W) Check for updates

Article

The International Journal of
Robotics Research

DART: Diversity-enhanced Autonomy 2010, Vol. 38(12-13) 1329-1337

© The Author(s) 2019

in RObOt Teams Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0278364919839137
journals.sagepub.com/home/ijr

®SAGE

Nora Ayanian

Abstract

This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the
creation and design of policies for multi-robot coordination. Although current approaches to multi-robot coordination
have been successful in structured, well-understood environments, they have not been successful in unstructured, uncer-
tain environments, such as disaster response. Although robot hardware has advanced significantly in the past decade, the
way we solve multi-robot problems has not. Even with significant advances in the field of multi-robot systems, the same
problem-solving paradigm has remained. assumptions are made to simplify the problem, and a solution is optimized for
those assumptions and deployed to the entire team. This results in brittle solutions that prove incapable if the original
assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which uses a diverse set
of control policies that work together synergistically within the same team of robots. Such an approach will make multi-
robot systems more robust in unstructured and uncertain environments, such as in disaster response, environmental moni-
toring, and military applications, and allow multi-robot systems to extend beyond the highly structured and highly con-
trolled environments where they are successful today.
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1. Introduction patrolling borders, monitoring infrastructure, and contain-
ing oil spills all occur in highly dynamic and unique envir-
onments (no two collapsed buildings are the same), with
high uncertainty and little control over other non-robot
agents in the environment. One of the most desirable bene-
fits of MRS is their robustness, wherein robots can com-
pensate for loss of capabilities by relying on other robots in
the team. However, the uncertainty of many real-world
environments renders current state-of-the-art algorithms
and controllers, even those designed for robustness, ineffec-
tual. Although robot hardware has advanced significantly
in the past decade, the way we solve multi-robot problems
has not. Many control policies are so specialized and opti-
mized for specific capabilities and conditions that they do
not empower robots to cope with uncertainty. Incorporating
diversity, in the form of an ensemble of control policies that

The field of multi-robot systems (MRS) is growing at a
rapid pace. Research in MRS spans many different areas,
including automated delivery (Agha-mohammadi et al.,
2014; Lonsdorf, 2017; Sung et al., 2013), surveillance
(Glaser, 2017), and disaster response (Jennings et al., 1997,
Schurr et al., 2005). There have also been many successful
demonstrations of increasing numbers of robots (Chung
et al., 2016; Glaser, 2016; Hauert et al., 2011; Kushleyev
et al., 2013; Preiss et al., 2017; Rubenstein et al., 2012).
MRS have also been successfully deployed in the field
including in warehousing (D’Andrea and Wurman, 2008),
manufacturing (Hagerty, 2015), and entertainment (Barret,
2016). Whereas these outcomes show the promise of MRS,
the environments in which MRS have been successful are
highly controlled, and some are highly instrumented,
enabling precise tuning of controllers and nearly perfect
knowledge of environmental conditions. University of Southern California, USA
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work synergistically across the team, can help to realize the
true benefits of robustness in the face of uncertainty for
teams of robots. Single-robot systems can also benefit from
ensembles of control policies, from which they can draw
when faced with control failure.

2. Motivation

In disaster response alone, the potential impact of autono-
mous MRS is substantial: 60,000 people die each year in
natural disasters, mostly in developing countries (Kenny,
2009). This makes robots an ideal tool for disaster
response. In fact, DJI announced that one properly
equipped drone can find a missing person more than five
times faster than traditional search methods (DJI, 2016).
However, most robots used in search and rescue today are
teleoperated (Liu and Nejat, 2013), requiring trained opera-
tors that may not be nearby. Autonomous robots equipped
for disaster response that can aufomatically synthesize
control policies without the need for an expert
operator can reduce response time and save many more
lives, especially when a trained operator may be hours
away.

The potential applications of autonomous MRS go well
beyond disaster response, including military, agriculture,
transportation, manufacturing, and fulfillment applications.
However, current solutions for MRS have not successfully
transitioned from controlled environments such as labora-
tories or warehouse facilities to the inherently high
uncertainty in these complex environments. Without infra-
structure that provides communication and localization,
and without knowledge of or control over the environment,
current state-of-the-art methods fail.

