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ABSTRACT
Polishing of additively manufactured products is a multi-stage process, and a different combination of polish-

ing pad and process parameters are employed at each stage. Pad change decisions and endpoint determination
currently rely on practitioners’ experience and subjective visual inspection of surface quality. An automated and
objective decision process is more desired for delivering consistency and reducing variability. Towards that objec-
tive, a model-guided decision making scheme is developed in this article for the polishing process of a Titanium
alloy workpiece. The model used is a series of Gaussian process models, each established for a polishing stage
at which surface data are gathered. The series of Gaussian process models appear capable of capturing surface
changes and variation over the polishing process, resulting in a decision protocol informed by the correlation char-
acteristics over the sample surface. It is found that low correlations reveal the existence of extreme roughness that
may be deemed surface defects, an insight enabling timely actions for changing the pad or ending the polishing pro-
cess. Physical polishing of Titanium alloy samples and a simulation of this process are used together to demonstrate
the merit of the proposed method.

KEY WORDS: Correlation parameters, endpoint, functional Gaussian process, pad change, polishing process.

1 Introduction
Polishing plays a critical role in making additive manufacturing (AM) products practically useful. By the nature of AM,

the surface of its products, without post processing, are too rough to meet designed tolerances. For many metal AM products,
surface polishing is inevitable [1]. Studies also show that polished surface finish significantly enhances the fatigue life of
AM products [2].

In practice, polishing is carried out over multiple stages for creating a desired surface finish [3,4]. Pads of progressively
decreasing grit sizes (oftentimes with increasing pad stiffness) are employed over these stages. Within each polishing stage,
the asperities of particular sizes (scales) are removed as a result of repetitive relative motion between asperity and the
polishing pad with fixed or loose abrasive grains [5]. Two decisions regarding pad operations agonize practitioners in part



(a) Sa = 0.036µm (b) Sa = 0.034µm (c) Sa = 0.028µm

Fig. 1: Different surfaces but similar Sa values.

because they have to be tailored for each particular polishing process—(1) when to change the polishing pads and (2) when
to stop the entire polishing process.

A pad change is warranted for two reasons. The first reason stems from pad deterioration, as the action of polishing
understandably deteriorates the surface quality of a polishing pad. The second reason is to transition from the current grit to
a finer grit. The key trigger for the pad change in this latter case is the cessation of asperities of particular scales, uniformly,
over a workpiece surface. Consequently, no matter which reason it is, the use of a worn-out or ineffective polishing pad
could harm the product surface under polishing, rather than improve it, a phenomenon known as over-polishing. While prior
research has yielded approaches to automate the detection of pad damage (i.e., the first reason) [6, 7], a systematic approach
to decide the end of a polishing stage based on cessation of a set of asperities (i.e., the second reason) has not been addressed
in the literature.

The current practice for polishing process decision making relies heavily on practitioners’ visual inspection of the surface
roughness condition. That the polisher’s intuition of when the surface condition plateaus out and when the pad damage sets in
plays a critical role in deciding when to stop the polishing process. Consequently, significant process cycle time is consumed
by repeated stoppage and surface inspections (visual or through the use of instruments) [8,9]. Quantitative surface roughness
metrics do exist, and the most commonly used during polishing in industry is the average roughness parameter, denoted by
Ra for one dimensional profiles or Sa for two dimensional areas [10]. The average roughness parameter is calculated, using
surface measurements taken by a profilometer, as the mean absolute deviation about the center line within the evaluation
length or area. Recent advances in optical imaging and microscopy allow fast estimation of Sa over vast areas of an AM
product [11]. Even so, in our research, we discover that while the surface roughness measure could be useful as an average
indicator of the rough level of a surface, it does not adequately capture other subtleties of surface textures and may mislead
the decision process.

Let us consider two simple examples in Figure 1, in which the order of the Sa values contradicts the intuitive roughness
of the respective surfaces. The three surfaces in Figure 1 have their roughness values, respectively, as Sa = 0.036µm,
Sa = 0.034µm, and Sa = 0.028µm. The surface in Figure 1(a) is noticeably smoother than those in Figures 1(b) and 1(c).
Yet, the three Sa values are close to each other. Worse, the Sa value associated with Figure 1(c) is even smaller than that
associated with Figure 1(a). Apparently, using Sa to select the best surface could be counterproductive. We will present in
the later section more examples to show the limitation of the current surface roughness measure.

In our research, we therefore explore and investigate the strategies and options of a model-guided decision process for
the polishing of metal AM products. It does not come as a surprise that Gaussian process (GP) turns out to be a useful
modeling tool for this purpose. GP modeling is widely used in spatial statistics [12] and later extended for broader purposes
of machine learning [13]. If we treat the measurements taken by a profilometer at multiple locations on a product surface
as if they were spatial measurements taken over a landscape, then the relevance of GP becomes self evident. We discover
that the correlation parameters associated with polishing stages can reveal the subtle features of the surface as well as their
changes during the polishing process. Making judicious use of this insight leads us to devising a GP model-guided decision
protocol for advising important actions in the polishing process.

We understand that GP models have been used in the AM applications but want to stress that their current and previous
uses are for different purposes. Moroni et al. employ a GP model to estimate the deviation of real rough surface from
the computer-modeling nominal smooth surface, to give the designer a more accurate preview of the additive manufactured
parts [14]. Tapia et al. develop a GP regression model to predict the part pore generation during a selective laser melting
process and to express the porosity with respect to certain processing parameters, such as laser power, scanning speed and
layer thickness [15]. Tapia et al. build a generic workflow process based on GP regression to understand the uncertainty in
the laser powder-bed fusion process [16]. To our best knowledge, we are the very first to develop a GP model to guide the
decision making in a polishing process of metal AM products.
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Fig. 2: Illustration of surface roughness of the Ti-6Al-4V sample along the polishing process.
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Fig. 3: An illustration of M inspection locations and the magnified view within an inspection location.

