

Biologically Available Pb: A Method for Ancient Human Sourcing Using Pb Isotopes from Prehistoric Animal Tooth Enamel

John R. Samuelsen^{1,2} (corresponding author) and Adriana Potra³

1. Arkansas Archeological Survey, 2475 N Hatch AVE, Fayetteville, AR 72704
2. Department of Anthropology, Old Main 330, University of Arkansas, Fayetteville, AR 72701, USA
3. Department of Geosciences, 340 N. Campus Drive, 216 Gearhart Hall, University of Arkansas, Fayetteville, AR 72701, USA

Abstract: This study analyzes Pb isotopes combining biological (ancient human and prehistoric animal teeth) and geological (soil leachate, whole rock, and rock leachate) samples to determine the origins of prehistoric skeletal elements. It exemplifies how the biologically available Pb method assesses the early lifetime locations of ancient human populations using prehistoric animal teeth and the multivariate/linear nature of Pb isotope data. Lead isotopes provide a valuable technique, in part due to the correlation between their six stable isotope ratios. Other studies have used Pb isotopes for similar purposes, but no clear method for determining a local range has yet been formally defined and tested. The biologically available Pb method uses many prehistoric animal tooth enamel samples to establish a baseline for local ratios in the region, then compares their ratios' linear patterning to human remains to test if they are non-local. The case study compares Pb isotopes from prehistoric animal teeth, human teeth, and whole rocks from southwest Arkansas. These results are compared to animal samples from Louisiana and Mississippi and human data from Illinois and New Mexico. Soil leachates, Pb concentrations of tooth enamel, and trace element analysis are used to assess contamination. Comparisons to southwest Arkansas whole rock Pb isotope ratios suggest they are too variable to be used for

direct comparison to ancient human remains, illustrating that prehistoric animal teeth are more appropriate for direct comparison to prehistoric human teeth. The biologically available Pb method provides a key analysis tool needed for studies of ancient human sourcing.

Keywords: Pb; isotopes; sourcing; Sr; Caddo; warfare; contamination

1 **1. Introduction**

2 Many studies use strontium (Sr) isotope ratios to assess ancient human geographic origins
3 by establishing a range of expected local ratios based on the content of archaeologically
4 recovered animal tooth enamel. While this technique is effective in many places, it is clear that in
5 some regions Sr isotope ratios are uniform across large areas. This is particularly true in the
6 midcontinental US (Hedman et al. 2018). Having wide ranges of commonly represented ratios at
7 the locality where human remains are found makes ancient human sourcing difficult, if not
8 impossible, with this isotopic technique alone. Researchers have suggested that using multiple
9 isotope ratios in combination, including Sr and lead (Pb), will lead to clearer results, allowing for
10 better interpretations about human origins (Kamenov and Curtis 2017). Pb isotope analysis is
11 commonly used in geologic studies (e.g. Crocetti et al. 1988; Goldhaber et al. 1995; Potra et al.
12 2018a, 2018b) and provides a multivariate isotopic dataset which (when combined with other
13 elements like Sr) has the potential to be more sensitive to regional differences than Sr alone.

14 Pb isotope analysis has been relatively underutilized in studies of ancient human
15 geographic origins in part due to the difficulty in getting sufficient concentrations of Pb from
16 tooth enamel, complications associated with modern Pb pollution, and difficulty with some
17 instrumentation (e.g. Gulson et al. 2018). Studies employing the technique for migration and
18 sourcing studies have greatly increased in the last few years as methods and instrumentation for
19 extraction and analysis improve (Dudás et al. 2016; Giovas et al. 2016; Grupe et al. 2018; Jones
20 et al. 2017; Price et al. 2017; Sharpe et al. 2016; Turner et al. 2009; Valentine et al. 2008, 2015).
21 Nonetheless, unlike the biologically available Sr method (Bentley 2006; Price et al. 2002), a
22 method to use Pb isotopes for assessing ancient geographic origins has yet to be formally defined
23 and demonstrated (Grupe et al. 2017). Studies often add this technique as part of a suite of

24 elements included in multi-isotope migration and sourcing studies where little time or space is
25 given to explicitly outlining and evaluating the effectiveness of methods used to construct Pb
26 isotope backgrounds. This has led to the basic underpinnings of the methods generally being
27 overlooked or assumed, in part due to its inferred similarity to the much better developed Sr
28 isotope technique. However, some researchers have put great effort into developing the
29 technique further (e.g. Dudás et al. 2016; Jones et al. 2017; Kamenov et al. 2018; Sharpe et al.
30 2016). This study aims to develop and evaluate the effectiveness of one method to establish a
31 local background with Pb isotopes for the purpose of assessing if ancient human populations are
32 local or non-local to a region.

33 First, this study outlines a clear biologically available Pb method of analysis for ancient
34 human sourcing utilizing the multivariate and linear nature of Pb isotope data from prehistoric
35 animal teeth. This method is demonstrated and evaluated for effectiveness through a case study
36 of ancient human and non-migratory prehistoric animal remains from the southcentral US. Key
37 elements of this analysis include contrasting linear differences between Pb isotope ratios from
38 different regions and using animal samples from multiple sites as a baseline for comparison to
39 incorporate isotopic variation within the regions being compared. Second, the Pb isotope ratios
40 of human and animal teeth are compared to those of whole rocks, rock leachates, and soil
41 leachates to assess the utility of prehistoric animal teeth and geologic samples, particularly whole
42 rocks, for constructing backgrounds. Finally, the potential for evaluating contamination of tooth
43 enamel using soil leachates, Pb concentrations of tooth enamel, and trace element analysis
44 (Dudás et al. 2016; Kamenov et al. 2018) is discussed alongside an assessment of anthropogenic
45 Pb contamination of the burial environment.

46 *1.1 Pb/Sr Isotope Ratios and Geographic Origins*

47 *1.1.1 Isotopic Techniques*

48 Sr isotope analysis is a technique commonly utilized in archaeology to determine whether
49 people are local or non-local to a geographic area (Bentley 2006; Bentley and Knipper 2005;
50 Bentley et al. 2004; Buzon and Simonetti 2013; Chenery et al. 2010; Eerkens et al. 2016;
51 Hedman et al. 2009, 2018; Price et al. 1994; Price et al. 2002; Slater et al. 2014; Slovak and
52 Paytan 2011; Thornton 2011). Pb isotope analysis is relatively underutilized but has great
53 potential (Kamenov and Gulson 2014). Pb and Sr are trace elements found in soil, bedrock,
54 water, plants, and animals. Plants absorb these elements from the local geology where they grow.
55 People and animals, in turn, absorb Pb and Sr from the plants and animals they eat. Due to the
56 mechanism of Sr absorption in the stomach, plants are the dominant source of Sr for herbivores
57 and omnivores (Price et al. 1985). Lemons and Kennington (1983) have shown that Pb is even
58 more severely discriminated against than Sr.

59 There are four naturally occurring Pb isotopes (^{204}Pb , ^{206}Pb , ^{207}Pb , and ^{208}Pb). The
60 lightest of these, ^{204}Pb , is non-radiogenic while ^{206}Pb , ^{207}Pb , and ^{208}Pb are radiogenic and
61 represent decay products of ^{238}U , ^{235}U , and ^{232}Th , respectively (Dickin 2005; Faure and Mensing
62 2004; Malainey 2011). Therefore, the radiogenic Pb isotopes are affected by the geologic age of
63 bedrock. These isotopes increase in abundance relative to ^{204}Pb as the deposits age. Depending
64 on the original concentrations of U, Th, and Pb in the local geology, they will have different
65 abundances of radiogenic Pb isotopes, potentially leading to highly sensitive differences in Pb
66 isotope ratios in different areas.

67 *1.1.2 Pb Isotopes and Human Sourcing: Constructing a Local Range*

68 Recent studies have shown that Pb isotopes are revolutionizing biological sourcing
69 research since they result in a multi-dimensional dataset that allows for distinguishing different
70 geographic regions (Kamenov and Curtis 2017; Kamenov and Gulson 2014). Despite the
71 potential for environmental contaminants, Kamenov and Curtis (2017) show that Pb is extremely
72 useful at delineating human remains from different regions, even among modern European
73 populations, which is a strong endorsement of the technique.

74 Most studies combine Pb isotopes in multi-isotope evaluations of ancient human remains
75 (e.g. Jones et al. 2017; Price et al. 2017; Turner et al 2009; Valentine et al. 2015). Some of these
76 do not attempt to establish if the human remains are local or non-local to a region and instead
77 focus on other questions. Those that do attempt to find non-locals each use a different method to
78 construct an isotopic background and generally evaluate the remains by comparing to known
79 local humans, a few animal samples, or geologic data (e.g. Jones et al. 2017; Sharpe et al. 2016;
80 Valentine et al. 2015).

81 Direct measurements of soils, bedrock, and water provide an approximation of the
82 isotopic ratios of the geologic source material. These can be highly variable. However, humans
83 and animals amalgamate the Sr isotopes consumed as part of their diet, decreasing the range of
84 local isotopic ratios compared to that of the source materials. Since human and animal isotopic
85 ratios can be expected to be much more similar to each other than to rocks, it increases the value
86 of human to animal comparisons. This has been well established for Sr and forms the basis of the
87 biologically available Sr method (Bentley 2006; Price et al. 2002; Sillen et al. 1998; Slovak and
88 Paytan 2011). There is some disagreement on what samples are most appropriate for defining a
89 local range (Grimstead et al. 2017). While some researchers concentrate on animal samples for

90 defining Sr local ranges (Bentley 2006; Hedman et al. 2009, 2018; Price et al. 2002; Samuels
91 2016), others focus on geologic data or groundwater (e.g. Evans et al. 2010; Hodell et al. 2004).

92 It is unclear if the Pb isotopes behave similarly. There is a need for Pb isotope studies that
93 combine ancient human tooth enamel, many samples of prehistoric animal tooth enamel, and
94 geologic data from the same region to better understand how these different classes of data can
95 be compared. Grupe et al. (2018) sampled many animal bones (not tooth enamel) and human
96 remains but did not include a comparison to geologic data. Dudás et al. (2016:Figure 9a) showed
97 that the geologic data in surrounding areas was much more variable than the ancient human tooth
98 enamel, but did not include any prehistoric animals for comparison. Giovas et al. (2016) sampled
99 geologic data and both modern and prehistoric animals. They noted great differences between
100 geologic and animal data and suggested that the animal teeth may have been contaminated by
101 anthropogenic Pb. However, they did not include any human remains and most problematic
102 animals were modern samples, which would be more likely to be impacted by anthropogenic Pb.
103 Sharpe et al. (2016), similarly to Hodell et al. (2004) with Sr, constructed a Pb baseline using
104 mostly whole rocks with a few soil, plant, and rock leachate samples, but did not test the baseline
105 with ancient human remains to evaluate its effectiveness. This study attempts to build on this
106 research by combining Pb isotope data from ancient human teeth, prehistoric animal teeth, soil
107 leachates, whole rocks, and rock leachates from a single region to determine the origins of
108 prehistoric skeletal elements. Sampling for constructing a background focuses on prehistoric
109 animal teeth and whole rocks, with limited comparisons to ancient human teeth, soil leachates,
110 and rock leachates.

111 This study examines whether the biologically available Sr method similarly applies to Pb
112 isotope studies. This is accomplished by obtaining many prehistoric (non-migratory) animal

113 tooth enamel samples from a region and comparing them to ancient human remains to determine
114 if (1) the Pb signatures of animals match those of expected local human remains, (2) the resulting
115 Pb isotope ratios of animals are capable of differentiating humans from other regions, and (3) the
116 use of animals for establishing a local background is more effective than using only expected
117 local human remains. Rather than defining a local range with a formula like +/- two times the
118 standard deviation of the mean, the biologically available Pb method (as defined here) relies
119 heavily on the differentially linear (correlative) and multivariate nature of Pb isotopes to
120 differentiate regions. It is recommended that all six unique ratios be analyzed for linear
121 patterning ($^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, $^{206}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{206}\text{Pb}$, $^{207}\text{Pb}/^{206}\text{Pb}$, and $^{208}\text{Pb}/^{207}\text{Pb}$), which
122 generates 15 unique bivariate comparisons (Figure 1). Data with linear patterns yielding different
123 slopes may be generated by regional variability, multiple end-members, or “pseudo-isochron”
124 dynamics (Jones et al. 2017). There is also a possibility that linear patterning could be created
125 through in-vivo signatures getting mixed with contaminants, such as anthropogenic Pb.
126 Regardless of the individual causes for these linear patterns defined by the Pb isotope data
127 (assuming it is not contamination), the linear regression lines of various groups reflect the Pb
128 signatures of the region and can therefore be used as a fingerprint to assess origins using
129 bivariate comparisons (or multivariate comparisons, such as a principal component analysis).
130 Thus, even if the isotopic signature of some individuals within a specific group overlap in more
131 than one region, the slope of the regression line combined with all the isotopic values in that
132 specific group can aid in distinguishing it from the isotopic signature of another region. It is
133 suggested that multiple sites within a study area be sampled with multiple animal samples from
134 each site to account for potential intra-site and inter-site variation in Pb isotopes. Once the
135 isotopic signature of an area is defined, the human remains can be confidently compared with the

136 background value of that area. The humans whose isotopic ratios do not match the background
137 value should be considered non-local.

138 In order for human and animal teeth to be compared, differences in how they incorporate
139 Pb need to be considered. Studies have shown that modern animals can ingest significant
140 amounts of soil (and soil Pb), but these studies generally concentrate on modern, anthropogenic
141 Pb contaminated environments (e.g. Johnsen and Aaneby 2019; Johnsen et al. 2019; Thornton
142 and Abrahams 1983). In environments with heavily contaminated soils, as much as 97% of the
143 absorbed Pb can be due to soil ingestion (Abrahams and Steigmajer 2003); however, as much as
144 60% can still be attributed to plant consumption in lesser contaminated environments (Thornton
145 and Abrahams 1983). These studies also tend to investigate pasture animals that are restricted in
146 location and consume in areas with short grass, potentially increasing root and soil ingestion.
147 Durkalec et al. (2015) found that wild deer and bore absorbed significantly less Pb in a modern,
148 uncontaminated environment. This is particularly important when estimating the relative
149 contributions of plant and soil Pb as Yan et al. (2012) showed that plants may absorb less Pb
150 relative to soil Pb as soil Pb concentrations increase. Their findings are consistent with plant Pb
151 absorption from nutrient solutions which show that plant Pb concentrations can scale well below
152 a 1:1 rate with increasing soil Pb concentrations (Kabata-Pendias 2011:Figure 19.4). This
153 suggests that plant Pb could contribute significantly more Pb to animals relative to soil Pb in
154 uncontaminated environments.

155 Two factors, (1) modern anthropogenic Pb contamination of soils and (2) restricted
156 grazing areas, do not apply to prehistoric animal populations in the US. Since these factors did
157 not affect prehistoric animals, it is likely that plants provided more Pb to their diet. Even if
158 animals were consuming significant amounts of soil with their plants, the soil and plant isotopic

159 ratios would have been similar (soil and dust are the major sources for plant Pb [Chenery et al.
160 2012]). Therefore, soil ingestion should not greatly impact the comparisons between Pb isotopes
161 in prehistoric human and animal tooth enamel but could influence trace element concentrations.
162 Inhalation of dust (not affected by anthropogenic Pb prehistorically) would have affected both
163 humans and animals and therefore should not be a significant factor in comparisons.

164 *1.1.3 Contamination*

165 There is typically very little Pb in tooth enamel compared to Sr and therefore
166 contamination of Pb in tooth enamel is of greater concern. Care has to be taken to sample only
167 those materials which are least affected by this contamination (Dudás et al. 2016; Giovas et al.
168 2016; Kamenov 2008; Kamenov et al. 2018). Tooth enamel is generally used for Pb and Sr
169 isotope analyses and has been shown to be more resistant to contamination compared to bone (at
170 least with Sr). The isotopic signatures absorbed during tooth formation are locked into the
171 enamel, making it particularly useful in sourcing studies (Bentley 2006; Turner et al. 2009).

172 There are two major considerations related to contamination that are particularly
173 important for Pb isotope studies. First, the burial environment may be contaminated with
174 modern, anthropogenic Pb. Tooth enamel has the potential to be contaminated by this
175 anthropogenic Pb, but for this to be the case, the burial environment (i.e. soil) itself must be
176 contaminated. If the burial environment can be shown to be mostly free of such anthropogenic
177 Pb contamination, then the effect of this contamination on the teeth can be ruled out as a
178 significant factor. Second, the teeth may be contaminated by soil whether anthropogenic Pb is a
179 factor or not.

180 This study uses soil leachates (water and weak-acid leaching) and trace element analysis
181 of soils to assess if the burial environment has been contaminated by anthropogenic Pb. This

182 includes a trace element analysis of Pb, Cu, and Zn concentrations and comparisons to
183 contaminated and uncontaminated locations in northern Arkansas. Soil contamination of tooth
184 enamel is assessed using three methods. (1) Pb isotope ratios of soil leachates and teeth are
185 compared to each other. Differences in their isotopic signature would suggest the teeth were not
186 overwhelmed with soil Pb. (2) Pb concentration thresholds outlined by Dudás et al. (2016) are
187 used to assess contamination of human teeth. (3) Duplicate tooth samples are assessed for
188 contamination using trace elements based on Kamenov et al.'s (2018) study. The results of these
189 three methods are compared to assess the effectiveness of the methods.

190 *1.2 The Case Study*

191 *1.2.1 The Crenshaw Skull and Mandible Cemetery*

192 The Crenshaw site (3MI6) is centrally located in the Southern Caddo Area (Figure 2). It
193 is a multiple-mound, Caddo ceremonial center (Samuelsen 2014). Caddo archaeologists
194 recognize its importance in the region due its clear ritual importance to the prehistoric Caddo
195 (Hoffman 1970, 1971; Schambach and Early 1982). Crenshaw is located on Quaternary deposits
196 in the West Gulf Coastal Plain and is surrounded by Tertiary and Cretaceous deposits in the
197 uplands (Figure 3). Further to the north, the Ouachita Mountains consist of bedrock of varying
198 ages, from Mississippian to Pre-Cambrian. The streams and rivers that lead to Crenshaw are
199 sourced from these mountains and therefore their weathered and redeposited sediments help
200 make up the Quaternary landscape around Crenshaw and other sites in the Red River and Little
201 River drainages.

202 Crenshaw was used as a cemetery between at least A.D. 900 and 1400 based on burial
203 artifacts and radiocarbon dates (Durham and Davis 1975; Moore 1912; Samuelsen 2014;
204 Weinstein et al. 2003; Wood 1963). Geophysical investigations have uncovered evidence of

205 occupation areas, although the timing is unclear (Samuelson 2010). Clarence B. Moore's (1912)
206 survey of the site revealed there were at least six mounds (A through F). Mound C was destroyed
207 by collectors in 1961, but a salvage excavation of the mound was executed by the University of
208 Arkansas Museum which resulted in the preservation of some material and information from the
209 mound (Durham and Davis 1975; Wood 1963). Burials were excavated from Mound F by
210 landowners and Arkansas Archaeological Survey (ARAS) staff in 1968 (Samuelson 2009;
211 Schambach 1982).

212 In 1983, Frank Schambach and volunteers salvaged human skulls and mandibles
213 deposited in clusters on the southern portion of the site representing 344 individuals (Zabecki
214 2011). These areas are referred to as the West Skull Area (WSA) and North Skull Area (NSA).
215 Other clusters of skulls were occasionally uncovered southwest of Mound C by relic hunters.
216 The Rayburn Skull Cluster, consisting of eight skulls, was excavated by Schambach from this
217 area in 1968. Clusters had various numbers of individuals represented. Some consisted of a
218 single person, others had a few skulls and a mandible included, while others consisted of as
219 many as a hundred mandibles (Zabecki 2011). Accelerator mass spectrometry dating shows they
220 were deposited over time between A.D. 1253 and 1399, indicating that this was not a single
221 event, such as a large local massacre (Samuelson 2014). They are unlikely to represent victims of
222 local warfare. The prevalence of local warfare suggested by a deposit of such size would be
223 expected to have major impacts in the rest of the cultural system (e.g. fortification/nucleation).
224 This does not occur in Late Prehistoric southwest Arkansas and neither does any strong evidence
225 of violent trauma (Samuelson 2016). One potential exception is evident in the Ouachita region of
226 southwest Arkansas, also culturally affiliated with the Caddo. Three burials were excavated at
227 the Hardman site (3CL418) that consisted of articulated skeletons without skulls (Early 1993).

228 Upside-down bowls were placed over their missing heads. Most studies on the topic suggest the
229 skulls and mandibles at Crenshaw are victims of warfare from other regions (Akridge 2014;
230 Brookes 1999; Burnett 2010; Powell 1977; Schambach 2014; Schambach et al. 2011; Zabecki
231 2011).

232 *1.2.2 Limitations of Sr and the Need for Pb Isotope Studies*

233 Only one study (Samuelsen 2016) has suggested that the human skulls and mandibles
234 found at Crenshaw were locals buried in accordance with local cultural traditions. Samuelsen
235 (2016) reanalyzed the Sr isotope ratios of samples taken from the skulls and mandibles and
236 concluded they were most likely local since they matched the local isotopic signature defined by
237 the animal remains. However, key weaknesses highlight the need for additional data. The success
238 of Sr studies relies on a small range of Sr isotope ratios at the locality where the remains were
239 buried and different ratios in other areas (e.g. Eerkens et al. 2016). The skulls and mandibles
240 match the local Sr range, but the ancient human Sr data from the rest of the eastern US is too
241 similar to distinguish people from other regions based solely on Sr isotopes (Figure 4). Recently
242 published Sr isotope data on animal teeth from the midcontinent confirm the similarity (Hedman
243 et al. 2018). This greatly weakens the ability to draw conclusions based on Samuelsen's (2016)
244 analysis since it would suggest that even if the remains came from elsewhere, they would also
245 likely match the local Sr isotope signature.

246 Kamenov and Curtis (2017) note the same concern with using Sr isotopes alone, namely
247 that they can be similar in many different regions. They state that combining them with Pb
248 isotopes can solve this problem since different regions yield different Pb isotope ratios that can
249 be used to differentiate between groups of people. In order to achieve this, a clear method for
250 analyzing Pb isotopes from human remains to evaluate if they are local or non-local must be

251 defined and demonstrated. The current study accomplishes this by comparing Pb isotope ratios
252 from 22 distinct human teeth from Crenshaw and Hardman to 80 animal teeth from southwest
253 Arkansas, Louisiana, and Mississippi. Published data from the Elizabeth site in west Illinois and
254 the vicinity of Pueblo Bonito in northwest New Mexico also allowed for human to human
255 comparisons (Dudás et al. 2016; Jones et al. 2017; Price et al. 2017). These published results are
256 compared to illustrate the utility of the method, although are not considered a possible area of
257 origin for the skulls and mandibles. Hedman et al. (2018), however, studied migration in the
258 midcontinent and noted similarities in Sr isotope ratios in west Illinois (American Bottom)
259 humans and southwest Arkansas animals, potentially indicating migration between these areas.
260 Comparing Pb isotopes of individuals from west Illinois and Mounds C and F at Crenshaw will
261 evaluate the possibility of migration to southwest Arkansas from west Illinois. The geologic
262 setting in west Illinois (mostly Paleozoic) and northwest New Mexico (mixture of Cretaceous
263 and Lower Tertiary) are quite different from southwest Arkansas. The current teeth data are also
264 compared to current Pb isotope data from 18 whole rock and 26 soil leachate samples, and to
265 published whole rock (n=46) and rock leachate (n=9) data from southwest Arkansas (Cains
266 2019; Duke et al. 2014; Simbo et al. 2019).

