Accelerated Experimental Design for Pairwise Comparisons

Yuan Guo!

Susan Ostmo?®

Jennifer Dy!
J. Peter Campbell®

Abstract

Pairwise comparison labels are more informative and
less variable than class labels, but generating them
poses a challenge: their number grows quadratically
in the dataset size. We study a natural experimental
design objective, namely, D-optimality, that can be used
to identify which K pairwise comparisons to generate.
This objective is known to perform well in practice, and
is submodular, making the selection approximable via
the greedy algorithm. A naive greedy implementation
has O(N2d?K) complexity, where N is the dataset size,
d is the feature space dimension, and K is the number
of generated comparisons. We show that, by exploiting
the inherent geometry of the dataset—mamely, that it
consists of pairwise comparisons—the greedy algorithm’s
complexity can be reduced to O(N?(K +d) + N(dK +
d?) + d*K). We apply the same acceleration also to
the so-called lazy greedy algorithm. When combined,
the above improvements lead to an execution time of
less than 1 hour for a dataset with 10® comparisons;
the naive greedy algorithm on the same dataset would
require more than 10 days to terminate.

1 Introduction

In many supervised learning applications, including
medicine and recommender systems, class labels are
solicited from (and generated by) human labelers.
Datasets constructed thusly are often noisy, to counter
this, several recent works [1-5] propose augmenting
datasets via comparisons. For example, a medical ex-
pert can classify patients as, e.g. diseased or normal,
but can also order pairs of patients w.r.t. disease sever-
ity. Similarly, beyond generating class labels in recom-
mender systems (e.g., stars), labelers can also declare
their relative preference between any two items.
Incorporating comparison labels to the training
process has two advantages. First, comparisons indeed
reveal additional information compared to traditional

T {yuanee20, erdogmus, jdy, ioannidis}@ece.neu.edu. ECE
Department, Northeastern University, Boston, MA, USA.
2kalpathy@nmr.mgh.harvard.edu. Department of Radiology,

Massachusetts General Hospital, Charlestown, MA, USA. 3{ostmo7
campbelp, chiangm}@ohsu.edu Dept of Ophthalmology, Casey Eye
Institute, Oregon Health & Science University, Portland, OR, USA.

Deniz Erdogmus

! Jayashree Kalpathy-Cramer?

Michael F. Chiang? Stratis Toannidis?

class labels: this is because they capture both inter
and intra-class relationships; the latter are not revealed
via class labels alone. Second, comparisons are often
less noisy than (absolute) class labels. Indeed, human
labelers disagreeing when generating class judgments
often exhibit reduced variability when asked to compare
pairs of items instead. This has been extensively
documented in a broad array of domains, including
medicine [1, 6], movie recommendations [3, 7], travel
recommendations [8], music recommendations [9], and
web page recommendations [10], to name a few.

Nevertheless, soliciting comparison labels poses a
significant challenge, as the number of potential com-
parisons is quadratic in the dataset size. It therefore
makes sense to solve the following experimental design
(i.e., batch active learning) problem: given a budget K,
and a set of existing class labels, identify the K com-
parison labels the expert should generate that will better
augment the eristing dataset. There are several natural
ways through which this experimental design problem
can be formalized. In this paper, we focus on an ob-
jective motivated by D-Optimal design [11,12]. This
objective leads to selections that perform very well in
practice against competing methods [5]. Most impor-
tantly, it is also submodular; as such, a set of com-
parisons attaining a constant approximation guarantee
can be constructed in polynomial time via the so-called
greedy algorithm [13].

Applying the greedy algorithm naively in this exper-
imental design setting leaves a lot to be desired. Given
that the set of comparisons is quadratic, a naive im-
plementation of the algorithm leads to a complexity of
O(N?2d?K), where N is the size of the dataset, d is the
dimension of the feature space, and K is the size of the
selected set of comparisons. The quadratic nature of
this computation makes the use of the algorithm pro-
hibitive for all but the smallest datasets, especially when
the samples are high-dimensional. On the other hand,
the fact that the same N objects participate in these
O(N?) pairs suggests an underlying structure that can
potentially be exploited to improve time performance.

To that end, we make the following contributions:

e We formally study the problem of accelerating the
greedy algorithm for learning pairwise comparisons.

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

To the best of our knowledge, we are the first to
study methods of reducing the complexity of greedy
by exploiting the inherent geometry of the dataset-
namely, that it consists of pairwise comparisons.

e We show that, by exploiting this underlying structure,
the greedy algorithm can indeed be accelerated. Us-
ing Cholesky factorization [14], the Sherman Moris-
son formula [15], and the pairwise comparison struc-
ture, we reduce the greedy algorithm’s complexity
from O(N?d?K) to O(N?(K+d)+N(dK+d?)+d*K).
The O(N?(K + d)) term, which dominates when
N > K + d, consists of an O(N?d) pre-processing
step and an O(N?) computation per iteration involv-
ing only scalar operations.

e We further apply our acceleration techniques to
the so-called lazy-greedy algorithm [16-19], which is
known to perform well experimentally.

e We evaluate the execution time performance of our
accelerated algorithms over both synthetic and real-
life datasets, demonstrating that they significantly
outperform naive implementations. Our experiments
show that we can select comparisons from a dataset
involving more than 10® comparison pairs, each com-
prising 400-dimensional features, in less than an hour;
a naive implementation takes more than 10 days.

The remainder of this paper is organized as follows.
We discuss related work in Section 2. Owur problem
formulation and our accelerated greedy algorithm can
be found in Sections 3 and 4, respectively. We discuss
our accelerated lazy greedy algorithms in Sec. 5, and
present our numerical evaluations in Section 6. Finally,
we conclude in Section 7.

