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Abstract: Bacteriophages are the most numerous entities on Earth. The number of sequenced phage
genomes is approximately 8000 and increasing rapidly. Sequencing of a genome is followed by
annotation, where genes, start codons, and functions are putatively identified. The mainstays of
phage genome annotation are auto-annotation programs such as Glimmer and GeneMark. Due to
the relatively small size of phage genomes, many groups choose to manually curate auto-annotation
results to increase accuracy. An additional benefit of manual curation of auto-annotated phage
genomes is that the process is amenable to be performed by students, and has been shown to improve
student recruitment to the sciences. However, despite its greater accuracy and pedagogical value,
manual curation suffers from high labor cost, lack of standardization and a degree of subjectivity in
decision making, and susceptibility to mistakes. Here, we present a method developed in our lab
that is designed to produce accurate annotations while reducing subjectivity and providing a degree
of standardization in decision-making. We show that our method produces genome annotations
more accurate than auto-annotation programs while retaining the pedagogical benefits of manual
genome curation.
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1. Introduction

Bacteriophages, or phages for short, are viruses that infect bacteria. Phages are the most numerous
biological entities on Earth, estimated at 103! particles in the biosphere in a 10:1 ratio with bacteria [1-3].
Phages play a key role in environmental regulation [4], microbiome regulation [5], and in microbial
genetics by serving as vectors for horizontal gene transfer [4]. Historically, phages have featured in
several seminal discoveries in molecular biology, and are the source of a large number of enzymes
used in biology and biotechnology applications [4,6]. Eclipsed as treatment agents by antibiotics in the
mid-20th century, interest in phages as treatment agents is growing rapidly as a result of the rise in
antibiotic-resistant bacteria [7].

Phage ®X174 was the first organism to have its genome sequenced in its entirety, by Frederick
Sanger and collaborators in 1977 [1,8]. Since then, the number of complete, sequenced phage genomes
has grown rapidly, from 20 in 2000 [6], to 500 by 2008 [1], 750 by 2011 [2], 1000 by 2012 [9], 2000 by
2015 [10], to just over 8000 today (as determined by a search of NCBI Nucleotide with “Phage”
and “Complete genome” in the “Title” search field, “Viruses” in the “Organism” filter, and “INSDC
(GenBank)” in the “Source database” filter so as to not include duplicates due to RefSeq). As can be seen
in Figure 1, the number of sequenced phage genomes is growing at an approximately exponential rate.
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Figure 1. Cumulative number of unique, complete phage genome sequences in NCBI GenBank as
of January 1 of each year since 2000. The red curve represents an exponential curve fit to the data
(R? = 0.989, p-value = 0).

A significant number of sequenced phage genomes, approximately 2500 [11], are those of phages
that infect Actinobacteria, isolated and sequenced with the support of the SEA-PHAGES program
spearheaded by the University of Pittsburgh and Howard Hughes Medical Institute (HHMI) [12-14].
SEA-PHAGES provides support for an undergraduate research course offered at over 100 participating
colleges and universities mainly in the USA, but also globally [12-14]. The course typically consists
of two semesters: In the first semester, students isolate and characterize bacteriophages from
environmental samples. Phage genomes are then sent to the University of Pittsburgh for sequencing
and assembly. In the second semester, students annotate the assembled genomes and submit them to
NCBI GenBank for archiving. The course has greatly increased the scientific community’s knowledge of
actinobacteriophage diversity, while providing valuable scientific experience to thousands of students.
Students that complete the course show higher interest and persistence in science, especially if they
belong to groups traditionally underrepresented in the sciences [12-14].

The sequencing of an organism’s genome is followed by genome annotation, which consists of (1)
the identification of genes, (2) the identification of the start codon of each gene, and (3) identification of
putative gene function. For the vast majority of organisms, whether eukaryotic, prokaryotic, or viruses,
genome annotation is performed in an automated fashion using one or more of several publicly available
auto-annotation programs. For phages, a survey of the recent literature shows the most commonly
used ab initio auto-annotation programs are Glimmer [15], the GeneMark family of programs [16-20]
and Prodigal [21]. Other annotation packages, such as RAST [22] and Prokka [23] use one of these as
their ab initio gene finder; RAST uses Glimmer while Prokka uses Prodigal. Recently, the program
PHANOTATE was specifically designed to annotate phage genomes [24]. Although designed for
bacterial genomes rather than phage genomes (with the exception of PHANOTATE), auto-annotation
programs produce a complete and reasonably accurate annotation very rapidly. The downside is
that auto-annotation programs occasionally produce false positives (non-coding open reading frames
(ORFs) incorrectly identified as coding) and more frequently false negatives (undetected genes),
and occasionally assign incorrect start codons [25]. This is problematic considering that the annotation
of new phage genomes is often based on older annotations of similar phages, which results in the
perpetuation and propagation of annotation mistakes over time.
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Given the relatively tractable size of many phage genomes (3-550 kbp), many groups opt
to manually curate the results of auto-annotation programs with additional information such as
nucleotide sequence similarity matches, existence of operons, and synteny. The SEA-PHAGES program
in particular, has pioneered the development of a set of guidelines for manually curating phage genomes
that are auto-annotated by Glimmer and GeneMark to produce annotations of higher accuracy [25,26].
An additional benefit of manual curation of auto-annotated genomes is its high pedagogical value by
providing students with a hands-on experience working with a genome. However, manual curation
has several downsides, such as (1) introducing an element of subjectivity in decision making, which can
potentially lead to an artificially fractured genomic landscape (different groups annotating similar
phages may produce different annotations), (2) potentially significant time and labor costs if the number
of phages to be annotated is large, (3) susceptibility to mistakes, which requires significant quality
control to prevent, and (4) significant time investment in training annotators.