267 **2. Materials and Methods**

268 *2.1 Sample Selection*

269 Human teeth were selected from articulated and bundle burials from Mounds C (n=7) and
270 F (n=6) at Crenshaw to serve as a local comparison (Table 1). The Rayburn Skull Cluster (n=5)
271 was selected as a potential non-local group. These represent 5 skulls from an 8-skull cluster
272 which are part of 352 excavated skulls and mandibles from the site. Second molars were used for

273 most samples to assess their location of geographic origin during early childhood. Two samples
274 required the use of first molars, more closely assessing their location during infancy, and one
275 sample required the use of a third molar, assessing their location during late adolescence
276 (Buikstra and Ubelaker 1994:47, Figure 24). Animal teeth from Mound F and near an ash bed
277 structure on the south edge of the site (n=12) were sampled to provide a set of Pb isotope ratios
278 from the site (Table 2). Other local animal samples (n=44) were selected from six sites in
279 southwest Arkansas, north of Crenshaw: Martin Farm, Tom Jones, Bell, Millwood Site #35, Old
280 Martin, and Graves Chapel. Human teeth (n=4) were selected from Hardman in the Ouachita
281 region to test if the skulls could relate to headless burials from this adjacent region (would still
282 be considered Caddo) while comparative animal teeth (n=8) were selected from both Hardman
283 and Hedges (3HS60). In addition to published data from other regions (Jones et al. 2017; Price et
284 al. 2017), animal teeth from the Fish Hatchery 2 site in northwest Louisiana (n=8) and the Austin
285 site in northwest Mississippi (n=8) were selected (Figure 5). Both sites are situated in Quaternary
286 alluvial deposits near major rivers. Austin was sampled because it has evidence of prehistoric
287 violence, and headless burials recovered from the nearby Bonds site have been interpreted to be
288 possible victims of raiding parties from Crenshaw (Brookes 1999). All animal samples were
289 taken from prehistoric contexts and were non-migratory animal specimens. Soil leachate samples
290 (n=26) were taken from soil cores and from previous excavations at Crenshaw (Table 3). Igneous
291 whole rock samples of syenites and carbonatites (n=18) were collected from two sources in
292 central-southwest Arkansas (Table 4), Granite Mountain and Magnet Cove (in the immediate
293 vicinity of Hedges). The published literature on whole rock and rock leachates from southwest
294 Arkansas includes a variety of other locations, including Prairie Creek, which is nearest to the
295 sites where most of the local animals were sampled (see Figure 3).

296 2.2 *Lab Methods*

297 2.2.1 *Tooth Drilling and Pre-treatment*

298 Methods for processing tooth samples generally followed El Mugammar (2014), Slater et
299 al. (2014), and Turner et al. (2009) for strontium and lead on enamel. Each tooth was cleaned
300 through sonication in ultra-pure water for 30 minutes and dried overnight. A microscope was
301 used to allow for high accuracy drilling of the teeth and removal of dentin from enamel. The
302 surface of the enamel was abraded with a drill bit to clean and remove any potential
303 contaminants. A diamond wheel bit was used to cut approximately 50mg of enamel from each
304 tooth. Small animal teeth often did not have 50mg of enamel present, so amounts closer to 20mg
305 were used for these samples. Given the potential for dentin to be contaminated, it was clearly
306 removed from all human and deer samples. While every effort was made to remove dentin from
307 all samples, some samples of small animal teeth may have included very small portions of dentin
308 with the enamel due to the need to maximize enamel recovery. To remove any additional
309 contamination, the enamel was then sonicated for 60 minutes in ultra-pure water, sonicated for
310 30 minutes in 0.1M (all humans and animals AN57 B-AN156) or 1M (animals AN1-AN56)
311 high-purity acetic acid, sonicated in fresh acetic acid a second time for 5 minutes, and rinsed to a
312 neutral pH with ultra-pure water.

313 2.2.2 *Soil Leaching*

314 Soil leachates were processed following Potra et al. (2018b) and Church et al. (1994).
315 The soil samples were placed in acid-leached polypropylene cups. Some samples had dried out
316 and formed large chunks. About 5g of each sample was placed in an agate mortar. The soil
317 samples were broken up with an agate pestle until they no longer formed large (>2mm) chunks.
318 About 4g of each sample was placed in an acid-leached Teflon beaker along with 20ml of ultra-

319 pure water, shaken, and left to settle for 24 hours. Any organic material or clear portions of water
320 were removed from the surface with a pipette and the remaining portion was dried down on a hot
321 plate at 80°C. The samples were then leached in 15ml of 2N HCl in a Dubnoff metabolic
322 shaking incubator at 55°C for 2 hours. The leachate was then pipetted into acid-leached 15ml
323 centrifuge tubes and centrifuged for 30 minutes. A 0.25ml portion of the leachate was removed
324 for trace element analysis. A 5ml portion of the leachate was taken from each sample for isotope
325 analysis. This was dried down and digested in 1N HBr three times. The final digestion consisted
326 of 4ml of 1N HBr. It was then centrifuged for 10 minutes at 3900 rpm to consolidate any
327 undigested organic material. The top 3ml of 1N HBr was removed for isotope analysis.
328 Processing water soil leachates followed a similar procedure: 2g of sample was used, no water
329 rinse and dry down was executed, 10ml of ultra-pure water was added instead of 15ml of 2N
330 HCl, and a 7ml portion of the leachate was used for Pb isotope analysis. Methods for processing
331 the whole rocks are as presented in Simbo et al. (2019).

332 *2.2.3 Column Chemistry for Teeth and Soil Leachates*

333 Column chemistry (ion chromatography) was executed in a class 100 clean room at the
334 University of Arkansas Radiogenic Isotope Laboratory. The samples were digested in 1M HBr in
335 acid-cleaned Teflon beakers. The columns, containing 0.1ml of Dowex 1X-8 Pb resin, were
336 cleaned with 2ml of 0.5N HNO₃, followed by 2ml of ultra-pure water. The columns were then
337 conditioned with 2ml of 6N HCl. Each enamel sample was loaded and then the columns were
338 washed three times with 1ml of 1N HBr. The Pb fraction from the sample was then eluted into a
339 Teflon beaker using 1-2ml of 20% HNO₃ and subsequently dried down on a hot plate inside a
340 class 10 laminar flow hood. The loaded sample and wash from the Pb column processing were

341 collected in a separate Teflon beaker. Column separation methods for whole rocks are as
342 presented in Simbo et al. (2019) and followed Pin et al. (2014).

343 *2.2.4 Pb Isotope Ratios and Concentration Analyses*

344 The Pb fraction was analyzed on a Nu Plasma multi-collector inductively-coupled plasma
345 mass spectrometer (MC-ICP-MS) using a desolvating system at the University of Arkansas'
346 Trace Element and Radiogenic Isotope Laboratory (TRAIL). The dried down Pb samples were
347 redissolved in 2% HNO₃ spiked with a thallium (Tl) standard created just before analysis,
348 following the procedures outlined by Kamenov et al. (2004). The Pb isotopes were corrected to
349 NBS 981 Pb standard values (²⁰⁸Pb/²⁰⁴Pb = 36.7006, ²⁰⁷Pb/²⁰⁴Pb = 15.4891, ²⁰⁶Pb/²⁰⁴Pb =
350 16.9356) based on Todt et al. (1996) using a time-based bracketing method. A standard was run
351 after every fourth sample. All standard and sample Pb data were normalized to
352 ²⁰⁵Tl/²⁰³Tl = 2.38750 (Kamenov et al. 2004). The standards (190) were run from August 2016 to
353 November 2019 (²⁰⁸Pb/²⁰⁴Pb = 36.675±0.006 2 σ , ²⁰⁷Pb/²⁰⁴Pb = 15.484±0.002 2 σ , ²⁰⁶Pb/²⁰⁴Pb =
354 16.931±0.002 2 σ). Average 2 σ standard error for standards was low (²⁰⁸Pb/²⁰⁴Pb = 0.002,
355 ²⁰⁷Pb/²⁰⁴Pb = 0.001, ²⁰⁶Pb/²⁰⁴Pb = 0.001). Given the small amount of Pb in many teeth, aiming to
356 a consistent concentration in solution for all samples is generally not possible. Sensitivity on
357 ²⁰⁴Pb for the 80ppb Pb standard and higher concentration samples was about 0.24v. Lower Pb
358 standard concentration (35ppb) was used for some teeth samples with lower Pb concentrations.
359 Samples with the lowest concentrations were analyzed using the time-resolved analysis method
360 which followed the procedure outlined by Valentine et al. (2008) and Kamenov et al. (2006).
361 Blank Pb concentration levels were less than 1‰ of all human, soil, and whole rock samples.
362 Blank levels exceeded 1‰ when compared to some animal samples with low concentrations (see
363 Table 2). Pb concentrations were similarly measured on the MC-ICP-MS and normalized to the

364 Pb standard concentrations, which were independently verified on a Thermo Scientific iCAP Q
365 ICP-MS. Pb concentrations for teeth are based on the post-column Pb fraction. However, it
366 should be noted that several procedures can affect these concentrations, including drilling
367 technique, acid pre-treatment, and column yield if using the post-column fraction.

368 Trace element analysis of teeth (taken from the digested portion prior to column
369 chemistry), following Kamenov et al. (2018), and soil leachates (Pb, Cu, and Zn) were carried
370 out on the iCAP Q ICP-MS and corrected to multiple concentrations of elemental standard ICP-
371 MS-68A. Duplicates of soil leachates were run from SO1 and SO20 (noted as “Dup”). SO1 and
372 SO1 Dup were not homogenized before sampling (taken from two soil chunks from the same
373 depth) to provide a measure of differences between samples at the same depth. SO20 and SO20
374 Dup were homogenized as soil dust prior to sampling to provide a measure of analytical
375 procedure accuracy. Differences between SO20 and SO20 Dup were within 2SD of the standard
376 error in all Pb isotopes. In terms of trace element concentrations, SO20 recorded 12%, 13%, and
377 15% higher Pb, Cu, and Zn values compared to SO20 Dup. Small differences in Pb isotope ratios
378 between SO1 and SO1 Dup can be explained by the heterogeneity of the samples. Differences
379 between SO1 and SO1 Dup in Pb, Cu, and Zn concentrations (13%, 18%, and 26%, respectively,
380 higher in SO1) were similar to SO20 and SO20 Dup. This reflects strong consistency in
381 analytical procedures for isotopes, but some variability in concentrations from leachates.

382 While variability in results can be introduced by the drilling technique and acid pre-
383 treatment of tooth enamel, considerable intra-tooth differences in isotope ratios can also be due
384 to teeth being formed over years and reflecting variable food sources (Buikstra and Ubelaker
385 1994; Lugli et al. 2017; Müller and Anczkiewicz 2015; Willmes et al. 2016). Teeth analyzed in
386 this study (processed as tooth enamel chunks, not powder) cannot be homogenized until just

387 before column separation. Therefore, intra-tooth differences can make duplicates (separate
388 enamel chunks) more a measure of intra-tooth variability than a measure of analytical procedure
389 accuracy. Since SO20 and SO20 Dup were homogenized and processed exactly the same as teeth
390 during and after column separation, they provide a means of testing that portion of the analytical
391 procedure. Four duplicate tooth samples were analyzed to ensure that intra-tooth differences (or
392 potentially analytical issues) would not affect interpretations (Table 5).

393 **3. Results and Discussion**

394 *3.1 Assessment of Contamination*

395 *3.1.1 Assessment of Anthropogenic Pb in the Burial Environment (i.e. Soil)*

396 There are several lines of evidence that suggest the burial environment at Crenshaw has
397 not been contaminated with anthropogenic Pb. This should not be surprising as Crenshaw is
398 located in a remote environment, far from any major roads, mines, or industry. First, previous
399 studies have shown that anthropogenic Pb generally remains in the topsoil and is relatively
400 immobile in soil (Clemens 2013; Kede et al. 2014). Kamenov et al. (2009) tested soil at multiple
401 depths and detected evidence of anthropogenic Pb contamination by illustrating different isotopic
402 signatures and higher concentrations closer to the surface. At Crenshaw, soil samples from
403 multiple depths within the same cores were tested at multiple locations (Table 3). The samples
404 25cm below the surface and deeper did not display evidence of consistently elevated Pb isotope
405 ratios, as shown in Kamenov et al. (2009), suggesting anthropogenic Pb is not a significant
406 factor.

407 Second, Pb, Cu, and Zn concentrations of soil leachates are far below what would be
408 expected of environments contaminated with anthropogenic Pb (Figure 6). Soil leachates within

409 Pb contaminated environments in northern Arkansas (Potra et al. 2018b) averaged 92.0ppm Pb,
410 42.7ppm Cu, and 344.9ppm Zn. By contrast, soil leachates at Crenshaw averaged 2.9ppm Pb,
411 1.4ppm Cu, and 2.5ppm Zn. Pb, Cu, and Zn concentrations at Crenshaw are 32, 30, and 137
412 times lower, respectively, than the contaminated environments of northern Arkansas. The
413 average Pb, Cu, and Zn concentrations at Crenshaw are also lower than all uncontaminated sites
414 in northern Arkansas. This indicates that Crenshaw is a relatively uncontaminated environment.

415 Third, there was a possibility that higher isotope ratios in the soil could be explained by
416 anthropogenic Pb; however, Pb isotope signatures of water and weak-acid soil leachate samples
417 contradict this (Table 3). The results of SO10 (B) and SO20 (B) show that the weak-acid
418 leachates have slightly higher Pb isotope ratios than the water leachates. If anthropogenic Pb
419 with elevated isotope ratios were impacting the soil, the higher ratios should have been reflected
420 in the water leachates as these would reflect the more labile surface contaminant. Instead, the
421 weak-acid leachates recorded higher ratios, indicating that the soil contains the higher ratio Pb
422 and that anthropogenic Pb is not a contaminant source.

423 Fourth, along similar lines, whole rocks in southwest Arkansas also have both low and
424 high Pb isotope ratios. Whole rock data (Cains 2019; Duke et al. 2014; Simbo et al. 2019)
425 illustrate that both low and high ratios are entirely consistent with naturally occurring ratios in
426 southwest Arkansas. Therefore, there is no need to explain high isotope ratios at Crenshaw or
427 elsewhere in southwest Arkansas by citing foreign materials.

428 Fifth, it is unlikely that high ratios reflected in the human remains in Mounds C and F are
429 due to anthropogenic Pb because of their burial depth. As mentioned earlier, anthropogenic Pb
430 tends to be constrained close to the surface of the soil (Clemens 2013). Many of the burials tested
431 in Mounds C and F were buried several meters below the surface (in mounds) while the Rayburn

432 Cluster, with lower Pb isotope ratios, was buried relatively close to the surface (but below the
433 topsoil). This is the opposite of what would be expected if high-ratio anthropogenic Pb were
434 affecting the soil and, therefore, the teeth.

435 Establishing the lack of significant anthropogenic Pb contamination is extremely
436 important as it indicates that the linear patterning in the current results is not due to a local ratio
437 range being stretched by a contaminant. The evidence overwhelmingly indicates that
438 anthropogenic Pb is not the cause of the linear patterning in the data and validates the linear
439 method of analysis used in this study.

440 *3.1.2 Assessment of Soil Contamination of Human Tooth Enamel*

441 Soil contamination of human tooth enamel is assessed using three methods: (1)
442 comparisons to Pb isotope ratios of soil leachates, (2) tooth enamel Pb concentrations, and (3)
443 trace element analysis. First, Pb isotope data from weak-acid soil leachates and Pb
444 concentrations from human tooth enamel were analyzed to assess contamination (Figures 7, 8).
445 Figures 7b and 8 show that there are differences between the Pb isotope ratios of the soil and
446 those of the human and animal teeth at Crenshaw. The linear pattern defined by the soil is
447 different from that defined by the Crenshaw humans and animals (Figure 8). There are three
448 exceptions to this trend, with samples HU5, HU6, and HU13 better matching the linear pattern of
449 the soil. These samples include the highest Pb concentration in Mound C (HU6) and the second
450 highest concentration in Mound F (HU13). This suggests that if soil contamination of the tooth
451 enamel is present, it does not significantly affect most of the samples as they still display
452 different Pb isotope signatures from the soil.

453 Four duplicate tooth samples and two duplicate soil leachate samples confirmed the
454 separation between these two groups of data (Figure 9). The four tooth duplicates were

455 consistent with other samples from Mounds C and F. The homogenized samples (SO20 & SO20
456 Dup) were nearly identical and the heterogenous soil leachate samples (SO1 and SO1 Dup) were
457 very similar. Some tooth duplicates were very similar, and some had more pronounced
458 differences, most likely due to intra-tooth variation in Pb isotopes. Regardless, these differences
459 did not contradict the linear patterning established by the original samples.

460 The second method, which assesses tooth enamel contamination using Pb concentrations,
461 did not provide a clear understanding of contamination. Dudás et al. (2016:28) used an upper
462 threshold of 0.7ppm and a lower one of 0.15ppm for Pb in prehistoric human tooth enamel,
463 outside of which the likelihood of contamination would increase. The authors based the
464 thresholds on ancient human teeth from New Mexico, so these values may only be applicable to
465 New Mexico and not to other environments. Humans with higher Pb concentrations could also
466 simply reflect a greater in-vivo exposure to Pb in their environment, and not post-burial
467 contamination.

468 No human samples at Crenshaw were below the lower threshold (0.15ppm) set by Dudás
469 et al. (2016) with the exception of HU15 B. Human teeth from Hardman were all below this
470 threshold, but so were most animal teeth, suggesting that the environment in this area has less
471 bioavailable Pb. Most samples from Mound C were above the 0.7ppm upper threshold set by
472 Dudás et al. (2016). The highest of these (HU6) was also the sample with the highest Pb isotope
473 ratios at the site (human, animal, or soil). A third of the samples from Mound F were above
474 0.7ppm and none of the Rayburn Cluster samples were above 0.7ppm. In terms of Pb isotope
475 ratios, most of the samples above the 0.7ppm threshold separated themselves from the soil
476 leachates, suggesting this threshold is not appropriate for Crenshaw. The human and animal
477 samples from Crenshaw that had Pb concentrations above 0.7ppm also tended to have higher

478 $^{208}\text{Pb}/^{204}\text{Pb}$ ratios (Figure 10). The pattern between elevated Pb isotope ratios and Pb
479 concentration was also somewhat represented in soil concentrations. The two soil samples (SO10
480 and SO20) with the highest Pb concentration also recorded the highest Pb isotope ratios, but
481 there was no correlation. The linearity of the human, animal, and soil Pb isotope data suggests
482 that the source for the elevated ratios has a higher concentration of Pb compared to the source for
483 the lower ratios.

484 The third method, using trace element concentration analysis, was key to indicating a
485 lack of contamination. Most teeth processed in this study were analyzed prior to Kamenov et
486 al.'s (2018) study. Therefore, four duplicate tooth enamel samples were analyzed for V, Mn, Fe,
487 La, Ce, Nd, Dy, Yb, Th, and U concentrations to determine if evidence of strong contamination
488 could be detected among some samples with high Pb isotope ratios in Mounds C and F. The
489 results indicated that all elements, except for V, were below the contamination threshold (Figure
490 11). If the value for V (0.3ppm) obtained on deciduous teeth by Curzon et al. (1975) is used, then
491 HU15 B would be below all thresholds. This is consistent with Kamenov et al.'s (2018:Figures 1,
492 3) figures showing no alteration to weak alteration and is inconsistent with Kamenov et al.'s
493 (2018:Figure 4) figure illustrating strong diagenetic alteration. This indicates that the high ratios
494 in the teeth are not due to anthropogenic Pb or soil contamination and that the linear patterning is
495 representative of in-vivo values.

496 The interpretation that is most in line with all these factors is that samples HU5 and HU6
497 have possibly been contaminated by soil. While HU13 is also close to the soil trend line, HU13
498 B suggests that HU13 has not been heavily contaminated, if at all. On bivariate diagrams, the
499 remainder of the teeth samples from Crenshaw show distinct isotopic patterns compared to the
500 soil leachates and are likely not contaminated (Figures 8, 9). Instead, the elevated Pb

501 concentrations and elevated Pb isotope ratios in some samples are likely reflecting input from a
502 local geologic end-member that is also contributing to the soil. As previously suggested, this
503 indicates that anthropogenic Pb is not the source of these isotopic ratios.

504 When these three methods (soil leachate companions, Pb concentrations, and trace
505 element analysis) are compared, the use of a particular Pb concentration threshold to assess
506 contamination at Crenshaw may not be appropriate. According to the soil leachates and trace
507 element data, the samples that are possibly contaminated range from 0.5ppm to 31.5ppm while
508 the relatively uncontaminated samples range from 0.12ppm to 5.3ppm. A threshold of 6ppm
509 could be used, but only one sample (HU6) is above the threshold and this sample has already
510 been identified as potentially contaminated by the soil leachate comparison.

511 *3.2 Demonstrating the Validity of the Biologically Available Pb Method*

512 Analysis of linear patterning of human and animal Pb isotope data from Crenshaw and
513 comparisons to other regions illustrate three significant results (Figures 12, 13). First, animal
514 samples from Crenshaw match the expected local human population, verifying that the animal
515 samples are capable of defining a local range that is directly comparable to human remains
516 (Figure 12a). The articulated burials in Mound C and the bundle burials in Mound F match the
517 Pb isotope data from animals in southwest Arkansas in all 15 bivariate comparisons. Second, the
518 animals define a linear pattern that also identifies the potential non-local group (the skull cluster)
519 as within the local range. If only the expected local human data were used, this group would
520 have been considered non-local (Figure 12b).

521 Third, the Pb isotope signatures of animals and humans from southwest Arkansas do not
522 match those of human remains from New Mexico or west Illinois (Figure 13a,b). While there is
523 some overlap, isotopic comparisons of each group show that the slope of the regression lines are

524 different enough to distinguish different groups. Even in the case of the Rayburn Cluster, where
525 individual samples are close to Illinois' range, the Rayburn Cluster distinguishes itself from west
526 Illinois when compared as a group (Figure 13c). This clearly illustrates that Pb isotopes can
527 discriminate between human remains from New Mexico and southwest Arkansas where Sr
528 isotopes alone cannot. Similarly, the Illinois human remains would have been considered local at
529 Crenshaw if using Sr isotope ratios alone; however, Pb isotope ratios clearly indicate that they
530 are non-local (Figure 13a). The Pb isotope ratios of samples from Mounds C and F are not
531 consistent with the linear patterning of those from west Illinois, suggesting that migration of
532 these individuals from west Illinois is unlikely. This conclusion is, nevertheless, based only on
533 the one locality, the Elizabeth site, that was tested.