Although the field of MRS has advanced significantly,
the same problem-solving paradigm has remained. First,
the problem is defined. Next, complexity is reduced by
making several assumptions to simplify the problem, such
as terrain and communication range. Finally, an optimal
solution to that specific problem is designed and applied to
all the robots in the team. This paradigm, pictured in
Figure 1(left), limits the capability of MRS to cope with
real-world environments. The solutions are brittle, as the
assumptions made are easily invalidated and the optimized
controller is not designed for real environments. In the best
case, the controller is able to overcome these challenges,
but it is not the best solution to the problem, defeating the
purpose of optimization. In the worst case, the controller
cannot cope, potentially causing mission failure, loss of
high-value assets, and casualties; after all, if the environ-
ment violates the assumptions and the same ill-equipped
controller is applied to all robots, it is possible that all of
them will fail.

2.1. Leveraging diversity

Instead of applying the same controller to all robots, a new
approach leveraging diversity in policies within the robot

team can allow MRS to better cope with uncertain environ-
ments. Using an ensemble of diverse control policies to
accomplish a coordinated task within a single team of
robots can enable the team to adjust to different conditions.
For example, with two unmanned aerial vehicles (UAVs)
on a large security task, a natural result of using an ensem-
ble of controllers is for one UAV to position itself high, to
view the entire area, while the other UAV takes a closer
look at areas of interest. Diversity allows the robots to per-
ceive and respond to failure as they encounter it in the
environment.

2.1.1. Diversity in human workgroups. Diversity is well
established as a way to improve the performance of human
workgroups: studies have shown repeatedly that diverse
groups outperform homogeneous groups (Hoffman and
Maier, 1961; Hoffman, 1978; Jackson, 1992; Nemeth,
1986). Whereas diverse groups do have a higher likelihood
of conflict (Ancona and Caldwell, 1992; O’Reilly and
Flatt, 1989; Steiner, 1972), that conflict can be productive.
In studies where conflict due to diverse skill sets was pur-
posely introduced into the workgroup, it was shown to con-
sistently lead to higher-quality solutions (de Wit et al,,
2012; Jehn, 1995; van de Vliert and de Dreu, 1994).

2.1.2. Diversity in insect and animal behavior. Heterogeneity
has also been studied extensively in insect and animal beha-
vior. Jandt et al. (2014) studied personality at multiple levels
with regard to behavioral syndromes and insect societies,
discussing fitness consequences of intra-colony behavioral
variation. Specifically, under varying environmental condi-
tions, maintaining a mixture of individuals with different
behavioral types may be more effective than individuals
switching between behavioral types, which might be costly
and inefficient. Slower, more accurate individuals can bring
large quantities of food back to the colony when good abun-
dance is constant, whereas faster “sloppier” individuals might
be more efficient at exploiting resources in more frequently
changing environments (Chittka et al., 2009). Burns and
Dyer (2008) found that ant colonies that maintain a mixture
of different foraging types within a group allows the colonies
to respond more quickly to environmental fluctuation. In cer-
tain species, groups with a mixture of aggression types tend
to have higher fitness than groups with only one type
(Modlmeier and Foitzik, 2011; Pruitt and Riechert, 2011). On
the other hand, maintaining a mixture of inflexible behavioral
types can incur costs to the colony, such as overly aggressive
types being aggressive to their own nestmates (Crosland,
1990).

These results in insect and animal behavior studies point
strongly to behaviorally heterogeneous teams with the abil-
ity to adapt to the environment and task having higher fit-
ness in uncertain and dynamic environments, which has
inspired many multi-robot approaches. However, there is a
need to further study the use of diversity as a tool for MRS,
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Fig. 1. (Left) The current MRS problem-solving paradigm is
linear, making the same assumptions and deploying the same
solution to all robots in the team. (Right) The proposed novel
paradigm takes advantage of diversity in controllers to handle
various scenarios. Varying assumptions are made, and a

complementary ensemble of control policies is deployed across
the team.

especially in tightly coordinated tasks, as well as single-
robot systems operating in uncertain environments.

2.2. A new paradigm

Thus, the current problem-solving paradigm in MRS may
not reflect an effective approach to working in teams. In
the current paradigm, one set of assumptions is made, a
single control policy is developed, and it is uniformly
deployed to all robots in the team as in Figure 1(left).
Instead, an ensemble of control policies may be able to
leverage the strengths of the different control policies under
different conditions much as in human workgroups: vary-
ing control policies should be developed using different
sets of assumptions and/or different styles of interaction,
and the best approaches combined synergistically within
the team, as in Figure 1(right). In this way, MRS may lever-
age diversity much as human workgroups do, to improve
robustness in uncertain environments. Single-robot systems
may also benefit from ensembles of control policies, as
they would allow the system to swap policies in the case of
control failure.