2 Related Work

Integrating classification and pairwise comparison labels
has received considerable attention recently [2,20-22].
Integrating regression labels with ranking information
was proposed in [2] as a means to improve regression
outcomes in label-imbalanced datasets, and similar ap-
proaches have been used to incorporate both “point-
wise” and “pairwise” labels in image classification tasks
[20,22]. Penalties used in this literature are variants
of the MAP estimation we describe in Sec. 3, and are
directly related to our Bradley-Terry generative model.
None of these works however deal with the problem of
how to collect pairwise comparison labels.
Experimental design (a.k.a. batch active learning)
is classic [12]. Mutual information is a a commonly
used objective [23,24], which is monotone submodular
under certain conditions [25]. Applying this objective
to our generative model retains submodularity but, as
in other settings [26], both (a) computing the posterior
of the model, as well as (b) evaluating the function

Table 1: Summary of Notation

N, R, S4 | sets of naturals, reals, and positive definite matrices

N number of samples in dataset

d sample dimension (i.e., number of features)

N dataset of samples

i,] sample indices in N

C set of pairwise comparisons

A the initial set with absolute labels

K number of comparisons to be collected

S subset of C to be collected

A regularization parameter in Ry

x,; feature vector of sample i in R?
T, j T; — Ty

X matrix of feature vectors x;, i € N

A matrix used in D-optimality criterion, given by (3.6)
f submodular objective

Yi absolute label of sample 7
Yi,j comparison outcome between ¢ and j

Si Bradley-Terry score for sample ¢

g parameter vector/model in RrR?

Q abstract set in submodular maximization (for us, Q = C)
e abstract element in Q (for us, e = (i,5) € C)

T, x; — x;, where e = (i, j)

A(e]lS) | marginal gain f(SUe) — f(S)

de proxy for marginal gain of element e

U Cholesky factor of matrix A~! = UTU

z; vectors used in Factorization Greedy, equal to Ux;
v auxiliary vector used in Scalar Greedy

when having access to this posterior, are intractable.
Many natural objectives are submodular, and are thus
amenable to approximation via the greedy algorithm by
Nembhauser et al. [13]; indeed, submodularity arises in a
broad array of active learning problems [27,28].

Our setting is closest to—and motivated by—work by
a series of papers that study experimental design in the
context of comparisons. Jamieson and Nowak [29] as-
sume the existence of a total ordering, and which is
learned in the absence of features. Grasshof et al. [30]
and Glickman et al. [31] study experimental design on
the Bradley-Terry model, again without features. They
use D-Optimal design and KL-divergence as optimiza-
tion objectives, respectively. Closer to our setting, Guo
et al. [5] study four different submodular experimental
design objectives, including D-optimality, Mutual Infor-
mation, Information Entropy, and Fisher Information,
in the high-dimensional setting. The authors establish
experimentally that Mutual Information performs best,
but is intractable, while D-optimality is a close second.
Guo et al. implement only the naive greedy algorithm,
whose complexity is O(N2d?K), and do not exploit the
underlying structure of the problem to accelerate the al-
gorithm; this limits their experiments to datasets with
no more than 10* comparisons. We depart in identifying
ways to exploit this structure to drastically accelerate
the greedy algorithm, enabling us to solve problems with
10® comparisons in less than an hour.

3 Problem Formulation

Consider a setting in which data samples are labeled by
an expert. Given a sample to label, the expert produces

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

a binary absolute label, indicating the sample’s class.
Given two different samples, the expert produces a com-
parison label. Comparison labels are also binary and in-
dicate precedence with respect to the classification out-
come. For example, for a medical diagnosis problem,
absolute labels indicate the existence of disease, while
comparison labels indicate the relative severity between
two samples. An experimenter has access to noisy ab-
solute labels generated by this expert. At the same
time, the experimenter wishes to augment the dataset
by adding comparison labels. As comparison labels are
numerous (quadratic in the dataset size) and their ac-
quisition is time-consuming, the experimenter collects
only a subset of all possible comparison labels.
Formally, the experimenter has access to N samples,
indexed by i € N = {1,...,N}. Every sample has a
feature vector x; € Rd, known to the experimenter; we
denote by X = [x;]ienr € R™*? the matrix of feature
vectors. For some set A C N, the experimenter has
access to binary absolute labels y; € {+1,—-1}, i € A,
generated by the expert. We define C = {(4,7) : i,j €
N,i < j} to be the set of possible pairwise comparisons.

3.1 Experimental Design. The experimenter
wishes to augment the existing dataset of absolute
labels by adding comparison labels y; ; € {+1,—1},
where (i,7) € C. Tt is expensive and time consuming
to collect all |C| = w comparison labels. The
experimenter thus collects K labels from a subset
S C C, where |S| = K. To determine the optimal such
set 8*, the experimenter solves:

(3.1) Maximize f(S)— f(0),
' subj. to S CC,|S| =K.

where objective f : 2I°l — R captures how informative
samples in S are. We use the objective:

(3.2) f(S) =logdet\L;+> ma] + Y ai xl))
€A (i,7)€S

where x;; = x; — x;, A > 0 is a positive value,
and I; € R¥? is the d-dimensional identity matrix.
As above, sets A and S represent the set of absolute
labels observed already and the set of comparisons to
be collected, respectively.

Objective (3.2) is motivated by D-optimal de-
sign [11], assuming a Bradley-Terry generative model
for comparison labels [32]. In particular, (3.2) is the
negative log entropy of a linear model learned under
Gaussian noise [11], and has been observed to have ex-
cellent performance as an experimental design objective
compared to a broad array of competitors, including

Mutual Information and Fisher Information [5,33]. Be-
fore elaborating on how to solve (3.1), we briefly discuss
how (3.2) arises under the Bradley-Terry model below.