The rest of the paper unfolds as follows. Section 2 describes the data collection process and provides a Sa-based
preliminary analysis of the surface roughness. Section 3 presents the GP model devised to reflect the dissimilarity among
local areas of the surface, in order to capture subtle surface features and their changes over time. The GP model-guided
decision rule is proposed for informing pad change and the endpoint. Section 4 analyzes the data from two physical polishing
experiments, while Section 5 analyzes the data from a simulated polishing process; together these case studies demonstrate
the merit of the proposed method. Section 6 summarizes our work with some concluding remarks.

2 Polishing Experiment Data and Preliminary Analysis
In this research, we focus on the polishing process of a metal AM product, and specifically, the 3D-printed Ti-6Al-4V

alloy samples. The printing process to obtain these samples involves raking a 50µm layer of Ti-6Al-4V powder that is made
of Ti-6Al-4V particles of average �72µm for the radius, using a focused beam of 3mA, scanning at a speed of 10m/s [17].
Each of the Ti-6Al-4V alloy samples is polished from a raw stage (Figure 2(a)) to a smooth stage (Figure 2(e)) with a specular
surface finish. Figure 2(b) through Figure 2(d) show the surfaces at intermediate stages during the polishing process.

During the polishing process, we pause the polishing action from time to time and take surface measurements using a
ZeGageTM 3D optical profiler, named “Zygo” after its producer. The polishing process is therefore discretized at the pausing
times, each of which is referred to as a “stage” and denoted by t ∈ {1, · · · ,T}, where T is the total number of stages.

At each stage, a total of M inspection locations are randomly sampled over the surface of the Ti-6Al-4V alloy sample.
Zygo is used to take measurements at each of the M locations. The Zygo measurements are not a single scalar output but a
profile image covering a small local area of 800×800µm2. The 800×800µm2 area is divided into 1024×1024 pixels and
Zygo measures the surface height at each pixel. One can conceptualize the surface measurements as a collection of M height
matrices, each of which is of 1024×1024 dimensions. Please see an illustration in Figure 3.

We use x = (x1,x2) to denote the coordinate of a location and use X ,Y to denote the index of pixels within a location,
such that X ∈ {1, · · · ,1024} and Y ∈ {1, · · · ,1024}. The pixel height is denoted by z. In Zygo measurements, z can be either
positive or negative. We refer to a positive height as a peak and a negative height as a valley.

Within each location, the local surface roughness is characterized by the three-dimensional data set, {(X ,Y,z)}. But
handling a 3D dataset can be burdensome. Following what is proposed by Stewart [18], we choose to convert the 3D
response surface to a 2D profile, known as the bearing area curve. The bearing area curve is basically a quantile curve, i.e.,
ordering the z values associated with the pixels from the largest to the smallest and plot them against the quantile values.
Figure 4(a) presents an example of the quantile curves at one of the polishing stages. For the M locations on the sample at
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(b) Quantile curves of all M locations on the sample
surface

Fig. 4: Illustration of quantile curves.

stage t, the surface measurements manifest as the collection of M quantile curves, as shown in Figure 4(b).
Based on the surface measurements at each location, Sa can be calculated for that location, as follows:

Sa =
1

1024×1024

1024

∑
X=1

1024

∑
Y=1
|zX ,Y − z̄|, (1)

where z̄ is the sample average of all z’s associated with the same location. Over the whole surface, there are M distinct
Sa values. Understandably, the Sa values are different at different locations. The variation and distribution of Sa’s can be
visualized by using a boxplot per stage.

In one of the Ti-6Al-4V alloy samples, we take surface measurements at a total of 22 stages, i.e., T = 22. At each stage,
the number of locations is M = 32. We plot the boxplots of Sa’s over the 22 stages, as in Figure 5(a), where the horizontal bar
in a box indicates the median of Sa’s for that stage. It is not difficult to notice that the median of Sa’s sees a sharp decline in
the very early stages but soon plateaus. Figure 5(b) and (c) present the Sa boxplots for a range of stages so that the boxplots
are not too much compressed due to too large a value at some other stages.

The use of median Sa certainly does not inform when to change the polishing pads. It is difficult to signal when to stop,
too. If one stops after the initial rapid descent, say, at stage 3 or 4, doing that would be surely premature. If not, when else is
a good time to stop? After the initial descent, the fluctuation in Sa certainly frustrates practitioners.

In addition to the lack of clear clues informing decisions in the polishing process, we also observe that the median Sa
value at Stage 10 is smaller than that at Stage 11. Let Sat denote the median of Sa’s at stage t. Then Sa10 = 0.069µm and
Sa11 = 0.123µm. On surface, this may leave an impression that the surface quality gets worse from Stage 10 to Stage 11,
meaning that the polishing action in between is harmful rather than helpful. But a closer look indicates that the opposite is
true. At Stage 10, although the overall surface is reasonably flat (Figure 6(a)), there exist multiple, isolated surface anomalies
like spikes or scratches (Figure 6(b)). The polishing process from Stage 10 to Stage 11 in fact removes many of these surface
anomalies and indeed improves the surface quality. Such subtle surface features are not captured by the median Sa values.
The limitation of the current decision metrics calls for new modeling and decision rule development.

3 Gaussian Process Model for Polishing Decisions
The inconsistent human’s intuition and unsatisfactory Sa representation prompt the need of developing a model-guided

polishing decision making process. Our goal is to find out a simple quantitative measure that can reflect the surface subtleties,
versus Sa that represents the average roughness. Based on these two measures, the polishing operation decision rule is
developed, to accommodate the need required by the online measurement and operation of polishing processes.