3. Current state of the art

Diversity of robots with different physical embodiments or
capabilities has been studied previously (Huang et al,
2006; Parker, 1998; Pimenta et al., 2008; Prorok et al.,
2017), but has not led to significant improvements in
robustness of MRS. However, controllers for those teams
are developed using a similar paradigm, making the same
assumptions across the entire team. There has been rela-
tively little exploration into diversity in control policies
within a single team of robots. Most research in this area is
a result of studying ants that take different roles in foraging
and house hunting (Berman et al., 2007; Dorigo et al.,
2006; Sugawara et al., 2004) or collective transport (Kumar
et al., 2013), and applied to similar problems in robotics.
Unfortunately, in trying to model ant algorithms closely,
these works do not take advantage of robot capabilities,

including communication, sensing, and computation, which
could expand the solution space and lead to better, more
appropriate solutions for a larger set of problems.

Behavioral or control diversity in teams of robots has
also been explored. In Tang and Parker’s ASyMTRe archi-
tecture based on schemas, robots take different roles
depending on environmental conditions (Parker and Tang,
2006; Tang and Parker, 2007), but the robots are all pro-
grammed to react the same. This leaves them vulnerable to
unforeseen changes in capabilities or the environment, and
does not enable robots to individually adjust their
approaches.

A majority of work exploring control diversity in robots
exists in behavior-based systems, most notably Balch’s
work in learning behavioral specialization for robot teams
(Balch, 1997, 2000). Goldberg and Matari¢ (1997) evalu-
ated multi-robot controllers based on the amount of inter-
ference and describe caste arbitration, where all robots
have the same capabilities, but have different conditions for
activating behaviors. Schneider-Fontan and Matari¢ (1998)
concluded that adapting group behavior is a balance
between minimizing interference and maximizing synergy,
and interference is the key stumbling block in the way of
efficient group interactions.

More recently, evolutionary robotics and agent-based
systems have been appearing as a method for encouraging
behavioral diversity and plasticity (individuals changing
roles over time). Mouret and Doncieux (2011) reviewed
and benchmarked published approaches to behavioral
diversity, and showed that fostering behavioral diversity
substantially improves the evolutionary process in the
investigated experiments, regardless of task. Pugh et al.
(2016) reviewed quality diversity algorithms, which have
resulted in a new class of algorithms that return an archive
of diverse, high-quality behaviors in a single run.
Vassiliades and Christodoulou (2016) designed behavio-
rally plastic agents (capable of switching between different
behaviors in response to environmental changes), by taking
inspiration from neuroscience, using artificial neural net-
works, neuromodulation, and synaptic gating. Umedachi
et al. (2015) attempted to understand the underlying
mechanism of the behavioral diversity of animals, then
used the findings to build truly adaptive robots. However,
all of these approaches focused on training agents to act
independently in the environment, and thus are not directly
applicable to multi-robot problems where task completion
relies on tight coordination, such as box-pushing, shape
formation, wildfire containment, cooperative transport, etc.
Furthermore, agents are trained in the environments where
they will be used, which, in natural disasters in particular,
may not be possible.

There is also a significant body of work on large-scale
simulation of crowds, that generate realistic-appearing
simulated crowds (Bera et al., 2016; Guy et al., 2010; Lee
et al., 2007; Pelechano et al., 2007). Although these
approaches generate diverse behaviors, diversity in crowd
simulation plays a different role than the one we seek.
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Whereas we seek diversity to enhance performance, diver-
sity in crowd simulation is cosmetic.

3.1. Diversity improving performance

Diversity has already been shown to improve performance
in some scenarios. In multi-agent systems, Marcolino et al.
(2013) addressed the problem of selecting the best possible
team to accomplish a goal given limited resources. Varied
agents form a team and vote on the best course of action in
the computer game Go. They compared teams with the
strongest individual members and teams with diverse mem-
bers, and found that a team of diverse agents can outper-
form a uniform team of the strongest agents when
individual agents outperform the overall strongest agent in
certain states. It is important to keep in mind, however, that
their diverse agents combine to make a single decision,
whereas in MRS, each agent encounters different scenarios
and must make their own decision. Nonetheless, in scenar-
ios where the team of robots encounters similar challenges,
they may be able to share useful information about which
actions were successful and unsuccessful with certain para-
meters. If this can propagate throughout the team, the entire
team may be more informed and thus perform better.