In this study, we present a genome annotation method developed in our lab that builds on the
SEA-PHAGES guidelines in an effort to overcome these shortcomings. The method is designed to
minimize subjectivity, increase speed and efficiency, and help minimize the occurrence mistakes.
We validated the method by using it to annotate the genome of the coliphage Lambda, the most
extensively studied phage [27], and the genome of mycobacteriophage Patience, the vast majority
of whose genes have been verified through transcriptomics, mass-spec proteomics within infected
cells, and identification of N-terminal peptides [28]. We then compared the annotations obtained
using our method to the reference annotations in GenBank. We also compared the annotations
obtained by our method to the annotations produced by Glimmer, the GeneMark family of programs,
Prodigal, and PHANOTATE. We also tested our method and the above programs on a randomly
generated DNA sequence, in which any genes identified are by definition false positives. Lastly, we show
the pedagogical benefits of the method from assessment results from the phage genome annotation
class taught at the University of Nevada, Las Vegas (UNLV).

2. Results

2.1. Gene Identification

The annotated genomes of phages Lambda (48.5 kbp) and Patience (70.5 kbp) were downloaded
from NCBI GenBank (NC_001416.1 and NC_023691.1, respectively). These genomes were used to
benchmark our manual curation method and compare it to the annotations produced by Glimmer,
the GeneMark family of programs, Prodigal, and PHANOTATE. RAST and Prokka were omitted as
they rely on Glimmer and Prodigal for gene calling, respectively. The GeneMark family includes
the original GeneMark [16], host-trained GeneMark.hmm [17], GeneMark S [18], GeneMark with
Heuristics [19], and the latest member of the family, GeneMark S2 [20]. While they may appear
similar, each GeneMark algorithm is significantly different form the others and will produce a different
annotation for the same genome [29].

With respect to gene identification, a positive (P) is a coding gene identified by one of the annotation
methods (i.e., Glimmer, GeneMark family, Prodigal, or PHANOTATE, and our manual method); a true
positive (TP) is a gene identified as coding by an annotation method that is coding in the reference
annotated Lambda or Patience genome in GenBank; a false positive (FP) is defined as a gene identified
as coding by an annotation method that is not coding in the reference genome; a false negative (FN) is an
gene identified as non-coding by an annotation method but coding in the reference genome; and a true
negative (TN) is an gene identified as non-coding by an annotation method that is also non-coding in
the reference genome. We calculated the sensitivity (TP/(TP + FN)) and specificity (TN/(TN + FP)) of
our manual curation method, Glimmer, the GeneMark family, Prodigal and PHANOTATE for Lambda
and Patience. The results are shown in Tables 1 and 2, respectively. The host-trained GeneMark.hmm
algorithm [17] gave anomalous results with respect to the genome of phage Patience and is thus
omitted from Table 2. This is likely due to the unusual nature of phage Patience, which appears to be
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a non-Mycobacterium phage that is in the process of migrating to Mycobacteria hosts [24]. Host-trained
algorithms such as GeneMark.hmm thus have difficulty producing annotations for such phages.

Table 1. Results of gene identification in the genome of phage Lambda. Sensitivity and specificity are
rounded to the nearest 0.5%.

Annotation Positives True False False True Sensitivi Specificit
Method Positives Positives =~ Negatives  Negatives ty Sp y
Glimmer 67 63 4 10 541 86.5% 99.5%
GeneMark 61 58 3 15 542 79.5% 99.5%
GeneMark hmm 66 62 4 11 541 85% 99.5%
GeneMark S 61 58 3 15 542 79.5% 99.5%
Heuristic o o
GeneMark 61 58 3 15 542 79.5% 99.5%
GeneMark S2 60 58 2 15 543 79.5% 99.5%
Prodigal 61 55 6 18 539 75.5% 99%
PHANOTATE 88 62 26 11 519 85% 95%
Manual 69 65 4 8 541 89% 99%

Table 2. Results of gene identification in the genome of mycobacteriophage Patience. Host-trained
GeneMark.hmm is omitted due to its anomalous results for this phage.