3.1 Modeling of the Surface Roughness Data
We model the responses at each stage individually and then use the estimated model parameters to draw inference about

the status of the polishing process.
For a given stage t, the surface roughness data is expressed in a collection of M quantile curves, each associated with

one inspection location. Denote by s the horizontal axis of the quantile curve plots in Figure 4. Recall that the vertical
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Fig. 5: Overview of the Sa boxplots during the polishing process.

axis is denoted by z. Counting the location coordinates, (x1,x2), there are three inputs, which we use w to denote, namely
w = (s,x1,x2)

T .
We devise the following GP model for stage t:

zt(w) = β
t
0 + τ

t(w)+ ε
t , t = 1, · · · ,T, (2)

where the superscript “t” signifies the stage dependence. In the above model, we simplify the general mean trend function by
a constant β0. This is a common treatment in GP modeling [13], because a GP model is nonparametric in nature and rather
flexible to model a wide variety of nonlinear response surfaces, so that a nonlinear mean function may not be necessary. The
second term, τt(w), is the stochastic term of a multivariate Gaussian distribution, N (0,K), where the covariance matrix K is
to be modeled through a covariance structure as discussed in the sequel. The stochastic term, τt(w), is to capture systematic
features over the polished surface at both scales: the micro scale within a location associated with s and the macro scale
between locations associated with (x1,x2). Rasmussen et al. [13] analyze how the smoothness of the sample path curve is
affected by the correlation parameters. In our GP model, the smoothness of the response at a single location is represented
by the micro-scale correlation parameter, while the similarity among the response curves is characterized by the macro-scale
parameters. The more dissimilar among the adjacent locations over the surface, the more evident that further polishing is
needed for the surface. The last term, εt , is the independent and identically distributed (i.e., i.i.d.) random noise, of a zero
mean and a stage-dependent variance, (σt

ε)
2. Often the superscript t is dropped, e.g., the variance is expressed as σ2

ε , when
there is no danger of ambiguity.

The original surface roughness data at any given stage is a set of functional responses. A number of past research
efforts choose to model and solve such a problem via a functional GP model [19–21]. Our treatment is a little different. By
discretizing the variable s, the GP model in (2) can be solved in a regular GP modeling fashion. This simplifies the modeling
and solution procedure and we believe doing so facilitates the use of the model in engineering applications. To guide the
choice in discretization, a sensitivity analysis is conducted in Section 4.1, Figure 7, for selecting the proper sample size.

A key issue in GP modeling is to specify the covariance function for the stochastic term, τt(w). We use a squared-
exponential covariance function, arguably the most commonly used one in GP modeling [13], as following:
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Fig. 6: Median Sa misses anomalies in surface roughness.

k(w,w′) = σ
2
τ · exp

{
−1

2

(
‖x−x′‖2

θ2
x

+
|s− s′|2

θ2
s

)}
. (3)

Here we assume that the Gaussian random field over the polishing surface is isotropic, so that there is one common
scale parameter, θx, used for both x1 and x2 directions. The scale parameter for the quantile curve is different, which is
denoted by θs. We believe that the assumption of isotropy over the polishing surface is reasonable, because the AM part is
subject to quasi-random orbital motion as the polishing process progresses and there is no evidence to suggest that the surface
roughness along one direction differs substantially from that along another direction. In (3), all terms are stage dependent,
but for notational simplicity, the stage superscript t is not shown explicitly.

Once the covariance function, k, is specified, it can be used to compute the covariance matrix. Along the s axis of
a quantile curve, there are 1,048,576 pixels. To make the computation easier, we sample a subset of S pixels with their
quantitle values and respective roughness heights. In the experiments, this S is usually kept less than 100, which is numerous
enough to represent a quantile curve. The total number of data points used for this GP model, N, is then N = M× S. The
covariance matrix for the N data pairs, (wi,zi), i = 1, . . . ,N, is denoted by KNN , whose (i, j)-th element, (KNN)i, j, is simply
k(wi,w j).

Under such a model set up, the parameters to be estimated for the GP model at stage t are Θt =
{

βt
0,σ

t
ε,θ

t
x,θ

t
s,σ

t
τ

}
.

These parameters can be estimated for a specific stage by maximizing the log-likelihood function in (4):

log p(z|Θ) =−1
2
(z−β0)

T [σ2
ε · I+KNN ]

−1(z−β0)−
1
2

log
∣∣σ2

ε · I+KNN
∣∣− N

2
log(2π), (4)



where the stage subscript t is omitted for notational simplicity.

3.2 The GP-Based Decision Rule
The scale parameters of the GP model in (2) reflect the strength or weakness of spatial correlation. Understandably, θx

reveals the correlation among different locations, whereas θs is corresponding to the smoothness of the quantitle curve. As
we are more concerned with the polishing quality over the whole sample surface, θx is of a greater value to our decision
making process. The scale parameter, θs, may be used as a secondary indicator for the purpose of model representation
verification. In our physical experiments, we found that for the time being, using θx without consulting θs appears to be
sufficient.

In the initial stages, the workpiece consists of undulations and defects. Existence of these aberrations increases the
spatial heterogeneity across the sample, resulting in a smaller θx (i.e., low spatial correlation). As the polishing progresses the
sample surface gradually becomes smoother, thereby increasing the spatial correlations as well as the value of θx. However,
due to the presence of noise, a number of complexities must be accounted for in the decision process and they are elaborated
in the following.

Firstly, the overall roughness of the surface is decreasing, resulting in a stage-varying reference level for quantifying θx.
This means that what value of θx is considered large and what is small is not absolute but relative. Secondly, θx does not
increase monotonically. Rather, it could decrease at some stage. Recall the over-polishing phenomenon discussed earlier.
At certain point, due to the deterioration or ineffectiveness of the polishing pad, a continuing polishing could introduce pits
and scratches (shown as spikes in Figure 6) to an otherwise smooth surface. Over-polishing explains to certain extent the
fluctuation in Sa as well as in θx. Our analysis shows that θx is more sensitive and hence a better indicator.