In single-robot systems, diversity can be provided by
switching controllers. For example, Zefran and Burdick
(1998) designed stable control schemes for systems with
changing dynamics; in their case, a different controller is
activated in each dynamic regime of the system. However,
to successfully design such a system, one must fully under-
stand the dynamics of the system and how to stabilize
the system in each regime. For MRS in uncertain
environments, it may not be possible to fully understand
the dynamics of each robot under all possible environmen-
tal conditions, thus it may be difficult to know how to sta-
bilize the system in advance. Equipping the team with
varied control policies or a set of parameters enables per-
formance observation of each control policy or parameter
set in parallel, which can then quickly inform individuals
of how to stabilize themselves.

Lyu et al. (2016) explored k-survivability in MRS. The
k-survivability of n paths is the probability that “at least &
out of n robots following those paths through a stochastic
threat environment reach goals.” The main idea is that if
the best and safest path is known, then it is still not robust
for all robots to take that path, because all the robots on that
path can fall to a single trap. k-survivability demonstrates
that in uncertain environments, diversity can be leveraged
to improve the performance, and in this case the survivabil-
ity, of a team of robots.

In swarm robotics, Li et al. (2004) studied the effect of
diversity and specialization in self-organizing, distributed,
artificial systems, correlating the degree of specialization
with the swarm’s overall performance. As not all diversity
will lead to better performance, they defined specialization

as diversity that is evoked for better performance. They
studied the stick-pulling problem, where robots search an
arena pulling sticks out of the ground; each stick requires
two (or more, in the generalized case) robots to remove the
stick from the ground, and each robot has a gripping time
parameter, which can be homogeneous or heterogeneous
across the team (Ijspeert et al., 2001; Martinoli et al., 2004;
Martinoli and Mondada, 1997). When the number of robots
was smaller than the number of sticks, this problem could
lead to a deadlock situation where all robots wait for assis-
tance for extended periods of time. In this scenario, hetero-
geneous swarms, in which agents had in parallel learned
their own gripping time parameters, outperformed both
swarms with hardwired homogeneous and learned homoge-
neous gripping time parameters, owing to the specialization
of the agents.

4. Some open problems in DART

Much as human workgroups, as well as insects and animals,
benefit from diversity in the composition of the group, such
variation of behavior would be beneficial for teams of
robots operating in uncertain and unstructured environ-
ments. Thus, it is natural to consider enhancing multi-robot
autonomy with diverse control policies designed to work
synergistically together. There exist many open problems in
DART; some of the challenging open problems that must
be addressed by the community are described here.

4.1. Learning for MRS

In order to learn from humans, or to learn directly from
simulations, new machine learning tools must be developed
for many-agent systems. Multi-agent learning is an area
that is not yet well represented in the literature, save for
several works (Foerster et al., 2016; Lowe et al., 2017,
Matignon et al., 2012; Peshkin et al., 2000), most of which
cannot handle more than a few agents. Other works focus
on tasks that can be learned and completed alone (Mataric,
1994; Recchia et al., 2013). Tight coordination between a
large team of agents, for example in wildfire containment,
currently presents a significant computational challenge for
existing multi-agent learning tools. Those that are suitable
for tightly coordinated tasks for a few (two or three) agents
are intractable for tasks that require tight coordination
among large numbers of agents (Amato et al., 2015, 2014;
Buffet et al., 2007). Given tightly coordinated multi-robot
tasks, such as pattern formation, border patrol, or wildfire
containment, automatically learn sets of control policies

for individual robots that enable a team of robots, equipped

with one or more of those control policies, to complete
those tasks.

4.1.1. Multi-robot learning from humans. Humans provide
a pool of diverse resources that can be tapped to develop
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diverse controllers that work well together. However, owing
to differences in human and robot capabilities (communica-
tion, locomotion, sensing, etc.), it is difficult to learn con-
trollers by observing human in-person interaction. By
limiting interaction to an interface (such as a mobile phone,
tablet, or laptop), communication, locomotion, and sensing
can be restricted to robot-like capabilities (Tavakoli et al.,
2016). A major benefit of human-inspired controllers is the
ability to communicate with and easily motivate study
participants, as opposed to animal-inspired controllers.
However, learning from human cooperation requires multi-
agent learning tools for many agents. Although there is
recent interest in learning from demonstration for MRS
(Chernova and Veloso, 2010; Freelan et al., 2015; Martins
and Demiris, 2010), these works either require a significant
amount of domain knowledge, leading to potential bias in
the creation of design policies, or do not apply to tightly
coordinated tasks. New approaches to learning are neces-
sary in order to learn truly novel behaviors from demon-
stration. Given data generated by humans completing a
coordinated task, find a set of control policies that, when
deployed on a team of agents, produce qualitatively and
quantitatively similar results. In order to produce func-
tional behaviors, this requires automatic solutions to the
correspondence problem, which would eliminate designer
bias and pave the way for novel behaviors; the agents to
understand both the state of the human as well as the goal
of the behavior; and measures of behavioral similarity
between humans and agents.