Annotation Positives True False False True Sensitivi Specificit
Method Positives Positives ~ Negatives  Negatives ty Sp y
Glimmer 104 99 5 11 777 90% 99.5%
GeneMark 90 90 0 20 782 82% 100%
GeneMark S 105 105 0 5 782 95.5% 100%
Heuristic o o
GeneMark 101 100 1 10 781 91% 99.9%
GeneMark S2 94 93 1 17 781 84.5% 99.9%
Prodigal 105 101 4 778 92% 99.5%
PHANOTATE 120 105 15 5 767 95.5% 98%
Manual 110 109 1 1 781 99% 99.9%

The reference annotated genome of phage Lambda contains 73 coding genes and 545 non-coding
ORFs longer than 75 base pairs (bp). All methods missed eight or more coding genes in the Lambda
genome. This is due in part to the fact that reference Lambda genome contains at least two instances of
genes within genes, which all annotation methods have difficulty with. Our manual curation method
had the smallest number of false negatives and the highest sensitivity. Our method had marginally
higher sensitivity than Glimmer, host-trained GeneMark.hmm and PHANOTATE, and significantly
higher sensitivity than the other GeneMark programs and Prodigal. Of the GeneMark programs,
host-trained GeneMark.hmm had the best performance, with the smallest number of false negatives.
Glimmer had the best overall performance, Prodigal had the highest number of false negatives,
and PHANOTATE had by far the highest number of false positives. Specificity is very high and roughly
equal for all methods. This is due to the large (>500) number of true negatives (non-coding ORFS
correctly identified as non-coding) and relatively small number of false positives. Thus, the increase in
sensitivity of the manual method does not come at the cost of decreased specificity.

The genome of phage Patience contains 110 coding genes and 782 non-coding ORFs longer than
75 bp (not including tRNAs). The manual curation method missed only one coding gene in the
reference Patience genome, and incorrectly identified only one non-coding ORF as coding, resulting in
very high sensitivity and specificity (>99%). All auto-annotation programs had significantly more false
negatives, with GeneMark S and PHANOTATE having the fewest. As with Lambda, PHANOTATE
had the highest number of false positives, thus overall, GeneMark S had the best performance of the
auto-annotation programs. Again, due to the large (>700) number of true negatives and small number
of false positives, specificity was very high for all methods.
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In analyzing the results of Tables 1 and 2, the greater sensitivity of the manual curation method
with respect to both phage genomes comes from two sources: The first is integrating the results
of multiple auto-annotation programs. The various programs have entirely different algorithms,
such that a gene missed by one program may be detected by another; integrating their results thus
increases sensitivity. The other source of greater sensitivity is reliance on additional information,
especially operons and coding potential, to detect short genes. Short genes (>150 bp) are especially
difficult to detect for programs designed for prokaryotic genomes. There are several examples of
short genes with coding potential or that are likely part of an operon (i.e., stop codon overlaps by 1, 4,
or 8 bp with the stop codon of a gene on the same strand) that are detected by our method but are
missed by one or more programs. Increased sensitivity often comes at the cost of decreased specificity.
However, our method avoids false positives by using a threshold score (see Methods section) to decide
whether an ORF is to be considered a coding gene. This reduces the likelihood of false positives by
requiring multiple sources of supporting evidence in order to designate an ORF as coding.

2.2. Start Codon Identification

For identification of start codons, accuracy was calculated as the fraction of start codons identified
during annotation that matched the start codons in the reference genome. Incorrect start codons
resulted in a gene that was longer than in the reference genome, or a gene that was shorter than
in the reference genome. The results for Lambda are shown in Table 3 and for Patience in Table 4.
Host-trained GeneMark.hmm is omitted from Table 4.

Table 3. Results of start codon identification in the genome of phage Lambda.

Annotation True Positives Start Codons Start Codons Total Number of % Correct Start
Method Called Long Called Short Incorrect Start Codons Codons

Glimmer 63 6 5 11 82.5%
GeneMark 58 4 7 11 81%
GeneMark 62 1 8 9 85.5%
hmm
GeneMark S 58 6 5 11 81%
Heuristic o
GeneMark 58 6 5 11 81%
GeneMark S2 58 3 7 10 83%
Prodigal 55 3 3 6 89%
PHANOTATE 62 7 6 13 79%
Manual 65 1 4 5 92.5%

Table 4. Results of start codon identification in the genome of mycobacteriophage Patience. Host-trained
GeneMark.hmm is omitted due to its anomalous results for this phage.

Annotation True Positives Start Codons Start Codons Tz;allnlj;,lrx:;l;ter % Correct Start
Method Called Long Called Short Codons
Start Codons

Glimmer 99 3 11 14 86%
GeneMark 90 4 4 8 91%
GeneMark S 105 4 4 8 92.5%
Heuristic o

GeneMark 100 9 6 15 85%
GeneMark S2 93 9 7 16 83%
Prodigal 101 7 6 13 87%
PHANOTATE 105 8 13 21 80%
Manual 109 4 3 7 93.5%