3.2 D-Optimal Design Under the Bradley-
Terry Model. Assume that absolute and comparison
labels are generated according to the following proba-
bilistic model. First, there exists a parameter vector
B € R?, sampled from a Gaussian prior N(0, 0%I), such
that for all i € N and all (i, j) € C the absolute labels y;
and comparison labels y; ; are independent conditioned
on (3. Second, the conditional distribution of y; given
x; and 3 is given by a logistic model, i.e.,

(3.3) Py, = +1|x;, 8) = m, ieN.
Finally, the conditional distribution of y; ; given x;, z;
and B is given by the following Bradley-Terry model
[32]: every sample i € N is associated with a parameter
s(x;, B) = exp(BTx;) € Ry such that, for all (i,75) € C,

P(yi;=+1l@i, z;, 8) = #g,}%g)

(3.4)
Intuitively, score s(x,3) captures the propensity of
input @ to receive a positive absolute label, as well as
to be selected when compared to other objects.

The advantage of the generative model (3.3)-(3.4)
is that it leads to a tractable Maximum A-Posteriori
(MAP) estimation procedure for learning 3. Indeed,
after collecting both absolute and comparison labels,
the experimenter learns B by minimizing the following
negative log-likelihood loss function:

L(B; A,S) =N|B3 + i log(1 + eviB @)

(3:5) s BT (@
+Z(i,j)6810g(1 +e Yi,iB" (xi w]))7

where the coefficient \ equals 1/02. The loss £L(3; A, S)
is convex in 3; in fact, it can be seen as a special form of
logistic regression, in which the covariates of comparison
labels y; ; are given precisely by x; ; = x; — x;. Matrix

(36) A(S) = Mg+ e qmwixl + e Tigal;

used in our objective (3.2) is the Fisher information
matrix resulting from (3.5), when the underlying logistic
regression is approximated by a linear regression.

3.3 Greedy Optimization. Unfortunately, prob-
lem (3.1) is NP hard both for the D-optimality objec-
tive (3.2) as well as for many other objective functions
of interest [5,25,27]. However, we can produce an ap-
proximation algorithm using the theory of submodu-
lar functions. A set function f : 22 — R is submodu-

lar it f(TU{z})— f(T) = f(DU{z}) — f(D) for all

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Greedy Algorithm

Algorithm 2 Naive Greedy

1: procedure GREEDY(f,)

2 PREPROCESSING()

3 while |S| < K do

4 e* = FINDMAX(S)

5 UPDATES(S, €™)

6 end while

7 return S

8: end procedure

1: procedure PREPROCESSING()

2: Set S=10

3: end procedure

1: procedure FINDMAX(S)

2 return e* = argmax A(e|S) > A(e|S) given by (3.8).
eeQ\S

3: end procedure

1: procedure UPDATES(S, e™)

2 Set S=8Ue"

3: end procedure

T CDCQand z € Q. Function f is called monotone
if f(DU{z})— f(D)>0forall D CQand z €. The
greedy algorithm, summarized in Alg. 1, solves problem

Maximize f(S),

(3.7)
st. [S|<K,8CQ,

where f is monotone submodular over set €. Starting
from S = (), the algorithm iteratively adds the element e
to the present set S that maximizes the marginal gain:

(3.8) A(elS) = F(SUe) - £(S),

among all elements e € Q \ S; this is repeated until
|S| = K. The following guarantee holds:

THEOREM 3.1. Nemhauser et al. [15] If f is monotone
submodular, the set S returned by Alg. 1 satisfies:
f(8) = f0) = (1= 1/e)(f(S*) — f(D)), where S* is
the optimal solution to Eq. (3.7).

Objective (3.2) is indeed monotone submodular.
However, set Q = C is quadratic in the number of inputs
N. This is prohibitive for large datasets, particularly
when marginal gains A(e|S) are themselves expensive to
compute. As described in the next section, for f given
by (3.2), each marginal gain computation is O(d?); this
motivates us to accelerate Alg. 1.

4 Accelerating The Greedy Algorithm

In this section, we describe how to accelerate the greedy
algorithm, improving its complexity from O(N2d%K)
to O(N?(d + K) + N(dK + d?) + Kd?). In doing
so, we exploit the inherent structure of set Q@ = C,
namely, that it comprises pairwise comparisons. When
N > d + K, the dominant term is O(N?(d + K));
constants in this term amount to the time to compute 1
scalar multiplication and 1 scalar addition; as such, the
algorithm scales very well in practice (see Sec. 6).
Before presenting our accelerated method, we first
review a naive implementation (Naive Greedy) of Alg. 1

Naive greedy algorithm, as described in Sec. 4.1. The main GREEDY

procedure is the same as in Alg. 1.

1: procedure PREPROCESSING(X)

2: Compute Ay’ = (Mg + 3 2]) "' Set A= = Aj!; Set
i€A

S=0
: end procedure
: procedure FINDMAX(S)
Compute de = z. A" '@, fore € C \'S
return e* = argmax d.
ecC\S
end procedure
procedure UPDATES(S, e™*)
a-1 T A—1
Set S =8Ue*; Set A7l = A71 - &_TerTerD
1+mc* A @ %

WO R e

: end procedure

applied to our problem (3.1). We also construct an
intermediate algorithm (Factorization Greedy), with
slightly improved complexity (O(Nd?K + N?dK)) over
Naive Greedy. Finally, we present our fastest algorithm
(Scalar Greedy), that attains the aforementioned guar-
antee. We present Factorization Greedy both for the
sake of clarity, but also because its lazy implementa-
tion, presented in Section 5, has advantages over the
corresponding Scalar Greedy algorithm. All algorithms
receive the sample feature matrix X € R"*? as input.