4.1.2. Automatic correspondence. In learning from humans
or other animals, it is necessary to solve the mapping
between demonstrators and imitators automatically. Using
primitive behaviors that are hand-coded, as has traditionally
been done, limits the behavior space of the team of robots
to those determined by the system designer, which can lead
to a biased set of behaviors. Given demonstrative data gen-
erated by a human or animal completing a coordinated
task, find automatically, without hand-coding, a set of robot
behaviors that produce qualitatively similar results to the
demonstrator.

4.2. Automatic abstractions for complex
observations

With large numbers of agents interacting in a space, and a
very rich set of possible observations or features (poten-
tially millions or more), it is necessary to use abstractions
for the observation or feature space of each agent. For
example, variations of regular or polar grids can be used
with occupancies or sampling can be utilized. Abstractions
can simplify the decision-making process, but their utility
depends on encoding relevant information, which can be
task-specific. Thus, developing useful abstractions, whether
automatic or hand-coded, is imperative; if done automati-
cally, one can avoid the use and potential bias of expert

knowledge. Given a large number of agents interacting in a
space, find efficient representations for the agents’ observa-
ble state that enable decision making in individual agents.
With respect to learning from demonstration, find efficient
representations of the observable state of the demonstrator
that enable computer-controlled agents to mimic the beha-
viors of the demonstrator. Efficiency can be measured by
how much information is encoded in the representation,
and how quickly it can be accessed and shared if necessary.

4.3. Measures of behavioral similarity

It is necessary to measure quantitatively how similar two
behaviors are, whether comparing between two computer-
generated behaviors or a demonstrator—imitator pair. Given
two behavioral policies, develop metrics that measure their
similarity.

4.4. Measures of diversity

Taking inspiration from the study of behavioral diversity in
social insect colonies, there is a need to understand the
impact of behavioral diversity on MRS in tightly coordi-
nated tasks, and, if learning from demonstration, to mea-
sure the diversity in the demonstrators’ behaviors and the
resulting imitators’ behaviors. This is distinct from measur-
ing behavioral similarity, as similarity compares a pair of
behaviors whereas diversity pertains to the team as a whole.
To that end, measures of diversity must be developed that
apply to MRS, such as the Hierarchic Social Entropy of
Balch (2000) or the diversity metric of Prorok et al. (2017).
Given an ensemble of agent behaviors or control policies,
find a metric that quantifies the diversity of the team in a
way that meaningfully differentiates between agents. As in
the social science literature, diversity of a robot team can
be measured in many different ways. Thus, the word mean-
ingful here can be subjective: there are many possible mea-
sures, and perhaps different measures would be useful for
different tasks, for example, depending on whether a team
with small differences in parameters that do not lead to sig-
nificant differences in behavior should be considered diverse.

4.5. Value of diversity

Diversity alone will not solve the robustness issue; it should
bring value to the team as they work on the task. Some
tasks, for example where the optimal policy can be com-
puted and all robots can execute the optimal policy, may
not require diversity. In the presence of uncertainty, how-
ever, diversity can bring significant value to the team.
Given a team task, predict the value that diversity will bring
to that task. This value can depend on the level of uncer-
tainty, the size and nature of the task, and potential restric-
tions on robot capabilities (whether inherent or induced by
the environment). Prediction is necessary in order to avoid
wasting significant time and resources on developing diver-
sity within the team.



1334

The International Journal of Robotics Research 38(12-13)

4.6. Architectures for diversity

Diversity of behavior within the team may also lead to
different architectures for cooperation. For example, it
may lead to leader—followers-type behavior, a hierarchy
of subgroups within the team, a flat organization with
each agent making independent decisions, and many
other possibilities. These architectures will likely be
influenced by the nature of the task as well as the cap-
abilities of the robots themselves (e.g., computation and
communication). Given a team of robots on a team task,
determine the best architecture for cooperation among
the robots.