For Lambda, the manual curation method is more accurate than any auto-annotation program,
correctly identifying the start codons of 60 of 65 correctly identified coding genes (true positives).
Prodigal had results similar to the manual curation method, while all other programs had roughly
double the number of incorrectly identified start codons.
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With respect to phage Patience, the manual curation method scored better than all programs.
Of the programs, GeneMark and GeneMark S had the best performance, while PHANOTATE had
the highest number of incorrect start codons in both Lambda and Patience. The manual curation
method achieves higher accuracy for two reasons: First, by integrating the results of several programs,
the manual method achieves a form of “consensus” among programs. While a particular program may
identify a start codon incorrectly, it is unlikely that a large number of programs will do so. The second
reason is the use of information such as operon existence and sequence similarity. Auto-annotation
programs sometimes do not correctly identify start codons that result in an operon because these often
have a low Shine-Dalgarno score; however, they are easily noticed when inspecting a genome manually.
Sequence similarity matches reflect the consensus among annotators of similar phages and can provide
insight into which start codon is more likely.

2.3. Susceptibility to False Positives in a Randomly Generated Nucleotide Sequence

To test the susceptibility of the various annotation methods to incorrectly identify ORFs known to
be non-coding as coding (false positives), we generated a random, 40 kbp long nucleotide sequence and
tested the manual curation method and auto-annotation programs on it. The sequence was generated
in R using a random number generator with uniform probability distribution, and the specific sequence
used in the analysis is included as Supplementary Material. The sequence has 628 ORFs longer than
75 bp. As all ORFs in the randomly generated sequence are non-coding, any ORFs identified as coding
are false positives by definition. The results are shown in Table 5. Since there is no host to train
GeneMark.hmm on, host-trained GeneMark.hmm is omitted from this analysis.

Table 5. Results of annotation of a randomly generated nucleotide sequence by the manual curation
method and auto-annotation programs.

Annotation Method False Positives True Negatives Specificity
Glimmer 47 581 92.5%
GeneMark 6 622 99%
GeneMark S 6 622 99%
Heuristic GeneMark 6 622 99%
GeneMark S2 6 622 99%
Prodigal 11 617 98%
PHANOTATE 203 425 68%
Manual 8 620 99%

PHANOTATE and Glimmer identified a surprisingly large number of ORFs as coding, whereas the
GeneMark programs, Prodigal, and the manual method identified a significantly smaller number.
The manual method identifying two more ORFs as coding than the GeneMark family (with all four
GeneMark programs having identical results). All of the ORFs identified as coding by the manual
method possessed strong coding potential (Figure 2), but none possessed sequence similarity matches.
Six of the ORFs identified as coding by the manual method were also identified by the GeneMark
programs (which follows since the manual curation method partially relies on auto-annotation
programs). These results suggest that PHANOTATE and Glimmer are prone to generating false
positives; that coding potential, while a very useful indicator of whether a gene is coding (positive
signal), is also prone to generating false positives; and that lack of sequence similarity matches,
while not a reliable positive signal (due to false positives in the record), is a strong negative signal.
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Figure 2. Coding potential of the eight open reading frames (ORFs) identified as coding in the randomly
generated DNA sequence by our manual curation method. Six of these were identified as coding

by GeneMark.
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2.4. Pedagogical Benefits

Students enrolled in UNLV’s phage genome annotation course use the method presented in
this study to annotate the genomes of phages they have isolated. At the start of the semester,
students enrolled in the class complete a multiple choice assessment covering fundamental concepts in
molecular biology and microbiology. There are two versions of the assessment, A and B, with the same
questions albeit worded differently in each version. At the end of the semester, students complete
the assessment again, with students that completed version A at the beginning of the semester
completing version B at the end, and vice versa. The two versions of the assessment are included as
Supplementary Material. The change in the students” scores on the assessment are shown in Figure 3.

Improvement in student score (out of 100)

L J
(=
a
[=R
w
[ X N
(=
51
L ]
[ ]
g L]
® L J
L L
L J
* & 8
(=T L J
L J

Figure 3. Change in student score on the assessment from the start to the conclusion of the genome
annotation course. Each blue point represents a student, the red point represents the mean, and the

95% confidence interval is shown in black.

The average change in the students’ scores was 20% with standard deviation 23. The p-value of
the paired t-test is 0.0016, with the 95% confidence interval between -29.5 and -8.1. Of the 20 students
in the class, 11 students improved by 10% or more, seven improved by 20% or more, and one student
(who had no biology background prior to taking this course) improved by more than 90%. Three of
20 students did not improve, with the score of two students slightly decreasing, but these students had
scored very high on the assessment at the beginning of the semester. As the students are not issued
a textbook or lectures on molecular genetics and microbiology, these results tentatively suggest that

the improvement in student scores comes from annotating phage genomes.
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3. Discussion

In this study, we present a method for manually curating annotated phage genomes that is more
sensitive than purely automated methods while designed to minimize the occurrence of mistakes and
subjectivity in decision-making. By separating the criteria used to evaluate genes and start codons,
and assigning numerical values for each criterion, the method reduces subjectivity in decision-making
(see Methods section). We have designed the method to be as labor efficient as possible, and estimate
an experienced annotator using the method could annotate a typical phage genome (40-50 kbp) in one
or two days. The method is designed to be user-friendly and amenable to instruction to undergraduate
students. The method is currently being used to annotate phage genomes isolated by students at our
institution. The pedagogical benefits of training students in the use of the method were shown to be
statistically significant, as evidenced by an assessment conducted at our institution.