With these thoughts in mind, when devising a decision rule, it is a robust practice if we track and check the trend in the
change of θx, rather than compare it with an absolute threshold. Moreover, recall that the pad change is usually warranted for
two causes. To distinguish the cause of pad deterioration from the need of grit size transition, we include an average indicator
of the surface quality that pads of a specific grit size can achieve. We do not intend to introduce unnecessary measurement
actions. However, practically, the median Sa value as a loose threshold for distinguishing the causes is sensible. In the end,
the scale parameter, θx, and the median Sa are used together to advise decision making in the polishing process, i.e., the
surface of high θx but above the loose threshold is considered for the need of refreshing a pad of the same grit size. Both
quantities, the median Sa and θx, are available from the surface measurements taken at each stage.

The last consideration is the introduction of an initial phase in which we do not invoke the use of the GP model pa-
rameters. We discover that until the initial, rough morphology of the asperities is polished off, there is not much a trend in
θx and using it does not add much value to the decision making process. Clearly, no experienced engineer would stop in
the early polishing stages anyway. Therefore, our use of the GP model skips the initial phase, which is determined based
on a prescribed median Sa threshold. The following Algorithm 1 presents the decision making process for pad change and
polishing endpoint, as advised by the GP model.

In Algorithm 1, α is a constant, introduced to signal a change in θx. Because θx is estimated from noisy data, it is
naturally subject to variation. Using a constant thresholding, e.g., α = 0.9 or 0.95, is a simple but effective way to avoid
being overly sensitive to changes in the parameters. Too large a value of α (close to 1) may result in frequent pad changes,
while too small a value may miss detecting timely the formation of additional scratches and defects. We recommend using
α = 0.9 and setting that as the default value. We tested the use of α = 0.95 and found it will not make much difference in
our application. We want to note that using the 90% to 95% of the peak value, rather than the peak value itself, is a rather
common engineering practice to combat the adversary impact of noise and disturbance. As for the median Sa threshold, we
recommend it to be around 0.5µm for the best result of a 800-grit pad (of abrasive size 13µm), around 0.2µm for a 1200-grit
one (of abrasive size 8µm) and around 0.05µm for a fine polishing microcloth (with the use of alumina of abrasive size 0.6µm
suspended in an aqueous solution).

Algorithm 1 GP model-guided decision rule for pad change and endpoint

1. Initialize t−1← 0 and θ
(t−1)
x ← 0.

2. If θ
(t)
x < α ·θ(t−1)

x , go to Step 3; otherwise, go to Step 4.
3. If Sa is greater than the pre-specified Sa threshold, clean the current pad or use a new pad but of the same grit size;

otherwise, change to a pad of finer grit size.
4. Set t−1← t and θ

(t−1)
x ← θ

(t)
x and keep polishing to the next stage, Stage t. Repeat Step 2 and 3, until no finer pad is

available when being suggested for a pad change in Step 3.
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Fig. 7: Sensitivity in the number of pixels used to sample the quantile curve.

4 Physical Polishing Experiments
To illustrate the use of Algorithm 1 in polishing processes, we conduct a Ti-6Al-4V sample polishing experiment,

polishing it from a raw stage to a smooth stage. The polishing stages are shown in Figure 10 in Appendix A. A second
polishing experiment using another raw Ti-6Al-4V sample is conducted based on polisher’s experiences only, to contrast the
effectiveness with and without the guidelines of Algorithm 1. Besides, the data preprocessing procedures are imposed at
each polishing stage to accommodate the accuracy and computational requirement for modeling.

4.1 Data Preprocessing
One data preprocessing action undertaken is to remove outliers that may be due to measurement errors and anomalies.

The specific action is to rank in a boxplot the pixel heights, i.e., the z values, for a specific location and at a specific stage.
Then, remove outliers flagged as the observations outside the two whiskers of the boxplot. The use of a boxplot is rooted in
solid statistical footing and avoids using a fixed percentage for outlier removal. Our experience shows that doing so produces
results more consistent and robust.

Recall that we sample a subset of pixels along the s axis to represent the quantile curves. To ensure the sample represen-
tation of the curve variation, pixels are selected more densely in the tails of the curves than in the middle part of the curves.
Our choice of the sample size is S = 70. To investigate whether a larger subset is needed, we conduct a sensitivity analysis
using S from 70 to 120. Figure 7 presents the curve fitting using different number of pixel samples. We do not see much
additional benefit resulting from sampling a greater number of pixels.

4.2 Polishing Guided by Algorithm 1
In the first experiment reported here, we follow the general guideline for pad change and stopping as outlined in Algo-

rithm 1. The experiment comprises a total of 26 stages, where stage 0 indicates measurements taken before any polishing
action. We have at our disposal three grit sizes of polishing pad, which are, from coarsest to finest, the 800-grit, 1200-grit,
and microcloth. The polishing process setting is shown in Table 1. The images of the AM part for all the 25 stages (excluding
Stage 0) are included in Appendix A.

We conduct the modeling and parameter estimation at each stage. The resulting GP model parameters are listed in
Table 2. In the last column of the table, we also include the median Sa values.

Among the GP model parameters, β0 indicates the offset of the reference plane from zero. For most of the stages, its
values are close to zero. This means that the Zygo machine has a good self calibration mechanism to locate the reference
plane. The standard deviation of the noise, σε, declines rapidly and then plateaus at a small magnitude from Stage 5 and



Table 1: The physical polishing process settings for Experiment #1

From To Time (mins) Down force (lbs) Head speed (rpm) Base speed (rpm) Pad Alumina solution