4.7. Integrating small group theory

Considering potential architectures for diversity leads natu-
rally to the problem of creating an effective mix of beha-
viors within the team. Outside of robotics, human
workgroups have been studied extensively. Many theories
have been developed on effective groups (see, for example,
Poole and Hollingshead (2005) for a collection of works).
These theories can be leveraged in order to better coordi-
nate teams of robots on complex tasks. Small group theory,
however, must be adapted in order to compensate for dif-
ferences in human and robot capabilities. Collaboration
with social scientists who study human workgroups can
lead to novel methods of cooperation for MRS, but only if
we understand the role diversity plays in team success.
Quantify such a property, then use it to construct effective
teams for completing team tasks that perform better than
existing approaches. Given a team of robots on a team
task, determine the best combination of diverse behavioral
types to include in the team.

4.8. Adjusting policies online

To successfully utilize a diverse set of controllers, the team
of robots must collectively reason about the role that each
team member plays and automatically adjust their own roles
to achieve an appropriately diverse team with an effective
skill set. To do so, they must have the ability to measure the
success of individual agents on a coordinated task, adjust-
ing based on their own and others’ shortcomings and suc-
cesses. Evaluating an individual’s performance within the
team may not be straightforward. For example, the value of
a defender in a soccer game cannot be quantified by the
number of goals the defender’s team scores. Thus, given a
robot completing part of a team task, develop a metric to
evaluate its performance within that team. Once we can
quantify an individual’s performance, we can consider
adjusting control policies within the team accordingly.
Given an ensemble of control policies within a team of
robots, develop methods to adjust individual agents’ beha-
viors, either parametrically or otherwise, based on the
agent s observations of itself or other agents.

5. Discussion

This paper has proposed DART, Diversity-enhanced
Autonomy for Robot Teams, a new research thrust that rep-
resents a paradigm shift in problem-solving for MRS. The
current problem-solving paradigm is linear: control policies
are optimized for a specific set of assumptions and applied
to the entire team. We have proposed a paradigm wherein
an ensemble of control policies is developed, with multiple
sets of assumptions or interaction strategies, and exists syner-
gistically within a team of robots. Such diversity in control
policies may better prepare the team of robots for unstruc-
tured and uncertain environments, much like diversity in the
knowledge base in human workgroups leads to higher-quality
solutions. Adoption of this new paradigm may lead to
expanded success of MRS in the field, especially in challen-
ging dynamic environments. The DART philosophy can also
be applied to single-robot systems, by enabling individual
robots to switch or adjust controllers in response to failure
conditions. In this way, single-robot systems may also be
more successful in uncertain and unstructured scenarios.

A small sample of open problems in DART were dis-
cussed, but there exist many open problems in this space.
To further the reach of MRS into such environments will
require collaboration of roboticists with experts in machine
learning, biological and social sciences, human—computer
interaction, and many other fields. By explicitly defining
DART, we hope to inspire the development of new tools for
coping with uncertain, unstructured environments such as
disaster response, precision agriculture, surveillance, and
others.

Acknowledgements

Special thanks to Gaurav Sukhatme, M. Ani Hsieh, and Fei Sha
for conversations and guidance in formulating this line of
research.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by NSF CAREER Award 1IS-1553726 and
the Okawa Foundation Research Award.

ORCID iD

Nora Ayanian https://orcid.org/0000-0002-8394-6912

References

Agha-mohammadi A, Ure NK, How JP and Vian J (2014)
Health aware stochastic planning for persistent package
delivery missions using quadrotors. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pp. 3389-3396.

Amato C, Konidaris GD, Cruz G, Maynor CA, How JP and Kael-
bling LP (2015) Planning for decentralized control of multiple
robots under uncertainty. In: IEEE International Conference
on Robotics and Automation, pp. 1241-1248.



Ayanian

1335

Amato C, Konidaris GD and Kaelbling LP (2014) Planning with
macro-actions in decentralized POMDPs. In: International
Conference on Autonomous Agents and Multi-agent Systems,
pp. 1273-1280.

Ancona D and Caldwell D (1992) Demography and design: Pre-
dictors of new product team performance. Organization Sci-
ence 3: 321-341.

Balch T (1997) Learning roles: Behavioral diversity in robot
teams. In: AAAI Workshop on Multiagent Learning.

Balch T (2000) Hierarchic social entropy: An information theore-
tic measure of robot group diversity. Autonomous Robots 8(3):
209-238.

Barret B (2016) Disney’s latest attraction? 300 drones flying in
formation. Wired, https://www.wired.com/2016/11/disneys-lat-
est-attraction-300-drones-flying-formation/ .