4.1 Naive Greedy. Our first “naive” implementa-
tion slightly improves upon the abstract greedy al-
gorithm (Alg. 1), which operates on the value or-
acle model, by (a) computing a simpler version of
gains A(e|S), and (b) speeding-up matrix inversion via
the Sherman-Morisson formula [15]. For f given by
Eq. (3.2), by the matrix determinant lemma [34]:

(4.9) AlelS) = log(1 + zl A x.),

where A = A(S) = (MNLg+>,c g mixl +> cgmexl) €
S¢ and . = x;; = @; —x; forall e = (i,5) € C\ S. As
log(1 4+ s) is monotone in s, to implement FINDMAX in
Alg. 1, it suffices to compute the maximum among
(410) de=do(S)=axl A 'w., e=(i,j) €C\S.

We call d., e € C, the prory marginal gain. We further
reduce computation costs using the fact that

AT NSz szl ATL(S)

e

1+mzﬂ*A*1(S)mﬁ* ’

(4.11) AN (Sue)=ATYS) -
by the Sherman Morrison formula [15]. These two
observations lead to the implementation of the nalve
greedy algorithm presented in Alg. 2. The algorithm
uses the same main Greedy procedure as Alg. 1. In
preprocessing, we initialize matrix A~!. At each itera-
tion, we find element e* that maximizes d. rather than
A(e|S), and subsequently update A~! via (4.11).

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3 Factorization Greedy

Algorithm 4 Scalar Greedy

Factorization greedy algorithm, as described in Sec. 4.2. The main

GREEDY procedure is the same as in Alg. 1, while the PREPROCESSING

and UPDATES are the same as Alg. 2.

1: procedure FINDMAX(S)

2: Factorize the matrix A™! into A™! = UTU by Cholesky
factorization.

3 Compute and save z; = Ux; for all i € N.
4: Compute and save d. = ||z; — z;]||2 foralle € C\ S.
5 return e* = argmax d.

e€C\S

6: end procedure

Inverting matrix Ay has complexity! O(d*37),
though for small A the Sherman-Morisson formula can
be used again to reduce this to O(d?|A|). Computing
d. and updating A~! via the Sherman Morrison for-
mula have complexity O(d?). Hence, Alg. 2 has a total
complexity O(N2d2K), which scales poorly for high N
and d. Note that the O(d?>37) term in pre-processing is
dominated by higher order terms and therefore ignored;
this holds for all algorithms in this section.

4.2 Factorization Greedy. Naive Greedy requires
O(N?d?) operations per iteration. To avoid this, we
exploit the pairwise comparison structure of x, = x; —
x;, for e = (i,7) € C. Note that positive definite matrix
A~! can be factorized into A~! = UTU by Cholesky
factorization , where matrix U is an upper triangular
matrix. Then, d. satisfies:

(4.12) de =2l A '@, = ||Uz.||3 = ||Ux; — Ux;||5.
This gives rise to the following algorithm, summarized
in Alg. 3. PREPROCESSING and UPDATES are as in
the Naive Greedy algorithm (Alg. 2). For FINDMAX,
in each iteration, we first factorize the matrix A~! into
UTU and calculate and save z; = Ug; for all i € N.
Then we calculate d. via Eq. (4.12) for all e € C \ S,
and return the maximal element. Cholesky factorization
has O(d?®7) complexity [35]. Computing Uz; for all
i € N involves O(Nd?) computations, while computing
all do, e € C\ S, via Eq. (4.12) requires O(N?d)
computations. Hence, the complexity of FINDMAX in
Alg. 3 is O(Nd? + N?2d), and the entire Factorization
Greedy algorithm has complexity O(Nd?K + N2dK).

4.3 Scalar Greedy. In both previous algorithms, d.
is computed from scratch, not taking advantage of the
previous iteration’s computation. Let d., d, be the
values of the (proxy) marginal gain for e at iterations
k and k + 1, respectively. By the Sherman Morrison
formula:

TA_lme* mZ*A_l

L _ T,\2
(418) e =de —@e Sorn e = de - (@)
TAs matrix inversion has the same complexity as matrix

multiplication.

Scalar greedy algorithm, as described in Sec. 4.3. The main GREEDY

procedure is the same as in Alg. 1.

1: procedure PREPROCESSING(X)

2: Compute Ay’ = (Mg + 3 2]) "' Set A= = Aj!; Set
i€A

S=0.
Compute U: factorize the matrix Aal into UTU by Cholesky
factorization.

@

4: Compute and save z; = Ux; for all i € N.
5: Compute and save d. = ||z; — z;]||2 for all e € C.
6: end procedure
1: procedure FINDMAX(S)
2: return e* = argmax d.
ecC\S
3: end procedure
1: procedure UPDATES(S, e*)
2: S=8uUe" .
3: Compute v = A zex

ViteL ATz .
Compute and save z; = v a; for all i € N.
Compute and save de = de — (z; — zj)2 foralle € C\ S.
A=At —woT.

end procedure

NS T

A 'z - oy . .
where v = ———=<_ . Exploiting the pairwise
\/1+:13:*A*1:73e* p g p
structure x. = x; — x;, we get:

(4.14) d,=d. — (zi —)%, e=(i,j) €Q\S,

where z; = wv'x;. This gives rise to our final

greedy implementation, summarized in Alg. 4. In
PREPROCESSING, we factorize matrix A~! into A~! =
UTU and calculate d, for all e € C via Eq. (4.12). In
UPDATES, we compute vector v and scalars z; = v x;
for all i € . Then we update every d. through Eq.
(4.14), and A~! via Eq. (4.11), using v again.

