

Who's the Boss? How and When Process Power Moderates
Partner Regulation of Attachment Defenses

Katherine C. Haydon
Anna Woronzoff-Dashkoff
Kelley Murphy
Mount Holyoke College

Author Note

Katherine C. Haydon, Anna Woronzoff-Dashkoff, & Kelley Murphy, Psychology & Education Department, Mount Holyoke College. Funding from the National Science Foundation supported this research (NSF 1650694). We thank Jessica E. Salvatore for her role in developing the positive conflict recovery scale. Direct correspondence to KC Haydon at Mount Holyoke College, 50 College Street, South Hadley, MA 01075. Email: kchaydon@mtholyoke.edu.

Abstract

Emerging theories suggest that interpersonal power may moderate partner regulation of attachment-related defenses (Overall, 2019). This study tested whether partner *negative engagement* (attack, blame, and criticism) and *process power* (direction and control of conflict resolution) interacted to predict avoidant and anxious targets' behavioral and physiological responses to conflict. We expected greatest dysregulation when avoidant targets' autonomy concerns were maximally threatened (i.e., when partners directed conflict using highly negative tactics) and when anxious targets' abandonment concerns were maximally threatened (i.e., when highly negative partners disengaged from conflict). Results indicated that highly anxious people recovered poorly from conflict regardless of partner negative engagement and process power but showed greatest heart rate reactivity to conflict (HRR) when partners used strong negative engagement but did not direct conflict. Highly avoidant individuals' HRR did not differ based on partner negative engagement or process power. As expected, however, they recovered worst from conflict when highly negative partners directed conflict discussions and recovered best when partners directed conflict without using blame or criticism. Findings suggest that the meaning and consequences of process power may differ for avoidant vs. anxious targets and underscore the need to integrate multiple conceptualizations of interpersonal power into future research on partner regulation.

Keywords: attachment, conflict, partner regulation; process power

Who's the Boss? How and When Process Power Moderates**Partner Regulation of Attachment Defenses**

Maintaining an intimate partnership challenges partners to invest in each other's vulnerabilities, needs, and goals. Yet most partnerships are asymmetrical in terms of partners' degrees of mutual dependence and influence (Overall, Hammond, McNulty, & Finkel, 2016; Sprecher, Schmeeckle, & Felmlee, 2006) and must contend with each partner's attachment history regarding beliefs about whether it is safe and effective to depend on partners (Simpson, Collins, Tran, & Haydon, 2007). For these reasons, attachment and interpersonal power should be intimately related (Overall, 2019). However, several gaps exist in our understanding of links between attachment and power (Overall et al. 2016; Simpson, Farrell, Rothman, Oriña, 2015). Overall (2019) argued that attachment-relevant concerns are core motives for regulating the balance of power in close relationships and pointed to the need for studies that examine specific experiences of insecure individuals as they manage power-relevant situations. The current study tested the claim that power should influence partner regulation of attachment-related defenses. Specifically, we examined whether the balance of *process power* (i.e., direction and control of conflict discussions) between partners moderated the effect of hostile partner behavior on insecure targets' behavioral and physiological responses to conflict.

Partner Regulation for Better and for Worse

The attachment system governs responses to threat and regulates strategies to maintain proximity to others who can meet attachment-related needs (Bowlby, 1979). Attachment working models function as self-regulation strategies, modulating emotion, cognition, behavior, and physiology in attachment-relevant situations (Allen & Miga, 2010; Mikulincer & Shaver, 2003). Highly anxious people fear inadequate support and abandonment and are emotionally and

physiologically reactive to perceived attachment-relevant threat (Diamond & Fagundes, 2010; Pietromonaco & Beck, 2019). Highly avoidant people fear rejection and impingement upon their autonomy; they also show heightened physiological reactivity, but tend to suppress negative emotion, in response to perceived threats (Diamond, Hicks, & Otter-Henderson, 2006; Pietromonaco & Beck, 2019).

The Dyadic Regulation Model of Insecurity Buffering (Simpson & Overall, 2014) posits that partner behaviors tailored to insecure targets' attachment-relevant needs and concerns can increase felt security, which enables insecure targets to regulate their emotions and behavior more effectively. Nevertheless, the same properties of interdependence that enable partner buffering (e.g., mutual outcome-dependence and shared regulatory resources; Fitzsimons, Finkel, & vanDellen, 2015) also create opportunities for partners to impede insecure targets' self-regulation by exacerbating their fears and defenses. Highly avoidant targets show worse behavioral and physiological regulation when partners use harsh influence tactics to request change or sacrifice, approach conflict more emotionally and less rationally, and constrain the psychological space avoidant targets have to maintain autonomy (Farrell, Simpson, Overall, & Shallcross, 2016; Girme, Overall, Simpson, & Fletcher, 2015; Overall, Girme, Lemay, & Hammond, 2014; Overall, Simpson, & Struthers, 2013). Highly anxious targets show worse regulation when partners indicate criticism and lack of support and exacerbate abandonment concerns by not signaling intimacy and accommodation (Campbell, Simpson, Boldry, & Kashy, 2005; Little, McNulty, & Russell, 2010; Tran & Simpson, 2009).

Although evidence for partner regulation is now robust, the extent to which partner regulation is sensitive to context remains understudied. Preliminary evidence suggests that partner regulation promotes optimal outcomes under some circumstances, while under others it

leads to deteriorating relationship health (Timmons, Margolin, & Saxbe, 2015). Overall and McNulty (2017) argued that whether partner influence strategies are constructive or unconstructive depends on context and called for additional research on such contextual factors. Very likely, situational dynamic processes govern the extent to which partner regulation is possible and effective. More research is needed to understand how such relationship dynamics influence whether, when, and how partner regulation occurs.

Process Power

A complex literature details the many ways interpersonal power has been conceptualized, including *structural power* (derived from social resources such as income, education, race, and sex; Howard, Blumstein, & Schwartz, 1986); *social power* (ability to influence others and control outcomes; French, Raven, & Cartwright, 1959), and *relationship power* (partners' general levels of mutual dependence and influence; Overall et al., 2016). *Situational power* concerns dynamic shifts in power as partners negotiate shared and conflicting needs and goals, such as during conflict (Overall et al., 2016). Farrell, Simpson, & Rothman (2015) distinguished *process power* (control over the conflict resolution process itself) from *outcome power* (obtaining desired outcomes from conflict) and maintained that these may be orthogonal. That is, one partner may have more control than the other in directing a conflict discussion but fail to obtain desired outcomes. Alternatively, a person may have little input during conflict but nonetheless obtain desired outcomes in the end (Farrell et al., 2015). Thus, process power concerns how much people engage in power-relevant interactions, whether or not they have or use other forms of interpersonal power.

Although there are few empirical tests of how power influences partner regulation (Overall, 2019), there are clear reasons to expect that process power in particular could influence

how partner regulation of attachment defenses occurs. First, process power stems from the behavioral and communicative strategies people use to try to exert influence, regardless of whether they obtain desired influence. Unlike other conceptualizations of power that focus on obtained outcomes, subjective internal evaluations, or global patterns of dependence and influence, process power inherently emerges from the same moment-to-moment behavioral transactions through which partner regulation of attachment defenses occurs. In this way, process power is uniquely positioned to influence partner regulation.

Second, conflicts in which one partner has more control over the discussion than the other should activate insecure targets' attachment-related strategies to manage dependency risks (Overall & Cross, 2019). Moreover, insecure targets' responses to process power asymmetries should depend on other features of the behavioral transactions from which process power emerges. Given the different biases, needs, and defenses of avoidant versus anxious people, avoidant versus anxious targets are likely to interpret the balance of process power with partners differently depending on whether partners engage constructively or unconstructively in conflict. Unconstructive, demanding partners who direct conflict may activate avoidant targets' defenses to create psychological distance from partners as a means of regaining autonomy or fending off partners' expressions of need, dependence, or demand for change. On the other hand, avoidant targets may respond well to partner direction of conflict when partners do not use unconstructive tactics, because they are relieved of the burden of directing difficult negotiations they prefer to dismiss or avoid. For highly anxious people, negative partner tactics likely activate abandonment concerns. These concerns may be reduced in the context of high partner process power, however, because anxious targets may perceive partner control of conflict discussions as a sign that partners remain invested in resolving conflict (and presumably, in their relationships).