Bera A, Kim S and Manocha D (2016) Online parameter learning
for data-driven crowd simulation and content generation. Com-
puters and Graphics 55: 68-79.

Berman S, Halasz A, Kumar V and Pratt S (2007) Bio-inspired
group behaviors for the deployment of a swarm of robots to
multiple destinations. In: [EEE International Conference on
Robotics and Automation, pp. 2318-2323.

Buffet O, Dutech A and Charpillet F (2007) Shaping multi-agent
systems with gradient reinforcement learning. Autonomous
Agents and Multi-Agent Systems 15(2): 197-220.

Burns JG and Dyer AG (2008) Diversity of speed-accuracy strate-
gies benefits social insects. Current Biology 18: R953—R954.

Chernova S and Veloso M (2010) Confidence-based multi-robot
learning from demonstration. International Journal of Social
Robotics 2(2): 195-215.

Chittka L, Skorupski P and Raine NE (2009) Speed—accuracy tra-
deoffs in animal decision making. Trends in Ecology and Evo-
lution 24: 400-407.

Chung TH, Clement MR, Day MA, Jones KD, Davis D and Jones
M (2016) Live-fly, large-scale field experimentation for large
numbers of fixed-wing UAVs. In: IEEE International Confer-
ence on Robotics and Automation, pp. 1255-1262.

Crosland MWJ (1990) Variation in ant aggression and kin dis-
crimination ability within and between colonies. Journal of
Insect Behavior 3: 359-379.

D’Andrea R and Wurman P (2008) Future challenges of coordi-
nating hundreds of autonomous vehicles in distribution facili-
ties. In: IEEE International Conference on Technology for
Practical Robot Applications, pp. 80-83.

de Wit FRC, Greer LL and Jehn KA (2012) The paradox of
intragroup conflict: A meta-analysis. Journal of Applied Psy-
chology 97(2): 360-390.

DIJI (2016) DJI documents faster search and rescue responses with
drones. DJI Newsroom, http://www.dji.com/newsroom/news/
dji-documents-faster-search-and-rescue-responses-with-drones.

Dorigo M, Birattari M and Stutzle T (2006) Ant colony optimiza-
tion. IEEE Computational Intelligence Magazine 1(4): 28-39.

Foerster J, Assael YM, de Freitas N and Whiteson S (2016) Learn-
ing to communicate with deep multi-agent reinforcement learn-
ing. In: Advances in Neural Information Processing Systems,
pp- 2137-2145.

Freelan D, Wicke D, Sullivan K and Luke S (2015) Towards rapid
multi-robot learning from demonstration at the robocup com-
petition. In: RAC Bianchi, HL Akin, S Ramamoorthy and K
Sugiura (eds.) RoboCup 2014: Robot World Cup XVIII. Cham:
Springer International Publishing, pp. 369-382.

Glaser A (2016) Intel invented a way for a single operator to fly
hundreds of drones at once. Recode, https://www.recode.net/
2016/11/4/13517550/intel-single-operator-fly-hundreds-
drones-shooting-star .

Glaser A (2017) These surveillance robots will work together to
chase down suspects. Recode, https://www.recode.net/2017/4/
18/15264908/surveillance-robots-network-cornell-suspects.

Goldberg D and Mataric MJ (1997) Interference as a tool for
designing and evaluating multi-robot controllers. In: Proceed-
ings AAAIL, Providence, RI, pp. 637-642.

Guy SJ, Chhugani J, Curtis S, Dubey P, Lin M and Manocha
D (2010) Pledestrians: A least-effort approach to crowd
simulation. In: Proceedings of the 2010 ACM SIGGRAPH/
Eurographics Symposium on Computer Animation (SCA
’10). Goslar, Germany: Eurographics Association, pp.
119-128.

Hagerty JR (2015) Meet the new generation of robots for manu-
facturing. Wall Street Journal, https://www.wsj.com/articles/
meet-the-new-generation-of-robots-for-manufacturing-143330
0884.

Hauert S, Leven S, Varga M, et al. (2011) Reynolds flocking in
reality with fixed-wing robots: Communication range vs. max-
imum turning rate. In: /EEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 5015-5020.

Hoffman L and Maier N (1961) Quality and acceptance of prob-
lem solutions by members of homogeneous and heterogeneous
groups. Journal of Abnormal and Social Psychology 62:
401-407.

Hoffman LR (1978) The group problem-solving process. In: L
Berkowitz (ed.) Group Processes. New York: Academic Press,
pp. 101-114.