534 Human and animal teeth from nearby regions were sampled to test if more proximal areas
535 to Crenshaw could be distinguished. This included samples from the Ouachita region of
536 southwest Arkansas and individuals from Hardman where headless bodies were buried. The Pb
537 isotope ratios of humans and animals in this area indicate that the Rayburn Cluster did not
538 originate from these localities in the Ouachita region, since the Pb isotope values of the Ouachita
539 samples are too low (Figure 14a). The Pb isotope ratios from the Ouachita region are generally
540 consistent with the southwest Arkansas linear patterning defined by the other sites in southwest
541 Arkansas, despite their considerable distance and different geology. The Fish Hatchery 2 site
542 down the Red River in northwest Louisiana and the Austin site in northwest Mississippi were
543 also selected for sampling. Given the proximity to Crenshaw, it was not expected that Fish
544 Hatchery 2 would be distinguishable. Also, it was not clear if northwest Mississippi would be
545 different either, given the similarly young geologic setting. However, the data showed that the Pb
546 isotope ratios for each location were restricted to a small range (Figure 13d). Even though they

547 overlap with a small part of southwest Arkansas, the data clearly suggest that the Rayburn Skull
548 Cluster, Mound C, and Mound F remains did not come from these sites in Louisiana and
549 Mississippi. It is important to note that the sampling is not sufficient to define a range for each of
550 these other regions and this analysis is only capable of distinguishing these specific localities.
551 However, the current results have established that the Pb isotope ratios from the Rayburn Skull
552 Cluster are consistent with the Pb isotope ratios of southwest Arkansas and that they are
553 inconsistent with the ratios from localities in the Ouachita region of southwest Arkansas,
554 northwest Louisiana, northwest Mississippi, west Illinois, and New Mexico. This is the same
555 cluster that has been repeatedly referred to as “trophy skulls” in the literature based on Powell’s
556 (1977) research.

557 This study has shown that 1) the Pb isotope ratios of animals match those in expected
558 local human remains, 2) the Pb isotope ratios of animals are different than those of known non-
559 local humans, and 3) the isotopic background created by animals was more effective at defining
560 a local isotopic range than using expected local human remains. This clearly demonstrates that
561 the method presented in the current study is valid and that, when additional clusters, localities,
562 and regions are tested, it will provide answers to the questions surrounding the origins of the
563 remains at Crenshaw that have otherwise been unobtainable.

564 *3.3 Comparisons to Geologic Data*

565 While the human and animal data can be directly compared, Pb isotope data from whole
566 rocks in southwest Arkansas indicate that they are far too variable to be useful for sourcing
567 human remains (Figure 15a). One concern is that the whole rock samples and the human and
568 animal samples were collected from different locations. There are two exceptions. First, Prairie
569 Creek (see Figures 3 and 15a) is close to the majority of sites and has extreme whole rock Pb

570 isotope ratios compared to those of humans and animals. Second, many whole rock samples were
571 gathered from Magnet Cove, which is in the immediate vicinity of one of the Ouachita region
572 sites. Comparisons between the Ouachita region sites and the Magnet Cove whole rocks confirm
573 that the whole rock Pb isotope signatures are significantly different from those of the humans
574 and animals (Figure 14b). Therefore, it is suggested that whole rocks not be used for direct
575 comparison to human remains, but they still provide some utility when the geologic regions are
576 different enough (e.g. Kamenov and Gulson 2014). Simbo et al. (2019) showed that the Pb
577 isotope ratios of whole rocks were more variable than those of rock leachates from the same rock
578 samples. Despite a relatively small number of samples (n=9), rock leachates in southwest
579 Arkansas also are much more variable than human or animal data and may not be directly
580 comparable (Figure 15a); however, the limited sampling requires further research to test this. By
581 contrast, the ratios of soil leachates from Crenshaw compare more favorably with those of
582 southwest Arkansas animals (Figure 7a), but there are still differences between the soil and the
583 human and animal remains from Crenshaw (Figures 7b, 8, 10). The reasoning for this pattern in
584 geologic variability in Pb isotope ratios (whole rock > rock leachates > soil) can be inferred from
585 the process of weathering and eventual deposition of Pb at the sites under study. The labile
586 fraction of soils is a major source of bioavailable materials (Anderson and Hillwalker 2008; John
587 and Leventhal 1995). Whole rocks include silicates that may not ever be biologically available
588 due to the difficulty in their dissolution. Rock leachates are made up of the more easily mobile
589 fraction, which is more likely to end up in river sediments and soils. Whatever is redeposited in
590 the form of soil is mixed up and redeposited, likely reducing extreme Pb isotope ratios and
591 creating a more amalgamated signature as is seen in the soil. This is the portion of Pb that is
592 absorbed by plants and ingested by humans and animals. Soil and modern plants could be useful

593 as direct comparisons to ancient humans as well but are more likely to be impacted by
594 anthropogenic Pb. Therefore, it is suggested that the biologically available Pb method is best
595 implemented using prehistoric animal teeth for defining the local isotopic background.

596 Even though the whole rocks may not be as appropriate for defining backgrounds as
597 prehistoric animal tooth enamel, such data can provide insights into the provenance of Pb in the
598 region. Pb isotope ratios of whole rocks from the Ouachita mountains suggest they could
599 represent the source of the end-member with lower isotope ratios that define the linear patterning
600 in southwest Arkansas (Figure 15). Some whole rock samples also indicate the presence of
601 higher Pb isotope ratios in the region.

602 **4. Conclusions**

603 The biologically available Pb method compares the human remains to a large number of
604 animal tooth enamel samples and utilizes their multivariate and linear nature to detect differences
605 between possible regions of origin. This method successfully identifies non-local individuals and
606 aids in evaluating of the origin of a skull cluster from the Crenshaw site in southwest Arkansas.
607 It clearly demonstrates that Pb isotope ratios from prehistoric animal tooth enamel are most
608 appropriate (particularly compared to whole rocks) for direct comparison to ancient human
609 remains. It is unclear at this stage if the method is capable of uniquely identifying areas of origin
610 and future studies, employing further development of the method will resolve this. The linear
611 patterning section of this method relies on the presence of linear trends in the data, so this section
612 may not be applicable if linear trends do not exist within a region. Each region may have
613 varying amounts of Pb in the environment, making a particular threshold of Pb concentration in
614 tooth enamel difficult to apply in different regions. Based on the analysis of contamination
615 provided here, it is suggested that trace element analysis, like the one described by Kamenov et

616 al. (2018), be used in combination with soil samples when assessing contamination rather than
617 relying on Pb concentrations alone. Further research in the area of contamination and
618 decontamination of Pb isotopes in ancient teeth is needed.

619 Two issues prevent broad conclusions in the case study. First, the sample size of a single
620 skull cluster is too small to make conclusions about the origin of the skull and mandible deposits
621 at Crenshaw (8 of 352 individuals). Second, the number of animals from other regions is too
622 small to provide a detailed regional map of Pb isotope ratios. All of the above-mentioned issues
623 are being researched as part of a Doctoral Dissertation Research Improvement Grant from the
624 National Science Foundation (grant number 1830438) and should result in further resolution of
625 these concerns.

626 **Acknowledgements**

627 This study is possible thanks to the support of the Caddo Nation of Oklahoma in
628 evaluating the cultural affiliation of the remains from the Crenshaw site. George Sabo III
629 provided valuable input as did many others at the Arkansas Archeological Survey. Erik Pollock
630 and Barry Shaulis of the University of Arkansas Stable Isotope Laboratory and TRAIL assisted
631 the authors in ensuring that the Nu Plasma ICP-MS and iCAP ICP-MS were functioning properly
632 so that high-resolution Pb isotope and concentration data could be collected. Celina Suarez
633 enabled accurate tooth drilling with the use of her Leica M80 microscope. Jess Groh, Laynie
634 Hardisty, and Paula Neuburger helped collect and process whole rock samples. Wesley Stoner
635 provided comments on early drafts. Kenneth Kvamme, Ann Early, Jami Lockhart, and Jerome
636 Rose also supplied support at various steps. George Kamenov and John Krigbaum supplied
637 useful advice about sample processing and analysis. Samples were obtained from Mary Suter of
638 the University of Arkansas Museum, Mary-Beth Trubitt from ARAS Arkadelphia Research

639 Station, John Connaway of the Mississippi Department of Archives and History, and Pete
640 Gregory and Jeffrey Girard of Northwestern State University. Soil cores at Crenshaw were
641 originally collected with the help of Margaret Guccione and her students.

642

643 Funding: The study was funded by three grants obtained in 2015 from the Department of
644 Anthropology at the UA and the Arkansas Archeological Society. Data from the Ouachita region
645 of southwest Arkansas was funded by a Doctoral Dissertation Research Improvement Grant from
646 the National Science Foundation (grant number 1830438).

647 **References**

648 Abrahams, Peter W. and Jörg Steigmajer
649 2003 Soil Ingestion by Sheep Grazing the Metal Enriched Floodplain Soils of Mid-Wales.
650 *Environmental Geochemistry and Health* 25:17-24. [doi:10.1023/A:102121740](https://doi.org/10.1023/A:102121740)

651 Akridge, D. Glen
652 2014 Stable Isotope Characteristics of the Skull and Mandible Remains from the Crenshaw Site, Miller
653 County, Arkansas. *The Arkansas Archeologist* 52:37-63.

654 Anderson, K. A. and W. E. Hillwalker
655 2008 Bioavailability. In *Encyclopedia of Ecology*, edited by Sven E. Jørgensen and Brian D. Fath, pp.
656 348-357. Elsevier, Amsterdam, Netherlands. [doi:10.1016/B978-008045405-4.00375-X](https://doi.org/10.1016/B978-008045405-4.00375-X)

657 Beehr, Dana Elizabeth
658 2011 Investigation of Middle Woodland Population Movement in the Midwestern United States Using
659 Strontium Isotopes. Unpublished Ph.D. dissertation, Department of Anthropology, University of
660 Illinois at Urbana-Champaign. Available from ProQuest Dissertations & Theses Global.
661 (1009712041).

662 Bentley, R. Alexander
663 2006 Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. *Journal of*
664 *Archaeological Method and Theory* 13:135-187. [doi:10.1007/s10816-006-9009-x](https://doi.org/10.1007/s10816-006-9009-x)

665 Bentley, R. Alexander and Corina Knipper
666 2005 Geographical Patterns in Biologically Available Strontium, Carbon and Oxygen Isotope
667 Signatures in Prehistoric SW Germany. *Archaeometry* 47:629-644. [doi:10.1111/j.1475-4754.2005.00223.x](https://doi.org/10.1111/j.1475-4754.2005.00223.x)

669 Bentley, R. Alexander, T. Douglas Price, and Elisabeth Stephan
670 2004 Determining the 'Local' $^{87}\text{Sr}/^{86}\text{Sr}$ Range for Archaeological Skeletons: A Case Study from
671 Neolithic Europe. *Journal of Archaeological Science* 31:365-375. [doi:10.1016/j.jas.2003.09.003](https://doi.org/10.1016/j.jas.2003.09.003)

672 Brookes, Samuel O.

673 1999 Prehistoric Exchange in Mississippi, 10,000 B.C.-A.D. 1600. In *Raw Materials and Exchange in the Mid-South, Proceedings of the 16th Annual Mid-South Archaeological Conference, Jackson, Mississippi—June 3 and 4, 1995*, edited by Evan Peacock and Samuel O. Brookes, pp. 86-94, Archaeological Report No. 29, Mississippi Department of Archives and History, Jackson.

677 Buikstra, Jane E. and Douglas H. Ubelaker

678 1994 *Standards for Data Collection from Human Skeletal Remains*. Research Series No. 44, Arkansas 679 Archeological Survey, Fayetteville.

680 Burnett, Barbara

681 1993 Bioarcheology. In *Caddoan Saltmakers in the Ouachita Valley: The Hardman Site*, edited by Ann 682 M. Early, pp. 169-86. Research Series No. 43, Arkansas Archeological Survey, Fayetteville.

683 2010 Intertribal Warfare between the Trans-Mississippi South and the Southern Plains. Paper 684 presented at the 52nd Caddo Conference and 17th East Texas Archaeological Conference, Tyler.

685 Buzon, Michele R. and Antonio Simonetti

686 2013 Strontium Isotope ($^{87}\text{Sr}/^{86}\text{Sr}$) Variability in the Nile Valley: Identifying Residential Mobility during 687 Ancient Egyptian and Nubian Sociopolitical Changes in the New Kingdom and Napatan Periods. 688 *American Journal of Physical Anthropology* 151:1-9. [doi:10.1002/ajpa.22235](https://doi.org/10.1002/ajpa.22235)

689 Cains, Julie

690 2019 Geochemical Analysis of Mississippian Cherts and Devonian-Mississippian Novaculites, Southern 691 Midcontinent Region. Master's Thesis, Department of Geosciences, University of Arkansas, 692 Fayetteville. Available from ProQuest Dissertations & Theses Global. (2244301784).

693 Chenery, Carolyn, Gundula Müldner, Jane Evans, Hella Eckardt, and Mary Lewis

694 2010 Strontium and Stable Isotope Evidence for Diet and Mobility in Roman Gloucester, UK. *Journal of 695 Archaeological Science* 37:150-163. [doi:10.1016/j.jas.2009.09.025](https://doi.org/10.1016/j.jas.2009.09.025)

696 Chenery, S. R., M. Izquierdo, E. Marzouk, B. Klinck, B. Palumbo-Roe, A. M. Tye

697 2012 Soil-plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope 698 catchment of the N. Pennines, UK — A Pb isotope study. *Science of the Total Environment* 699 433:547-560. [doi:10.1016/j.scitotenv.2012.03.004](https://doi.org/10.1016/j.scitotenv.2012.03.004)

700 Church, S. E., S. A. Wilson, R. B. Vaughn, and D. L. Fey

701 1994 Geochemical and lead-isotopic studies of river and lake sediments, upper Arkansas River basin, 702 Twin Lakes to Pueblo, Colorado. Open-File Report 94-412, U.S. Geological Survey.

703 Clemens, Stephan

704 2013 Lead in Plants. In *Encyclopedia of Metalloproteins*, edited by Robert H. Kretsinger, Vladimir N. 705 Uversky, and Eugene A. Permyakov, pp.1179-1183. Springer, New York, New York. 706 [doi:10.1007/978-1-4614-1533-6](https://doi.org/10.1007/978-1-4614-1533-6)

707 Crocetti, C. A., H. D. Holland, and L. W. McKenna

708 1988 Isotopic composition of lead in galenas from the Viburnum Trend, Missouri. *Economic Geology* 709 83:355-376. [doi:10.2113/gsecongeo.83.2.355](https://doi.org/10.2113/gsecongeo.83.2.355)

710 Curzon, M. E., F. L. Losee, and A. D. Macalister

711 1975 Trace elements in the enamel of teeth from New Zealand and the USA. *New Zealand Dental 712 Journal* 71, 80–83.

713 Dickin, Alan P.

714 2005 *Radiogenic Isotope Geology*. Cambridge University Press, New York.

715 Dudás, F. Ö., S. A. LeBlanc, S. W. Carter, and S. A. Bowring
 716 2016 Pb and Sr concentrations and isotopic compositions in prehistoric North American teeth: A
 717 methodological study. *Chemical Geology* 429:21-32. [doi:10.1016/j.chemgeo.2016.03.003](https://doi.org/10.1016/j.chemgeo.2016.03.003)

718 Duke, Genet Ide, Richard W. Carlson, Carol D. Frost, B. C. Hearn Jr., and G. Nelson Eby
 719 2014 Continent-scale linearity of kimberlite–carbonatite magmatism, mid-continent North America.
 720 *Earth and Planetary Science Letters* 403:1-14. [doi:10.1016/j.epsl.2014.06.023](https://doi.org/10.1016/j.epsl.2014.06.023)

721 Durham, James H. and Michael K. Davis
 722 1975 Report on Burials Found at Crenshaw Mound C, Miller County, Arkansas. *Bulletin of the*
 723 *Oklahoma Anthropological Society* 23:1-90.

724 Durkalec, M., J. Szkoda, R. Kolacz, S. Opalinski, A. Nawrocka, and J. Zmudzki
 725 2015 Bioaccumulation of Lead, Cadmium and Mercury in Roe Deer and Wild Boars from Areas with
 726 Different Levels of Toxic Metal Pollution. *International Journal of Environmental Research* 9:205-
 727 212. [doi:10.22059/IJER.2015.890](https://doi.org/10.22059/IJER.2015.890)

728 Early, Ann M.
 729 1993 Mortuary Features. In *Caddoan Saltmakers in the Ouachita Valley*, edited by Ann M. Early, pp.
 730 49-62. Arkansas Archeological Survey Research Series No. 43, Fayetteville.
 731

732 Eerkens, Jelmer W., Eric J. Bartelink, Laura Brink, Richard T. Fitzgerald, Ramona Garibay, Gina A.
 733 Jorgenson, and Randy S. Wiberg
 734 2016 Trophy Heads or Ancestor Veneration? A Stable Isotope Perspective on Disassociated and
 735 Modified Crania in Precontact Central California. *American Antiquity* 81(1):114-131.
 736 [doi:10.7183/0002-7316.81.1.114](https://doi.org/10.7183/0002-7316.81.1.114)

737 Evans, J. A., J. Montgomery, G. Wildman, and N. Boulton
 738 2010 Spatial variations in biosphere $^{87}\text{Sr}/^{86}\text{Sr}$ in Britain. *Journal of the Geological Society* 167:1-4.
 739 [doi:10.1144/0016-76492009-090](https://doi.org/10.1144/0016-76492009-090)

740 El Mugammar, Humam
 741 2014 *Srontium Isotope Analysis*. Technical Procedure 16.0. Environmental Isotope Laboratory,
 742 Department of Earth and Environmental Sciences, University of Waterloo, Ontario, Canada.

743 Faure, Gunter and Teresa M. Mensing
 744 2004 *Isotopes: Principles and Applications*. John Wiley & Sons Inc., Hoboken, New Jersey.

745 Giovas, Christina M., George D. Kamenov, Scott M. Fitzpatrick, and John Krigbaum
 746 2016 Sr and Pb isotopic investigation of mammal introductions: Pre-Columbian zoogeographic records
 747 from the Lesser Antilles, West Indies. *Journal of Archeological Science* 69:39-53.
 748 [doi:10.1016/j.jas.2016.03.006](https://doi.org/10.1016/j.jas.2016.03.006)

749 Goldhaber, Martin B., Stanley E. Church, Bruce R. Doe, John N. Aleinikoff, Joyce C. Brannon, Frank A.
 750 Podosek, Elwin L. Mosier, Cliff D. Taylor, and Carol A. Gent
 751 1995 Lead and Sulfur Isotope Investigation of Paleozoic Sedimentary Rocks from the Southern
 752 Midcontinent of the United States: Implications for Paleohydrology and Ore Genesis of the
 753 Southeast Missouri Lead Belts. *Economic Geology* 90:1875-1910.
 754 [doi:10.2113/gsecongeo.90.7.1875](https://doi.org/10.2113/gsecongeo.90.7.1875)

755 Grimstead, D. N., S. Nugent, and J. Whipple
 756 2017 Why a standardization of strontium isotope baseline environmental data is needed and
 757 recommendations for methodology. *Advances in Archaeological Practice* 5:184-195.
 758 [doi:10.1017/aap.2017.6](https://doi.org/10.1017/aap.2017.6)

759 Grupe, Gisela, Stefan Hözl, Christoph Mayr, and Frank Söllner
760 2017 The Concept of Isotopic Landscapes: Modern Ecogeochemistry versus Bioarchaeology. In
761 *Across the Alps in Prehistory: Isotopic Mapping of the Brenner Passage by Bioarchaeology*,
762 edited by Gisela Grupe, Andrea Grigat, and George C. McGlynn, pp. 27-48. Springer.
763 [doi:10.1007/978-3-319-41550-5_2](https://doi.org/10.1007/978-3-319-41550-5_2)

764 Grupe, Gisela, Dominika Klaut, Markus Mauder, Peer Kröger, Amei Lang, Christoph Mayr, and Frank
765 Söllner
766 2018 Multi-isotope provenancing of archaeological skeletons including cremations in a reference area
767 of the European Alps. *Rapid Communications in Mass Spectrometry* 32:1711-1727.
768 [doi.org:10.1002/rcm.8218](https://doi.org/10.1002/rcm.8218)

769 Gulson, Brian, George D. Kamenov, William Manton, and Michael Rabinowitz
770 2018 Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment
771 and Health Fields. *International Journal of Environmental Research and Public Health* 15, 723.
772 <https://doi.org/10.3390/ijerph15040723>

773 Harvey, Melissa Zebecki, Barbara Farley, and Jerome C. Rose
774 2014 Crenshaw (3MI6) burial descriptions. *The Arkansas Archeologist* 52:75–208.

775 Hedman, Kristin M., B. Brandon Curry, Thomas M. Johnson, Paul D. Fullagar, and Thomas E. Emerson
776 2009 Variation in Strontium Isotope Ratios of Archaeological Fauna in the Midwestern United States: a
777 Preliminary Study. *Journal of Archaeological Science* 36:64-73. [doi:10.1016/j.jas.2008.07.009](https://doi.org/10.1016/j.jas.2008.07.009)

778 Hedman, Kristin M., Philip A. Slater, Matthew A. Fort, Thomas E. Emerson, John M. Lambert
779 2018 Expanding the strontium isoscape for the American midcontinent: Identifying potential places of
780 origin for Cahokian and Pre-Columbian migrants. *Journal of Archaeological Science: Reports*
781 22:202-213. [doi.org:10.1016/j.jasrep.2018.09.027](https://doi.org/10.1016/j.jasrep.2018.09.027)

782 Hodell, David A., Rhonda L. Quinn, Mark Brenner, and George Kamenov
783 2004 Spatial Variation of Strontium Isotopes ($^{87}\text{Sr}/^{86}\text{Sr}$) in the Maya Region: a Tool for Tracking Ancient
784 Human Migration. *Journal of Archaeological Science* 31:585-601. [doi:10.1016/j.jas.2003.10.009](https://doi.org/10.1016/j.jas.2003.10.009)

785 Hoffman, Michael P.
786 1970 Archaeological and Historical Assessment of the Red River Basin in Arkansas. In *Archeological
787 and Historical Resources of the Red River Basin*, edited by Hester A. Davis, pp.135-194.
788 Research Series No. 1, Arkansas Archeological Survey, Fayetteville.
789 1971 A Partial Archaeological Sequence for the Little River Region, Arkansas. Unpublished Ph.D.
790 dissertation, Department of Anthropology, Harvard University. Available from ProQuest
791 Dissertations & Theses Global. (0249340).

792 John, David A. and Joel S. Leventhal
793 1995 Bioavailability of Metals. In *Preliminary Compilation of Descriptive Geoenvironmental Mineral
794 Deposit Models*, edited by Edward A. du Bray, pp. 10-18. U.S. Department of the Interior, U.S.
795 Geological Survey Open-File Report 95-831.

796 Johnsen, Ida Vaa and Jorunn Aaneby
797 2019 Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges. *Science of the
798 Total Environment* 687:41-49. [doi:10.1016/j.scitotenv.2019.06.086](https://doi.org/10.1016/j.scitotenv.2019.06.086)

799 Johnsen, Ida Vaa, Espen Marlussen, and Øyvind Voie
800 2019 Assessment of intake of copper and lead by sheep grazing on a shooting range for small arms: a
801 case study. *Environmental Science and Pollution Research* 8:7337-7346. [doi:10.1007/s11356-018-1824-6](https://doi.org/10.1007/s11356-018-1824-6)

803 Jones, Daniel S., Bethany L. Turner, Jane E. Buikstra, and George D. Kamenov
804 2017 Investigating the identities of isolated crania in the Lower Illinois River Valley through multi-
805 isotopic analysis. *Journal of Archeological Science: Reports* 13:312-321.
806 [doi:10.1016/j.jasrep.2017.02.030](https://doi.org/10.1016/j.jasrep.2017.02.030)

807 Kabata-Pendias, Alina
808 2011 *Trace Elements in Soils and Plants: Fourth Edition*. CRC Press, New York, New York.

809 Kamenov, George D.
810 2008 High-precision Pb isotopic measurements of teeth and environmental samples from Sofia
811 (Bulgaria): insights for regional lead sources and possible pathways to the human body.
812 *Environmental Geology* 55:669-680. [doi:10.1007/s00254-007-1017-y](https://doi.org/10.1007/s00254-007-1017-y)

813 Kamenov, George D. and Jason H. Curtis
814 2017 Using Carbon, Oxygen, Strontium, and Lead Isotopes in Modern Human Teeth for Forensic
815 Investigations: A Critical Overview Based on Data from Bulgaria. *Journal of Forensic Sciences*.
816 [doi:10.1111/1556-4029.13462](https://doi.org/10.1111/1556-4029.13462) Accessed Online (9/25/2017)

817 Kamenov, George D. and Brian L. Gulson
818 2014 The Pb isotopic record of historical to modern human lead exposure. *Science of the Total
819 Environment* 490:861-870. [doi:10.1016/j.scitotenv.2014.05.085](https://doi.org/10.1016/j.scitotenv.2014.05.085)

820 Kamenov, George D., Mark Brenner, and Jaimie L. Tucker
821 2009 Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat
822 sediments of southeast Florida (USA), ~1500 AD to present. *Geochimica et Cosmochimica Acta*
823 73:3549-3567. [doi:10.1016/j.gca.2009.03.017](https://doi.org/10.1016/j.gca.2009.03.017)

824 Kamenov, George D., Paul A. Mueller, A. Gilli, S. Coyner, and S.H.H. Nielsen
825 2006 A simple method for rapid, high-precision isotope analyses of small samples by MC-ICP-MS. *Eos
826 Transactions AGU* 87, Fall Meeting Supplement, V21A-0542.