Conversely, holding greater process power than non-threatening partners may provide a platform for anxious individuals to express needs, elicit care, and reduce abandonment concerns. For these reasons, process power may serve as an important contingent context for interpreting the meaning of one's partner's behavior, thus moderating partner regulation of attachment defenses.

The Current Study

This study aimed to elaborate Overall's (2019) claim that power is the core context in which anxious and avoidant individuals experience attachment-related distress and enact strategies to manage attachment-relevant concerns. We sought to understand how and when process power can amplify or attenuate partner regulation of attachment defenses. Specifically, we tested whether a potentially threatening partner behavior interacted with the partner's degree of process power to influence highly anxious and avoidant targets' physiological and behavioral responses to conflict (see Table 1). We focused on parental attachment anxiety and avoidance for two reasons. First, this approach builds on Overall's (2019) theoretical claim that attachment develops in the context of power dynamics in parent-child relationships. Second, parental attachment orientations remain important predictors of conflict behavior and physiology in adult relationships (Roisman, 2007; Salvatore, Kuo, Steele, Simpson, & Collins, 2011; Simpson et al., 2007).

Our operationalization of process power stems from Farrell et al.'s (2015) definition of process power as "control over the decision-making process itself ...enacted by leading conversations or laying out options and ideas" (p. 3). Additionally, we incorporated the Dyadic Power-Social Influence Model's claim that power encompasses the ability to influence one's partner and resist one's partner's influence attempts (Simpson, Farrell, Oriña, & Rothman, 2015). Thus, in the context of conflict discussions where participants were instructed to try to

reach a mutually satisfying solution, we defined process power as directing and controlling the course and content of conflict and resisting partner attempts to direct conversation away from one's own needs and goals.

With respect to partner regulation, we focused on *negative engagement* (i.e., instances of attack, criticism, or blame; Haydon, Jonestrask, Guhn-Knight, & Salvatore, 2017) because strong negative engagement enacted by partners should dysregulate highly anxious and avoidant people, but for different reasons. For highly anxious targets, attack, criticism, and blame may convey that their partners view them negatively or that their relationships are on thin ice, heightening abandonment concerns. Highly anxious people may also perceive negatively-framed demands for change as threatening abandonment if change does not happen. On the other hand, partner attack, blame, and criticism may impinge on avoidant targets' need for autonomy, convey rejection of their needs and concerns, and place demands on them to emotionally engage beyond their comfort level. In each case, these threats should result in physiological and behavioral dysregulation (Diamond & Fagundes, 2010).

Further, we expected that process power should impact how insecure targets interpret and respond to partner behavior, moderating the effect of partner negative engagement on highly anxious and avoidant individuals' behavior and physiological regulation. For highly anxious targets, we expected greater physiological and behavioral dysregulation when faced with maximal abandonment threats (i.e., when highly negative partners did not attempt to direct conflict discussions) but that signs of partner investment in conflict resolution would mitigate the dysregulating effects of partner negative engagement. For avoidant targets, we expected greater physiological and behavioral dysregulation when faced with maximal autonomy threats (i.e., when highly negative partners directed the course and content of conflict).

We tested these predictions with respect to two attachment-relevant, short-term outcomes: a physiological indicator of stress reactivity during conflict, and a measure of behavioral regulation immediately after conflict. Cardiovascular reactivity, or change in heart rate from a resting baseline assessment in response to a stressor, indicates sympathetic nervous system activation. Despite having different behavioral and affective responses to interpersonal stress (suppression vs. hyperactivation; Mikulincer & Shaver, 2003), anxiety and avoidance are both associated with higher cardiovascular reactivity to interpersonal stress and conflict (Beijersbergen, Bakermans-Kranenburg, van IJzendoorn, & Juffer, 2008; Carpenter & Kirkpatrick, 1996; Kordahji, Bar-Kalifa, & Rafaeli, 2015). Thus, we expected insecure targets to show greater cardiovascular reactivity in conditions that maximally taxed their attachment-relevant needs and concerns.

We also expected process power to moderate the effect of partner negative engagement on target behavior in the moments immediately following conflict. Conflict recovery behavior refers to the successful transition away from conflict toward opportunities for repair and re-alignment of shared interests and goals in the moments after conflict (Salvatore et al., 2011; Haydon et al., 2017). Effective conflict recovery (e.g., successfully shifting one's focus to positive aspects of the relationship; refraining from sabotaging the moments after conflict) is associated with infant attachment as well as adult anxiety and avoidance (Haydon et al., 2017; Salvatore et al., 2011). Thus, we expected conflict recovery behavior would be a salient vantage point from which to observe dysregulation in anxious and avoidant targets.

Hypotheses. To summarize, we expected anxious vs. avoidant targets to react differently to the interaction of partner negative engagement and partner process power. For highly anxious targets, we expected greater heart rate reactivity and worse conflict recovery when highly

negative partners held low process power, but that the effect of partner negative engagement would be mitigated when partners held higher process power. We expected highly avoidant targets to show greater heart rate reactivity and worse conflict recovery when highly negative partners held higher process power, but that avoidant targets would show better regulation when partners directed conflict without using negative tactics.

Method

Participants

Data were drawn from a sample of 100 couples ($N = 200$ individuals) recruited from urban, suburban, and rural communities in New England (Haydon et al., 2017). The sample included 84 heterosexual and 16 same-sex, transgender, nonbinary, or queer-identified couples. Ninety men and 106 women participated; 4 individuals did not report their sex. Mean relationship length was 3.2 years ($SD = 2.6$ years); 50% of couples were married. Participants ranged from 19-43 years old (mean = 26.8 years, $SD = 5.3$ years) and reported the following ethnicities: 79.5% European, 13% Latina/Latino/Latinx, 7% Native American, 5% Asian, 2.5% Middle Eastern/Arab, and 2.5% Black or African.

Procedure

Prior to a laboratory visit, participants completed measures of attachment anxiety and avoidance and other relationship perception measures. At the laboratory, research assistants applied sensors to measure heart rate, respiration, and skin conductance levels. After a 4-minute resting baseline assessment, participants were videotaped discussing their biggest relationship problem for 10 minutes. After the conflict discussion, partners were directed to discuss areas of their relationship on which they agreed the most for 5 minutes as a “cool-down” task (Salvatore

et al., 2011). At the end of the session, participants were debriefed and compensated US\$20 each; the Institutional Review Board approved the entire procedure.

Measures

Attachment Avoidance and Anxiety. Avoidance and anxiety were assessed with the Experiences in Close Relationships - Relationship Structures measure (ECR-RS; Fraley, Heffernan, Vicary, & Brumbaugh, 2011). Participants rated the same ten items on a 7-point scale for mother and father separately. According to the procedure described in Fraley et al. (2011), we computed composite parental anxiety and avoidance scales. Cronbach's alpha ranged from .90-.91 for mother anxiety, mother avoidance, father anxiety and father avoidance.

Negative Conflict Engagement. Two trained raters scored participants on a five-point Likert-type scale that assessed the frequency, intensity, and duration of each participant's *negative engagement* during the 10-minute conflict discussion. High scores were assigned when participants blamed or criticized partners or made strong negatively-framed demands for change; moderate scores were assigned when participants issued occasional or moderately intense criticism, attack, or blame; low scores were assigned when participants did not display these behaviors at any time or displayed them only rarely and at low levels. Inter-rater reliability (intra-class correlation; *ICC*) on 23% of cases was .96.