Stage 0 Stage 1 5 10 100 50 800 no

Stage 1 Stage 2 5 10 100 50 800 no

Stage 2 Stage 3 10 10 100 50 800 no

Stage 3 Stage 4 10 10 100 50 800 no

Stage 4 Stage 5 10 10 100 50 800 no

Stage 5 Stage 6 15 10 100 50 800 no

Stage 6 Stage 7 15 10 100 50 800 no

Stage 7 Stage 8 15 10 100 50 800 no

Stage 8 Stage 9 15 10 100 50 800 no

Stage 9 Stage 10 15 10 100 50 800 no

Stage 10 Stage 11 15 10 100 50 800 no

Stage 11 Stage 12 15 10 100 50 1200 no

Stage 12 Stage 13 30 10 100 50 1200 no

Stage 13 Stage 14 30 10 100 50 1200 no

Stage 14 Stage 15 30 10 100 50 1200 no

Stage 15 Stage 16 30 10 100 50 1200 no

Stage 16 Stage 17 30 10 100 50 1200 no

Stage 17 Stage 18 70 10 100 50 1200 no

Stage 18 Stage 19 60 10 100 50 1200 no

Stage 19 Stage 20 60 10 100 50 1200 no

Stage 20 Stage 21 120 10 100 50 1200 no

Stage 21 Stage 22 150 5 100 50 1200 no

Stage 22 Stage 23 120 5 100 50 microcloth yes

Stage 23 Stage 24 60 2 100 50 microcloth yes

Stage 24 Stage 25 60 1 100 50 microcloth yes

onward. The standard deviation of the stochastic term, στ, trend-wise mirrors that of Sa. This makes sense, because Sa is the
mean absolute deviation (MAE) of the surface, whereas στ is the standard deviation associated with the variability between
locations. The MAE and standard deviation are not of the same values but they are related. The two scale parameters, θx and
θs, are associated with between-location (macro scale) and within-location (micro scale) correlations. As discussed earlier,
we primarily rely on θx for decision making.

Our polishing process goes through the following phases, as advised by Algorithm 1:

1. The initial phase. Up to Stage 4, it is the initial phase. Stage 4 is included in the initial phase because before completing
that stage, one will not know for sure that Sa is below the threshold of 0.5µm. Looking at Table 2, this breaking point
makes sense if examining the values of σε, because after Stage 5, σε plateaus at a much smaller magnitude. During this
phase, there is no pad change nor expectation to stop the process occurring.

2. The first pad change. Following the decision rule in Algorithm 1, from Stage 5 onwards, we track the change in θx and
are keen to detect the first substantial decrease in it, which indicates likely occurrence of over-polishing. The specific
rule used is θ

(t)
x < α ·θ(t−1)

x , where α = 0.9. The stage where the rule is triggered is Stage 11, at which point we switch
to the 1200-grit pad.

3. The second pad change. After the first pad change and following the same logic, we should have changed the pad again
at Stage 18 when a more than 10% decrease in θx is detected. Here, we purposely delay the pad change. We would
like to observe what if we do not change the pad—Will the current pad continue to improve the surface or not? The
1200-grit pad is used from Stage 18 through Stage 21. By observing Sa and inspecting the sample surfaces, we do not
find much improvement by the extra steps of polishing using the same pad. The four extra steps take a total of 390 min.
Should the original decision rule be followed, this much time would have been saved.

4. The end point. At Stage 22, the polishing is switched to using a microcloth. With that, a change point is detected at
Stage 25. Since microcloth is the finest material to polish the sample surface, this last change point also naturally signals
the endpoint of the polishing process. We therefore stop the process there.

What if we did not use the GP model parameter for decision making but rather used Sa and relied on experience?
Because the polishing process is a destructive process, it is impossible to repeat the same process on the same sample once



Table 2: GP parameter estimates for Experiment #1

Stage σε θx θs στ β0 Sa

Stage 0 0.2898 0.1141 0.0721 18.4327 -0.1886 25.924

Stage 1 0.0322 0.1316 0.0815 6.9842 -2.5420 11.405

Stage 2 0.0189 0.1215 0.0715 6.1934 -2.1364 6.510

Stage 3 0.0035 0.1026 0.0415 0.9928 -0.1037 1.398

Stage 4 0.0020 0.0820 0.0589 0.5251 -0.1310 0.304

Stage 5 9.09E-5 0.0666 0.0692 0.4426 0.0031 0.118

Stage 6 6.54E-5 0.0944 0.2972 1.4925 -0.2676 0.153

Stage 7 5.28E-5 0.2051 0.1814 0.1790 -0.0220 0.135

Stage 8 5.64E-5 0.2387 0.2266 0.4340 0.0790 0.144

Stage 9 6.46E-5 0.2189 0.1900 0.3116 0.0376 0.163

Stage 10 5.65E-5 0.2170 0.2126 0.3076 0.0392 0.141

Stage 11 7.59E-5 0.1720 0.1888 0.2899 0.0795 0.174

Stage 12 7.13E-5 0.1652 0.1351 0.1454 0.0125 0.180

Stage 13 4.10E-5 0.1738 0.2207 0.1847 -0.0449 0.094

Stage 14 6.22E-5 0.1754 0.1726 0.1496 -0.0063 0.169

Stage 15 5.69E-5 0.2197 0.2106 0.1746 -0.0437 0.171

Stage 16 5.66E-5 0.2350 0.2049 0.1741 -0.0380 0.165

Stage 17 5.21E-5 0.2317 0.2005 0.1545 -0.0376 0.137

Stage 18 7.42E-5 0.1970 0.1555 0.1362 -0.0003 0.207

Stage 19 5.07E-5 0.1825 0.2152 0.1898 -0.0618 0.128

Stage 20 4.81E-5 0.2052 0.2296 0.2707 -0.1172 0.120

Stage 21 4.91E-5 0.2297 0.1945 0.2125 -0.1216 0.116

Stage 22 5.20E-5 0.2000 0.1961 0.1705 -0.0307 0.140

Stage 23 2.87E-5 0.1369 0.1367 0.0591 -0.0006 0.061

Stage 24 2.83E-5 0.1694 0.0982 0.0386 0.0015 0.053

Stage 25 3.16E-5 0.0050 0.1150 0.0560 0.0006 0.054

it has already been polished. In the next subsection, our team conducts another experiment largely based on experience. We
can garner additional insight from this control-group experiment. Here, we can nevertheless take a retrospective look at the
sequence of Sa values in Table 2 and see if it offers strong enough clues for pad change and the endpoint.