827 Kamenov, George D., Paul A. Mueller, and Michael R. Perfit
828 2004 Optimization of mixed Pb–Tl solutions for high precision isotopic analyses by MC-ICP-MS.
829 *Journal of Analytical Atomic Spectrometry* 19:1262-1267. [doi:10.1039/B403222E](https://doi.org/10.1039/B403222E)

830 Kamenov, George D., Ellen M. Lofaro, Gennifer Goad, and John Krigbaum
831 2018 Trace elements in modern and archaeological human teeth: Implications for human metal
832 exposure and enamel diagenetic changes. *Journal of Archaeological Science*, v.99, p.27-34.
833 [doi:10.1016/j.jas.2018.09.002](https://doi.org/10.1016/j.jas.2018.09.002)

834 Kede, Maria Luiza F. M., Fabio V. Correia, Paulo F. Conceição, Sidney F. Salles Jr., Marcia Marques,
835 Josino C. Moreira, and Daniel V. Pérez
836 2014 Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using
837 TCLP, BCR and Earthworms. *International Journal of Environmental Research and Public Health*
838 11:11528-11540. [doi:10.3390/ijerph111111528](https://doi.org/10.3390/ijerph111111528)

839 Lemons, John and Garth Kennington
840 1983 Concentrations and Discrimination of Chemically Related Metals in a Food Chain. *Chemistry and
841 Ecology* 1:211-228. [doi.org:10.1080/02757548308070803](https://doi.org/10.1080/02757548308070803)

842 Lugli, Federico, Anna Cipriani, Julie Arnaud, Marta Arzarello, Carlo Peretto, and Stefano Benazzi
843 2017 Suspected limited mobility of a Middle Pleistocene woman from Southern Italy: strontium isotopes
844 of a human deciduous tooth. *Nature: Scientific Reports* 7:8615. [doi:10.1038/s41598-017-09007-5](https://doi.org/10.1038/s41598-017-09007-5)

845 Malainey, Mary E.
846 2011 Isotope Analysis. In *A Consumer's Guide to Archaeological Science: Analytical Techniques*,
847 edited by Mary E. Malainey, pp. 177-200. Springer, New York.

848 Müller, Wolfgang and Robert Anczkiewicz
849 2015 Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite – a problem
850 reassessed. *Journal of Analytical Atomic Spectrometry* 31:259-269. [doi:10.1039/c5ja00311c](https://doi.org/10.1039/c5ja00311c)

851 Moore, Clarence B.
852 1912 Some Aboriginal Sites on the Red River. *Journal of Academy of Natural Sciences of Philadelphia*
853 14:481-638.

854 Pin, C., A. Gannoun, and A. Dupont
855 2014 Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope
856 ratios determination by TIMS and MC-ICP-MS. *Journal of Analytical Atomic Spectrometry*
857 29:1858-1870. [doi:10.1039/C4JA00169A](https://doi.org/10.1039/C4JA00169A)

858 Potra, Adriana, W. Travis Garmon, John R. Samuels, Andrew Wulff, and Erik D. Pollock
859 2018a Lead Isotope Trends and Metal Sources in the Mississippi Valley-type Districts from the Mid-
860 continent United States. *Journal of Geochemical Exploration* 192:174-186.
861 [doi:10.1016/j.gexplo.2018.07.002](https://doi.org/10.1016/j.gexplo.2018.07.002)

862 Potra, Adriana, Laura S. Ruhl, and John R. Samuels
863 2018b Legacy Lead from Past Mining Activity and Gasoline Additives: Evidence from Lead Isotopes and
864 Trace Element Geochemical Studies in the White River Basin, Southern Ozark Region, USA.
865 *Geosciences* 8, 189. [doi:10.3390/geosciences8060189](https://doi.org/10.3390/geosciences8060189)

866 Powell, Mary Lucas
867 1977 Prehistoric Ritual Skull Burials at the Crenshaw Site (3MI6), Southwest Arkansas. *Bulletin of the*
868 *Texas Archeological Society* 48:111-118.

869 Price, T. Douglas, James H. Burton, and R. Alexander Bentley
870 2002 The Characterization of Biologically Available Strontium Isotope Ratios for the Study of
871 Prehistoric Migration. *Archaeometry* 44:117-135. [doi:10.1111/1475-4754.00047](https://doi.org/10.1111/1475-4754.00047)

872 Price, T. Douglas, James H. Burton, and James B. Stoltman
873 2007 Place of Origin of Prehistoric Inhabitants of Aztalan, Jefferson Co., Wisconsin. *American Antiquity*
874 72:524-538. [doi:10.2307/40035859](https://doi.org/10.2307/40035859)

875 Price, T. Douglas, Melissa Connor, and John D. Parsons
876 1985 Bone Chemistry and the Reconstruction of Strontium Discrimination in White-Tailed Deer. *Journal*
877 *of Archaeological Science* 12:419-442. [doi:10.1016/0305-4403\(85\)90003-2](https://doi.org/10.1016/0305-4403(85)90003-2)

878 Price, T. Douglas, Clark M. Johnson, Joseph A. Ezzo, Jonathan Ericson, James H. Burton
879 1994 Residential Mobility in the Prehistoric Southwest United States: A Preliminary Study using
880 Strontium Isotope Analysis. *Journal of Archaeological Science* 21:315-330.
881 [doi:10.1006/jasc.1994.1031](https://doi.org/10.1006/jasc.1994.1031)

882 Price, T. Douglas, Stephen Plog, Steven A. LeBlanc, and John Krigbaum
883 2017 Great House origins and population stability at Pueblo Bonito, Chaco Canyon, New Mexico: The
884 isotopic evidence. *Journal of Archaeological Science: Reports* 11:261-273.
885 [doi:10.1016/j.jasrep.2016.11.043](https://doi.org/10.1016/j.jasrep.2016.11.043)

886 Samuelsen, John R.

887 2009 Archaeogeophysical Investigations of Early Caddo Settlement Patterning at the Crenshaw Site
888 (3MI6). Master's Thesis, Department of Anthropology, University of Arkansas, Fayetteville.
889 Available from ProQuest Dissertations & Theses Global. (304847112).

890 2010 Geophysical Investigations of Late Fourche Maline and Early Caddo Settlement Patterning at the
891 Crenshaw Site (3MI6). *Southeastern Archaeology* 29:261-278. [doi:10.1179/sea.2010.29.2.004](https://doi.org/10.1179/sea.2010.29.2.004)

892 2014 AMS and Radiocarbon Dating of the Crenshaw Site (3MI6). *The Arkansas Archeologist* 52:17-35.

893 2016 A reanalysis of strontium isotopes from a skull and mandible cemetery at the Crenshaw site:
894 Implications for Caddo interregional warfare. *Journal of Archaeological Science: Reports* 5:119-
895 134. [doi:10.1016/j.jasrep.2015.11.012](https://doi.org/10.1016/j.jasrep.2015.11.012)

900 Schambach, Frank F.

901 1982 A Research Design for Continued Investigations of the Caddo V Component at the Cedar Grove
902 Site. In *Contributions to the Archeology of the Great Bend Region*, edited by Frank F. Schambach
903 and Frank Rackerby, pp. 118-122. Research Series No. 22, Arkansas Archeological Survey,
904 Fayetteville.

905 2014 Introduction to the Crenshaw Bioanthropological Project. *The Arkansas Archeologist* 52:1-15.

906 Schambach, Frank F. and Ann M. Early

907 1982 Southwest Arkansas. In *A State Plan for the Conservation of Archeological Resources in
908 Arkansas*, edited by Hester A. Davis, pp. SW1-SW149. Research Series No. 21, Arkansas
909 Archeological Survey, Fayetteville.

910 Schambach, Frank F., Melissa Zabecki, D. Glen Akridge, and John R. Samuelsen

911 2011 *Determining the Cultural Affiliation of Detached Crania and Mandibles at the Crenshaw Site,
912 Miller County, Arkansas*. Arkansas Archeological Survey. Submitted to the National Park Service,
913 Grant No. 05-06-GP-412. Copies available from the Arkansas Archeological Survey, Fayetteville.

914 Sharpe, Ashley E., George D. Kamenov, Adrian Gilli, David A. Hodell, Kitty F. Emery, Mark Brenner, and
915 John Krigbaum

916 2016 Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the Maya
917 Region. *PLOS ONE* 11(11): e0164871. [doi.org:10.1371/journal.pone.0164871](https://doi.org/10.1371/journal.pone.0164871)

918 Sillen, Andrew, Grant Hall, Stephen Richardson, and Richard Armstrong

919 1998 $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in modern and fossil food-webs of the Sterkfontein Valley: Implications for early
920 hominid habitat preference. *Geochimica et Cosmochimica Acta* 62(14):2463-2473.
921 [doi:10.1016/S0016-7037\(98\)00182-3](https://doi.org/10.1016/S0016-7037(98)00182-3)

922 Simbo, Christophe W., Adriana Potra, and John R. Samuelsen

923 2019 A Geochemical Evaluation of the Genetic Relationship between Ouachita Mountains Paleozoic
924 Rocks and the Mississippi Valley-Type Mineralization in the Southern Ozark Region, USA. *Ore
Geology Reviews* 112:103029.

925 Slater, Philip A., Kristin M. Hedman, and Thomas E. Emerson

926 2014 Immigrants at the Mississippian Polity of Cahokia: Strontium Isotope Evidence for Population
927 Movement. *Journal of Archaeological Science* 44:117-127. [doi:10.1016/j.jas.2014.01.022](https://doi.org/10.1016/j.jas.2014.01.022)

928 Slovák, Nicole M. and Adina Paytan

929 2011 Applications of Sr Isotopes in Archaeology. In *Handbook of Environmental Isotope Geochemistry*,
930 edited by Mark Baskaran, pp. 743-768. Advances in Isotope Geochemistry. Springer Press,
931 Berlin, Germany.

930 Thornton, Erin Kennedy

931 2011 Reconstructing Ancient Maya Animal Trade through Strontium Isotope ($^{87}\text{Sr}/^{86}\text{Sr}$) Analysis.
932 *Journal of Archaeological Science* 38:3254-3263. [doi:10.1016/j.jas.2011.06.035](https://doi.org/10.1016/j.jas.2011.06.035)

932 Thornton, I. and P. Abrahams
 933 1983 Soil Ingestion – a Major Pathway of Heavy Metal into Livestock Grazing Contaminated Land.
 934 *Science of the Total Environment* 28:287-294. [doi:10.1016/S0048-9697\(83\)80026-6](https://doi.org/10.1016/S0048-9697(83)80026-6)

935 Todt, W., R. A. Cliff, A. Hanser, and A. W. Hofmann
 936 1996 Evaluation of a (super 202) Pb (super 205) Pb double spike for high-precision lead isotope
 937 analysis. *American Geophysical Union Monography* 95:429-437. [doi:10.1029/GM095p0429](https://doi.org/10.1029/GM095p0429)

938 Turner, Bethany L., George D. Kamenov, John D. Kingston, and George J. Armelagos
 939 2009 Insights into Immigration and Social Class at Machu Picchu, Peru Based on Oxygen, Strontium,
 940 and Lead Isotopic Analysis. *Journal of Archaeological Science* 36:317-332.
 941 [doi:10.1016/j.jas.2008.09.018](https://doi.org/10.1016/j.jas.2008.09.018)

942 Valentine, Benjamin, George D. Kamenov, Jonathan Mark Kenoyer, Vasant Shinde, Venna Muschrif-
 943 Tripathy, Erik Otarola-Castillo, and John Krigbaum
 944 2015 Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600-1900 BC): A
 945 Lead and Strontium Isotope Mortuary Analysis. *PLOS ONE* 10(4):e0123103.
 946 [doi:10.1371/journal.pone.0123103](https://doi.org/10.1371/journal.pone.0123103)

947 Valentine, Benjamin, George D. Kamenov, and John Krigbaum
 948 2008 Reconstructing Neolithic groups in Sarawak, Malaysia through lead and strontium isotope
 949 analysis. *Journal of Archaeological Science* 35:1463-1473. [doi:10.1016/j.jas.2007.10.016](https://doi.org/10.1016/j.jas.2007.10.016)

950 Weinstein, Richard A., David B. Kelley and Joe W. Saunders
 951 2003 Introduction. In *The Louisiana and Arkansas Expeditions of Clarence Bloomfield Moore; Edited*
 952 *and With an Introduction by Richard Weinstein, David B. Kelley, and Joe W. Saunders*, edited by
 953 Richard A. Weinstein, David B. Kelley, and Joe W. Saunders, pp. 1-187. *Classics in Southeastern*
 954 *Archaeology*, Stephen Williams, general editor, University of Alabama Press, Tuscaloosa and
 955 London.

956 Willmes, M., L. Kinsley, M.-H. Moncel, R. A. Armstrong, M. Aubert, S. Eggins, and R. Grün
 957 2016 Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure
 958 strontium isotope ratios in fossil human teeth. *Journal of Archaeological Science* 70:102-116.
 959 [doi:10.1016/j.jas.2016.04.017](https://doi.org/10.1016/j.jas.2016.04.017)

960 Wood, W. Raymond
 961 1963 The Crenshaw Site: A Coles Creek and Caddoan Mound Group in Miller County, Arkansas.
 962 Manuscript on file, University of Arkansas Museum, Fayetteville.

963
 964 Yan, Xuedong, Fan Zhang, Chen Zeng, Man Zhang, Lochan Prasad Devkota, and Tandong Yao
 965 2012 Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in
 966 Nepal. *International Journal of Environmental Research and Public Health* 9:3209-3226.
 967 [doi:10.3390/ijerph9093209](https://doi.org/10.3390/ijerph9093209)

968 Zabecki, Melissa
 969 2011 Bioarchaeology of Crenshaw. In *Determining the Cultural Affiliation of Detached Crania and*
 970 *Mandibles at the Crenshaw Site, Miller County, Arkansas*, by Frank Schambach, Melissa
 971 Zabecki, D. Glen Akridge, and John R. Samuels, pp. 39-48. Arkansas Archeological Survey.
 972 Submitted to the National Park Service, Grant No. 05-06-GP-412. Copies available from the
 973 Arkansas Archeological Survey, Fayetteville.

974 **Figure Captions**

975 Figure 1 – The 15 possible unique comparisons of different Pb isotope ratios utilizing animal
976 data from southwest Arkansas and human data from northwest New Mexico (Dudás et al. 2016;
977 Price et al. 2017). The Pb isotope ratios of humans must match those of animals in all 15
978 comparisons in order to be considered local. If they overlap in 14 but are different in one
979 bivariate diagram, they are considered non-local. The slopes of the regression lines are clearly
980 different in many comparisons, identifying that the humans from New Mexico are non-local to
981 southwest Arkansas.

982

983 Figure 2 – Map of Crenshaw (southwest Arkansas) within the Caddo Area on the border between
984 the Southern Plains and the Eastern Woodlands. The Caddo Area is considered to be part of the
985 Eastern Woodlands. Sites sampled also include Hardman, Hedges, Austin (northwest
986 Mississippi) and Fish Hatchery 2 (northwest Louisiana). The geology around both is made up of
987 Quaternary alluvium. Austin is in a very large area defined by this alluvium while there are
988 nearby Tertiary deposits around Fish Hatchery 2.

989

990 Figure 3 – Maximum age of geology in southwest Arkansas. Sampled locations and previously
991 published data are identified. Animal teeth (red dots) were selected from sites in several counties
992 in southwest Arkansas. Soil samples were selected from Crenshaw and human samples were
993 selected from Crenshaw and Hardman (purple dots). New whole rock data (black diamonds) are
994 from Magnet Cove and Granite Mountain while previously published whole rock and rock
995 leachate data (black diamonds) are from Cains (2019), Duke et al. (2014), and Simbo et al.
996 (2019).

997

998 Figure 4 – Comparison of Sr isotopes of humans from Crenshaw and ancient humans from the
999 Eastern US. All but five out of 670 prehistoric human teeth tested for Sr ratios in the eastern US
1000 would be considered “local” to southwest Arkansas. The data from other regions look similar to
1001 Crenshaw humans, but they are more skewed towards lower ratios (Beehr 2011; Hedman et al.
1002 2018; Jones et al. 2017; Price et al. 2007; Samuelsen 2016; Slater et al. 2014). The five non-local
1003 teeth (representing three individuals) from the American Bottom are also non-local to the
1004 American Bottom. Available Sr ratios in the eastern US appear similar to southwest Arkansas
1005 (see also, Hedman et al. 2009).

1006

1007 Figure 5 – Map showing counties sampled for Pb isotope analysis in this study and counties
1008 sampled for prehistoric human Pb isotope ratios in previous studies (Dudás et al. 2016; Jones et
1009 al. 2017; Price et al. 2017).

1010

1011 Figure 6 – Mean Cu, Pb, and Zn concentrations in weak-acid leachates from Crenshaw and
1012 northern Arkansas (Potra et al. 2018b). The mean from northern Arkansas uncontaminated sites
1013 included all sites upstream of mines that were interpreted to not be impacted by anthropogenic
1014 Pb contamination by Potra et al. (2018b) while the mean from northern Arkansas contaminated
1015 sites include all locations downstream from mines. The results clearly show that Crenshaw has
1016 lower concentrations than both the contaminated and uncontaminated sites in northern Arkansas,
1017 supporting the lack of significant anthropogenic Pb contamination.

1018

1019 Figure 7 – Bivariate Pb isotope diagrams comparing weak-acid soil leachate data to human and
1020 animal data. a) Comparison of the weak-acid soil leachates to all southwest Arkansas
1021 humans/animals shows they are much more consistent with the humans/animals than other
1022 geologic data (i.e. whole rocks and rock leachates). b) Comparison of the weak-acid soil
1023 leachates to only Crenshaw humans/animals shows that they have similar Pb isotope ratios, but
1024 that there is a clear difference between the soil and the human and animal tooth enamel. The
1025 teeth with lower ratios have a different linear pattern than the soil. The soil samples do not have
1026 $^{208}\text{Pb}/^{204}\text{Pb}$ ratios higher than 40 while many teeth do have higher ratios. The tooth samples
1027 generally do not match the soil, suggesting they are not being replaced by soil contaminated Pb.
1028

1029 Figure 8 – Linear comparison of Pb isotope ratios from weak-acid soil leachates and human and
1030 animal samples at Crenshaw. Extending the fit line on soil samples to higher ratios shows that
1031 HU5, HU6, and HU13 better match the linear patterning defined by the soil than by the human
1032 and animal samples at Crenshaw. Otherwise, the soil and human/animal samples maintain
1033 different linear patterning which suggests the other human/animal samples were not greatly
1034 impacted by contamination.

1035

1036 Figure 9 – Linear comparison of Pb isotope ratios from weak-acid soil leachates and human and
1037 animal samples at Crenshaw, including duplicate soil leachate and tooth enamel samples. The
1038 lone homogenized samples (SO20 and SO20 Dup) were nearly identical ($\Delta^{208}\text{Pb}/^{204}\text{Pb}=0.000$, Δ
1039 $^{207}\text{Pb}/^{204}\text{Pb}=0.000$, $\Delta^{206}\text{Pb}/^{204}\text{Pb}=0.002$). Soil leachate samples SO1 and SO1 Dup were not
1040 homogenized but were still very similar ($\Delta^{208}\text{Pb}/^{204}\text{Pb}=0.012$, $\Delta^{207}\text{Pb}/^{204}\text{Pb}=0.003$, Δ
1041 $^{206}\text{Pb}/^{204}\text{Pb}=0.002$). Tooth duplicates showed greater differences ($\Delta^{208}\text{Pb}/^{204}\text{Pb}=0.052$, Δ

1042 $^{207}\text{Pb}/^{204}\text{Pb}=0.007$, $\Delta^{206}\text{Pb}/^{204}\text{Pb}=0.078$), but these are most likely due to intra-tooth differences.

1043 Regardless, the duplicate teeth and soil leachate samples verify the Pb isotope trend lines and

1044 continue to show differences between the soil and teeth Pb isotope trends.

1045

1046 Figure 10 – Comparisons involving Pb concentrations on Crenshaw humans, animals, and soil. a)

1047 Bivariate plot comparing $^{208}\text{Pb}/^{204}\text{Pb}$ ratios and Pb concentrations of humans and animals.

1048 Samples with higher Pb ratios tend to have higher Pb concentrations. All but one sample above

1049 0.7ppm had a $^{208}\text{Pb}/^{204}\text{Pb}$ ratio above 40. HU6 had the highest Pb concentration (31.5ppm) and

1050 $^{208}\text{Pb}/^{204}\text{Pb}$ ratio (40.96) and is not depicted. b) Comparison of $^{208}\text{Pb}/^{204}\text{Pb}$ ratio between weak-

1051 acid soil leachates and humans/animals with Pb concentrations above 0.7ppm. All 20 weak-acid

1052 soil leachates (duplicates excluded) have ratios below 40 and the highest two samples are

1053 statistical outliers. All but one tooth sample above 0.7ppm have ratios above 40.

1054

1055 Figure 11 – Trace element concentrations of elements in duplicate human tooth enamel based on

1056 Kamenov et al. (2018). All element concentrations (C), with the exception of V, are below the

1057 maximum threshold concentrations (MTC). Lines below 1 C/MTC suggest the lack of diagenetic

1058 alteration. The results are consistent with Kamenov et al. (2018:Figures 1,3) showing no

1059 alteration to weak alteration and are inconsistent with Kamenov et al. (2018:Figure 4) showing

1060 strong alteration. This suggests these tooth enamel samples were not subject to significant

1061 diagenetic alteration and supports the conclusion that the high ratios and linear patterning reflect

1062 in-vivo values rather than anthropogenic or soil Pb contamination.