One of the main challenges of devising annotation methods for phage genomes is identifying
reference, experimentally validated genomes to benchmark a method’s accuracy. To the best of our
knowledge, the best choices for reference genomes are the genome of Escherichia coli phage Lambda,
as it is the most extensively studied bacteriophage genome [27], and the genome of mycobacteriophage
Patience, as the vast majority of its genes have been validated through transcriptomics [28]. We thus
used these two genomes to benchmark the performance of our method and compare it to widely
used annotation programs such as Glimmer, the GeneMark family of programs, Prodigal, and the
recently-developed program PHANOTATE.

Our method showed slightly to moderately higher sensitivity with respect to gene identification
in comparison to all auto-annotation programs, without a decrease in specificity. The manual curation
method was also more accurate in identifying start codons. The manual curation method was consistent
across the two phage genomes, producing similar results for Lambda and Patience. The auto-annotation
programs had more divergent results, with some performing significantly better on Patience (GeneMark
S, Prodigal) and some performing better on Lambda (Glimmer, host-trained GeneMark.hmm). Of the
auto-annotation programs, GeneMark S seemed to have the best performance overall, while no program
performed better or worse in all categories compared to the others. Host-trained GeneMark.hmm had
very poor results with respect to phage Patience. This is due to the unusual nature of Patience, and does
not reflect generally on host-trained hidden Markov models. However, it does signify that host-trained
algorithms may not always be appropriate for use on certain phage genomes. Surprisingly, the program
PHANOTATE, specifically designed for phage genomes, did not outperform the others.

The greater accuracy of the manual curation method relative to individual auto-annotation
programs is largely due to two reasons: First, integrating the results of multiple auto-annotation
programs to achieve consensus, and second, relying on additional information such as operons,
coding potential, and sequence similarity. By integrating the results of multiple programs, each of
which uses a different algorithm from the others, the manual curation method may detect genes missed
by an individual program and achieve “consensus” among the programs when choosing a start codon.
Similarly, by relying on additional information, the manual curation method may detect genes and
start codons that are particularly difficult for auto-annotation programs to detect (e.g., short genes and
start codons with low Shine-Dalgarno score). Higher sensitivity usually comes at the cost of lower
specificity (more false positives), however, by requiring multiple sources of information and setting
a threshold for decision-making, the manual curation method largely avoids the low specificity trap.

This study represents a first step in devising rigorous manual curation methods for phage genome
annotations, as well the first step in establishing the accuracy of various auto-annotation programs
with respect to phage genomes. While the results of the study are encouraging, the method used herein
needs to be applied to more experimentally validated phage genomes for the conclusion of this study
to be more generally applicable. Lack of experimentally validated phage genome is a long-standing
challenge in the area of phage genomics, and more work needs to be done in this area to put phage
genome annotations on a firmer footing.
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4. Materials and Methods

The annotation method presented here is based on guidelines developed and described by Pope
et al. [25,26]. The innovation of our method is to put these guidelines in more rigorous form, by clearly
delineating the various sources of information and devising a scheme to quantify and integrate them so
as to reduce subjectivity in decision-making. There are two main steps: Gene identification, and start
codon identification. The third component of genome annotation, putative function assignment, is not
covered in this publication.

4.1. Gene Identification

The first step of genome annotation is identifying genes. Putative genes are assigned a score
that determines whether they are identified as coding or discarded based on five criteria: (a) Number
of auto-annotation programs that identified the gene as coding (Glimmer, the GeneMark family of
programs, Prodigal, PHANOTATE); (b) existence of coding potential as predicted by GeneMark S
(i.e., the posterior decoding of the hidden Markov model); (c) existence of statistically significant
nucleotide sequence similarity matches; (d) existence of overlaps with other putative genes, including
whether the putative gene is part of an operon, and (e) ORF length. The coordinates and reading frame
of genes to be evaluated by the method are entered in a spreadsheet, with a column for each criterion:
“Programs,” “Coding potential,” “Sequence similarity matches,” “Overlap,” and “Length”.

4.1.1. Auto-Annotation Program Calls

On first pass, the genome is auto-annotated with Glimmer [15] and GeneMark [16] using the
program DNA Master (http://cobamide2.bio.pitt.edu/computer.htm), which serves as the primary
genome viewing browser. Detailed instructions on how to use DNA Master are given in [25,26].
DNA Master also includes the program ARAGORN, which detects tRNA genes with a high degree
of accuracy [30]. The auto-annotated genome in DNA Master is then searched for coding gaps
(i.e., regions where neither Glimmer nor GeneMark identified genes). ORFs longer than 75 bp that are
located in coding gaps are noted and their coordinates (5’ end, 3’ end, reading frame) entered into
a spreadsheet. These are potential false negatives (i.e., missed by Glimmer and GeneMark). We choose
a threshold of 75 bp as phage proteins as short as 27 amino acids have been found experimentally [25].
Two coding gaps that are filled with putative, user-identified genes are shown in Figure 4.

