real-
time control, we can see from Figure 7b how both Cloud
and Edge HPC are choice #1 w.r.t. cost and performance
factors. This is due to the fact that Edge HPC provides slightly
higher performance than Cloud computing due to an order of
magnitude lower RTT, but computing at the Edge costs more
(see Equations 1 and 2). Thus, both Cloud and Edge HPC
are Pareto-optimal choice w.r.t. cost and performance factors.
(ii) Function-centric computing is superior than Edge
computing in terms of both performance and cost factors
if no Edge HPC is locally available. We can observe that
- when HPC is not available at the FEdge and real-time
drone control is needed?, function-centric computing (FCC)
becomes the #1 choice when allowed by the video analytics
application. Figure 7b shows how by interfacing Fdge with
Cloud computing, FCC' can ~4x speed-up the former that
has limited resources. As a result, FCC' is also ~3x cheaper
than Edge computing despite the fact that it uses both Edge
and Cloud resources (see Equation 3). O This can be also seen
from Figures 6a and 6c.

(iii) Our policy-based function-centric computational of-
floading scheme Pareto-optimally trade-offs performance
vs. cost factors of the real-time drone video analytics.
While observing our policy-based offloading scheme perfor-
mance (see Section IV), we can make several conclusions.
First, if we are not concerned about processing costs, our
scheme first selects Fdge HPC strategy (when available), then
Cloud or FCC' (based on real-time control requirements).
On the contrary, when we are concerned about processing
costs, our scheme first selects Cloud computing strategy (if
it is feasible), then Edge or FCC (based on Edge HPC
availability). Finally, when no real-time control is needed,
our scheme always selects either the Cloud or Edge HPC
strategy based on users’ cost/performance preferences — note
that both are Pareto-optimal w.r.t. these factors. Further, we
can observe how our offloading scheme choices are in line
with our experimental results shown in Figures 7a, 7b and 7c.

VI. CONCLUSION

In this paper, we present a novel policy-based computational
offloading scheme to address the challenges in processing
video streaming data collected on drones. Our scheme features
the choice of Edge, Cloud and Function-Centric Computing
architectures. Using a realistic geo-distributed edge/core cloud
testbed, we show how our proposed scheme enables users
to decide which architecture is superior to Pareto-optimally
trade-off performance vs. cost factors in real-time drone video
analytics tasks.

3Note that the real-time drone control usually depends on fast pre-
processing steps such as motion detection (see Section III), and hence can
be still processed at the Edge at ~ 100 — 1000 FPS even without HPC.



Ir e ! = ~Cloud HpPC T ) AR
—Edge/FCC ||/ . )
08 0-8|—--Edge HpC ||/ , 08,
| i ! Lt
« 06 « 06 ! ! S 06f,
3] o I' 1 o I ’.
0.4r ~ ~Cloud HPC 041 i i 0.4r : i - -g(lioud HPC
—Edge i 1 P —Edge
02/ e e ]:Cgc 02+ H 1 021 I (N FCC
—--Edge HPC i : 0 LA ‘ ‘ _ |---Edge HPC
0 : : 0 Auuu . |
0 1 ) 0 1 5 20 0 003 006 009 012 015 0.18
rtt [ms] cost per frame [xlO’6 $]
(b) (©

Fig. 6: Cloud High-Performance Computing (HPC), Edge Computing, Function-Centric Computing (FCC) and Edge HPC Cumulative Distribution Function
(CDF) results of (a) Frames-Per-Second (FPS), (b) packet Round-Trip-Time (RTT) and (c) processing cost per frame (based on Amazon Lambda Pricing [16]).

1 1 \
20|/ O Cloud HPC|! o = 01 0' O Cloud HPC : Iz 01 o O Cloud HPC
Edge [ © h Edge ! e . Edge
10H A Fce B , 2008 i FCC ' 1 20088 v FCC
= s O Edge HPC : ;R Dy O Edge HPC | & ® X T~ _choice #2_ ___| O Edge HPC |.
g 5t ; Lol zoosr g & 8 2006
= & 2w s s = &
= & S & Eooar O at Sl E0.041
S S S 5 \ A / o} A
S/ S/ S/ 2, ' [ ! =% N
1t N . ! 2002 Y o 2002t ‘O, :
¢ A P 5 - i o b el o--
0:3 : : : : : : ob-= = - 0
0 01 02 03 04 05 06 0 01 02 03 04 05 06 0.5 1 5 10 20
fps fps rtt [ms]
(a) (b) ©

Fig. 7: Cloud High-Performance Computing (HPC), Edge Computing, Function-Centric Computing (FCC) and Edge HPC comparison results of (a) average
Round-Trip-Time (RTT) and average Frames-Per-Second (FPS), (b) average processing cost per frame (based on Amazon Lambda Pricing [16]) and average

FPS, and (c) average cost and average RTT.