Process Power. Two additional coders rated process power during conflict as a within-dyads variable. For each one-minute epoch of the discussion, process power was rated as a ratio of partners' power out of 100, such that a target's score could range from 0 to 100 and their partner's score in that same epoch equaled 100 minus the target's score. Participants were rated as having high process power to the extent that they structured and controlled the discussion either through proactive or resistant tactics, regardless of whether tactics were constructive or

unconstructive in context. Proactive tactics included advancing the conversation by stating beliefs or feelings without prompting from the partner, advancing discussion of problems, compromises, or solutions, or raising new problems or concerns. Resistant tactics included successfully redirecting or inhibiting discussion in a way that changed the course of the conversation, for example, by refusing to talk about certain issues, refusing to accept blame or take responsibility, or resisting the premise of the partner's argument. Participants were rated as having low process power to the extent that they did not attempt to direct the course of conversation or their efforts to direct conversation were thwarted by their partner. Interrater reliability (ICC) was .87; the full coding scale appears in supplemental materials.

Heart Rate Reactivity. Each participant's heart rate was measured continuously at a rate of 1000 Hz during a 4-minute resting baseline assessment and across the 10-minute conflict discussion using electrodes on each participant's torso. Heart rate in beats per minute was calculated via interbeat intervals between R waves using data acquisition systems and software from the James Long Company (Caroga Lake, NY). Heart rate reactivity to conflict (HRR) was calculated as each participant's mean heart rate during the resting baseline subtracted from their mean heart rate during conflict. HRR ranged from -7 to 18 beats per minute. Positive HRR values indicated an increase in mean heart rate from baseline to conflict; negative values indicated a decrease in mean heart rate from baseline to conflict. Two participants' heart rate data were lost due to participant error.

Conflict Recovery. Two additional expert coders rated each participant's behavior during the discussion of agreements on a 5-point Likert-type *positive conflict recovery* scale. This scale captures the upper end of Salvatore et al.'s (2011) conflict recovery scale and assesses active positive contributions to conflict recovery. High scores were assigned when people made

substantial, positive contributions by consistently bringing up areas of agreement or positive aspects of the relationship and/or by elaborating on positive statements made by their partner (e.g., “We co-parent well because we share the same values”; “Hanging out with you is great – we always have a good time”). Moderate scores were assigned for less frequent positive statements and/or weaker positive statements (e.g., “We don’t smoke”; “Your mom is alright”). Low scores were assigned to people who did not nominate areas of agreement or make any positive contributions to the discussion of agreements, regardless of whether they made negative contributions. Inter-rater reliability (*ICC*) was .92.

Results

Analysis Strategy

For the present analyses, each participant’s process power scores across the 10-minute conflict were averaged; average scores ranged from 5 to 95. Because this study focused on partner behavior as a moderator, process power was expressed as a ratio of partner to actor process power, such that higher values indicated higher partner power and lower values indicated higher actor power. As a check of whether process power was independent of global relationship evaluations, and to rule out depression as an alternative explanation for why someone might display fewer or less successful attempts to control the course of conflict, we determined that process power was not significantly associated with self-reported satisfaction ($b = -.00, p = .63$), commitment ($b = .00, p = .93$), quality ($b = -.00, p = .22$), or internalizing symptoms ($b = .00, p = .61$). Finally, given that process power may stem from sex differences in structural power, we determined that men (mean = 53.29, $SD = 13.10$) were rated as having slightly, but significantly, more process power than women (mean = 47.01, $SD = 12.51; t [1, 195] = 3.43, p = .001$); thus, sex was included as a covariate in tests of all hypotheses.

Table 2 presents descriptive statistics, associations among all variables, and associations between partners within variables. Tests conducted in Kenny's (2015) online application indicated that partners' data were nonindependent ($\chi^2[6] = 28.46, p < .001$). Omnibus tests of distinguishability indicated equal means ($\chi^2[3] = 0.58, p = .90$), correlations ($\chi^2[6] = 12.29, p = .06$), and variances ($\chi^2[3] = 2.35, p = .50$), demonstrating that partners were not distinguishable by sex. Thus, we tested hypotheses in moderated Actor-Partner Interdependence Models for indistinguishable dyads (Garcia, Kenny, & Ledermann, 2014) computed in SPSS 25.

Obtaining precise power estimates for moderated multilevel models is not straightforward (Garcia et al., 2014). Because the effective sample size for dyadic models lies somewhere between the number of dyads and the number of individuals based on the degree of nonindependence in partners' data, computing power based on the number of dyads yields conservative estimates. Using the approach presented in Sharon-David, Mizrahi, Rinott, Golland, & Birnbaum. (2019), we calculated that 90 couples would be sufficient to detect small to medium effects ($f^2 = .07$) with 80% power, but detecting small effects ($f^2 = .02$) would require 311 couples. Thus, analyses were underpowered to detect small effects, particularly for higher-order interaction terms.

Each model included: 1) main effects of actor avoidance and anxiety, actor and partner negative engagement, sex (men = 0, women = 1), and process power expressed as a ratio of partner to actor power; 2) all two-way interactions among relevant predictors; and 3) the two three-way interactions relevant to hypotheses (attachment \times partner negative engagement \times process power). All continuous variables were standardized with z-transformation to aid interpretation of standardized effects. Significant three-way interactions were decomposed following recommendations by Garcia et al. (2014): after recentering anxiety and avoidance at

one standard deviation above and below the mean, we computed four additional models for each outcome, each with a different recentered attachment variable. This enabled interpretation of the two-way interactions of process power and partner negative engagement at high and low levels of target anxiety and avoidance. Syntax appears in supplemental materials.

Anxiety, Partner Negative Engagement, and Process Power

Anxiety, partner negative engagement and process power interacted to predict heart rate reactivity (HRR; Table 3; $b = -.22$, $t = -2.17$, $p = .03$). To decompose the three-way interaction, we examined two-way interactions between partner negative engagement and process power at high and low ($\pm 1 SD$) levels of anxiety. A significant interaction emerged between partner negative engagement and process power among highly anxious people ($b = -.10$, $t = -2.65$, $p = .01$) but not among less anxious people ($b = .05$, $t = 1.11$, $p = .27$). As expected, anxious targets were most reactive when highly negative partners held low process power (i.e., did not control or direct conflict resolution). As shown in the right panel of Figure 1, highly anxious people whose partners held low process power showed significantly greater HRR when partners were highly negative compared to when partners used low levels of negative engagement ($b = 2.62$, $t = 2.32$, $p = .02$). Highly anxious people whose partners held high process power showed similar HRR regardless of their partners' negative engagement ($b = -.05$, $t = -.08$, $p = .94$). As shown in the left panel of Figure 1, less anxious people whose partners held low process power showed similar HRR regardless of their partners' negative engagement ($b = -.56$, $t = -.62$, $p = .54$), as did less anxious people whose partners held high process power ($b = .75$, $t = 1.00$, $p = .32$).

On average, highly anxious people recovered worse from conflict than less anxious people (Table 4; $b = -.22$, $t = -3.03$, $p = .003$). Anxiety, partner negative engagement, and process power also interacted significantly to predict conflict recovery behavior ($b = .15$, $t = 2.14$, $p =$

.03). However, decomposition of this effect revealed a significant interaction of partner negative engagement with process power among less anxious people ($b = -.02, t = -2.59, p = .01$) but not among highly anxious people ($b = .01, t = .69, p = .49$). As shown in the right panel of Figure 2, highly anxious people whose partners held low process power and used high levels of negative engagement recovered slightly worse than other highly anxious people, but this effect was not significant ($b = -.15, t = -.65, p = .52$). Rather, highly anxious people recovered poorly regardless of whether partners held high vs. low process power or used high vs. low levels of negative engagement. As shown in the left panel of Figure 2, the greatest conflict recovery occurred for less anxious targets whose partners held high process power and used low levels of negative engagement ($b = -.58, t = -3.57, p < .001$). Less anxious people whose partners held low process power recovered similarly regardless of their partners' negative engagement ($b = .06, t = .34, p = .73$).