Preprocessing requires O(d?37) time for the matrix
inversion and Cholesky factorization, O(Nd?) for com-
puting all z;, i € N, and O(N?d) for computing all d_,
e € C. Computing v and updating A~! via the Sherman
Morrison formula have complexity O(d?) for one itera-
tion. Computing v”ax;, for all i € A involves O(Nd)
computations, while updating d, for all e € Q\ S via
Eq. (4.14) requires O(N?) scalar computations. Hence,
the total complexity is O(N?(K + d) + N(dK + d?) +
d’K). The O(N?(K +d)) term, due to the computation
of de, e € C in preprocessing and at each iteration, dom-
inates the rest when N > K,d. The constant in this
term thus involves only the time to perform 1 scalar sub-
traction and 1 scalar multiplication; as such, it remains
tractable even for large datasets.

5 Accelerating the Lazy Greedy Algorithm

The lazy greedy algorithm [16, 36, 37] is a well-known
variant of the standard greedy algorithm; it reduces
execution time by avoiding the computation of all
|\ S| marginal gains A(e|S) at each iteration. This
is accomplished via a “lazy” evaluation of each inner
loop in FINDMAX in Alg. 1; though no bounds exist on

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

the worst-case amortized complexity of lazy greedy, it
performs quite well in practice [28,38].

We employ the same optimizations we describe in
Sec. 4 to also accelerate the lazy greedy algorithm.
Each of the three accelerations we mentioned in the
previous section yield corresponding “lazy” versions,
namely Naive Lazy Greedy, Factorization Lazy Greedy,
and Scalar Lazy Greedy, respectively. A full description
of these three versions can be found in the extended
version of this paper [39].

In the latter two cases (Factorization and Scalar
Lazy Greedy), an additional form of accelaration can
be used. Due to lazy evaluation, not all quantities such
as, e.g., z (in Line 3 of Alg. 3 and Line 4 of Alg. 4)
are used throughout an iteration. Such quantities can
either be pre-computed at each iteration, or computed
on the spot, as needed. Though the latter appears
to be a faster approach, in practice, it is not always
the case: pre-computation can be faster, as matrix-
vector multiplication is more efficient than for-loops in
many languages. As discussed in Sec. 6, we implement
both variants in python, and refer to them as with-
precomputation and with-memoization, respectively.

6 FEvaluation

We use synthetic and real datasets to evaluate the
performance of different greedy and lazy greedy algo-
rithms.? We evaluate these algorithms both in terms of
execution time and classification performance w.r.t. ac-
curacy of predictions, after labels are collected.

6.1 Evaluation Setup. We begin by describing our
evaluation setup.

Datasets. In our synthetic dataset, the absolute
feature vectors x; € R?, i € N, are sampled from a
Gaussian distribution N(0, 0, 14) with feature dimension
d ranging from 20 to 400 and dataset size N ranging
from 500 to 15000. We also sample a parameter
vector 3 from Gaussian distribution N(0,0814). We
generate absolute labels y;, i« € N, using Eq. (3.3)
with 8 = E /C4, where C, is a positive scalar. Finally,
we generate |C| comparison labels via Eq. (3.4), with
B = ,@ Parameter C, allows us to control the relative
noise ratio between absolute and comparison labels; we
set it to C, = 1.2 in our experiments.

We also use seven real-life datasets, summarized in
Fig. 1(a). The first four (ROP, Sushi, Netflix, Camra)
contain comparison labels; the remaining (ROP5K,
SIFT, and Microsoft URL) do not, and are used only
for measuring the execution time of our algorithms. A
detailed description of all datasets is in [39].

20

Algorithms. We implement eight greedy algorithms:
Naive Greedy (NG), Factorization Greedy (FG), Scalar
Greedy (SG), Naive Lazy Greedy (NL), Factorization
Lazy Greedy with Pre-Computation (FLP), Factoriza-
tion Lazy Greedy with Memoization (FLM), Scalar
Lazy Greedy with Pre-Computation (SLP), and Scalar
Lazy Greedy with Memoization (SLM). In each dataset,
we set A in (3.2) to about 1075 the average norm of fea-
ture vectors (see Fig 1(a)).

We also implement the greedy algorithm with Mu-

tual Information (Mut), Fisher Information (Fisher),
and Entropy (Ent) objectives, as described in [5] (also
reviewed in [39]). Finally, we implement a Random
(Ran) baseline method, in which the set S is selected
uniformly at random from Cyy.p,.
Experiment Setup. In each experiment, we parti-
tion the dataset N into three datasets: a training set
Nirn, a test set Nege, and a validation set Nya1. Wher-
ever available, we denote by Ciyy C C the corresponding
comparison set restricted to pairs of objects in Nepn.
We select a random subset A from N¢pn whose absolute
labels y;, i € A are presumed revealed to the experi-
menter. Then we use our greedy algorithms to select
S C Cimn, |S| = K. We record the running time tx of
each algorithm for different values of K € N executed
on the training set. For synthetic data, we repeat each
experiment 150 times, each time with a different ran-
domly generated dataset; we report average ty values,
as well as standard deviations. For real datasets in-
cluding absolute labels (ROP, Sushi, Netflix, Camra),
we also repeat experiments 150 times, each time with a
different randomly selected set A.