The value of Sa sees rapid declines in the initial few steps, but it is a bit difficult to decide when exactly to change to a
finer grit pad. Too early a change could be detrimental; we will see such a misstep in the next experiment. After Stage 5, Sa
fluctuates for a long stretch without a clear pattern to trigger pad change or the endpoint. Recall the switch to microcloth at
Stage 22 is triggered by using the GP scale parameter, not by a pattern observed in Sa.

4.3 Polishing Based on Experience
To contrast the polishing effectiveness with and without guidelines in Algorithm 1, we conduct a control-group exper-

iment, referred to as Experiment #2 here, which is largely based on experience. As in Experiment #1, the same three grit
sizes of pad are available to the team. The polishing process setting of Experiment #2 is shown in Table 3. Experiment #2
comprises a total of 23 stages.

Although the control-group team does not use the GP parameters for their decision making, they nonetheless save all
the data, which is later used to fit the GP model retrospectively for comparison purposes. The parameters, together with Sa,
are presented in Table 4.

In Experiment #2, the control-group team switches the pad too soon, after observing the first significant decrease in Sa
at Stage 2. This is after about 10-min operation using the coarsest pad, and this change is consistent with the typical rule on
polishing time under this grit size.

But the use of 1200-grit pad at this point turns out to be a frustrating experience because it fails to remove certain surface
anomalies after more than 280 minutes of operation. As a result, Sa is stubbornly stuck at a high roughness level (above one
µm). The team changes back to the 800-grit pad, and that action produces a noticeable improvement.

The next pad change takes place at Stage 13, where the team changes the pad again to 1200-grit and uses it to polish the
sample for 160 minutes. After that, the pad is changed to microcloth, which is used for the rest of the operation. All these
changes are based on intuition rather than on quantitative measures because there is no clear pattern in Sa to advise these



Table 3: The physical polishing process settings for Experiment #2

From To Time (mins) Down force (lbs) Head speed (rpm) Base speed (rpm) Pad Alumina solution

Stage 0 Stage 1 3 10 100 50 800 no

Stage 1 Stage 2 4 10 100 50 800 no

Stage 2 Stage 3 3 10 100 50 800 no

Stage 3 Stage 4 4 10 100 50 1200 no

Stage 4 Stage 5 30 10 100 50 1200 no

Stage 5 Stage 6 40 10 100 50 1200 no

Stage 6 Stage 7 90 10 100 50 1200 no

Stage 7 Stage 8 120 10 100 50 1200 no

Stage 8 Stage 9 10 10 100 50 800 no

Stage 9 Stage 10 15 10 100 50 800 no

Stage 10 Stage 11 30 10 100 50 800 no

Stage 11 Stage 12 60 10 100 50 800 no

Stage 12 Stage 13 70 10 100 50 800 no

Stage 13 Stage 14 160 5 100 50 1200 no

Stage 14 Stage 15 60 5 130 70 microcloth yes

Stage 15 Stage 16 110 2 110 60 microcloth yes

Stage 16 Stage 17 120 1 120 60 microcloth yes

Stage 17 Stage 18 30 1 120 60 microcloth yes

Stage 18 Stage 19 30 1 120 60 microcloth yes

Stage 19 Stage 20 30 1 120 60 microcloth yes

Stage 20 Stage 21 30 1 120 60 microcloth yes

Stage 21 Stage 22 30 1 120 60 microcloth yes

(a) Stage 3 (b) Stage 8 (c) Stage 9

Fig. 8: Sample surface quality at Stage 3 to Stage 8 and Stage 9 in Experiment #2

actions.
Had the team used the scale parameter to advise pad change, the first change point would have been at Stage 9. In fact,

should the 800-grit pad have been applied without going back and forth between the 800-grit and 1200-grit pads, we believe
that it would not take nine stages to arrive at the change point. The second pad change point would have taken place at Stage
12, and the final process would have stopped at Stage 17, assuming that the scale parameter trend and pattern remain the
same. Approximately 300 minutes would be saved if the process had been guided by the decision rule in Algorithm 1.

We would like to articulate two observations supporting our claim of the merit of using the GP-based guideline and the
shortcoming of the experience-based decision process.

The first observation is made when visually comparing the surface quality at Stage 3, Stage 8 and Stage 9 in Figure 8.
It is not difficult to understand why the change to the 1200-grit pad is premature, because there are still noticeable raw
roughness left on the surface at Stage 3. The application of the 1200-grit pad helps but is not effective, as evident by the
same pattern of roughness still observable at Stage 8. After applying the 800-grit pad again, it is apparent that the surface at
Stage 9 is much smoother and the raw roughness has been removed to a much greater extent. Therefore, it is more reasonable
to switch to the 1200-grit pad after Stage 9.

The second observation is about the significant change in θx from Stages 16 and 17, while Sa is fluctuating rather than
showing a clear pattern. To us, that is a sign of over-polishing, signaling either a pad change or an endpoint of the process (if
the finest pad is being used already). From Stage 17 through 22, while the fluctuation message is confirmed by the plateau
in both θx and Sa, the scale parameter, θx, is apparently more sensitive and can flag the endpoint sooner.