Avoidance, Partner Negative Engagement, and Process Power

Avoidance, partner negative engagement, and process power interacted to some extent to predict heart rate reactivity to conflict, although the three-way interaction was only marginally significant (Table 3; $b = .15, t = 1.71, p = .09$). Interactions between partner process power and negative engagement modeled at high and low ($\pm 1 SD$) avoidance revealed a near-significant interaction between process power and negative engagement at low avoidance ($b = -.08, t = -1.97, p = .05$) but not at high avoidance ($b = .03, t = .80, p = .43$). As shown in the left panel of Figure 3, the greatest HRR was observed among less avoidant people whose partners used high levels of negative engagement and held low process power ($b = 2.26, t = 2.46, p = .01$). Less avoidant people whose partners held high process power showed similar HRR regardless of their partners' levels of negative engagement ($b = .06, t = .09, p = .93$). As shown in the right panel of

Figure 3, highly avoidant people showed slightly lower HRR when partners held high process power and did not negatively engage, but these effects were not significant ($b = .64, t = .80, p = .43$). Avoidant targets whose partners held low process power showed similar HRR regardless of partners' negative engagement ($b = -.19, t = -.20, p = .85$).

Finally, avoidance, partner negative engagement, and process power interacted significantly to predict conflict recovery (Table 4; $b = -.20, t = -2.53, p = .01$). Interactions between process power and partner negative engagement modeled at high and low ($\pm 1 SD$) avoidance indicated a significant interaction at high avoidance ($b = -.03, t = -3.15, p = .002$) but not low avoidance ($b = .01, t = 1.09, p = .28$). The effect of process power was as expected; the greatest conflict recovery was observed among highly avoidant individuals whose partners held high process power and did not negatively engage. As shown in the right panel of Figure 3, highly avoidant people whose partners held low process power recovered similarly regardless of their partners' negative engagement ($b = .09, t = .41, p = .68$). However, as expected, highly avoidant people whose partners held high process power showed significantly worse recovery when their partners were highly negative compared to when partners did not negatively engage ($b = -.68, t = -3.91, p < .001$). As shown in the left panel of Figure 3, less avoidant people whose partners held low process power recovered similarly regardless of their partners' negative engagement ($b = -.18, t = -.85, p = .40$), as did less avoidant people whose partners held high process power ($b = .10, t = .71, p = .48$).

Discussion

Simpson et al. (2015) called for better understanding of “whether, when, [and] how having more versus less power in a relationship should generate specific personal or relational outcomes” (p. 405). This study addressed that need by testing whether partner regulation of

attachment defenses depended on process power during conflict. We predicted that partner degree of control over the course of conflict would moderate the effect of partner negative conflict engagement on insecure targets' attachment-related defenses, such that highly avoidant and anxious people would show heightened physiological reactivity to conflict and behavioral dysregulation following conflict when their defenses were maximally taxed. These predictions were supported in some cases but not in others. Highly anxious people generally recovered poorly from conflict regardless of partner negative engagement or process power. As expected, however, they were most cardiovascularly reactive when partners used strong negative engagement but contributed minimally to conflict resolution. Conversely, highly avoidant individuals' heart rate reactivity to conflict did not differ based on partner negative engagement or process power but, as expected, avoidant targets recovered worst from conflict when partners maintained control of conflict using high levels of negative engagement. Findings suggest that partners' capacity to exacerbate insecure targets' attachment-related concerns depends, in some contexts, on the balance of process power between them. Additionally, highly anxious vs. highly avoidant people responded differently to their partners' process power, suggesting that the meaning of occupying higher vs. lower process power may differ based on attachment-related biases and concerns. Below, we elaborate these results in the context of the partner regulation literature and the growing literature on links between attachment and interpersonal power.

Anxious vs. Avoidant Responses to Process Power

Anxiety. We expected that highly anxious targets would struggle most to recover from conflict when faced with critical, attacking partners who disengaged from conflict resolution. Although the results shown in Figure 2 are consistent with this prediction, this effect did not reach statistical significance. Rather, highly anxious people recovered significantly worse than

less anxious people, regardless of how critical or engaged their partners were during conflict. Consistent with emotion regulation models of attachment (Allen & Miga, 2010; Mikulincer & Shaver, 2003), which emphasize the strong dysregulating effects of interpersonal threat on highly anxious people, it is possible that simply engaging in conflict was enough to activate anxious people's abandonment concerns, resulting in less effective conflict recovery. Another possibility is that anxious people need more time to feel assured that their relationship or their partner's esteem for them survived conflict, resulting in a more protracted conflict recovery process than our immediate assessment captured. This possibility is supported by evidence that anxious attachment is associated with more persistent reduction in positive affect on days following conflict (Prager et al., 2015) and slower cortisol recovery from conflict (Powers, Pietromonaco, Gunlicks, & Sayer, 2006).

We also expected that criticism and attack from partners who disengaged from conflict resolution would heighten anxious targets' physiological stress reactivity. This prediction was supported; highly anxious people were most reactive to conflict when they held higher process power than their partners and partners used strong blame, attack, and criticism. This is consistent with Overall's (2019) argument that anxious people respond to vulnerable dependency by vigilantly seeking reassurance from their partners. In the context of partners who did not direct conflict, highly anxious people may have interpreted partners' criticism and blame as signaling low commitment to conflict resolution (or even the relationship), activating their abandonment fears and greater physiological reactivity. However, when partners took control of conflict discussions, anxious targets may have interpreted partners' criticism and blame as investment in the relationship or an expression of intent to improve the relationship, thereby assuaging abandonment concerns and providing reassurance. Thus, for anxious people, a highly negative,

disengaged partner may be a worst-case scenario, whereas a partner who demonstrates motivation to direct conflict, remaining engaged even as they employ negative tactics, may provide the reassurance anxious people need to better manage dependency risks. Alternatively, partners who did not use negative tactics and did not direct conflict may have enabled anxious people to take control of the discussion and express their needs without being attacked, providing another pathway to reassurance. This interpretation is bolstered by the finding that anxious people were least cardiovascularly reactive when their partners did not negatively engage and held low process power.

Avoidance. Findings for avoidance are consistent with Overall's (2019) claim that avoidant people should be vigilant for signs of partner control or manipulation. Highly avoidant people recovered worst after conflicts in which critical, attacking partners maintained greater control of conflict discussions. Our assessment of conflict recovery emphasizes taking advantage of opportunities to reconnect and repair emotional equilibrium after conflict. Avoidant people may have been less able to reconnect immediately after conflict because of their defensive distancing from attacking partners who controlled the course of conflict. Yet avoidant people recovered fairly well with negatively engaged, less controlling partners, suggesting that maintaining direction of conflict mitigated threats posed by partners' criticism and blame. Furthermore, and consistent with the literature on softening tactics (Overall et al., 2013), avoidant people recovered especially well (indeed, better than all others) when partners controlled the course of conflict without criticism or blame. A relatively benevolent partner who does the heavy lifting of directing conflict without activating avoidant people's rejection or autonomy concerns appears to be a best-case scenario for highly avoidant people, disarming their

distancing defenses and enabling more ready entry to the recovery process immediately after conflict.

With respect to avoidant targets' heart rate reactivity to conflict, we did not observe a statistically significant interaction between process power and partner negative engagement. However, similar to the conflict recovery findings, avoidant people appeared buffered to a slight extent when partners directed conflict without using negative tactics. This small protective effect disappeared when partners used strong negative engagement to direct conflict. This suggests two possible pathways for activation of cardiovascular reactivity in highly avoidant targets: exposure to criticism and blame during interactions in which they lack control to change conversational course, and implicit demands on avoidant targets to structure and control conflict when faced with less controlling partners. However, given that effects were not statistically significant, these possibilities are merely speculative.