For both synthetic and real datasets for which we
have comparison labels (ROP, Sushi, Netflix, Camra),
we collect the K comparison labels from & and train
a model B € R? using the labels in A and S via
MAP estimation (3.5), and predict both comparison and
absolute labels in the test set. In doing so, we select the
parameter A in (3.5) as the value that maximizes AUC
on the validation set. Especially, for ROP, we measure
the performance w.r.t. the reference standard diagnosis
(RSD) label prediction rather than absolute labels, even
though the model is trained on (noisier) absolute labels.
For each dataset, we perform cross validation, repeating
the partition to training and test datasets and keeping
the validation set fixed. To produce confidence intervals,
each 4-fold cross validation is repeated 150 times, i.e.,
over 150 different random data shuffles (for the Netflix
dataset, the experiment is executed for 150 users).

6.2 Execution Time Performance. We first study
the execution time in terms of N, d, and K.
Dependence on N. In Fig. 2 we plot the running time

ur code is publicly available at: https://github.com/neu-spiral/AcceleratedExperimentalDesign

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/neu-spiral/AcceleratedExperimentalDesign

Dataset N d |A] IC] [Cirn| Th(s) A Aac A 0 50 100 150 200
ROP 100 156 4950 1770 6.30 | 0.938 | 0.858 | 0.0001 ey 100
Sushi 100 20 | 15 4821 1560-1762 | 0.878 | 0.932 | 0.682 | 0.000L | _ FLP P
Netflix || 833-1198 | 30 | 20 | 180K—540K | 160K—450K | 88.4 | 0.811 | 0.871 | 0.000L | 3| % fm

CAMRa || 8963300 | 10 | 20 | 400K-5M 400K-5M 459 0.77 | 0.79 | 0.000 | < e sip i . (5.0
SIFT 3000 128 | 30 4.5M 4.5M 12K | N/JA | N/A | 0.001 E| & sim S
ROP5K 3000 143 | 30 15M I5M 14K | N/A | N/A | 0.0001 | © S P
MSLR 325-996 | 134 | 30 | 52K-500K | 52K-500K 252 N/A | N/A [0.0001 AR

(a) Dataset Summary

Batch Size K
(b) Scalability

Figure 1: (a) Summary of real datasets. Columns N, d, |A|, and |C| indicate the number of samples, the dimension, the number of absolute
labels, and the number of comparisons, respectively. Column |Cip| is size of train comparison set, while T, is the execution time under NG
for & C Cim, |S| = 200. Columns Ay, Aac, indicate the test set AUC of absolute and comparison labels, respectively, when & = Ciq; we
report these only for datasets for which we have comparisons. Finally, A is the positive value in Eq. (3.2). For Netflix and Camra, we indicate
value ranges across 150 users as appropriate; for MSLR, we report ranges for 150 queries. (b) Scalability of Lazy Greedy Algorithm. Time
execution result for large synthetic dataset with N = 15000, d = 400, and |C| = 1.125 x 108.

(a) K=50 (b) K=200
—+ NG 10°
: / 104
—+— SG
+- NL
FLP 10
-4- FLM 103
<l -
o i h103
g 102
=
*l102
10t
1
100 10
500 1500 3000 500 1500 3000
Data Size N Data Size N

Figure 2: Average execution time for synthetic data under different
sample sizes N, with feature dimension d = 400 and K set to K = 50
in subfigure (a) and K = 200 in subfigure (b).

(a) K=50 (b) K=200
10°
—| - 104
)
)
£
[e =
. ho?
e o~o—~~<:f\-.i
p s £ v ey
20 100 400 20 100 400

Feature Dimension d Feature Dimension d

Figure 3: Average execution time for synthetic data under different
feature dimensions d, with sample size N = 3000 and K set to K = 50
in subfigure (a) and K = 200 in subfigure (b).

(a) NL
d=20

(c) SLP

2500

800
2000

o H® <«

600
4 1500

1000 400

Time (s)
\s\

o 500 200
e
y = . o o
0 100 200 O 100 200 O 100 200
Batch Size K Batch Size K Batch Size K

Figure 4: Average execution time as a function of K on synthetic data
with N = 5000 for three lazy greedy algorithms.

as a function of the data size N for synthetic datasets.
The quadratic—O(N?)-scaling of all algorithms is clearly

oz FG B SG ©W NL mmm FLP mEE FLM BN SIP M SLM
o - 7 10°
g,
i 1071
i\
g N 102
EIAN
i
=2 AN N 10—3

ROP Netflix Sushi Camra ROP5K SIFT MSLR

Figure 5: Execution time for different datasets and different algo-
rithms, normalized by NG execution time (see col. T}, (s) in Fig. 1(a)).

evident, although the actual execution time varies dras-
tically between different algorithms. Both FG and SG
improve upon NG by almost two orders of magnitude.
Lazy algorithms improve over NG by as much as 3 or-
ders of magnitude when K = 50. However, scalar lazy
greedy with memoization (SLM) performs similarly to
FG and SG when K = 200, even worse than NL.
Almost universally, pre-processing versions (FLP
and SLP) outperform the corresponding memoized ver-
sions of the lazy algorithms (FLM and SLM). This is
because pre-computation involves a matrix-vector mul-
tiplication: in python’s NumPy library this is performed
in C language, and is more efficient than the python for-
loop inherent in memoization. This negates any benefit
of computing only the values needed via memoization.
Finally, SLP is the best performer when K = 50, while
FLP outperforms it for large N when K = 200.
Dependence on d. Fig. 3 shows performance over
synthetic datasets as a function of dimension d. The
advantage of FG and SG over the naive algorithm
(NG) is clearly evident: the latter grows super-linearly
in d. In contrast, the effect of d on FG is linear,
while on SG it is almost imperceptible. A striking
difference in behavior is observed in the lazy greedy
algorithms, that are very sensitive to d. Indeed, these
algorithms perform poorly in lower dimensions, with the
gap between performance for low to high dimensions
being sometimes close to two orders of magnitude. This
is because, for high d, there is are many new dimensions
to discover; as a result, almost maximal elements in the
heap remain almost maximal in subsequent iterations,
leading to early loop terminations. In contrast, in low
d, maximality changes drastically between iterations,