Table 4: GP parameter estimates for Experiment #2

Stage σε θX θs στ β0 Sa

Stage 0 2.4835 0.1750 0.0767 46.7615 -1.7576 24.873

Stage 1 0.7358 0.1859 0.0786 16.4013 0.0475 4.422

Stage 2 1.3406 0.1919 0.0792 56.7901 -20.7301 5.452

Stage 3 1.0424 0.1753 0.0607 22.2674 -4.7154 1.582

Stage 4 0.4503 0.1908 0.0793 20.5310 -9.0351 1.403

Stage 5 0.4583 0.2067 0.0760 15.6656 -6.7286 1.363

Stage 6 0.8649 0.2006 0.0617 10.8910 -1.3232 1.556

Stage 7 0.4107 0.2034 0.0675 8.8720 -2.2710 1.188

Stage 8 0.2472 0.1960 0.0524 5.6581 -1.4584 0.740

Stage 9 0.2488 0.1636 0.0330 2.5462 -0.6953 0.109

Stage 10 0.3032 0.6312 0.0253 3.5086 -0.7442 0.069

Stage 11 0.0569 13.0682 0.0085 0.3262 0.0040 0.123

Stage 12 0.0466 2.2709 0.0189 1.1242 -0.2537 0.130

Stage 13 0.0407 4.7289 0.0393 5.8157 0.3392 0.104

Stage 14 0.0536 3.8895 0.0048 0.1158 -0.0073 0.031

Stage 15 0.1097 1.16E05 0.0045 0.1153 -0.0070 0.023

Stage 16 0.0748 2.93E05 0.0050 0.1035 -0.0074 0.028

Stage 17 0.0453 4.0675 0.0069 0.0859 -0.0020 0.028

Stage 18 0.0359 5.4172 0.0060 0.0931 -0.0003 0.026

Stage 19 0.0236 7.8204 0.0084 0.1309 -0.0031 0.023

Stage 20 0.0851 1.9713 0.0039 0.1624 -0.0103 0.027

Stage 21 0.0377 4.3438 0.0041 0.1265 -0.0054 0.026

Stage 22 0.0203 8.6444 0.0075 0.1188 -0.0031 0.026

5 Simulation Experiment
Polishing is an abrasive operation. Once polished, the part cannot be restored to the original state to conduct a what-if

study, such as “What if we change the pad at an earlier stage? What benefit could it bring?”. To facilitate such studies, we
decide to build a simulation model to mimic the polishing process. The simulation model attempts to capture the essence of
the polishing operation, but considering all the complexities involved, in its current version it is not yet capable of precisely
replicating the physical outcome. It does produce a sequence of parameter patterns mimicking what we observe in the
physical experiments; for that, we deem it useful.

5.1 Simulation Procedures
The surface profile obtained from the actual unpolished surface is used as the initial sample surface to perform the

simulation. Let us call this z0(x,y). The simulation of the polishing operation consists of two elements: first, modeling the
abrasive profile associated with the polishing pad; and second, modeling the action of applying a polishing pad to the sample
surface.

5.1.1 Polishing Pad Abrasiveness Generation
To simulate the polishing pad, we first define the baseline denoted by µ(t) at Stage t (see Figure 9). Initially, this is set

to the average surface roughness of the workpiece. Next, spherical abrasives with a fixed radius R and normally distributed
height h (measured from the center) with mean µ(t) and standard deviation σ(t) are generated. The inter asperity distance,
a, is exponentially distributed with a scale parameter of 5R and is determined based on the distribution of abrasives on the
polishing pad as observed from the scanning electron micrographs.

In the (t +1)th polishing stage the baseline is lowered by one unit height, namely one µm. The new baseline is accord-
ingly updated to µ(t)− 1. This is not to say that the material removed in the polishing at every stage is always of one µm
height. But the actual baseline height change is difficult to estimate. The use of a constant here is a simplification. We tried
different values of constant and found that the final result is not sensitive to the choice, as long as the reduction in height is
large enough.



Fig. 9: Schematic showing the modeling of abrasive profile and the convolution of the sample surface profile (heights z) with
the abrasive profile (with heights h). The spherical asperities are assumed to be embedded on the pad surface. The material
removed during a particular cut is shaded red.

5.1.2 Polishing Process Simulation
The polishing process simulation is implemented with the following three steps:

1) The first step involves intersection of the polishing pad with the workpiece surface (shown in red in Figure 9). This is
the amount of material removed in one pass. After t polishing passes, let the workpiece surface be denoted by zt(x,y).

2) Next, we superimpose the pad roughness (zc(x,y)) to the workpiece surface (zt(x,y)) obtained in the previous step. This
is accomplished by taking the following three actions:

• Generate the height profiles according to an uncorrelated Gaussian distribution, i.e., zu(x,y) ∼ N (0,1), where x
and y are coordinates of the 2D surface, zu is the height of roughness and the subscript, u, indicates “uncorrelated”.

• To obtain the Gaussian distributed height profile with exponential autocovariance, we perform the convolution of
zu(x,y) with an exponentially varying auto-covariance function given as:

zc(x,y) = η

∫
∞

−∞

exp
(
−2
|x− x′|+ |y− y′|

l

)
zu(x′,y′)dx′dy′,

where l is the scale length and η controls the amplitude of the surface zc(x,y). To determine η, it is reasonable
to consider that the average surface roughness in the final stage of the polishing process is indicative of the pad
roughness and is estimated by equating zc(x,y) to the final stage surface roughness Sa as:

η = Sa

[∫
∞

−∞

exp
(
−2
|x− x′|+ |y− y′|

l

)
zu(x′,y′)dx′dy′

]−1

The use of the exponential auto-covariance function is because such choice is well suited for mimicking the real
pad roughness. As polishing ensues, the surface gets smoother and nearby locations are more and more similar to
each other, thereby increasing the autocorrelation. However, the surface still contains sub-micrometer aberrations.
In this regard, exponential autocovariance function is better suited to mimic the real pad roughness as compared to
other auto-covariance functions such as squared exponential that results in ultra-smooth profiles. To numerically
obtain the convolution, we use the convolution theorem that states that the Fourier transform F ) of the convolution
of two signals is the point-wise product of the Fourier transform of the two signals, i.e., f ∗g=F −1{F ( f ) ·F (g)},
where ∗ is the convolution operator, · is the point-wise product and F −1 is the inverse Fourier transform.

• Then we superimpose the pad roughness zc(x,y) to the surface zt(x,y) obtained after the first operation.

3) Finally, random white noise is added to account for un-modeled system noise and measurement noises.