Implications for Process Power and Partner Regulation

Taken together, the present findings suggest several implications for interpersonal power and partner regulation of attachment defenses. First, findings offer insight regarding why responses to high vs. low process power may differ based on the divergent needs of avoidant vs. anxious people. Keltner, Gruenfeld, and Anderson (2003) posited that low-power partners focus on understanding and predicting the needs of more powerful partners. This should be especially taxing for avoidant people (who prefer not to attend to their own and their partners' emotional needs and concerns), while this should be business as usual for anxious people, who regularly seek signs of their partners' mood states and intentions (Simpson et al., 2011). The present findings elaborate this interpretation by showing that attachment-related responses to occupying the low or high process power position depended on other features of the interaction. For

insecure targets, the risks and benefits of directing conflict appear to depend on whether partners act against their attachment-related needs. This further suggests that the meaning of attack, blame, and criticism is, to some extent, in the eye of the beholder because targets interpret partner behavior in light of their attachment orientations and their share of process power. Thus, the present findings underscore the importance of viewing partner regulation through a process power lens.

Second, findings speak to a broader pattern in which insecure attachment motivates behavior strategies that afford short-term gains but have long-term costs. Such trade-offs have been observed in prior studies where behavioral strategies that serve insecure targets' immediate needs ultimately undermine relationship health (e.g., guilt induction, Overall et al., 2014; conflict recovery sabotage; Haydon et al., 2017). The present study suggests anxious people may benefit in the short-term from negative engagement enacted by powerful partners, in that they are less reactive to negative engagement when they perceive their partners to be checked in rather than checked out during conflict. Nonetheless, repeated exposure to negative engagement may take a toll on highly anxious people's confidence in their partners' support and reinforce fears that partners hold them in low esteem. Likewise, in the present study, negative engagement did not appear to have adverse effects on avoidant people's short-term responses to conflict when they had greater process power than their partners. Avoidant people may be able to tolerate attack, blame, and criticism so long as they maintain the upper hand in directing conflict resolution. Still, partner negative engagement should have long-term costs for avoidant people too, in that repeated exposure would reinforce beliefs that the self is worthy of blame and criticism rather than care and support. Thus, such trade-offs may be one mechanism through which insecure

attachment orientations are strengthened and reinforced, constraining insecure people's opportunities to increase felt security and revise expectations of partners over time.

Finally, this study supports the claim that avoidance and anxiety promote divergent strategies for risk regulation in close relationships (Murray, Holmes, & Collins, 2006; Overall & Sibley, 2009). Overall (2019) argued that power is the context in which insecure attachment develops and persists, promoting relatively stable strategies to manage dependence on caregivers who did not provide consistent adequate support. As adults, avoidant people manage such risks through distancing and derogation, while anxious people manage dependence risks through relationship promotion and tactics that increase partner dependence (Overall & Cross, 2019). Process power may be particularly relevant to these strategies because, unlike outcome power, it coincides with the dynamic opportunities insecure targets have (or do not have) to enact the risk-management strategies on which they have come to rely. Consistent with these claims, the present findings suggest that insecure targets were most dysregulated when their risk regulation strategies were most thwarted (i.e., when attacking partners impeded avoidant targets' distancing attempts by controlling conflict discussions, and when disengaged attacking partners resisted anxious people's attempts to increase partner dependence). Thus, this study presents new evidence that attending to process power reveals the divergent responses of avoidant vs. anxious targets to managing dependency risks in power-relevant situations.

Caveats and Limitations

Findings should be considered alongside several caveats and limitations. First, by definition, analyses were sufficiently powered to detect the significant interaction effects we observed (Lane & Hennes, 2018). Still, as noted previously, analyses were underpowered to detect small effects. Second, process power was measured in one-minute epochs across 10-

minute conflicts. However, to maximize independence of ratings by having separate teams assess negative engagement and process power, we relied on an existing globally-coded measure of negative engagement that characterized behavior across the entire discussion. We were therefore unable to examine temporal shifts in associations between negative engagement, process power, and physiological reactivity as conflict unfolded over time. Future analyses would benefit from this approach and would enable more precise tests of the dynamic power rebalancing strategies outlined by Overall & Cross (2019).

Finally, the methodological niche of our process power measure matters. As Loving, Heffner, Kiecolt-Glaser, Glaser, and Malarkey (2004) noted, observational measures capture transactional process but fail to identify the origins of each partner's power. Our measure did not assess why one partner had more or less control of conflict discussions than the other. That is, a given target may have been rated as having more process power than their partner either because the partner abdicated opportunities for control or because the target wrenched control from the partner by bulldozing past the partner's attempts at control. Additionally, we conceptualized process power as a zero-sum variable in which partners were assigned complementary portions out of 100; thus, our measure does not assess absolute process power across individuals but, rather, the internal dynamics of each couple relative to itself. Given these methodological considerations, we caution against generalizing the current findings beyond the context of process power observed during conflict.

Future Directions

The present findings point to several future directions. Although this study documented the capacity of partners with high and low process power to regulate insecure targets' responses to conflict, it remains unclear if process power could mitigate any costs of serving in such a

regulatory capacity. Future research might explore whether effort exerted to regulate insecure targets is less taxing for partners with more vs. less process power. Additionally, this study did not assess whether participants were aware of the role of process power in their behavioral and physiological responses. Future research could clarify the mechanisms through which process power moderates partner regulation by using observational and self-report measures of process power simultaneously. Lastly, a compelling but as yet untested possibility is that power dynamics explain lawful pathways through which attachment orientations persist or change over time. Future research should examine whether shifts in power, measured variously and beyond the context of a single situation or interaction, account for fluctuations in felt security over time.

Conclusion

Keltner and colleagues (2003) observed that “high and low power individuals inhabit and, through their own actions, create strikingly different worlds” (p. 279). Overall and Cross (2019) elaborated reasons why power should be intimately related to partner regulation of attachment defenses, arguing that “the distinct dependence-based histories associated with avoidance versus anxiety create distinct concerns regarding dependence and control in relationships and distinct ways of managing dependence and influence within relationship exchanges.” (p. 32). The current findings provide new theory-consistent evidence to support these claims, demonstrating that anxiety and avoidance create distinct, context-specific responses to process power, which in turn confer different risks and benefits for partner regulation of attachment defenses. More broadly, this study highlights the need to better understand how contextual factors of many kinds – within specific interactions between partners, within relationships more broadly, as well as individual differences in reactivity, sensitivity to context,

and self-regulation – influence the extent to which partner regulation is possible and beneficial vs. detrimental for both targets and partners.

References

Allen, J. P., & Miga, E. M. (2010). Attachment in adolescence: A move to the level of emotion regulation. *Journal of Social and Personal Relationships*, 27(2), 181-190.

Beijersbergen, M. D., Bakermans-Kranenburg, M. J., Van IJzendoorn, M. H., & Juffer, F. (2008). Stress regulation in adolescents: Physiological reactivity during the adult attachment interview and conflict interaction. *Child Development*, 79(6), 1707-1720.

Bowlby, J. (1979). *The Making and Breaking of Affectional Bonds*. London: Tavistock.

Campbell, L., Simpson, J. A., Boldry, J., & Kashy, D. A. (2005). Perceptions of conflict and support in romantic relationships: The role of attachment anxiety. *Journal of Personality and Social Psychology*, 88(3), 510-531.

Carpenter, E. M., & Kirkpatrick, L. A. (1996). Attachment style and presence of a romantic partner as moderators of psychophysiological responses to a stressful laboratory situation. *Personal Relationships*, 3(4), 351-367.