mimi S T VNI T NN 1 Y
94 97
L

|||| ||||||| | | . ™ || l u |||I|| |||

57852 58030 58208 58386 58564 58742 58920 59098 59276 59454 59632 59810 59988 60166

Figure 4. Examples of program-identified genes and user-identified putative genes in DNA Master.
Each row corresponds to a reading frame; the forward (left to right) reading frames in the top three
rows; the reverse (right to left) reading frames in the bottom three rows. Half height bars represent start
codons; full height bars represent stop codons. Highlighted bars represent putative genes, with green
for forward genes and magenta for reverse genes. Numbered genes indicate genes identified by
Glimmer or GeneMark; genes without numbers indicate putative user-identified genes not identified
by Glimmer and GeneMark. There are four putative user-identified genes located in the gap between
gene 94 and gene 95 (three forward, one reverse) and three between gene 96 and 97 (two forward,

one reverse).
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The genome is then auto-annotated outside of DNA Master with host-trained GeneMark [17],
GeneMark S [18], Heuristic GeneMark [19], and GeneMark S2 [20] via their web servers (www.
exon.gatech.edu), and also with Prodigal (https://github.com/hyattpd/Prodigal) and PHANOTATE
(https://github.com/deprekate/PHANOTATE) by downloading the latter two and running them locally.
We paste the output from all the programs in a single spreadsheet, which is then used to determine
how many programs identify a gene; this is also very useful when assigning start codons. The number
of programs that identify a putative gene as coding is entered into that gene’s “Programs” column

(can range from 0 to 8).

4.1.2. Coding Potential

Coding potential (the posterior decoding of a hidden Markov model for gene prediction) is among
the strongest evidence for gene prediction [26], and putative genes with strong coding potential are
unlikely to be false positives. Each putative gene is scored from 0 to 3 based on its coding potential as
predicted by GeneMark S (Figure 5). A putative gene with high (>0.75) and sustained (covers >50% of
the ORF) coding potential is scored 3; a putative gene with high but not sustained coding potential
scored 2; a putative with low but sustained coding potential scored 1; and a putative gene with neither
high nor sustained coding potential scored 0. Examples of each type of coding potential score are
shown in Figure 5. The coding potential score is entered in the “Coding potential” column for each

putative gene’s spreadsheet entry.
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Figure 5. Examples of coding potential predicted by GeneMark S. Upward ticks represent start codons,
downward ticks represent stop codons, and horizontal lines between ticks indicate ORFs. (a) The first
putative gene on the left has high and sustained coding potential and is scored 3 points; (b) the second
putative gene from the left has high but not sustained coding potential and is scored 2 points; (c) the
third putative gene from the left has low but sustained coding potential and is scored 1 point; (d) the
last putative gene on the right has coding potential that is low and not sustained and is thus scored

0 points.

4.1.3. Sequence Similarity Matches

Statistically significant amino acid sequence similarity matches are an indicator of whether a gene
with similar sequence has been identified as coding by other researchers in the field. Putative genes
with significant sequence similarity matches to known proteins, especially to proteins with known
function, are unlikely to be false positives. Sequence similarity matches are identified by batch searches
of NCBI's non-redundant (nr) database with pBLAST [31], and searches of Pfam and Interpro with
HMMer [32]. Putative genes are scored 1 point if they have at least one sequence similarity match
with E-value less than E-10 (this threshold can be adjusted); 2 points if they have a sequence similarity
match with E-value between E-20 and E-50; and 3 points if they have a sequence similarity match with
E-value less than E-50. Putative genes are scored an additional point if one of the sequence similarity
matches is to a protein with known function, as opposed to a “hypothetical protein.” The sequence
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similarity match score (range from 0 to 4) is entered in the “Sequence similarity” column for each
putative gene’s spreadsheet entry.

4.1.4. Overlap and Operons

Phage genes seldom overlap by more than 30 bp, and thus putative genes that significantly
overlap with strong gene calls are more likely to be false positives [26]. We thus penalize putative
genes with significant overlap with strong gene calls (i.e., genes identified by both Glimmer and
GeneMark, as such genes are unlikely to be false positives). Examples of overlap are shown in Figure 6.
Overlap less than 10 bp are not penalized; overlap between 10 and 40 bp is penalized 1 point; overlap
between 40 and 70 bp penalized 2 points; overlap between 70 and 100 bp penalized 3 points, and an
overlap of more than 100 bp penalized 4 points. This score is entered in the “Overlap” column for each
putative gene’s entry in the spreadsheet. A forward gene downstream of a reverse gene represents
a special case, as this requires at least a 50 bp gap between the two genes to make room for their
promoters [26].