In the following simulation experiment, polishing pads of dimension 1024 µm× 1024 µm with parameters specification
elaborated in the next section specifically.

5.2 Simulation Experiments
We use the simulation to study the timing and impact of a single pad change action, presumably from a 800-grit pad to

a 1200-grit pad.
In the first version of the simulation experiment, we guide the pad change purely by Sa. The rule is: change the pad

when Sa is at or below 0.1µm. Following this rule, the pad change takes place after Stage 7. Before and including Stage



Table 5: A simulation experiment guided by Sa

Stage σε θx θs στ β0 Sa

Stage 1 2.4560 9.6238 3.8E-2 4.7364 -0.5693 0.1705

Stage 2 2.4379 10.4220 3.5E-2 4.5112 -0.5333 0.1552

Stage 3 2.4329 5.00E+4 3.4E-5 4.1452 -0.5132 0.1411

Stage 4 2.4144 356.33 2.5E-3 4.0056 -0.4662 0.1291

Stage 5 2.3985 527.99 2.4E-3 3.8852 -0.4496 0.1180

Stage 6 2.3838 2.43E+4 3.0E-4 3.7736 -0.4526 0.1090

Stage 7 2.3700 1.20E+3 2.3E-3 3.6464 -0.4198 0.1007

Stage 8 2.3581 1.74E+3 2.2E-3 3.5274 -0.4047 0.0933

Stage 9 2.3512 2.52E+3 2.1E-3 3.4321 -0.3911 0.0689

Stage 10 2.3460 2.98E+3 2.1E-3 3.3723 -0.3844 0.0653

Stage 11 2.3411 3.53E+3 2.1E-3 3.3126 -0.3772 0.0623

Table 6: The simulation experiment guided by θx. Stages 3 and 4 data are taken from Table 5. Stages 1 and 2 are omitted.

Stage σε θx θs στ β0 Sa

Stage 3 2.4329 5.00E+4 3.4E-5 4.1452 -0.5132 0.1411

Stage 4 2.4144 356.33 2.5E-3 4.0056 -0.4662 0.1291

Stage 5 2.4029 527.24 2.5E-3 3.9086 -0.4505 0.1048

Stage 6 2.3878 919.14 2.4E-3 3.7890 -0.4346 0.0936

Stage 7 2.3732 1.19E+3 2.3E-3 3.6691 -0.4201 0.0855

Stage 8 2.3613 1.73E+3 2.2E-3 3.5491 -0.4055 0.0760

Stage 9 2.3502 2.52E+3 2.1E-3 3.4298 -0.3910 0.0691

Stage 10 2.3397 3.58E+3 2.1E-3 3.3107 -0.3771 0.0623

Stage 11 2.3299 4.86E+3 2.0E-3 3.1921 -0.3632 0.0567

7, the pad parameters R = 1 µm, σ(t) = 0.1 µm, and l (in µm) ∼ uniform(100,500). After Stage 7, the pad parameters are
changed to R = 0.5 µm, σ(t) = 0.01 µm, and l (in µm) ∼ uniform(100,500).

If we look at the value of θx, we notice that following the rule in Algorithm 1, the pad change would have happened at
Stage 4, much sooner than using Sa. Then, a relevant question is what would happen, had we indeed changed the pad after
Stage 4.

The simulation experiment allows us to rewind the process by using the simulation data saved in every step. So we
basically go back to Stage 4 and take the outcome of the simulated polishing up to that stage but apply a 1200-grit pad
instead. The simulated outcome of the new process is presented in Table 6. In the old process (Table 5), the polishing action
takes eight stages to reduce the surface roughness to 0.093, whereas in the new process (Table 6), the polishing action takes
six stages to accomplish the same. By the eighth stage, the new process polishes the surface to the roughness level of 0.076,
a further 18% reduction in roughness.

6 Concluding Remarks and Future Work
This work proposes a model-guided polishing process, which alleviates the inconsistency in the decision making process

of surface polishing and can potentially shorten the polishing time compared to the present practice. The essence of the
model-guided decision process is using correlation parameters in GP models to reveal surface anomalies and to reflect
potential over-polishing. While this work takes Titanium alloy as samples in the polishing experiments to illustrate the
judicious use of the GP models, the proposed modeling framework and GP-based decision protocol are applicable to a broad
array of material polishing processes.

We take advantage of the surface recovery property in the simulation experiment to verify the what-if scenario. More-
over, the simulation experiment is a promising approach that may substitute the expensive physical polishing experiments,
especially if more of the polishing complexities, e.g., the workpiece surface degradation, can be incorporated in.

There are a number of other topics that are worth continuing attention. The first that comes to mind is the use of a
constant, α = 0.9 or 0.95, in our proposed decision process. While this empirical choice appears effective in our application,



we speculate that a more adaptive change point detection procedure may be beneficial for shortening the polishing time
and/or effecting a better polished surface. The second possibility is to explore whether the micro-scale correlation parameter,
θs, helps the decision process. We do not use it in the proposed decision process but wonder if it is useful at all. The third
possible extension is to compare the quantile curves at various locations on the surface and test the homogeneity among the
curves. The homogeneity among the quantile curves could serve as a new metric for signaling pad change or the endpoint. If
this idea works out, it is certainly interesting to see which of the metrics, the correlation parameters or the curve homogeneity
test, is a better metric.
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A Appendix: Surface images of the AM part throughout the polishing process in Experiment #1.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4 (e) Stage 5

(f) Stage 6 (g) Stage 7 (h) Stage 8 (i) Stage 9 (j) Stage 10

(k) Stage 11 (l) Stage 12 (m) Stage 13 (n) Stage 14 (o) Stage 15

(p) Stage 16 (q) Stage 17 (r) Stage 18 (s) Stage 19 (t) Stage 20

(u) Stage 21 (v) Stage 22 (w) Stage 23 (x) Stage 24 (y) Stage 25

Fig. 10: Sample surface change from Stage 1 through the endpoint.