1063

1064 Figure 12 – Illustration of the importance of the biologically available Pb method. The study
1065 sampled human remains from Mound C (n=7), Mound F (n=6), and the Rayburn Cluster (n=5)
1066 from Crenshaw and burials (n=4) from Hardman. It also sampled prehistoric archaeological
1067 animals in southwest Arkansas (n=64) from nine sites (3CL418, 3HE40, 3HE92, 3HO11,
1068 3HS60, 3LR49, 3MI6, 3SV15, and 3SV20), Louisiana (Fish Hatchery 2 [16NA70], n=8), and
1069 Mississippi (Austin [22TU549], n=8). a) Pb isotopes of human teeth from Crenshaw and
1070 Hardman and animal teeth from southwest Arkansas indicate that all the human remains are
1071 “local” to southwest Arkansas. Differences between local human groups could be explained by a
1072 number of factors (e.g. settlement patterns). Animal samples included raccoon (7), opossum (8),
1073 squirrel (8), rabbit (18), deer (33), and other small animals (6). No significant difference was
1074 seen between deer and other animals. b) Pb isotope ratios from human teeth at Crenshaw show
1075 that the articulated and disarticulated remains from Mounds C and F do not match the skull
1076 cluster, suggesting the skulls are non-local. This illustrates that not using the biologically
1077 available Pb method would lead to the wrong conclusion.

1078

1079 Figure 13 – Linear comparisons of Pb isotope ratios, each consisting of 15 different
1080 combinations of ratios (selected comparisons shown). a) Comparison of southwest Arkansas data
1081 to humans from Pueblo Bonito (Price et al. 2017). b) Comparison of southwest Arkansas data to
1082 west Illinois humans (Jones et al. 2017). c) Comparison of southwest Arkansas animals, the
1083 Rayburn Cluster, and west Illinois. d) Comparison of southwest Arkansas animals, the Rayburn
1084 Cluster, Fish Hatchery #2 (northwest Louisiana) animals, and Austin (northwest Mississippi)
1085 animals.

1086

1087 Figure 14 – Comparisons of Pb isotope ratios of human and animal samples from the Ouachita
1088 region sites (Hardman and Hedges) to other southwest Arkansas samples (Duke et al. 2014;
1089 Simbo et al. 2019). a) Ouachita region humans and animals are distinguishable from the skull
1090 cluster (and Mounds C and F), suggesting the skulls did not come from this area. b) Despite their
1091 close proximity, Ouachita region humans and animals are not consistent with Magnet Cove
1092 whole rocks. Magnet Cove whole rocks have extreme ratios, making the Ouachita region humans
1093 and animals better match the more distant animals from the Red/Little River sites in southwest
1094 Arkansas.

1095

1096 Figure 15 – Comparisons of southwest Arkansas humans, animals, and geologic data (Cains
1097 2019; Duke et al. 2014; Simbo et al. 2019). a) Comparisons of humans/animals and whole rocks
1098 show that the whole rocks are far too variable to be directly compared to human remains. The
1099 whole rock sample locations closest to the animal sampling sites, Prairie Creek and Magnet
1100 Cove, have extreme isotope ratios that are inconsistent with the animals and humans.
1101 Humans/animals from other regions (e.g. New Mexico) would also be considered local to
1102 southwest Arkansas if this data was used to construct a local regional background. Higher ratios
1103 among some whole rocks indicate that the higher ratios in the human and animal data could be
1104 defined by local geology. b) Comparisons of humans/animals to rock leachates show the rock
1105 leachates are more consistent with the humans and animals than their whole rock counterparts.
1106 However, they have linear patterns that are not consistent with the humans/animals and are still
1107 more variable. Lighter leaching methods may result in more comparable data. These data suggest
1108 that these rocks could form the lower end member that defines the linear patterning in southwest
1109 Arkansas.

Figure 1

15 Unique Pb Isotope Ratio Comparisons

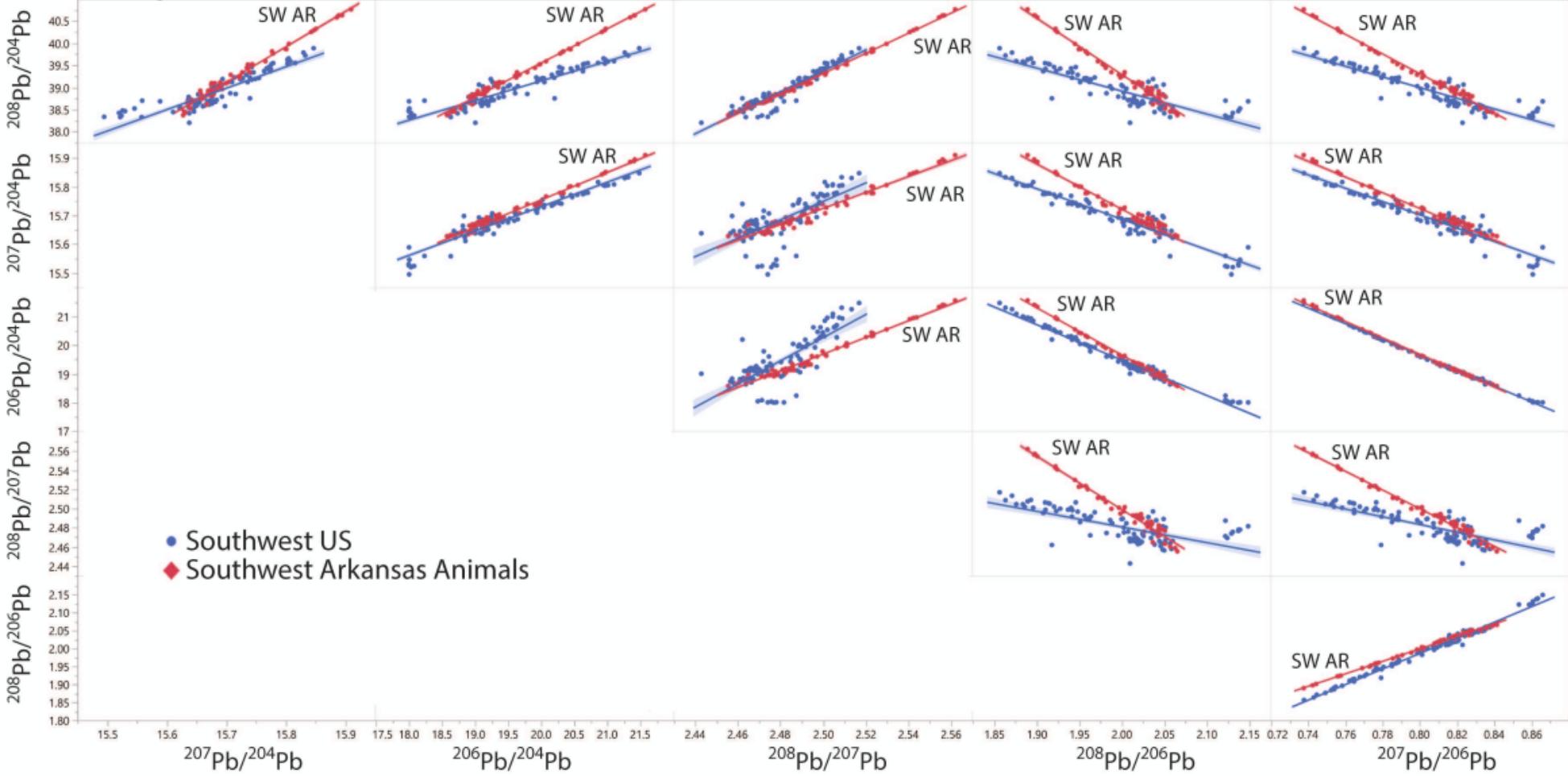


Figure 2

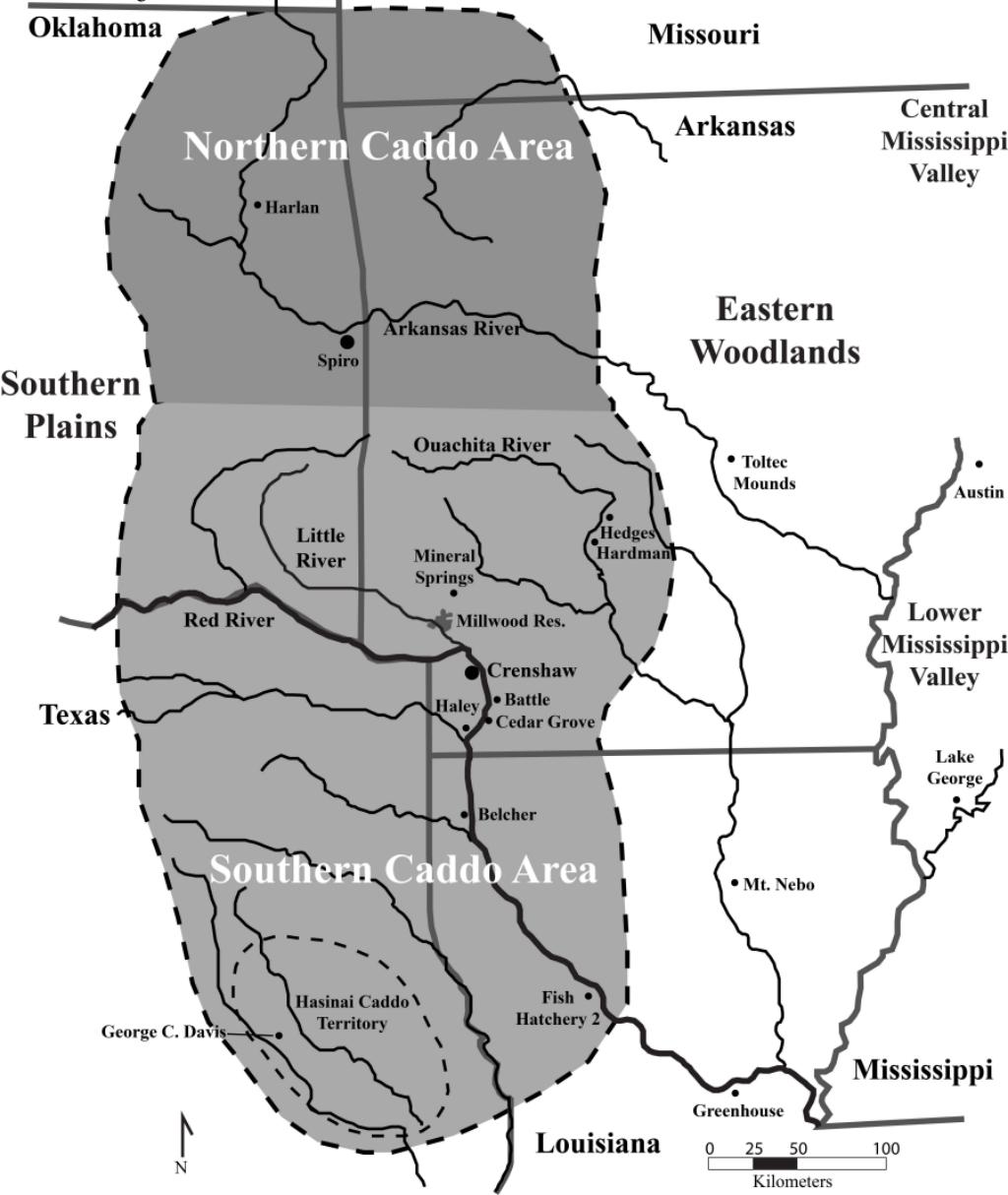
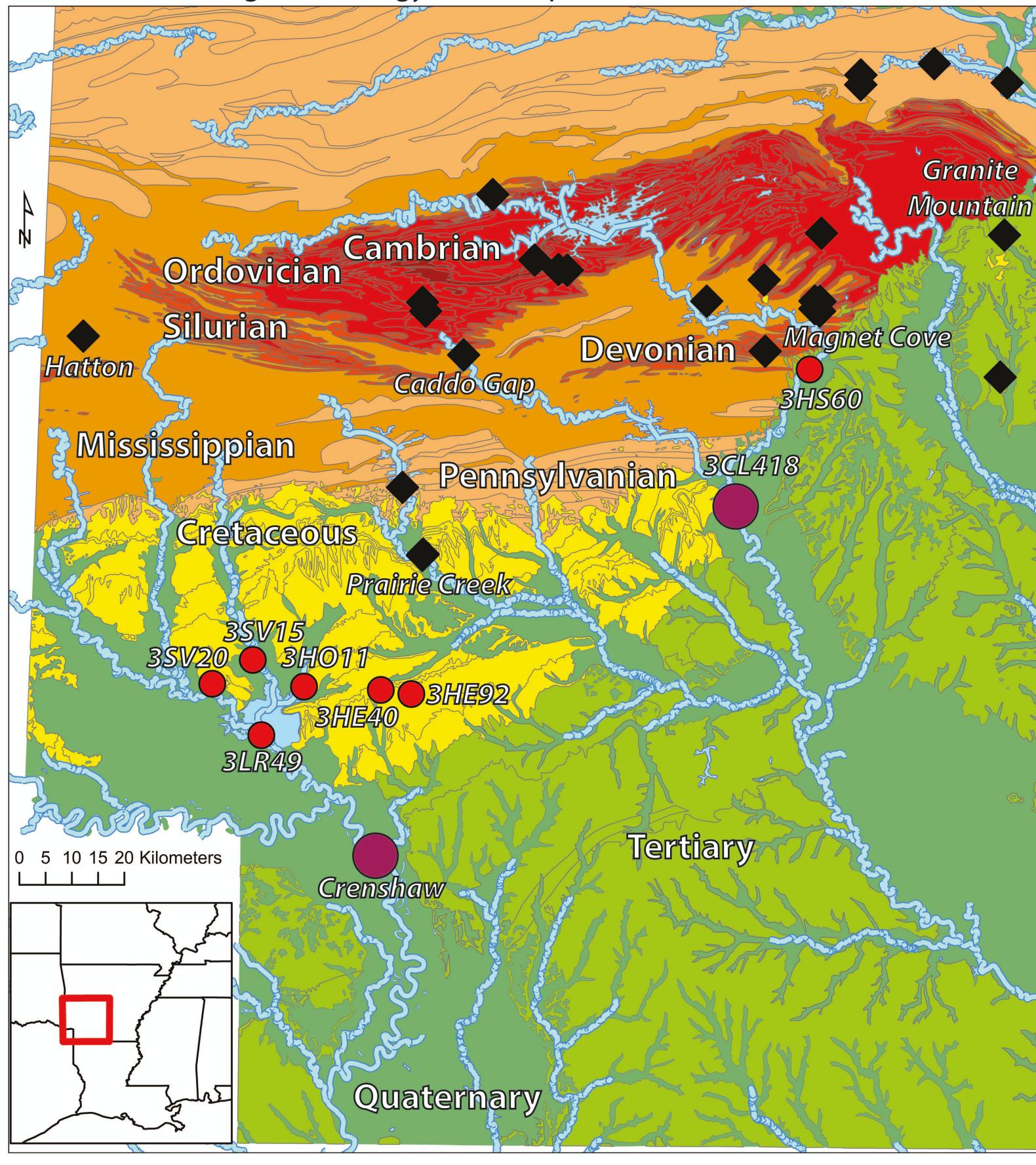
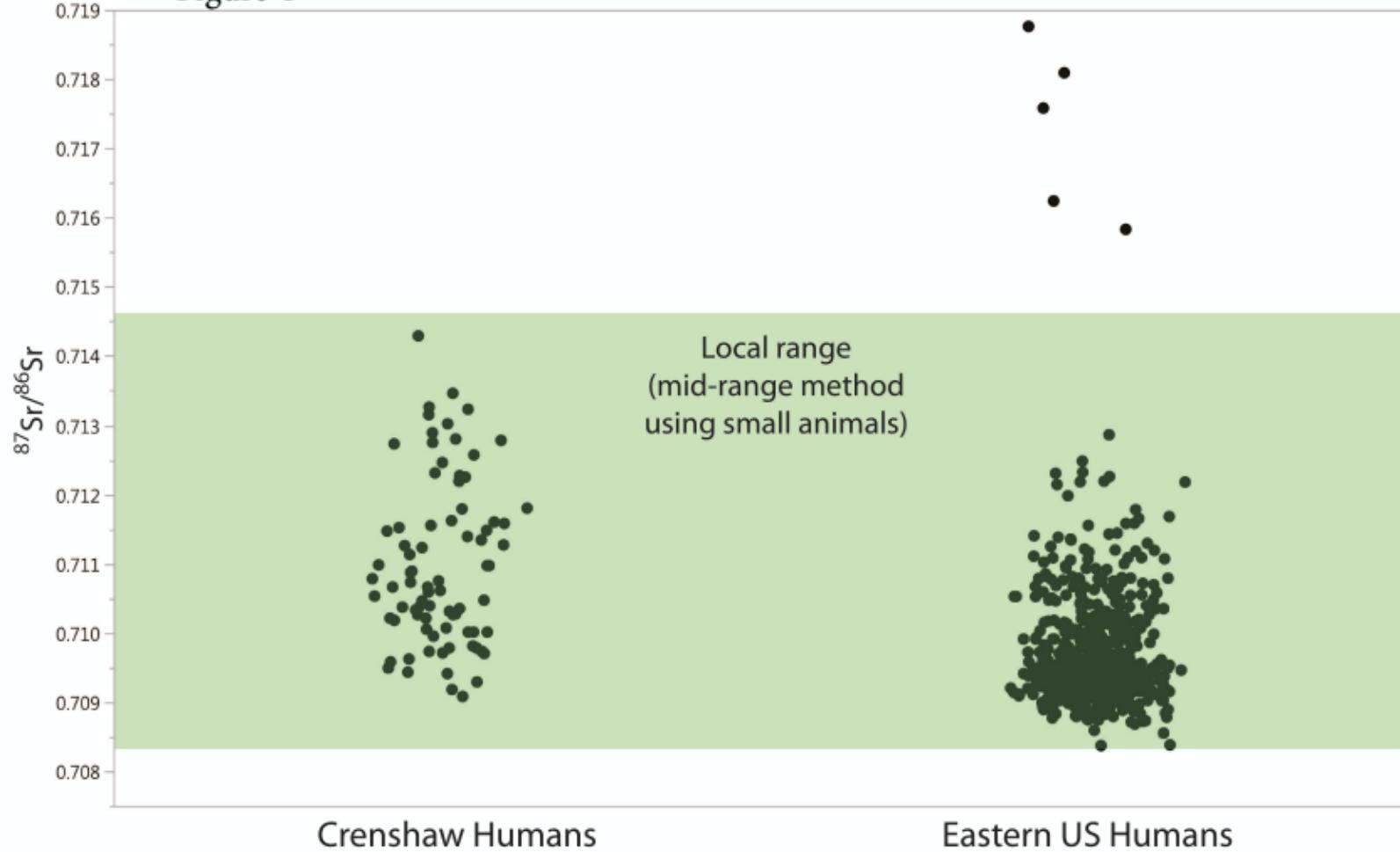



Figure 3

Maximum Age of Geology and Sampled Sites in Southwest Arkansas



● Prehistoric Animal Teeth

● Prehistoric Human/Animal Teeth

◆ Whole Rocks/Rock Leachates

Figure 4 Sr ratios - SW Arkansas vs Eastern US Prehistoric Humans

County sampled for animal Pb isotope ratios in this study.

County already sampled for prehistoric human Pb isotope ratios in publications.

Mean Cu, Pb, and Zn Concentrations in Crenshaw and Northern Arkansas Weak-acid Leachates

Figure 6

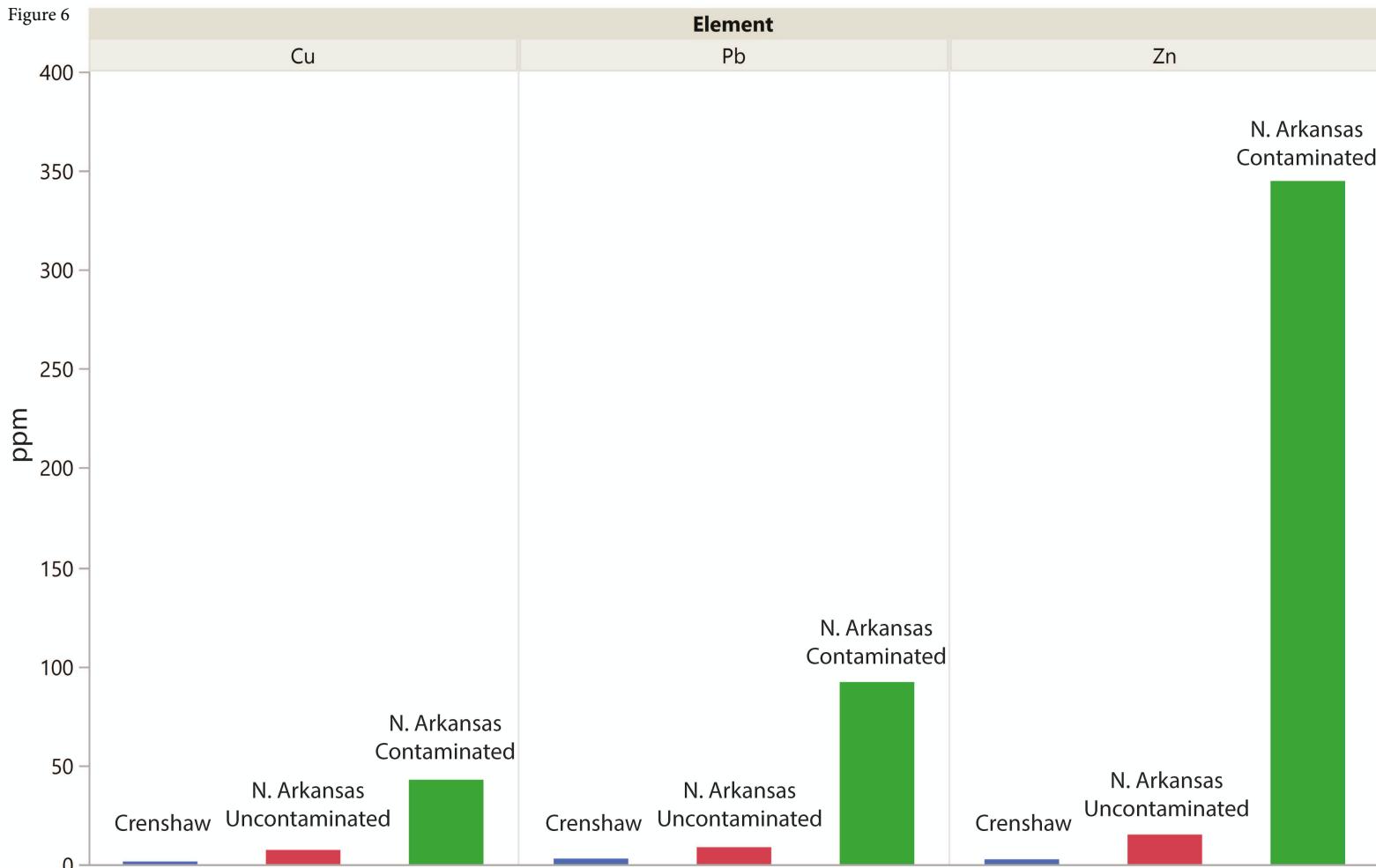
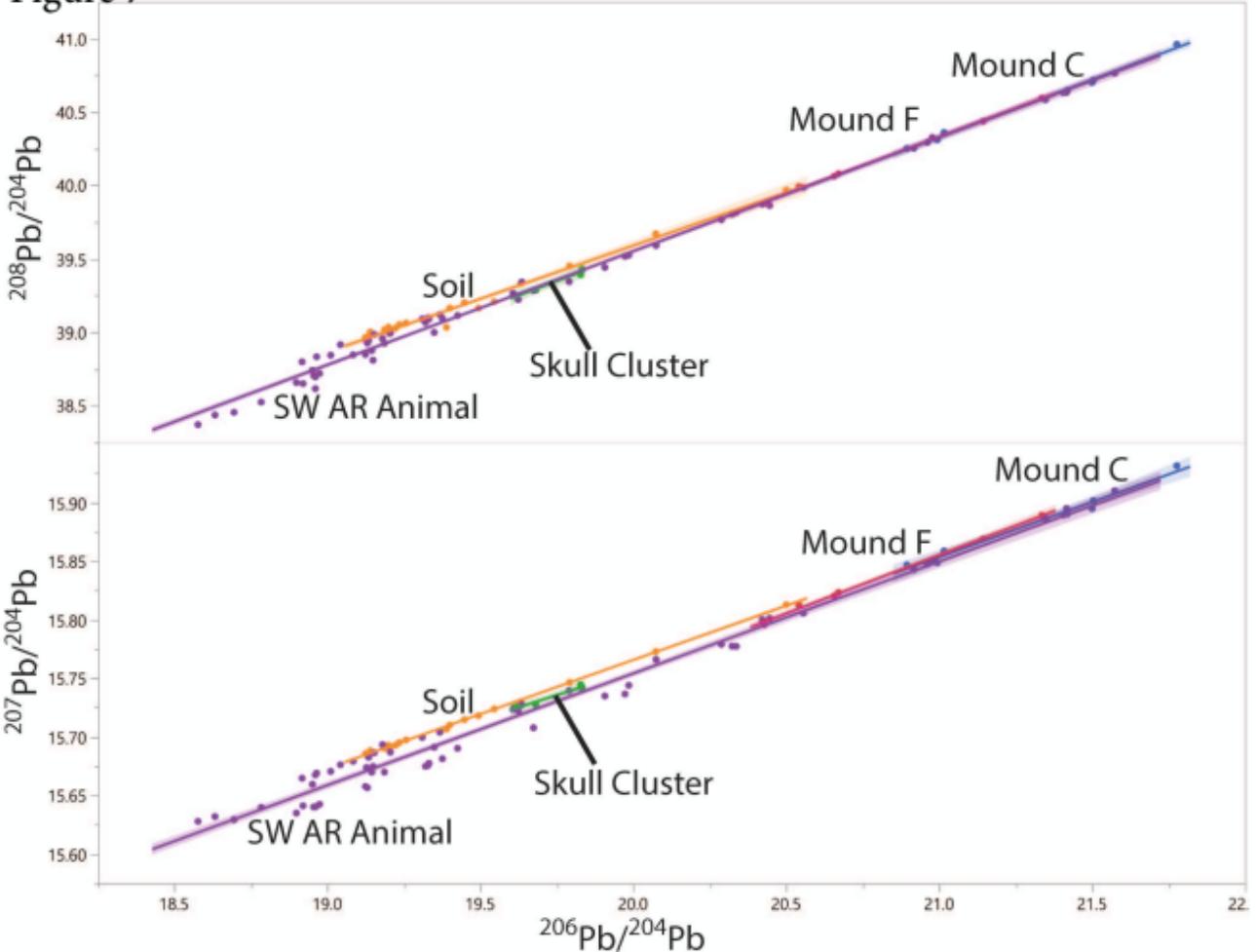