55

53 54

36085 36243 356421 35599 36777 36955 37133

Figure 6. Examples of overlap as visualized in DNA Master. There are three putative user-identified
genes located in the gap between gene 53 and gene 54 (two reverse, one forward). The putative gene
in reverse frame 1 (row 4) overlaps with gene 53 and gene 54; the putative gene in reverse frame 2
(row 5) overlaps with gene 53; the putative gene in forward frame 1 (row 1) overlaps with gene 54.
The putative gene in reverse frame 1 appears to form an operon with gene 54 (4 bp overlap). There is
a gap of more than 50 bp between gene 53 and the putative forward gene, enough to make room for
their promoters. The three putative genes overlap with one another, but for each gene, only the overlap
with gene 53 and gene 54 is counted (because these are strong gene calls).

It should be noted that overlap is only scored for putative genes when these overlap with genes
previously identified by both Glimmer and GeneMark, as such genes are unlikely to be false positives.
In the case of multiple overlapping putative genes within a coding gap, overlap is not scored, as it is at
this stage unknown which putative genes will be kept as coding, if any.

Overlaps of 1, 4, or 8 bp present special cases, as genes with such overlaps are often part of an
operon [33]. Operons are a common occurrence in phage genomes. As it is unlikely that false positives
would be part of an operon, we award 1 point to a putative gene that has a start codon that overlaps
with the stop codon of another gene by 1, 4, or 8 bp.

The “overlap” score can range from —4 to 1, and is entered in the “Overlap” column for each
putative gene’s spreadsheet entry. Examples of overlapping putative genes are shown in Figure 6.

4.1.5. ORF Length

Non-coding ORFs tend to be short (<200 bp), while genes in very long ORFs are less likely to
be false positives. We thus score putative genes according to their length. Putative genes with ORFs
shorter than 200 bp but longer than 150 bp are penalized 1 point; ORFs shorter than 150 bp but longer
than 120 bp are penalized 2 points; ORFs shorter than 120 bp but longer than 90 bp are penalized 3
points; and ORFs shorter than 90 bp are penalized 4 points. The length score (range —4 to 0) is entered
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in the “Length” column for each ORF’s entry in the spreadsheet. Length will depend on the start codon
chosen, and sometimes there may be cases where choosing a start codon that produces a shorter ORF
may mitigate overlap with another gene.

4.1.6. Checking for False Positives

Once all potential false negatives (genes missed by Glimmer and GeneMark) are scored as
described above, we do the same for potential false positives. Potential false positives are genes
identified as coding by only one program (e.g., Glimmer only, GeneMark only, etc.), or genes identified
by more than one program but with very short ORFs (shorter than 120 bp). Potential false positives
are entered in the spreadsheet and evaluated according to the five criteria described above, in exactly
the same manner as the potential false negatives. Theoretically all putative genes, both identified by
programs and identified by users should be evaluated this way, but in practice genes identified by two
or more programs are extremely unlikely to be false positives, and thus only user-identified genes and
genes identified by only one program should be evaluated to save time and effort.

4.1.7. Decision-Making for Gene Identification

For each putative gene to be evaluated, the scores in each column are summed and a decision is
made whether to keep the putative gene as coding or discard it as non-coding. An example of what the
spreadsheet should look like is given in Table 6. We suggest putative genes with a score of 3 or greater
be kept, and 0 or less discarded. This is so that genes must have either program calls, coding potential,
or sequence similarity matches in order to be kept, and simply having a long ORF and not overlapping
is not sufficient reason for a putative gene to be kept as coding. Scores of 1 and 2 are borderline cases
to be decided on a case-by-case basis.

Table 6. Typical entries for putative genes with evaluation result.

I}i:i:elg 5" End 3’End Programs  Coding Potential Sequence Similarity ~ Overlap Length  Points  Results
F1 373 495 0 0 0.0018 0 204 0 Delete
R2 2189 2391 1 2 <E-50 43 bp 153 3 Add
R1 50,061 50,159 4 3 E-13 4bp 99 6 Add

4.2. Start Codon Identification

Most phage genes contain more than one start codon in their nucleotide sequence. For annotation
purposes it is necessary to pick one start codon as the annotated gene start. Start codons are scored
on six criteria, in the following order of importance: (1) whether a start codon produces an ORF that
includes all coding potential; (2) whether a start codon produces an ORF that overlaps with other genes
to form an operon; (3) the number of auto-annotation programs that pick that start codon; (4) whether
the start codon matches with the start of highly similar proteins; (5) Shine-Dalgarno (SD) score; (6) the
resultant ORF length. For each gene, an entry is created in the spreadsheet, with the candidate start
codons in the first column, and a column for each criterion: “Coding potential,” “Overlap/Gap,”
“Programs,” “Sequence similarity,” “SD score,” and “Length.”

7

4.2.1. Coding Potential

It is important that a start codon includes all of a gene’s coding potential as shown in Figure 7.
For each start codons a “yes” or “no” is entered in the “Coding potential” column based on whether
the start codon includes all of a gene’s coding potential. Start codons that fail to include all of a gene’s
coding potential are the first to be eliminated.
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(a) (b)

Figure 7. (a) The gene on the left, transcribed from left to right, has six start codons (upward ticks
above the midline in the figure). Of these, only the leftmost one, circled in red, includes all of the
gene’s coding potential, as it is located upstream of the coding potential plateau; (b) the gene on the
right, transcribed from right to left, has eight start codons. Of these, the rightmost three, circled in red,
include all the coding potential, while the remaining five do not. When deciding, only the plateau in
coding potential counts, not the slope.