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Prediction AUC ROP-DataSet

0.94

- i -y -
’.'p:--“x - 0.92 -
cepe¥l, 102

RSD

Comparison

o 50 150 200 o 50

100 150 200
Batch Size K

100
Batch Size K

Figure 6: Test set AUC and execution time for ROP dataset, when
comparisons samples are selected via D-optimal, Fisher, Entropy and
Random and Mutual Information. The classifier is trained via MAP
(3.5) on the training set. The left top figure is the test AUC for
RSD label, the left bottom figure is the test AUC for comparison
labels. The right figure is the execution time for different algorithms.
For the D-optimal objective, we record the execution time for Naive
Greedy, Factorization Lazy and Scalar Lazy Greedy Algorithm. We
only execute Mutual Information for K < 12.

leading to full loop executions.

Dependence on K. We further explore this phe-
nomenon in Fig. 4, that shows the dependence of lazy
algorithm on K. We observe a ‘jump’ in execution time,
indicating an expensive loop execution that contributes
highly to the execution cost. The smaller d is, the earlier
this jump is observed.

Scalability. All in all, we observe that our accelera-
tions, on both standard and lazy greedy algorithms, can
significantly reduce the execution time of experimental
design. In Fig. 1(b), we illustrate this by running the
accelerated lazy algorithms for a large synthetic dataset
with N = 15000 and d = 400, containing more than 10%
comparison pairs. The running time of Naive Greedy
(NG) on this dataset exceeds 10 days. As seen in Fig. 1,
the running time can be shortened to less than 1 hour
under the Factorization Lazy (FLP) algorithm. We also
observe that SLM performs worse than NL, while SLP
outperforms NL, again due to the advantage of matrix-
vector multiplications over python for-loops.

Time Performance Evaluation on Real Datasets.
Experiments on the seven real datasets further corrob-
orate observations made over synthetic data. Fig. 5
shows the execution time normalized by the execu-
tion time of NG for each dataset (see column T),(s)
in Fig. 1(a)). All algorithms yield an improvement.
Lazy greedy algorithms perform well overall, but for the
Sushi, CAMRa, and Netflix datasets, this improvement
is diminished due to their low dimension d. The highest
improvement in all algorithms compared to NG is ob-
served in the largest of our datasets, ROP5K, where FG
and SG yield an improvement of 1 order of magnitude,
while SLP performs exceedingly well, leading to an im-
provement of 2 orders of magnitude over NG. Overall,
FLP consistently improves performance over NL.

6.3 Prediction Performance All 8 algorithms us-
ing D-Optimality as an objective produce the same se-

lected set S (namely, the one determined by the greedy
algorithm). We give some intuition of the quality of
the model learned via MAP estimation (3.5) in compar-
ison to competitors. This selection has been known to
outperform competitors such as Fisher Information and
Entropy objectives [5]. For the sake of completeness,
we show in Fig. 6 the prediction quality of the resulting
trained model w.r.t AUC of both absolute and com-
parison labels over the test set, on the ROP dataset.
Remaining datasets for which we have comparison la-
bels (Sushi, Netflix, and Camra) are shown in [39]. In
all cases, estimators learned over labels collected by the
greedy algorithm significantly outperform random se-
lection. Fisher Information and Mutual Information are
sometimes better, but are also exceedingly time consum-
ing, between 102 — 102 times slower than D-optimal NG.
Finally, Entropy is fast, but the prediction performance
is not as good as under NG.

We observe similar performance in the remaining
datasets, shown in [39]. For the Netflix and Camra
datasets, we can only scale Mutual Information and
Fisher Information to K < 10, as their complexity
is O(N?2K) and O(N*K), respectively. In the Sushi
and Netflix dataset, the best AUC comes from the D-
optimal design algorithm. For the ROP dataset, the
D-optimal and Fisher information outperform random
for all batch sizes. For the Camra dataset, as d = 10, the
D-optimal design algorithm outperforms Random only
when the batch size is less than 100. Finally, Entropy
is time efficient but has worse accuracy than all other
methods. Our D-optimal Naive Greedy and its variants
have good accuracy and are time-efficient; accelarated
methods FLP and SLP are even faster than Entropy.

7 Conclusion

We have shown that experimental design for pairwise
comparisons under the D-optimality criterion can be
significantly accelerated by exploiting the underlying
geometry of pairwise comparisons. Given the prevalence
of submodularity in batch active learning objectives, it
would be interesting to identify methods through which
these results could extend to other objectives of interest.
These include objectives that are structurally similar
(such as A-optimality or E-optimality [11]), as well as
objectives like mutual information, for which even the
function value oracle is not tractable.

8 Acknowledgement

Our work is supported by NIH (RO1EY019474, P30EY10572),
NSF (SCH-1622542 at MGH; SCH-1622536 and CCF-1750539 at
Northeastern; SCH-1622679 at OHSU), and by unrestricted de-
partmental funding from Research to Prevent Blindness (OHSU).

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

References

(1]

(5]

(8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

J. K-Cramer, J. P. Campbell, D. Erdogmus, et al. Plus
disease in retinopathy of prematurity: improving diag-
nosis by ranking disease severity and using quantitative
1mage analysis. Ophthalmology, 2016.

D. Sculley. Combined regression and ranking. In KDD,
2010.

M. S. Desarkar, S. Sarkar, and P. Mitra. Aggregating
preference graphs for collaborative rating prediction. In
Recsys, 2010.