Figure 7 a) Soil Leachates vs SW Arkansas Humans and Animals

b) Soil Leachates vs Crenshaw Humans and Animals

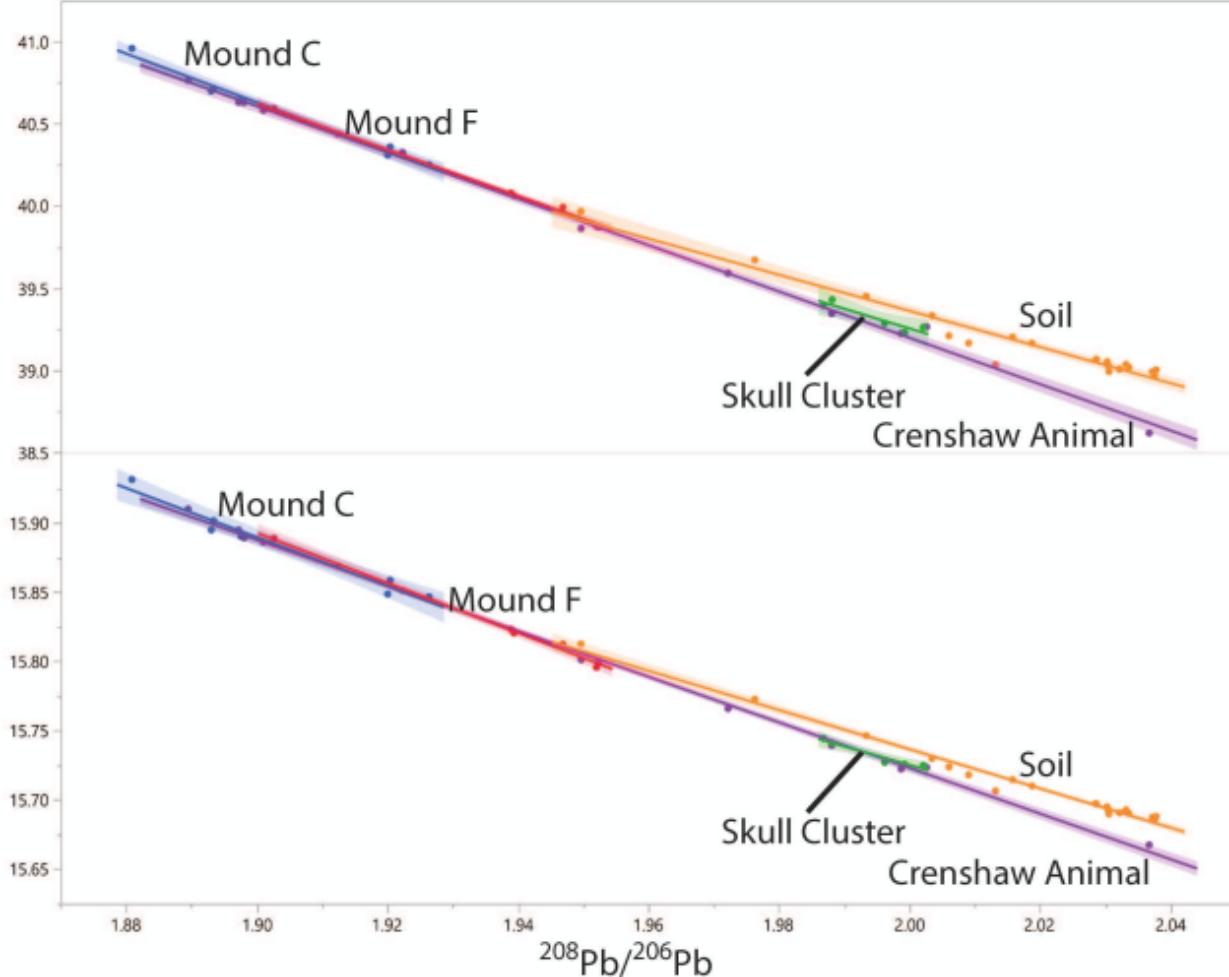


Figure 8

Pb Ratios of Crenshaw Soil Leachates vs Humans/Animals

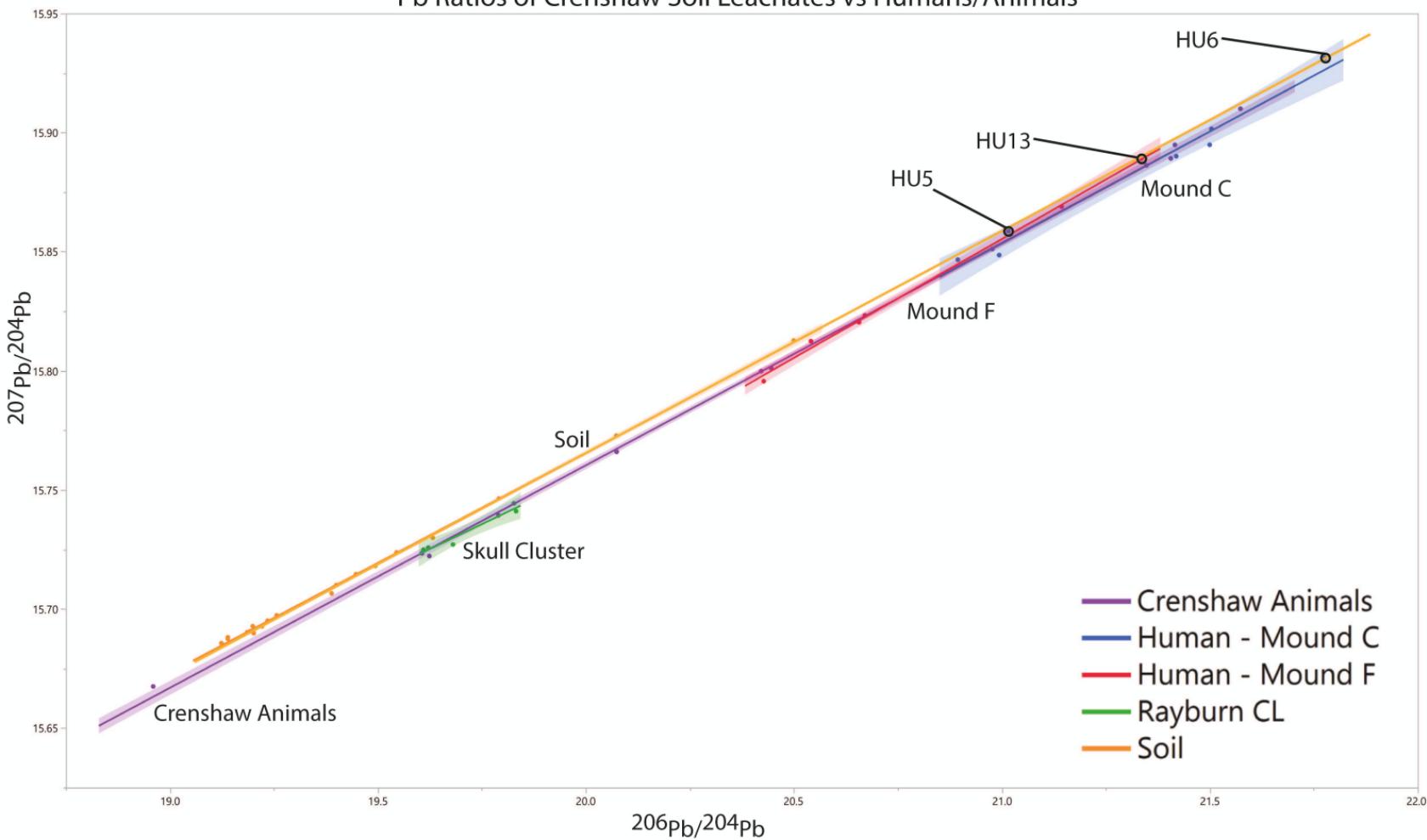
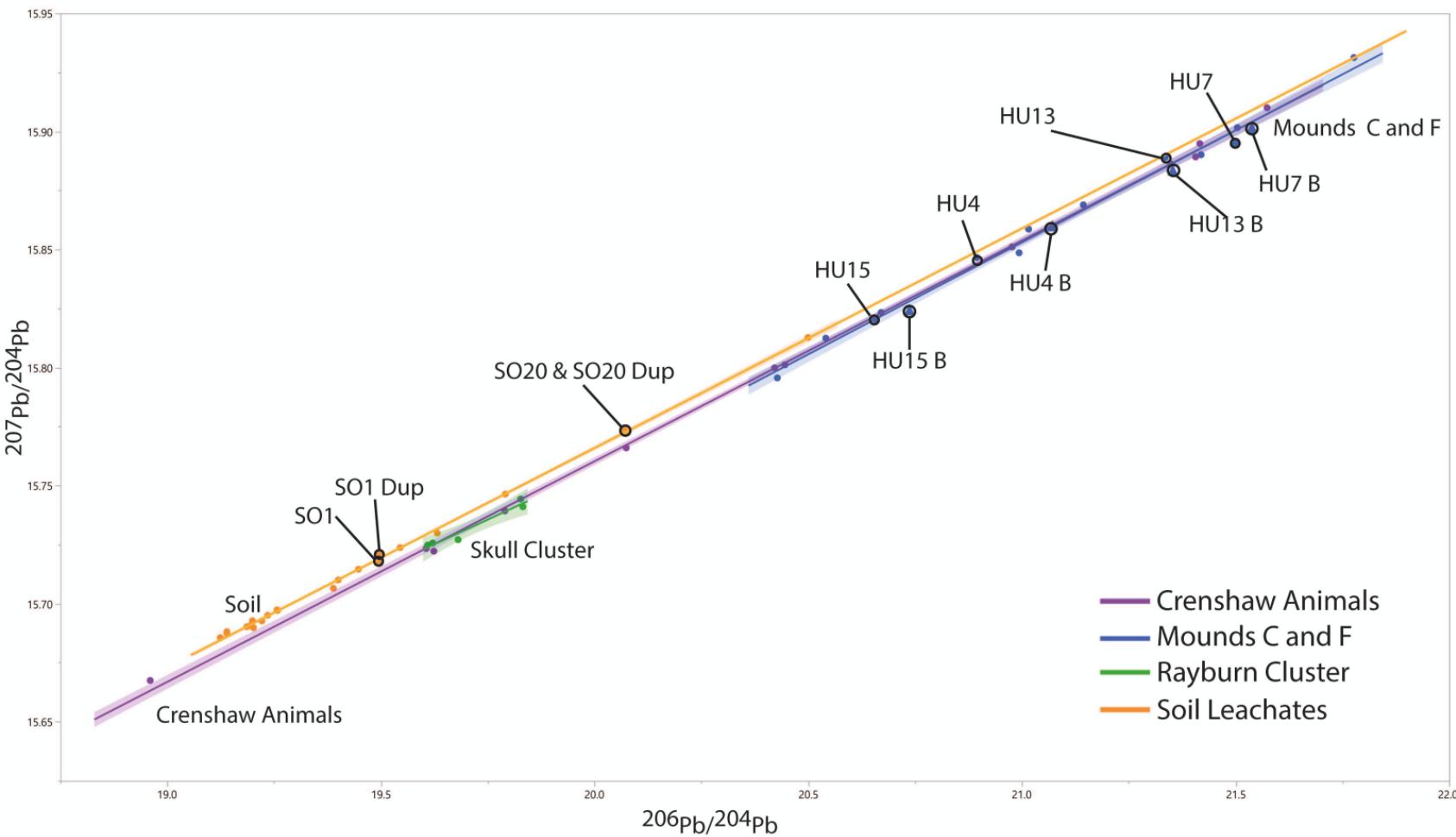



Figure 9

Pb Ratios of Crenshaw Soil Leachates vs Humans/Animals

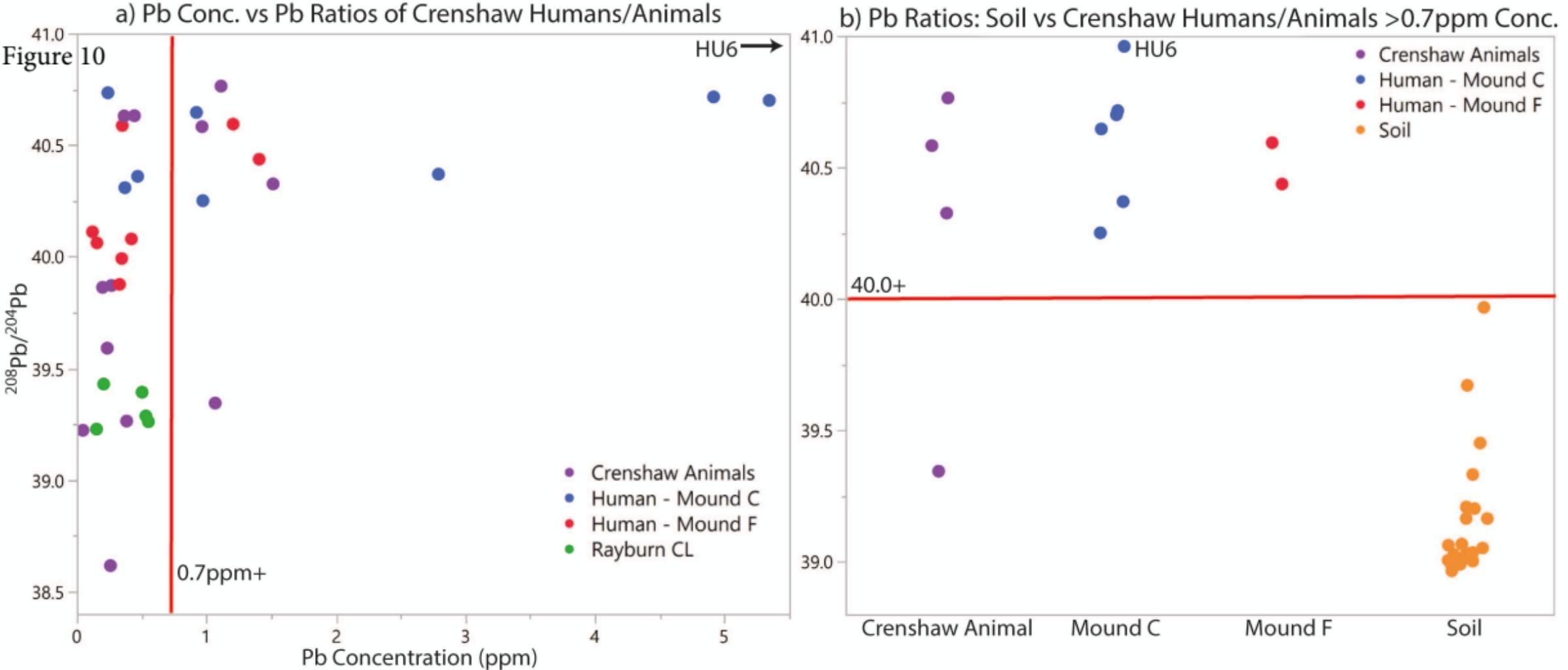


Figure 11 Trace Element Concentrations Comparison to Kamenov et al. (2018)

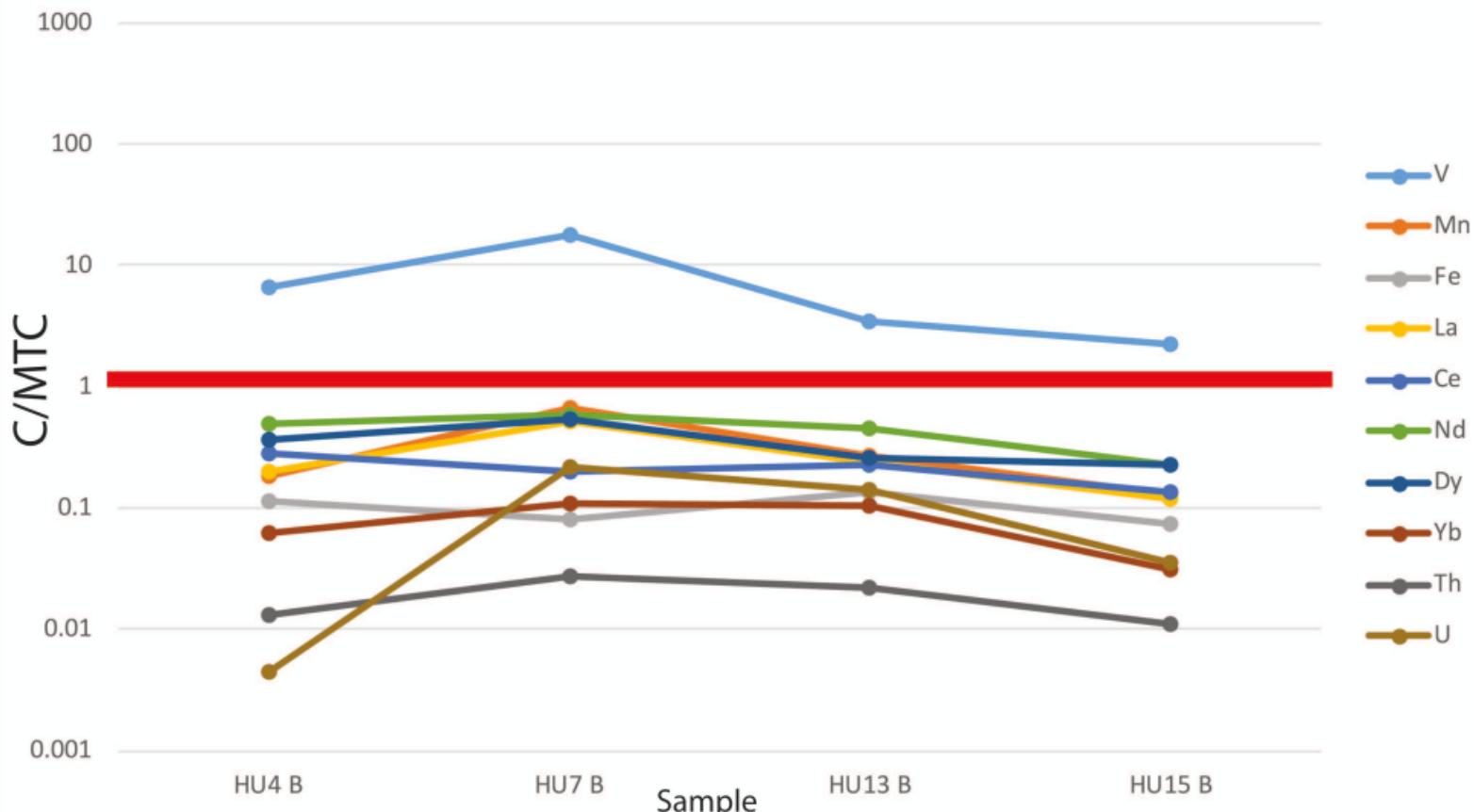
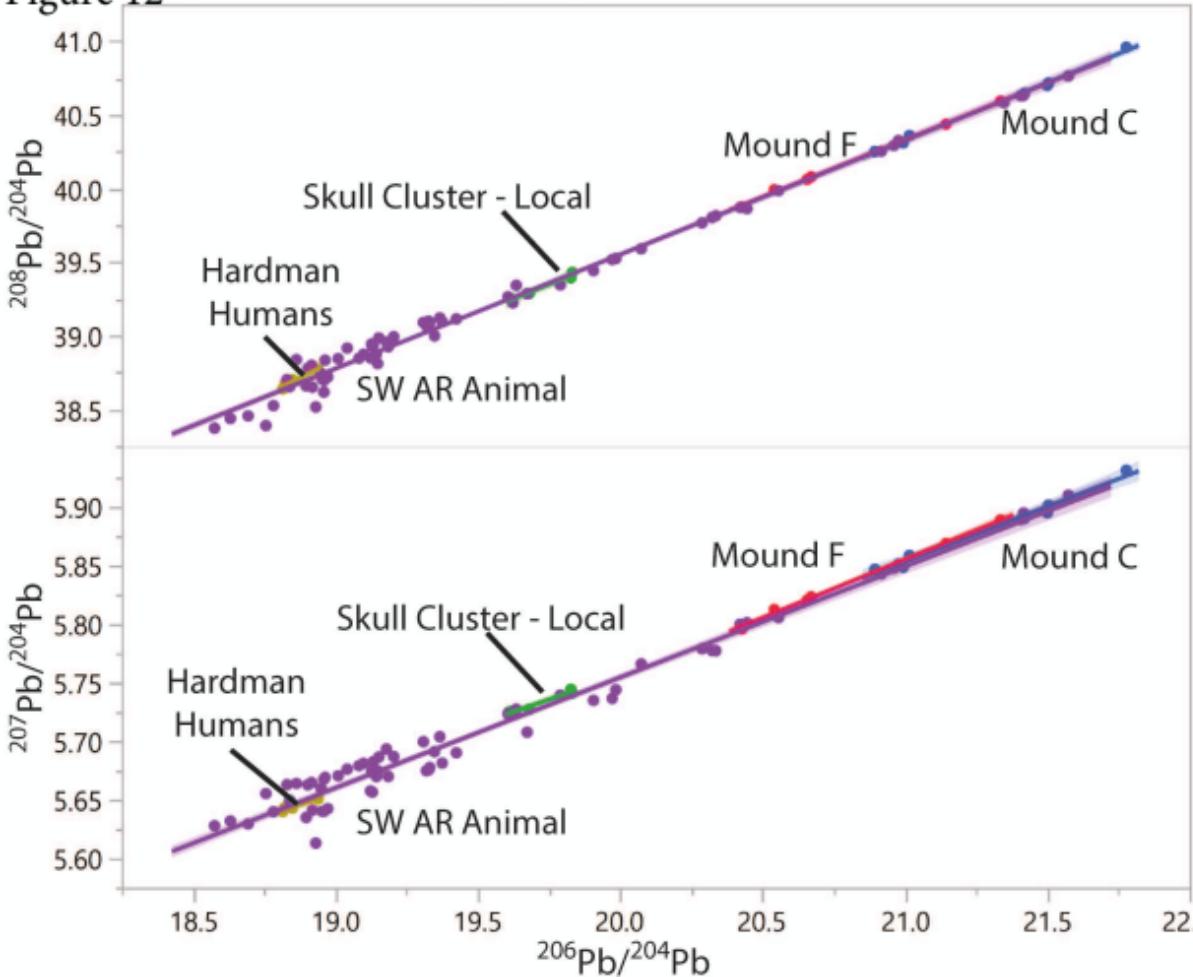