4.2.2. Overlap or Gap

The overlap or gap of each start codon with the stop codon of the upstream or downstream gene
is calculated and entered in the “overlap/gap” column. For genes transcribed left to right (forward
genes), the start codon is subtracted from the stop codon of the gene upstream to calculate overlap
(Figure 8). For genes transcribed right to left (reverse genes), the stop codon of the gene downstream is
subtracted from the start codon (Figure 8). This produces a positive number in the case of overlap,
and a negative number in case of a gap. For overlaps, 1 must be added to the subtraction result, and for
gaps, 1 must be subtracted. Start codons that produce an unusually large overlap (e.g., over 100 bp)
when there exist start codons that include all coding potential are not considered. For the special case
of a forward gene followed by a reverse gene, a table is created in which the starts of the forward
gene are the rows and the starts of the reverse genes the columns. In each cell, the gap or overlap is
calculated by subtracting the start codon of the reverse gene from the start codon of the forward gene
and adding 50 (to account for the promoters) [26].

1l

B I 1

; I I L

1 179 357 535 713 891 1069 1247 1425 16 95440

(a)

Figure 8. (a) For forward genes, such as gene 2, the overlap of each start codon considered (circled
in blue) is calculated by subtracting each start codon from the stop codon of gene 1; (b) for reverse
genes, such as gene 194, the overlap of each start codon evaluated (circled in blue) is calculated by
subtracting the stop codon of gene 195 from each start codon of gene 194. To save time and effort,
only start codons that produce a long ORF are evaluated, e.g., the majority of gene 2’s start codons in
panel (a) are not evaluated.

5734
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4.2.3. Auto-Annotation Program Calls

All auto-annotation programs identify a start codon for every gene they identify. For each start
codon, the number of programs that identify it as the gene’s start is entered in the “Programs” column.

4.2.4. Sequence Similarity Matches

For each start codon, the number of sequence similarity matches with an E-value less than
1E-10 (pBLAST and/or HMMer) that use that start codon is entered in the “Sequence similarity
matches” column.

4.2.5. Shine-Dalgarno (SD) Score

The Shine-Dalgarno score of each start codon is calculated using DNA Master and entered in the
“SD score” column. The settings are “Kibler6” for the SD scoring matrix and “Karlin Medium” for the
spacing matrix [25,26]. The SD score is the number given in the “Final score” column. This number is
always negative, and a smaller absolute value (i.e., closer to 0) is considered a better score. If a start
codon is likely to indicate the existence of an operon (1, 4, or 8 bp overlap), the SD score is considered
irrelevant and is not entered.

4.2.6. Length

If two start codons are equal with respect to all of the above criteria, ORF length may be used
as a tie-breaker, with the start codon that produces the longest ORF without overlap of more than
10 bp chosen.

4.2.7. Decision-Making for Start Codons

An example of a start codon annotation for a gene is shown in Table 7. The start codons are sorted
by length (i.e., the start that produces the longest ORF is in the first row), and the start codon that is the
best choice according to our method (605) is shown in boldface. The start codon at 626 is the first to be
eliminated because it does not include all the coding potential, despite the higher number of program
calls and better SD score. The start codon at 442 is then eliminated because of its large overlap (128 bp).
The start codon at 578 is the next to be eliminated because it has no program calls. The choice is then
between 605 and 587, with 605 chosen over 587 on the grounds of two programs choosing it versus one
for 587 (and despite 587 having more sequence similarity matches).

Table 7. An example of a start codon annotation according to our method.

No. of Sequence

Start Coordinate Programs Coding Potential Overlap Similarity Matches SD Score
442 0 Yes 128 bp 0 -59
578 0 Yes 0bp 1 -5
587 1 Yes 0bp 4 -6.5
605 2 Yes 0bp 2 —4.6
626 3 No 0bp 1 -3.8

In some cases, it is possible to save time and effort by skipping the full analysis. This is the case
when a gene has only one start codon (or only one start codon that does not result in an excessively
short ORF), or when the start codon that produces the longest possible ORF is chosen by all programs
(as it is impossible for shorter codons to score better on coding potential).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
3391/s1. The following supplementary materials are included: (1) Version A and Version B of the assessment
issued to the students enrolled in the University of Nevada Las Vegas (UNLV)’s phage genome annotation class
(BIOL 217). (2) The randomly generated 40 kbp DNA sequence used in Section 2.3 of the results.
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Abbreviations

SEA-PHAGES Science Education Alliance-Phage Hunters

Advancing Genomics and Evolutionary Sciences

kbp Kilo base pairs

UNLV University of Nevada Las Vegas

bp Base pairs

TP True positive

FP False positive

TN True negative

FN False negative

ORF Open reading frame

SD Shine-Dalgarno
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