Diamond, L. M., & Fagundes, C. P. (2010). Psychobiological research on attachment. *Journal of Social and Personal Relationships*, 27(2), 218-225.

Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. (2006). Physiological evidence for repressive coping among avoidantly attached adults. *Journal of Social and Personal Relationships*, 23(2), 205-229.

Farrell, A. K., Simpson, J. A., Overall, N. C., & Shallcross, S. L. (2016). Buffering the responses of avoidantly attached romantic partners in strain test situations. *Journal of Family Psychology*, 30(5), 580-591.

Farrell, A. K., Simpson, J. A., & Rothman, A. J. (2015). The Relationship Power Inventory: Development and validation. *Personal Relationships*, 22(3), 387-413.

Fitzsimons, G. M., Finkel, E. J., & vanDellen, M. R. (2015). Transactive goal dynamics. *Psychological Review*, 122(4), 648-673.

Fraley, R. C., Heffernan, M. E., Vicary, A. M., & Brumbaugh, C. C. (2011). The Experiences in Close Relationships—Relationship Structures Questionnaire: A method for assessing attachment orientations across relationships. *Psychological Assessment*, 23(3), 615-625.

French, J. R., & Raven, B. (1959). The bases of social power. *Classics of Organization Theory*, 7, 311-320.

Garcia, R. L., Kenny, D. A., & Ledermann, T. (2014). Moderation in the actor–partner interdependence model. *Personal Relationships*, 22(1), 8-29.

Girme, Y. U., Overall, N. C., Simpson, J. A., & Fletcher, G. J. O. (2015). "All or nothing": Attachment avoidance and the curvilinear effects of partner support." *Journal of Personality and Social Psychology*, 108(3), 450-475.

Haydon, K. C., Jonestrask, C., Guhn-Knight, H., & Salvatore, J. E. (2017). The dyadic construction of romantic conflict recovery sabotage. *Journal of Social and Personal Relationships*, 34(6), 915-935.

Howard, J. A., Blumstein, P., & Schwartz, P. (1986). Sex, power, and influence tactics in intimate relationships. *Journal of Personality and Social Psychology*, 51(1), 102-109.

Keltner, D., Gruenfeld, D. H., & Anderson, C. (2003). Power, approach, and inhibition. *Psychological Review*, 110(2), 265-284.

Kenny, D. A. (2015, January). An interactive tool for testing distinguishability and nonindependence in dyadic data [Computer software]. Available from <https://davidakenny.shinyapps.io/Dingy/>.

Kordahji, H., Bar-Kalifa, E., & Rafaeli, E. (2015). Attachment insecurity as a moderator of cardiovascular arousal effects following dyadic support. *Journal of Research in Personality*, 57, 89-99.

Lane, S. P., & Hennes, E. P. (2018). Power struggles: Estimating sample size for multilevel relationships research. *Journal of Social and Personal Relationships*, 35(1), 7-31.

Little, K. C., McNulty, J. K., & Russell, V. M. (2010). Sex buffers intimates against the negative implications of attachment insecurity. *Personality and Social Psychology Bulletin*, 36(4), 484-498.

Loving, T. J., Heffner, K. L., Kiecolt-Glaser, J. K., Glaser, R., & Malarkey, W. B. (2004). Stress hormone changes and marital conflict: Spouses' relative power makes a difference. *Journal of Marriage and Family*, 66(3), 595-612.

Mikulincer, M., & Shaver, P. R. (2003). The attachment behavioral system in adulthood: Activation, psychodynamics, and interpersonal processes. *Advances in Experimental Social Psychology*, 35, 56-152.

Murray, S. L., Holmes, J. G., & Collins, N. L. (2006). Optimizing assurance: The risk regulation system in relationships. *Psychological Bulletin*, 132(5), 641-666.

Overall, N.C. (2019). Attachment insecurity and power regulation in intimate relationships. *Current Opinion in Psychology*, 25, 53-58.

Overall, N. C. & Cross, E. J. (2019). Attachment insecurity and the regulation of power and dependence in intimate relationships. In C. R. Agnew & J. J. Harmon (Eds.) *Power in Close Relationships* (pp. 28-54). Cambridge University Press.

Overall, N. C., Girme, Y. U., Lemay, E. P., Jr., & Hammond, M. D. (2014). Attachment anxiety and reactions to relationship threat: The benefits and costs of inducing guilt in romantic partners. *Journal of Personality and Social Psychology, 106*(2), 235-256.

Overall, N. C., Hammond, M. D., McNulty, J. K., & Finkel, E. J. (2016). When power shapes interpersonal behavior: Low relationship power predicts men's aggressive responses to low situational power. *Journal of Personality and Social Psychology, 111*(2), 195-217.

Overall, N. C., & McNulty, J. K. (2017). What type of communication during conflict is beneficial for intimate relationships? *Current Opinion in Psychology, 13*, 1-5.

Overall, N. C., & Sibley, C. G. (2009). Attachment and dependence regulation within daily interactions with romantic partners. *Personal Relationships, 16*(2), 239-261.

Overall, N. C., Simpson, J. A., & Struthers, H. (2013). Buffering attachment-related avoidance: Softening emotional and behavioral defenses during conflict discussions. *Journal of Personality and Social Psychology, 104*(5), 854-871.

Pietromonaco, P. R., & Beck, L. A. (2019). Adult attachment and physical health. *Current Opinion in Psychology, 25*, 115-120.

Powers, S. I., Pietromonaco, P. R., Gunlicks, M., & Sayer, A. (2006). Dating couples' attachment styles and patterns of cortisol reactivity and recovery in response to a relationship conflict. *Journal of Personality and Social Psychology, 90*(4), 613-628.

Prager, K. J., Shirvani, F., Poucher, J., Cavallin, G., Truong, M., & Garcia, J. J. (2015). Recovery from conflict and revival of intimacy in cohabiting couples. *Personal Relationships, 22*(2), 308-334.

Roisman, G. I. (2007). The psychophysiology of adult attachment relationships: Autonomic reactivity in marital and premarital interactions. *Developmental Psychology, 43*(1), 39–53.

Salvatore, J. E., Kuo, S. I. C., Steele, R. D., Simpson, J. A., & Collins, W. A. (2011). Recovering from conflict in romantic relationships: A developmental perspective. *Psychological Science, 22*(3), 376-383.

Sharon-David, H., Mizrahi, M., Rinott, M., Golland, Y., & Birnbaum, G. E (2019). Being on the same wavelength: Behavioral synchrony between partners and its influence on the experience of intimacy. *Journal of Social and Personal Relationships, 36*, 2983-3008.

Simpson, J. A., Collins, W. A., Tran, S., & Haydon, K. C. (2007). Attachment and the experience and expression of emotions in romantic relationships: A developmental perspective. *Journal of Personality and Social Psychology, 92*(2), 355-367.

Simpson, J. A., Farrell, A. K., Oriña, M. M., & Rothman, A. J. (2015). Power and social influence in relationships. *APA Handbook of Personality and Social Psychology, 3*, 393-420.

Simpson, J. A., Kim, J. S., Fillo, J., Ickes, W., Rholes, W. S., Oriña, M. M., & Winterheld, H. A. (2011). Attachment and the management of empathic accuracy in relationship-threatening situations. *Personality and Social Psychology Bulletin, 37*(2), 242-254.

Simpson, J. A., & Overall, N. C. (2014). Partner buffering of attachment insecurity. *Current Directions in Psychological Science, 23*(1), 54-59.

Sprecher, S., Schmeeckle, M., & Felmlee, D. (2006). The principle of least interest: Inequality in emotional involvement in romantic relationships. *Journal of Family Issues, 27*(9), 1255-1280.

Timmons, A. C., Margolin, G., & Saxbe, D. E. (2015). Physiological linkage in couples and its implications for individual and interpersonal functioning: A literature review. *Journal of Family Psychology, 29*(5), 720-721.