M. S. Desarkar, R. Saxena, and S. Sarkar. Preference
relation based matriz factorization for recommender
systems. In UMAP, 2012.

Y. Guo, P. Tian, J. Kalpathy-Cramer, S. Ostmo, J. P.
Campbell, M. F. Chiang, D. Erdogmus, J. Dy, and
S. Ioannidis. Experimental Design Under the Bradley-
Terry Model. In IJCAI, 2018.

N. Stewart, G. DA Brown, and N. Chater. Absolute
identification by relative judgment. Psychological Re-
view, 2005.

A. Brun, A. Hamad, O. Buffet, and A. Boyer. To-
wards preference relations in recommender systems. In
ECML/PKDD, 2010.

Y. Zheng, L. Zhang, X. Xie, and Wei-Ying Ma. Mining
interesting locations and travel sequences from GPS
trajectories. In WWW. ACM, 2009.

Y. Koren and J. Sill. OrdRec: an ordinal model for
predicting personalized item rating distributions. In
Recsys, 2011.

M. Schultz and T. Joachims. Learning a distance metric
from relative comparisons. In NIPS, 2004.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

F. Pukelsheim. Optimal design of experiments. STAM,
1993.

G. L. Nemhauser, L. A. Wolsey, and M. L Fisher. An
analysis of approximations for mazrimizing submodular
set functions. Mathematical Programming, 1978.

G. H. Golub and C. F. Van Loan. Matriz computations.
JHU Press, 2012.

J. Sherman and W. J. Morrison. Adjustment of an
inverse matriz corresponding to a change in one element
of a given matriz. Ann. Math. Stat, 1950.

M. Minoux. Accelerated greedy algorithms for maximiz-
ing submodular set functions. In Optimization tech-
niques. 1978.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi,
J. Vondrak, and A. Krause. Lazier Than Lazy Greedy.
In AAAI 2015.

H. Lin and J. Bilmes. A class of submodular functions
for document summarization. In HLT, 2011.

B. Mirzasoleiman, A. Karbasi, R. Sarkar, and
A. Krause. Distributed submodular mazimization:
Identifying representative elements in massive data. In
NIPS, 2013.

L. Chen, P. Zhang, and B. Li. Fusing pointwise

[23]

[24]

and pairwise labels for supporting user-adaptive image
retrieval. In ICMR, pp 67-74, 2015.

H. Takamura and J. Tsujii. FEstimating numerical
attributes by bringing together fragmentary clues. In
HLT, 2015.

Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. PPP:
Joint pointwise and pairwise image label prediction. In
CVPR, 2016.

J. Liepe, S. Filippi, M. Komorowski, and M. P. Stumpf.
Mazimizing the information content of experiments in
systems biology. PLOS Comput. Biol, 2013.

D. R. Cavagnaro, J. I. Myung, M. A. Pitt, and
J. V. Kujala. Adaptive design optimization: A mutual
information-based approach to model discrimination in
cognitive science. Neural computation, 2010.

A. Krause and C. E. Guestrin. Near-optimal nonmyopic
value of information in graphical models. arXiv preprint
arXiv:1207.1394, 2012.

A. G. Busetto, A. Hauser, G. Krummenacher,
M. Sunnaker, S. Dimopoulos, C. S. Ong, J6. Stelling,
and J. M. Buhmann. Near-optimal experimental design
for model selection in systems biology. Bioinformatics,
pp 2625-2632, 2013.

A. Krause and D. Golovin. Submodular function maxi-
mization., 2014.

D. Golovin and A. Krause. Adaptive submodularity:
Theory and applications in active learning and stochas-
tic optimization. JAIR, 2011.

K. G. Jamieson and R. Nowak. Active ranking using
pairwise comparisons. In NIPS, 2011.

U. GraBlhoff and R. Schwabe. Optimal design for the
Bradley—Terry paired comparison model. Statistical
Methods and Applications, 2008.

M. E. Glickman and S. T. Jensen. Adaptive paired
comparison design. Journal of statistical planning and
inference, pp 279-293, 2005.

R. A. Bradley and M. E. Terry. Rank analysis of
incomplete block designs: 1. The method of paired
comparisons. Biometrika, 1952.

X. He. Laplacian regularized D-optimal design for
active learning and its application to image retrieval.
IEEE Transactions on Image Processing, 2010.

D. A. Harville. Matriz algebra from a statistician’s
perspective. Springer, 1997.

W. H. Press. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007.
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. In KDD, 2007.

A. Krause and C. Guestrin. Near-optimal observation
selection using submodular functions. In AAAI, 2007.
Z. Changshui, H. Guangdong, and W. Jun. A fast algo-
rithm based on the submodular property for optimization
of wind turbine positioning. Renewable Energy, 2011.
Y. Guo, J. Kalpathy-Cramer, S. Ostmo, J. P. Campbell,
M. F. Chiang, D. Erdogmus, J. Dy, and S. Ioannidis.
Accelerated Experimental Design for Pairwise Compar-
ison 2019. http://arxiv.org/abs/1901.06080.

Copyright (© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

http://arxiv.org/abs/1901.06080

	Introduction
	Related Work
	Problem Formulation
	Experimental Design.
	 D-Optimal Design Under the Bradley-Terry Model.
	Greedy Optimization.

	Accelerating The Greedy Algorithm
	Naïve Greedy.
	Factorization Greedy.
	Scalar Greedy.

	Accelerating the Lazy Greedy Algorithm
	Evaluation
	Evaluation Setup.
	Execution Time Performance.
	Prediction Performance

	Conclusion
	Acknowledgement