Figure 12 a) Pb ratios - Biologically Available Pb in SW Arkansas

b) Pb ratios - Crenshaw Human Comparison

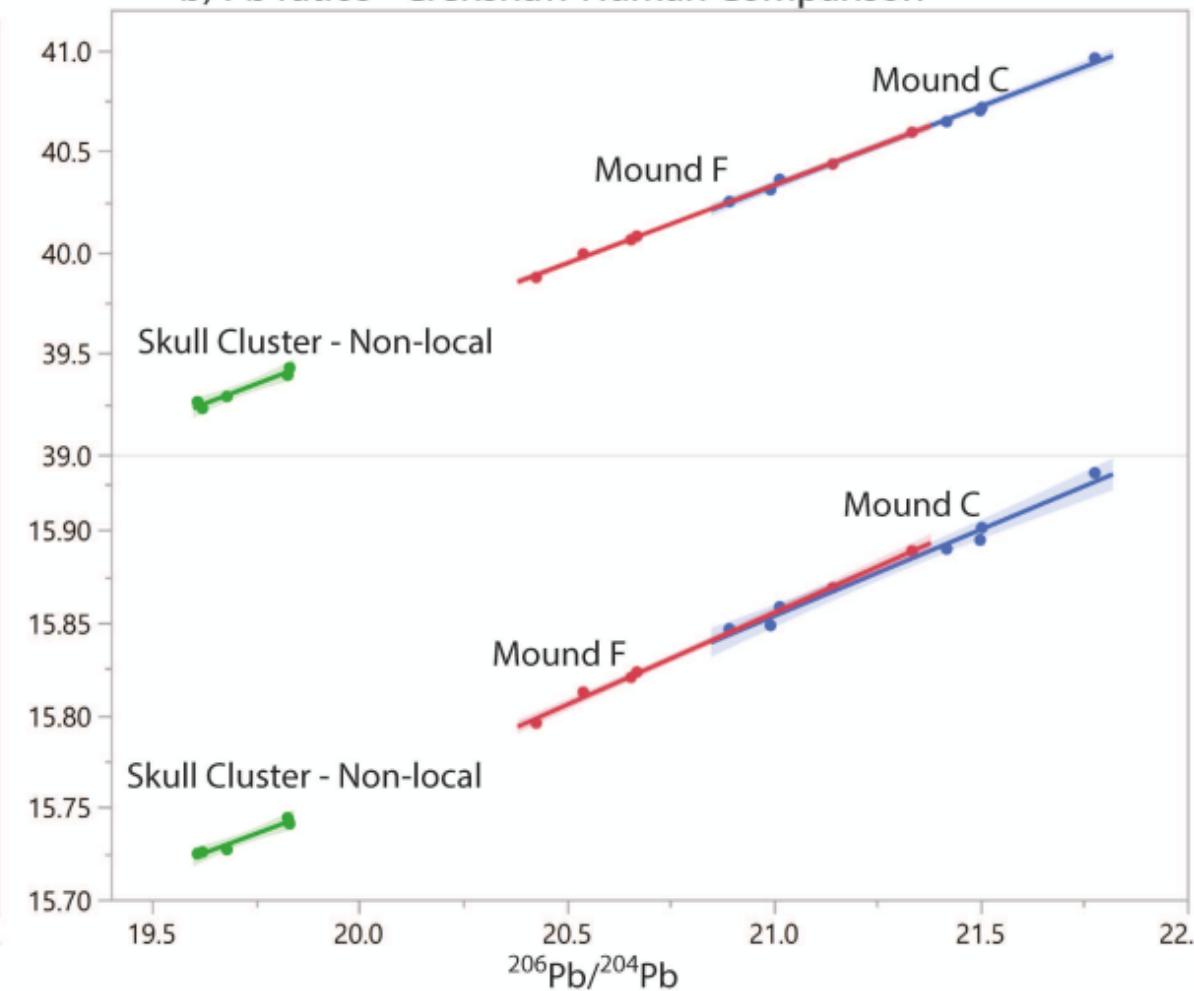
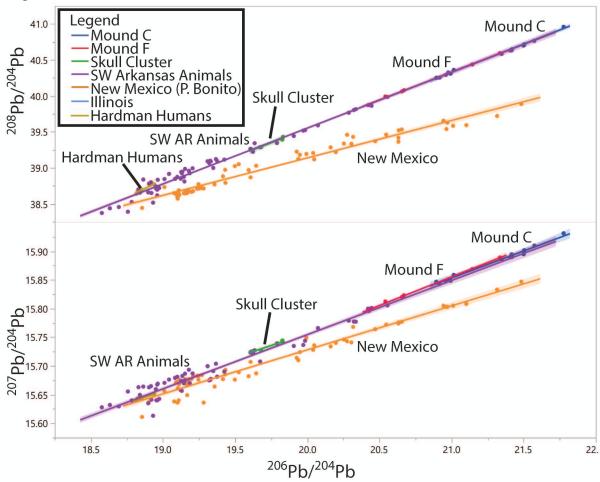
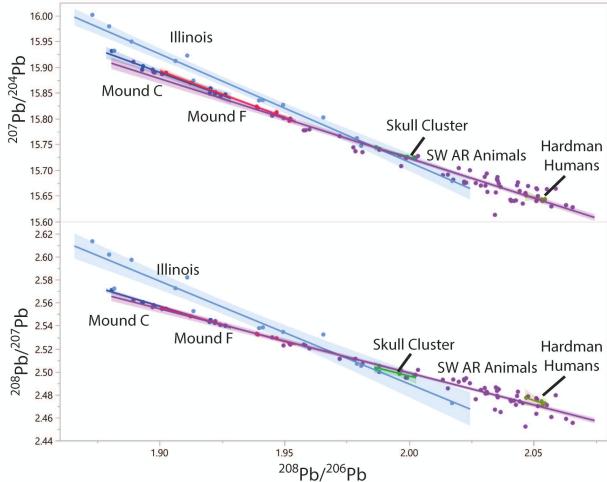
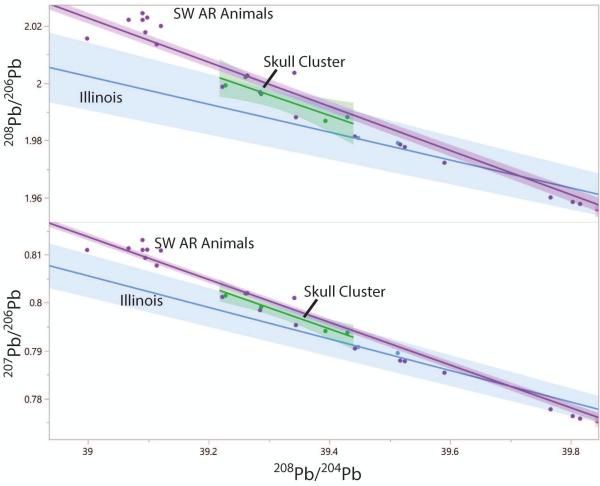




Figure 13


a) Pb ratios - SW Arkansas vs New Mexico

b) Pb ratios - SW Arkansas vs Western Illinois

c) Pb ratios - Rayburn Cluster vs Western Illinois

d) Pb ratios - Rayburn Cluster vs NW LA and NW MS

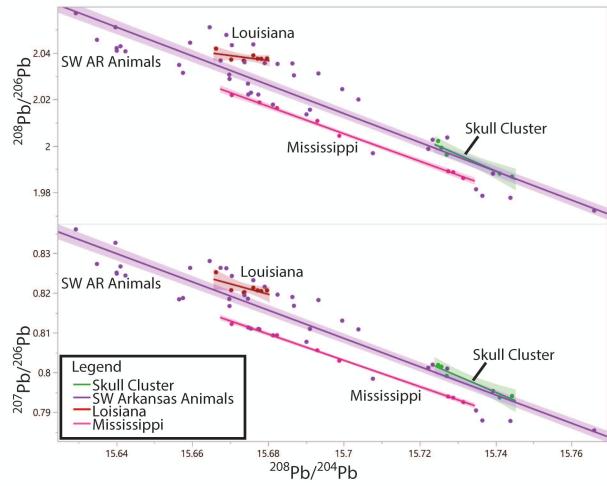
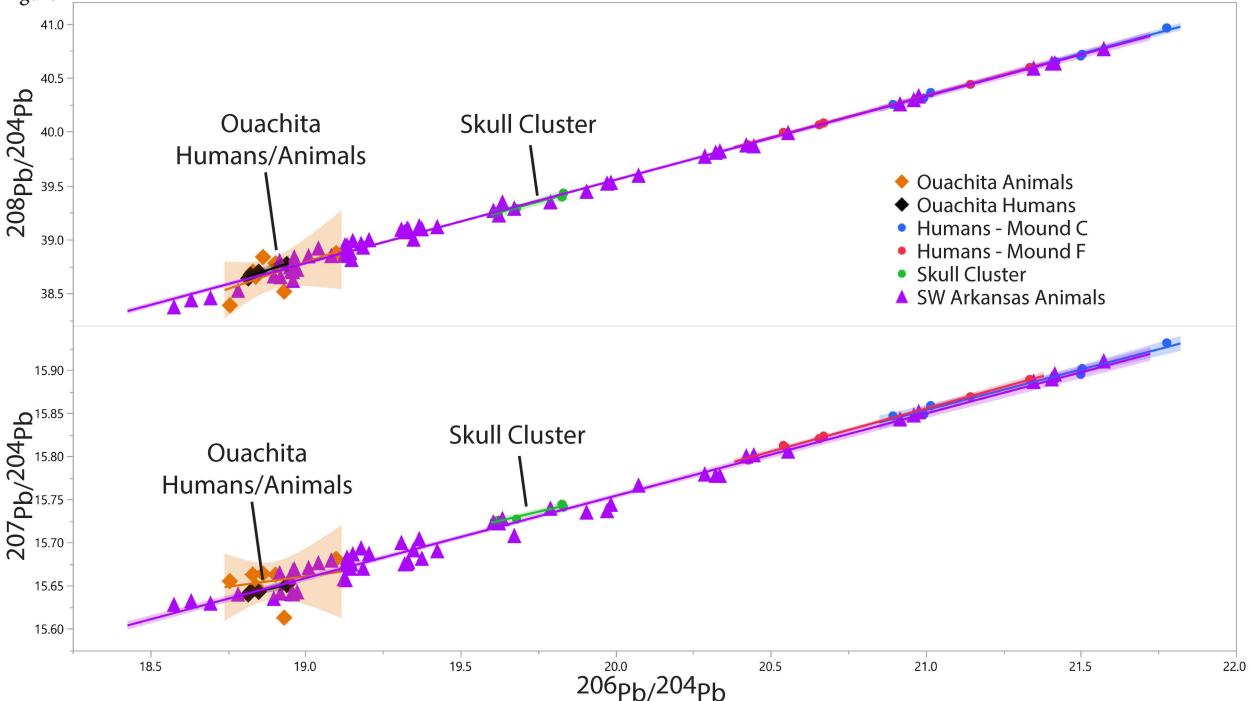



Figure 14

a) SW Arkansas (Red/Little Rivers) vs Ouachita Humans and Animals

b) Ouachita Humans and Animals vs Magnet Cove Whole Rocks

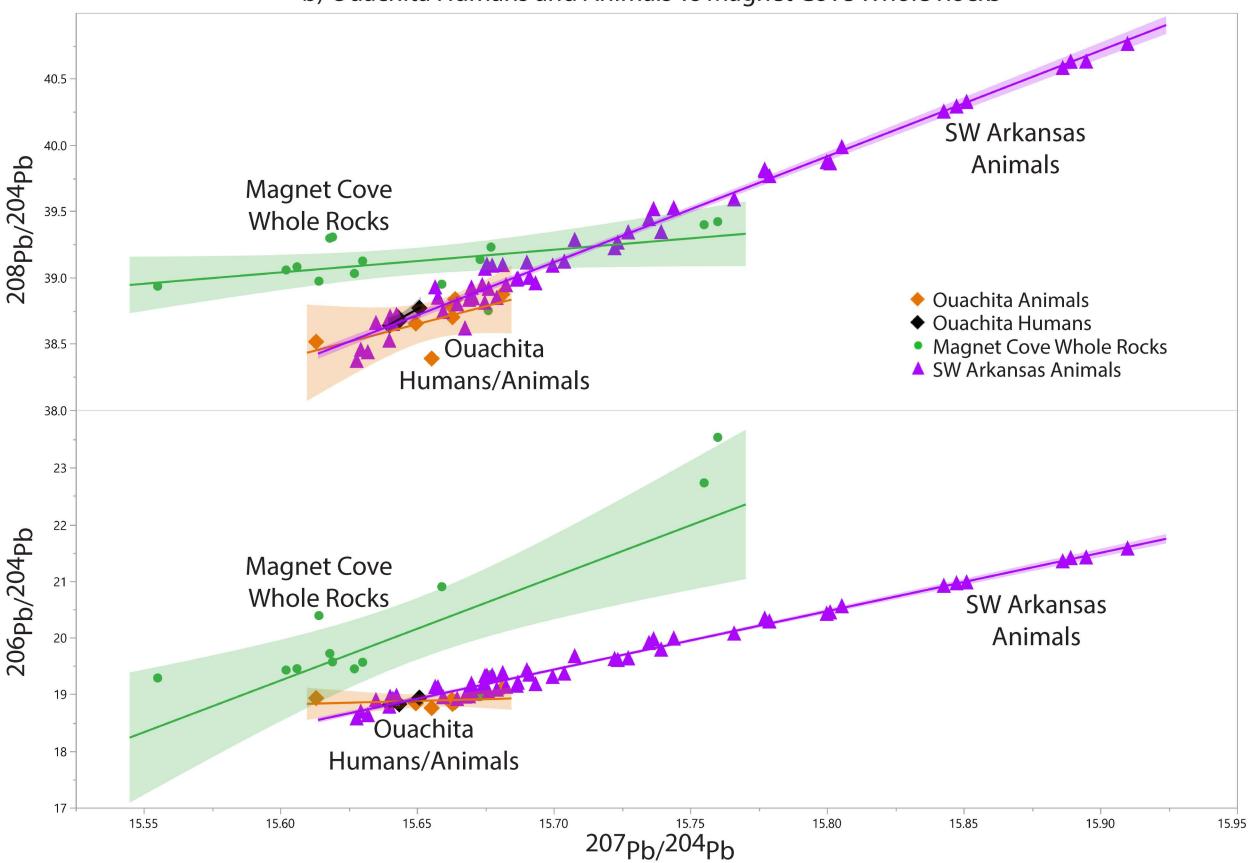
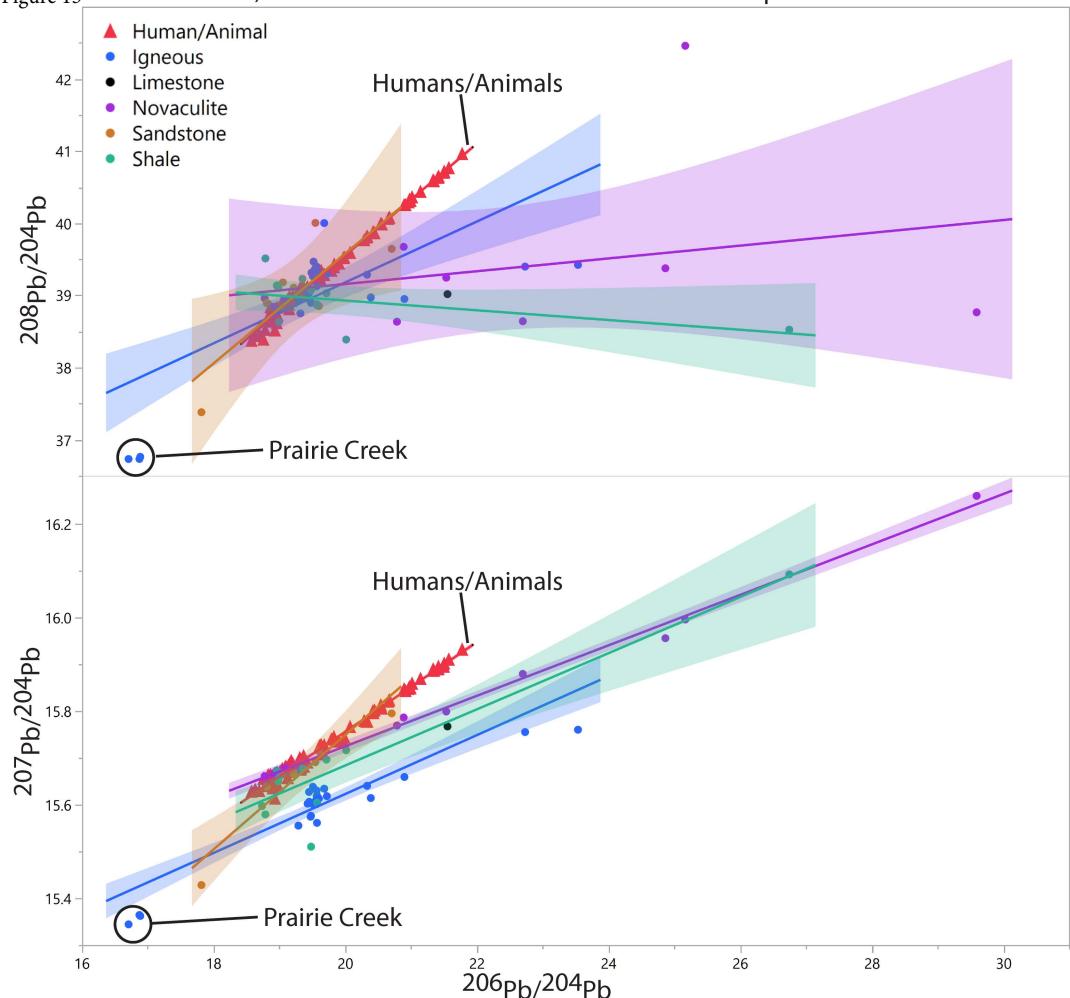



Figure 15

a) Humans and Animals vs Whole Rock Pb Isotope Ratios

b) Humans and Animals vs Rock Leachate Pb Isotope Ratios

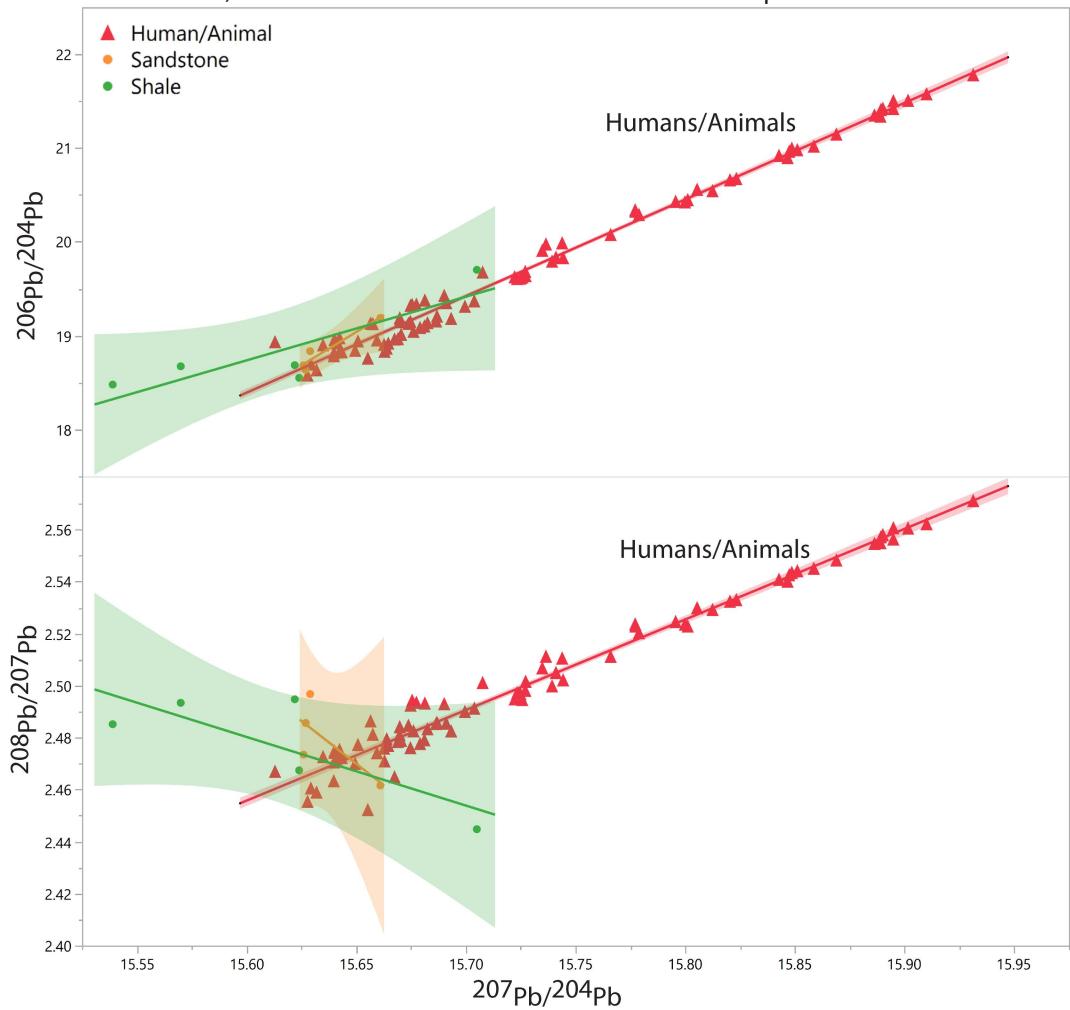


Table 1. Lead Isotope Ratios of Human Teeth from Crenshaw (3MI6) and Hardman (3CL418).