Our future work involves consideration of additional factors
e.g. energy consumption on the drone devices and network
bandwidth fluctuations to expand our offloading scheme inves-
tigations. Energy consumption is a critical factor determining
the flight time of drone devices, while network quality affects
the latency in transmitting data between drone and the edge,
and between the edge and the cloud. These factors need to be
combined with the cost and performance factors to evaluate

the overall trade-offs.

REFERENCES

[1] R. Gargees, B. Morago, R. Pelapur, D. Chemodanov et al., “Incident-
supporting visual cloud computing utilizing software-defined network-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 27, no. 1, pp. 182-197, 2017.

J. S. C. Mark Berman and L. Landweber, “Geni: A federated testbed
for innovative network experiments,” Computer Networks, 2014.
“Cloudlab,” https://www.cloudlab.us/, accessed: May, 2019.

N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned
aerial vehicles-based internet of things services: Comprehensive survey
and future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp- 899-922, Dec 2016.

B. Kim, H. Min, J. Heo, and J. Jinman, “Dynamic computation offload-
ing scheme for drone-based surveillance systems,” Sensors, vol. 18, p.
2982, 09 2018.

N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A
crowd surveillance use case,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 128-134, February 2017.

R. Valentino, W.-S. Jung, and Y.-B. Ko, “A design and simulation of the
opportunistic computation offloading with learning-based prediction for
unmanned aerial vehicle (uav) clustering networks,” Sensors, vol. 18, p.
3751, 11 2018.

[3]
[4]

[5]

[6]

[7]

[8] C. Grasso and G. Schembra, “A fleet of mec uavs to extend a 5g network
slice for video monitoring with low-latency constraints,” Journal of
Sensor and Actuator Networks, vol. 8, no. 1, 2019.

[9] H. Trinh, P. Calyam, D. Chemodanov et al., “Energy-aware mobile edge
computing and routing for low-latency visual data processing,” IEEE
Transactions on Multimedia, vol. 20, no. 10, pp. 2562-2577, Oct 2018.

[10] T. Y.-H. Chen et al., “Glimpse: Continuous, real-time object recognition
on mobile devices,” GetMobile: Mobile Comp. and Comm., vol. 20,
no. 1, pp. 26-29, Jul. 2016.

[11] X. Wang, A. Chowdhery, and M. Chiang, “Skyeyes: Adaptive video
streaming from uavs,” in Proceedings of the 3rd Workshop on Hot Topics
in Wireless, ser. HotWireless *16. New York, NY, USA: ACM, 2016, pp.
2—6. [Online]. Available: http://doi.acm.org/10.1145/2980115.2980119

[12] J. Wang et al., “Bandwidth-efficient live video analytics for drones via
edge computing,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), Oct 2018, pp. 159-173.

[13] X. Sun and N. Ansari, “Latency aware drone base station placement in
heterogeneous networks,” in IEEE GLOBECOM, Dec 2017, pp. 1-6.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE CVPR, 2016, pp.
779-788.

[15] K. K. Chintalapudi and L. Venkatraman, “On the design of mac protocols
for low-latency hard real-time discrete control applications over 802.15.
4 hardware,” in IEEE IPSN, 2008, pp. 356-367.

[16] “Aws lambda,” https://aws.amazon.com/lambda/, accessed: May, 2019.

[17] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29,
2016.

[18] D. Chemodanov, P. Calyam, S. Valluripally, H. Trinh, J. Patman,
and K. Palaniappan, “On qoe-oriented cloud service orchestration for
application providers,” IEEE Transactions on Services Computing, 2018.

[19] D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reli-
able composition approach for geo-distributed latency sensitive service
chains,” in /[EEE INFOCOM. IEEE, 2019.

[20] “Moving object classification application repository,”
https://github.com/Blowoffvalve/ImageProcessingWebServices,
accessed: May, 2019.