Tran, S., & Simpson, J. A. (2009). Prorelationship maintenance behaviors: The joint roles of attachment and commitment. *Journal of Personality and Social Psychology, 97*(4), 685-698.

Table 1

Principal Moderators and Outcomes

Construct	Definition	Operationalization
Process Power	Control or direction of the conflict resolution process, through proactive and/or resistant tactics (Simpson et al., 2015)	Ratio of partner's to target's control of 10-minute conflict discussion; partners assigned complementary portions out of 100
Negative Engagement	Negatively framed demands for change issued during conflict (Haydon et al., 2017)	Frequency and intensity of criticism, blame, and attack during conflict discussion
Heart Rate Reactivity	Cardiovascular reactivity to stress	Change in mean heart rate from resting baseline to conflict discussion
Positive Conflict Recovery	Successful transition away from conflict toward opportunities for repair and realignment of shared interests and goals (Salvatore et al., 2011)	Frequency and intensity of positive contributions to discussion of agreements immediately after conflict

Table 2

Descriptive Statistics and Associations Between All Variables

Predictors	1	2	3	4	5	6	7
1 Avoidance	.14						
2 Anxiety	.66***	.05					
3 Process Power	.01	.00	-1.0***				
4 Actor Neg. Engage.	.01	.20***	-.02***	.46***			
5 Partner Neg. Engage.	-.05	-.01	.02***	.46***	.46***		
6 Heart Rate Reactivity	-.01	.00	-.02	-.05	.02	.12	
7 Conflict Recovery	-.02	-.13 [†]	.00	-.04	-.13 [†]	.08	.62***
Mean	3.56	2.00	50	1.39	1.39	4.32	2.96
Standard Deviation	1.30	1.25	13.05	.91	.91	4.19	1.19
Sex Difference (<i>t</i>)	-.68	-.89	3.43**	-.75	.48	-1.58	.48

Note. Listwise $N = 97$ couples (194 individuals). Bolded coefficients represent associations of partners' scores on continuous variables. T-tests of sex differences (men = 0, women = 1) appear in the bottom row; [†] $p < .10$, $^*p < .05$, $^{**}p < .01$, $^{***}p < .001$.

Table 3

Attachment × Partner Behavior × Partner Power Predicting HRR to Conflict

Fixed Effects	β	SE	<i>t</i>	<i>p</i>
Intercept	-.04	.11	-.40	.69
Attachment Anxiety	-.04	.10	-.38	.70
Attachment Avoidance	.04	.09	.40	.69
Process Power	-.08	.08	-1.11	.27
Actor Negative Engagement	-.15	.09	-1.64	.10
Partner Negative Engagement	.15	.10	1.48	.14
Actor Sex	.16	.14	1.14	.26
Anxiety × Process Power	.04	.10	.34	.73
Anxiety × Partner Negative Engagement	.13	.11	1.21	.23
Avoidance × Process Power	-.01	.10	-.14	.89
Avoidance × Partner Negative Engagement	-.10	.09	-1.10	.28
Process Power × Partner Negative Engagement	-.07	.07	-1.12	.27
Anxiety × Process Power × Partner Neg. Engage.	-.22	.10	-2.17	.03
Avoidance × Process Power × Partner Neg. Engage.	.17	.10	1.71	.09

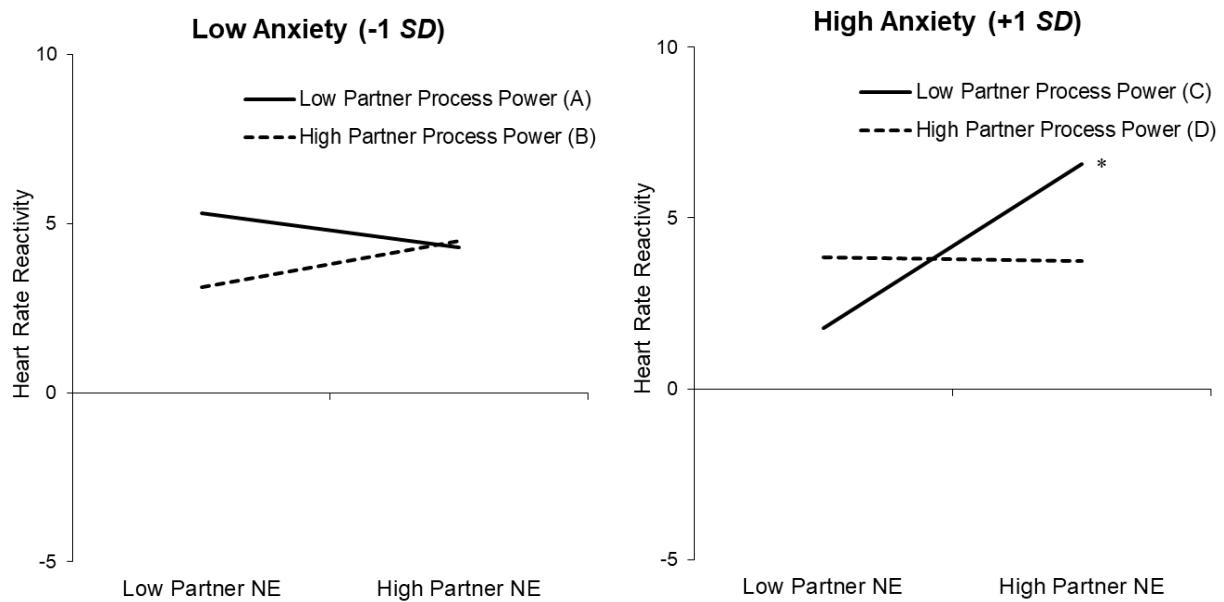

Note. $N = 99$ couples (198 individuals). For sex, men = 0 and women = 1. Model error variance = .93; *ICC* = .16.

Table 4

Attachment × Partner Behavior × Partner Power Predicting Positive Conflict Recovery

Fixed Effects	β	SE	<i>t</i>	<i>p</i>
Intercept	-.04	.10	-.39	.70
Attachment Anxiety	-.22	.07	-3.03	.00
Attachment Avoidance	.18	.07	2.54	.01
Process Power	.09	.05	1.78	.08
Actor Negative Engagement	.00	.07	.04	.97
Partner Negative Engagement	-.13	.08	-1.60	.11
Actor Sex	.06	.09	.60	.55
Anxiety × Process Power	.01	.09	.07	.95
Anxiety × Partner Negative Engagement	.07	.08	.91	.37
Avoidance × Process Power	.01	.08	.17	.86
Avoidance × Partner Negative Engagement	-.10	.07	-1.38	.17
Process Power × Partner Negative Engagement	-.10	.05	-1.80	.07
Anxiety × Process Power × Partner Neg. Engage.	.15	.07	2.14	.03
Avoidance × Process Power × Partner Neg. Engage.	-.20	.08	-2.53	.01

Note. $N = 100$ couples (200 individuals). For sex, men = 0 and women = 1. Model error variance = .88; *ICC* = .64.

Figure 1. Three-way interaction between attachment anxiety, partner negative engagement (NE), and partner process power (plotted at $\pm 1\text{ SD}$) predicting heart rate reactivity to conflict. Simple slopes: (A) $b = -.56$; (B) $b = .75$; (C) $b = 2.62^*$; and (D) $b = -.05$; $^*p < .05$.