Lab Number	Site	Catalog Number	Context	Tooth	Sex	Age	$^{208}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{207}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{206}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	Pb ppm
HU1	Crenshaw	62-40-34	Mound C	1st L Mand Molar	Not Possible	3-4	40.715	0.001	15.902	0.001	21.504	0.001	4.915
HU2	Crenshaw	62-40-47	Mound C	3rd L Mand Molar	Ambiguous	20-35	40.646	0.002	15.890	0.001	21.419	0.001	0.923
HU3	Crenshaw	62-40-48	Mound C	2nd L Mand Molar	Probable Male	35-50	40.309	0.002	15.849	0.001	20.994	0.001	0.371
HU4	Crenshaw	62-40-49	Mound C	2nd R Mand Molar	Not Possible	20-35	40.251	0.002	15.847	0.001	20.894	0.001	0.973
HU5	Crenshaw	62-40-50	Mound C	2nd R Mand Molar	Not Possible	20-35	40.360	0.002	15.859	0.001	21.016	0.001	0.470
HU6	Crenshaw	62-40-58	Mound C	2nd R Max Molar	Not Possible	5	40.960	0.001	15.931	0.000	21.777	0.001	31.482
HU7	Crenshaw	62-40-121	Mound C	1st R Mand Molar	Probable Male	50+	40.700	0.001	15.895	0.000	21.500	0.001	5.345
HU13	Crenshaw	83-376-1	Mound F	2nd L Mand Molar	Probable Female	20-35	40.594	0.001	15.889	0.001	21.336	0.001	1.207
HU14	Crenshaw	83-376-2	Mound F	2nd R Mand Molar	Not Possible	12	40.437	0.001	15.869	0.001	21.144	0.001	1.408
HU15	Crenshaw	83-376-3	Mound F	2nd L Mand Molar	Female	20-35	40.062	0.002	15.820	0.001	20.657	0.001	0.156
HU16	Crenshaw	83-376-6	Mound F	2nd R Max Molar	Not Possible	18	39.876	0.003	15.796	0.001	20.428	0.001	0.330
HU17	Crenshaw	83-376-6-2	Mound F	2nd R Max Molar	Not Possible	15	39.992	0.002	15.812	0.000	20.541	0.001	0.347
HU18	Crenshaw	83-376-7	Mound F	2nd L Max Molar	Probable Female	20-35	40.079	0.002	15.823	0.001	20.671	0.001	0.422
HU30	Crenshaw	69-66-589-1	Rayburn	2nd L Mand Molar	Probable Male	35-50	39.430	0.002	15.741	0.001	19.832	0.001	0.208
HU31	Crenshaw	69-66-589-2	Rayburn	2nd R Mand Molar	Probable Female	20-35	39.287	0.002	15.727	0.001	19.681	0.001	0.533
HU32	Crenshaw	69-66-589-3	Rayburn	2nd L Mand Molar	Probable Female	20-35	39.393	0.001	15.744	0.001	19.827	0.001	0.504
HU33	Crenshaw	69-66-589-4	Rayburn	2nd R Max Molar	Probable Male	Older adult	39.261	0.003	15.725	0.001	19.610	0.001	0.553
HU36	Crenshaw	69-66-589-7	Rayburn	2nd R Mand Molar	Possible Male	20-35	39.228	0.002	15.726	0.001	19.621	0.001	0.153
HU105	Hardman	87-710-274	Burial 2	2nd L Mand Molar	Probable Female	35-45	38.770	0.017	15.651	0.008	18.940	0.013	0.085
HU106	Hardman	87-710-326	Burial 7	2nd L Mand Molar	Probable Female	35-40	38.701	0.008	15.643	0.003	18.849	0.004	0.133
HU107	Hardman	87-710-708	Burial 12	2nd R Max Molar	Probable Male	39-44	38.674	0.006	15.643	0.003	18.824	0.003	0.090
HU108	Hardman	87-710-912	Burial 13	2nd R Max Molar	Probable Male	50+	38.638	0.008	15.640	0.004	18.816	0.004	0.082

Note : Age/sex classifications are from Burnett (1993) and Harvey et al. (2014).

Table 2. Lead Isotope Ratios of Prehistoric Animal Teeth from southwest Arkansas, northwest Louisiana, and northwest Mississippi.

Lab Number	Location	Catalog Number	Site Number	Animal	$^{208}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{207}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{206}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	Pb ppm
AN1	SW Arkansas	69-66-591	3MI6	Deer	40.306	0.003	15.847	0.001	20.974	0.001	1.515
AN2	SW Arkansas	69-66-587	3MI6	Rabbit	39.244	0.002	15.720	0.001	19.603	0.001	0.385
AN3	SW Arkansas	69-66-261	3MI6	Opossum	39.323	0.003	15.735	0.001	19.787	0.001	1.068
AN4	SW Arkansas	69-66-317	3MI6	Cottontail	39.569	0.005	15.762	0.001	20.071	0.001	0.235
AN5	SW Arkansas	69-66-230	3MI6	Wood Rat	38.595	0.007	15.663	0.003	18.956	0.003	0.260
AN6	SW Arkansas	69-66-389	3MI6	Swamp Rabbit	39.851	0.002	15.796	0.001	20.418	0.001	0.268
AN7	SW Arkansas	69-66-469	3MI6	Deer	39.201	0.005	15.718	0.002	19.620	0.003	0.047
AN8	SW Arkansas	69-66-389	3MI6	Deer	39.842	0.003	15.797	0.001	20.442	0.001	0.199
AN9	SW Arkansas	90-634	3MI6	Deer	40.609	0.004	15.885	0.001	21.403	0.003	0.366
AN10	SW Arkansas	90-634	3MI6	Deer	40.560	0.003	15.882	0.001	21.344	0.001	0.967
AN11	SW Arkansas	95-449	3MI6	Cottontail	40.741	0.002	15.905	0.001	21.570	0.001	1.114
AN12	SW Arkansas	90-634	3MI6	Swamp Rabbit	40.611	0.002	15.891	0.001	21.413	0.001	0.445
AN13	SW Arkansas	83-379-114	3HE92	Squirrel	40.269	0.003	15.843	0.001	20.957	0.001	1.433
AN14	SW Arkansas	82-450-20	3HE92	Pocket Gopher	38.788	0.003	15.670	0.001	19.145	0.001	3.154
AN15	SW Arkansas	83-379-264	3HE92	Rabbit	39.963	0.003	15.801	0.001	20.552	0.001	0.533
AN16	SW Arkansas	83-379-101	3HE92	Rabbit	39.505	0.004	15.740	0.002	19.982	0.002	0.203
AN17	SW Arkansas	83-379-141	3HE92	Rabbit	40.231	0.002	15.839	0.001	20.913	0.001	0.319
AN18	SW Arkansas	83-379-281	3HE92	Rabbit	39.745	0.004	15.775	0.001	20.284	0.002	0.172
AN19	SW Arkansas	84-380-158	3HE92	Pocket Gopher	38.978	0.003	15.687	0.001	19.345	0.001	1.295
AN20	SW Arkansas	2002-700-76	3HE40	Squirrel	38.638	0.004	15.631	0.001	18.895	0.001	0.321
AN21	SW Arkansas	2002-700-345	3HE40	Squirrel	38.698	0.003	15.638	0.001	18.970	0.001	0.274
AN22+	SW Arkansas	2003-685-84	3HE40	Squirrel	38.686	0.006	15.637	0.002	18.951	0.003	0.870
AN23	SW Arkansas	2002-700-34-5	3HE40	Squirrel	38.675	0.004	15.636	0.001	18.956	0.002	0.226
AN24	SW Arkansas	2002-700-34-5	3HE40	Squirrel	38.631	0.006	15.638	0.002	18.917	0.003	0.134
AN25	SW Arkansas	61-114-4686	3HO11	Raccoon	39.075	0.003	15.671	0.001	19.323	0.001	0.299
AN26	SW Arkansas	61-114-4686	3HO11	Opossum	39.065	0.003	15.672	0.001	19.327	0.001	0.443
AN27	SW Arkansas	61-114-607	3HO11	Small Rodent	38.902	0.003	15.651	0.001	19.126	0.001	0.270
AN28	SW Arkansas	61-114-685	3HO11	Rabbit	38.507	0.004	15.637	0.002	18.780	0.002	0.154
AN29	SW Arkansas	61-114-473	3HO11	Opossum	39.091	0.003	15.686	0.001	19.421	0.001	0.948
AN30+	SW Arkansas	61-114-676	3HO11	Deer	38.831	0.009	15.655	0.004	19.121	0.006	0.044
AN31	SW Arkansas	61-114-694	3HO11	Deer	39.076	0.006	15.678	0.002	19.372	0.004	0.077
AN32	SW Arkansas	61-114-638	3HO11	Deer	38.904	0.003	15.666	0.001	19.182	0.001	0.098
AN33	SW Arkansas	61-114-468a	3HO11	Deer	39.048	0.003	15.671	0.001	19.317	0.001	0.269
AN34	SW Arkansas	61-114-554	3HO11	Deer	38.856	0.003	15.666	0.002	19.141	0.002	0.096
AN35+	SW Arkansas	64-51-1	3SV20	Deer	39.422	0.008	15.731	0.003	19.903	0.004	0.040
AN36	SW Arkansas	64-51-1	3SV20	Rabbit	39.795	0.004	15.774	0.001	20.333	0.001	0.660
AN37	SW Arkansas	64-51-1	3SV20	Opossum	39.266	0.003	15.704	0.001	19.670	0.001	0.515
AN38	SW Arkansas	64-51-1	3SV20	Small Rodent	39.784	0.003	15.774	0.001	20.320	0.001	1.367
AN39	SW Arkansas	64-51-1	3SV20	Raccoon	39.497	0.003	15.733	0.001	19.969	0.002	0.214
AN40	SW Arkansas	63-39-278	3LR49	Rabbit	38.922	0.006	15.678	0.002	19.130	0.003	0.152
AN41	SW Arkansas	63-39-33	3LR49	Raccoon	39.069	0.003	15.696	0.001	19.306	0.001	0.343
AN42	SW Arkansas	63-39-57	3LR49	Raccoon	38.893	0.005	15.672	0.002	19.038	0.003	0.124
AN43	SW Arkansas	63-39-51	3LR49	Opossum	38.776	0.007	15.660	0.002	18.913	0.002	0.134
AN44	SW Arkansas	63-39-40	3LR49	Rabbit	38.414	0.005	15.627	0.001	18.628	0.003	0.154
AN45+	SW Arkansas	63-39-45	3LR49	Deer	39.097	0.009	15.699	0.003	19.363	0.006	0.048
AN46	SW Arkansas	63-39-43	3LR49	Deer	38.961	0.004	15.682	0.002	19.149	0.002	0.096
AN47+	SW Arkansas	63-39-63	3LR49	Deer	38.933	0.006	15.689	0.002	19.175	0.003	0.040
AN48	SW Arkansas	63-39-49	3LR49	Deer	38.823	0.005	15.675	0.002	19.079	0.002	0.057
AN49	SW Arkansas	64-50-3196	3SV15	Deer	39.319	0.003	15.723	0.001	19.631	0.001	0.099
AN50	SW Arkansas	64-50-252	3SV15	Deer	38.719	0.004	15.655	0.001	18.947	0.001	0.090
AN51+	SW Arkansas	64-50-203	3SV15	Deer	38.971	0.005	15.682	0.002	19.201	0.003	0.047
AN52+	SW Arkansas	64-50-341	3SV15	Deer	38.811	0.003	15.665	0.001	18.960	0.002	0.073
AN53+	SW Arkansas	64-50-325	3SV15	Deer	38.349	0.008	15.623	0.004	18.572	0.004	0.054
AN54	SW Arkansas	64-50-231	3SV15	Opossum	38.922	0.003	15.670	0.002	19.123	0.002	0.179
AN55+	SW Arkansas	64-50-319a	3SV15	Rabbit	38.824	0.007	15.667	0.003	19.006	0.003	0.090
AN56	SW Arkansas	64-50-437	3SV15	Rabbit	38.434	0.003	15.625	0.001	18.690	0.001	0.412

AN57 B	NW Mississippi	F-944	22TU549	Raccoon	39.170	0.009	15.693	0.004	19.480	0.004	0.259
AN58	NW Mississippi	F-2300	22TU549	Opossum	39.047	0.002	15.679	0.001	19.372	0.001	0.382
AN59	NW Mississippi	F-2300	22TU549	Raccoon	39.384	0.002	15.724	0.001	19.806	0.001	0.190
AN60	NW Mississippi	F-2300	22TU549	Raccoon	38.988	0.003	15.667	0.001	19.290	0.001	0.336
AN61+	NW Mississippi	F-799	22TU549	Deer	39.168	0.005	15.695	0.002	19.548	0.003	0.015
AN62+	NW Mississippi	F-2300	22TU549	Deer	39.010	0.004	15.674	0.001	19.331	0.002	0.055
AN63	NW Mississippi	F-2300	22TU549	Deer	39.405	0.004	15.728	0.002	19.846	0.002	0.055
AN64	NW Mississippi	F-1611	22TU549	Deer	39.393	0.002	15.725	0.001	19.815	0.001	0.153
AN65	NW Louisiana	16NA70-41	16NA70	Deer	38.903	0.002	15.669	0.001	19.108	0.001	0.262
AN66	NW Louisiana	16NA70-63	16NA70	Deer	38.895	0.001	15.672	0.000	19.082	0.000	0.675
AN67	NW Louisiana	16NA70-77	16NA70	Deer	38.908	0.002	15.676	0.001	19.102	0.001	2.133
AN68	NW Louisiana	16NA70-Nat_F	16NA70	Deer	38.876	0.001	15.667	0.000	19.090	0.001	0.375
AN69+	NW Louisiana	16NA70-27	16NA70	Rabbit	38.741	0.007	15.662	0.003	18.980	0.003	0.062
AN70	NW Louisiana	16NA70-115	16NA70	Rabbit	38.902	0.001	15.673	0.000	19.099	0.000	1.315
AN71	NW Louisiana	16NA70-104	16NA70	Beaver	38.910	0.001	15.674	0.000	19.104	0.001	6.080
AN72	NW Louisiana	16NA70-404	16NA70	Rabbit	38.895	0.003	15.671	0.001	19.107	0.001	0.516
AN149	Ouachita (SW Ark.)	87-710-954	3CL418	Deer	38.778	0.011	15.663	0.004	18.904	0.005	0.043
AN150+	Ouachita (SW Ark.)	87-710-647	3CL418	Deer	38.653	0.020	15.649	0.008	18.840	0.011	0.057
AN151+	Ouachita (SW Ark.)	87-710-95	3CL418	Deer	38.516	0.032	15.613	0.015	18.932	0.018	0.044
AN152	Ouachita (SW Ark.)	87-710-417	3CL418	Squirrel	38.873	0.004	15.681	0.002	19.099	0.002	0.334
AN153	Ouachita (SW Ark.)	87-710-86	3CL419	Squirrel	38.389	0.002	15.655	0.001	18.757	0.001	1.020
AN154*	Ouachita (SW Ark.)	74-746-14	3HS60	Deer	38.676	0.156	15.556	0.052	18.935	0.094	0.040
AN155	Ouachita (SW Ark.)	74-746-27	3HS60	Deer	38.837	0.007	15.664	0.003	18.863	0.005	0.060
AN156	Ouachita (SW Ark.)	74-746-28	3HS60	Opossum	38.701	0.018	15.663	0.007	18.830	0.009	0.467

Note: * Sample AN154 had high standard error and was generally excluded from analysis. + Blanks were under 3%, but over 1%, of these samples' concentrations.

Table 3. Pb Isotope Ratios and Pb, Cu, and Zn Concentrations of Soil Weak-acid Leachates (2N HCl) and Water Leachates (Ultra-pure Water) from Crenshaw.

Lab Number	Type	Context	Catalog Number	$^{208}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{207}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{206}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	Pb ppm	Cu ppm	Zn ppm
SO1	Weak-acid Leach.	Rayburn Cluster - soil outside cranium	69-66-589-6	39.165	0.001	15.718	0.000	19.494	0.000	1.539	0.386	1.791
SO1 Dup	Weak-acid Leach.	Rayburn Cluster - soil outside cranium	69-66-589-6	39.177	0.001	15.721	0.001	19.496	0.001	1.358	0.326	1.426
SO2	Weak-acid Leach.	Rayburn Cluster - soil inside cranium	69-66-589-6	39.332	0.001	15.730	0.001	19.632	0.001	1.482	0.557	1.614
SO3	Weak-acid Leach.	Rayburn Cluster - soil outside cranium	69-66-589-7	39.033	0.001	15.707	0.000	19.389	0.001	2.114	0.441	1.938
SO4	Weak-acid Leach.	Rayburn Cluster - soil inside cranium	69-66-589-7	39.208	0.001	15.724	0.000	19.545	0.000	1.683	0.453	1.695
SO5	Weak-acid Leach.	WSA Cluster 1 - soil	83-377-2-1	38.990	0.001	15.690	0.000	19.202	0.001	1.794	1.042	2.972
SO6	Weak-acid Leach.	WSA Cluster 1 - soil	83-377-2-2	39.052	0.001	15.695	0.000	19.235	0.000	2.010	0.975	1.707
SO7	Weak-acid Leach.	WSA Cluster 25 - soil	83-377-61-3	39.028	0.001	15.693	0.000	19.221	0.001	1.254	0.504	1.020
SO8	Weak-acid Leach.	NSA Cluster 8 - soil	83-377-41-4	39.164	0.001	15.710	0.000	19.400	0.000	2.569	1.222	2.697
SO9	Weak-acid Leach.	NSA Cluster 2 - soil	83-377-25-1	39.451	0.001	15.746	0.000	19.791	0.001	1.755	0.704	1.850
SO10	Weak-acid Leach.	Mound C - Center Block, Stratum A, soil	62-40-21a	39.967	0.001	15.813	0.001	20.500	0.001	5.841	2.076	4.892
SO10 B	Water Leach.	Mound C - Center Block, Stratum A, soil	62-40-21a	39.885	0.001	15.804	0.000	20.369	0.001	0.012	0.130	0.169
SO11	Weak-acid Leach.	Crenshaw Core 6 - 25cmbs, soil		39.017	0.001	15.690	0.000	19.186	0.000	3.607	1.896	2.526
SO12	Weak-acid Leach.	Crenshaw Core 6 - 50cmbs, soil		39.067	0.001	15.697	0.000	19.258	0.001	2.791	1.724	2.018
SO12 B	Water Leach.	Crenshaw Core 6 - 50cmbs, soil		39.067	0.001	15.691	0.000	19.241	0.000	0.012	0.069	0.120
SO13	Weak-acid Leach.	Crenshaw Core 6 - 125cmbs, soil		39.006	0.001	15.691	0.000	19.194	0.000	1.177	0.493	1.046
SO14	Weak-acid Leach.	Crenshaw Core 7 - 25cmbs, soil		39.063	0.001	15.697	0.001	19.257	0.001	2.941	1.519	2.540
SO15	Weak-acid Leach.	Crenshaw Core 7 - 50cmbs, soil		39.035	0.001	15.693	0.000	19.199	0.000	4.126	2.225	2.802
SO15 B	Water Leach.	Crenshaw Core 7 - 50cmbs, soil		39.052	0.003	15.684	0.001	19.201	0.001	0.004	0.073	0.384
SO16	Weak-acid Leach.	Crenshaw Core 17 - 25cmbs, soil		38.966	0.001	15.686	0.000	19.124	0.001	3.838	2.152	3.063
SO17	Weak-acid Leach.	Crenshaw Core 17 - 50cmbs, soil		39.003	0.002	15.688	0.001	19.139	0.001	2.918	2.171	2.700
SO18	Weak-acid Leach.	Crenshaw Core 17 - 125cmbs, soil		38.990	0.001	15.688	0.000	19.139	0.000	3.494	2.585	2.888
SO19	Weak-acid Leach.	Crenshaw Core 8 - 25cmbs, soil		39.202	0.002	15.715	0.001	19.447	0.001	4.527	2.042	3.814
SO20	Weak-acid Leach.	Crenshaw Core 8 - 50cmbs, soil		39.671	0.001	15.773	0.000	20.073	0.001	5.793	2.992	4.829
SO20 Dup	Weak-acid Leach.	Crenshaw Core 8 - 50cmbs, soil		39.671	0.001	15.773	0.001	20.071	0.001	5.176	2.656	4.196
SO20 B	Water Leach.	Crenshaw Core 8 - 50cmbs, soil		39.560	0.002	15.754	0.001	19.925	0.001	0.009	0.037	0.279

Note : SO1 and SO1 Dup were not homogenized as soil prior to sampling. SO20 and SO20 Dup were homogenized as soil prior to sampling.

Table 4. Lead Isotope Ratios of Whole Rocks from Granite Mountain and Magnet Cove.

Lab Number	Type	Location	$^{208}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{207}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{206}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.
GM1	Whole Rock	Granite Mountain	40.002	0.001	15.634	0.000	19.681	0.001
GM2	Whole Rock	Granite Mountain	39.468	0.001	15.603	0.000	19.519	0.001
GM4	Whole Rock	Granite Mountain	39.384	0.004	15.601	0.002	19.564	0.002
GM5	Whole Rock	Granite Mountain	39.314	0.001	15.603	0.001	19.487	0.001
GM6	Whole Rock	Granite Mountain	39.361	0.002	15.606	0.001	19.538	0.001
GM7	Whole Rock	Granite Mountain	39.398	0.001	15.609	0.001	19.567	0.001
GM8	Whole Rock	Granite Mountain	39.381	0.001	15.609	0.000	19.555	0.001
GM9	Whole Rock	Granite Mountain	39.404	0.002	15.608	0.001	19.570	0.001
GM10	Whole Rock	Granite Mountain	39.381	0.002	15.606	0.001	19.571	0.001
GM11	Whole Rock	Granite Mountain	39.374	0.001	15.602	0.001	19.547	0.001
GM12	Whole Rock	Granite Mountain	39.325	0.002	15.600	0.001	19.520	0.001
MC2	Whole Rock	Magnet Cove	39.081	0.002	15.606	0.001	19.453	0.001
MC3*	Whole Rock	Magnet Cove	39.148	0.045	15.646	0.013	20.261	0.010
MC4	Whole Rock	Magnet Cove	39.297	0.001	15.618	0.000	19.721	0.000
MC6	Whole Rock	Magnet Cove	39.057	0.002	15.602	0.001	19.428	0.001
MC7	Whole Rock	Magnet Cove	39.306	0.002	15.619	0.001	19.572	0.001
MC8	Whole Rock	Magnet Cove	39.125	0.002	15.630	0.001	19.565	0.001
MC9	Whole Rock	Magnet Cove	39.031	0.001	15.627	0.001	19.450	0.001

Note : * Sample MC3 had high standard error and was generally excluded from analysis.

Table 5. Pb Isotopes and Trace Element Concentrations (ppm) of Duplicate Human Tooth Samples from Crenshaw (3MI6).

Lab Number	Catalog Number	$^{208}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{207}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	$^{206}\text{Pb}/^{204}\text{Pb}$	2*Std. Err.	Pb	V	Mn	Fe	La	Ce	Nd	Dy	Yb	Th	U
HU4 B	62-40-49	40.369	0.005	15.860	0.002	21.072	0.003	0.240	0.722	2.855	16.581	0.020	0.034	0.028	0.003	0.001	0.001	0.000
HU7 B	62-40-121	40.734	0.002	15.902	0.001	21.538	0.001	2.792	1.962	10.442	11.310	0.052	0.024	0.034	0.005	0.002	0.001	0.011
HU13 B	83-376-1	40.587	0.004	15.883	0.002	21.353	0.002	0.351	0.384	4.084	19.585	0.024	0.027	0.026	0.002	0.002	0.001	0.007
HU15 B	83-376-3	40.111	0.008	15.824	0.003	20.737	0.004	0.121	0.243	2.000	10.510	0.012	0.016	0.013	0.002	0.001	0.001	0.002