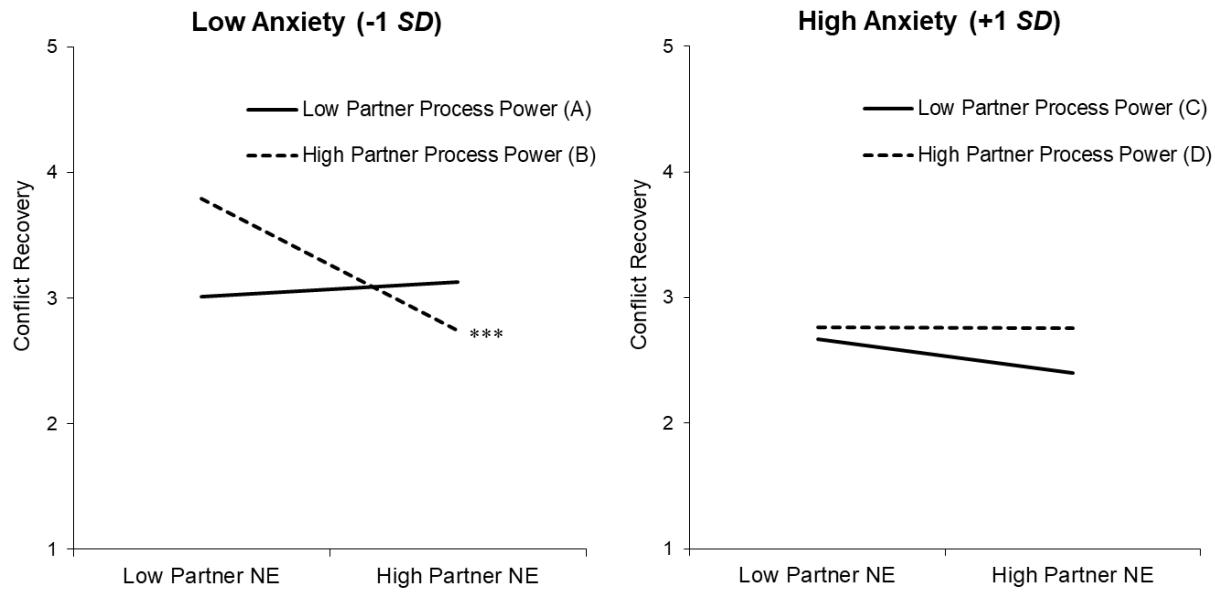
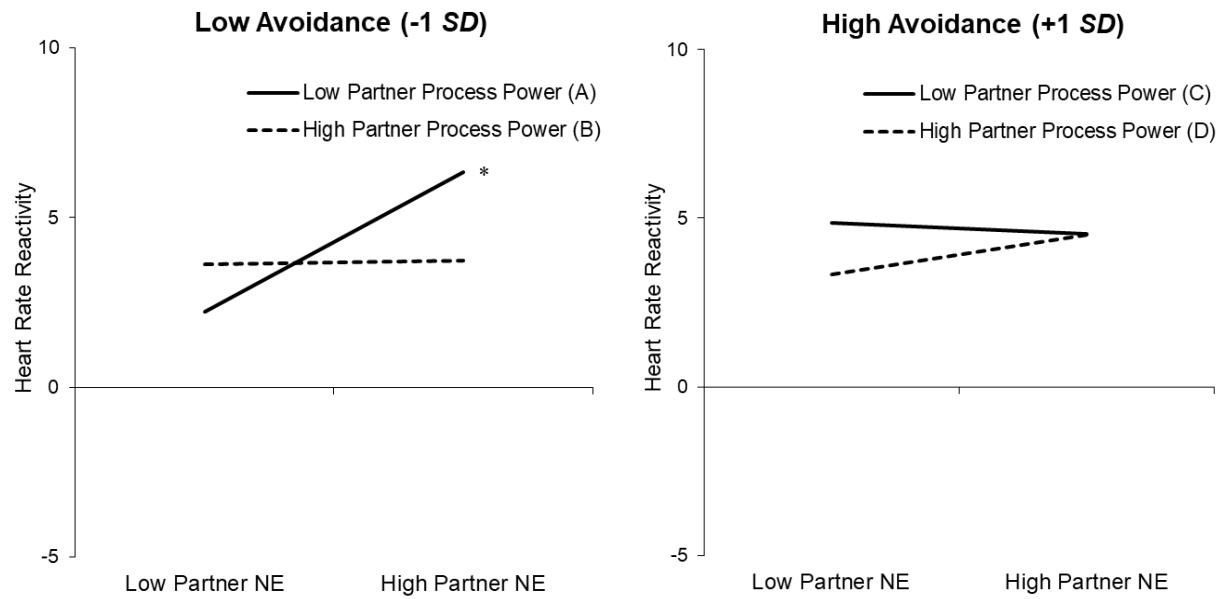



Figure 2. Three-way interaction between attachment anxiety, partner negative engagement (NE), and partner process power (plotted at $\pm 1 SD$) predicting positive conflict recovery behavior. Simple slopes: (A) $b = .06$; (B) $b = -.58^{***}$; (C) $b = -.15$; and (D) $b = -.01$; $^{***}p < .001$.

Figure 3. Three-way interaction between attachment avoidance, partner negative engagement (NE), and partner process power (plotted at $\pm 1 SD$) predicting heart rate reactivity to conflict. Simple slopes: (A) $b = 2.26^*$; (B) $b = .06$; (C) $b = -.19$; and (D) $b = .64$; $^*p < .05$.

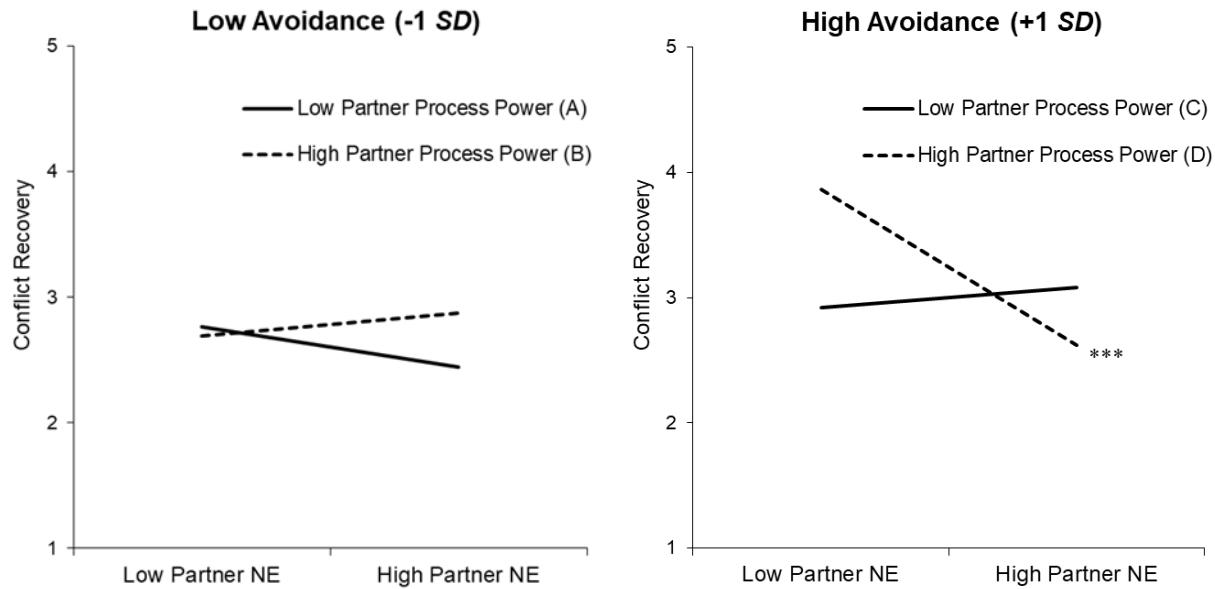


Figure 4. Three-way interaction between attachment avoidance, partner negative engagement (NE), and partner process power (plotted at ± 1 SD) predicting positive conflict recovery behavior. Simple slopes: (A) $b = -.18$; (B) $b = .10$; (C) $b = .09$; and (D) $b = -.68^{***}$; $***p < .001$.