Huang J, Farritor SM, Qadi A and Goddard S (2006) Localization
and follow-the-leader control of a heterogeneous group of
mobile robots. [EEE/ASME Transactions on Mechatronics
11(2): 205-215.

Ijspeert AJ, Martinoli A, Billard A and Gambardella LM
(2001) Collaboration through the exploitation of
local interactions in autonomous collective robotics: The
stick pulling experiment. Autonomous Robots 11(2):
149-171.

Jackson S (1992) Team composition in organizations. In: S
Worchel, W Wood and J Simpson (eds.) Group Process and
Productivity. London: Sage.

Jandt JM, Bengston S, Pinter-Wollman N, et al. (2014) Beha-
vioural syndromes and social insects: Personality at multiple
levels. Biological Reviews 89: 48—67.

Jehn KA (1995) A multimethod examination of the benefits and
detriments of intragroup conflict. Administrative Science Quar-
terly 40(2): 256-282.

Jennings JS, Whelan G and Evans WF (1997) Cooperative search
and rescue with a team of mobile robots. In: International Con-
ference on Advanced Robotics, pp. 193-200.

Kenny C (2009) Why Do People Die In Earthquakes? The Costs,
Benefits And Institutions Of Disaster Risk Reduction In Devel-
oping Countries. The World Bank, https:/elibrary.worldban-
k.org/doi/abs/10.1596/1813-9450-4823 .

Kumar GP, Buffin A, Pavlic TP, Pratt SC and Berman SM (2013)
A stochastic hybrid system model of collective transport in the
desert ant Aphaenogaster cockerelli. In: International Confer-
ence on Hybrid Systems: Computation and Control. New York:
ACM Press, pp. 119-124.


https://www.recode.net/2016/11/4/13517550/intel-single-operator-fly-hundredsdrones-shooting-star
https://www.recode.net/2017/4/18/15264908/surveillance-robots-network-cornell-suspect
https://www.recode.net/2017/4/18/15264908/surveillance-robots-network-cornell-suspect
https://www.wsj.com/articles/meet-the-new-generation-of-robots-for-manufacturing-1433300884
https://www.wsj.com/articles/meet-the-new-generation-of-robots-for-manufacturing-1433300884
https://www.wsj.com/articles/meet-the-new-generation-of-robots-for-manufacturing-1433300884
http://www.dji.com/newsroom/news/dji-documents-faster-search-and-rescue-responses-with-drones

1336

The International Journal of Robotics Research 38(12-13)

Kushleyev A, Mellinger D, Powers C and Kumar V (2013)
Towards a swarm of agile micro quadrotors. Autonomous
Robots 35(4): 287-300.

Lee KH, Choi MG, Hong Q and Lee J (2007) Group behavior
from video: A data-driven approach to crowd simulation. In:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA '07). Aire-la-Ville, Swit-
zerland: Eurographics Association, pp. 109—-118.

Li L, Martinoli A and Abu-Mostafa YS (2004) Learning and mea-
suring specialization in collaborative swarm systems. Adaptive
Behavior 12(3—4): 199-212.

Liu Y and Nejat G (2013) Robotic urban search and rescue: A sur-
vey from the control perspective. Journal of Intelligent
Robotics Systems 72(2): 147-165.

Lonsdorf K (2017) Hungry? call your neighborhood delivery
robot. NPR Morning Edition, http://www.npr.org/sections/all
techconsidered/2017/03/23/520848983/hungry-call-your-neigh
borhood-delivery-robot.

Lowe R, Wu Y, Tamar A, Harb J, Abbeel P and Mordatch I (2017)
Multi-agent actor-critic for mixed cooperative—competitive
environments. arXiv preprint arXiv:1706.02275.

Lyu Y, Chen Y and Balkcom D (2016) k-survivability: Diversity
and survival of expendable robots. /EEE Robotics and Auto-
mation Letters 1(2): 1164—1171.

Marcolino LS, Jiang AX and Tambe M (2013) Multi-agent team
formation: Diversity beats strength? In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intel-
ligence (IJCAI ’13). AAAI Press, pp. 279-285.

Martinoli A, Easton K and Agassounon W (2004) Modeling
swarm robotic systems: A case study in collaborative distribu-
ted manipulation. The International Journal of Robotics
Research 23(4-5): 415-436.

Martinoli A and Mondada F (1997) Collective and cooperative
group Dbehaviours: Biologically inspired experiments in
robotics. In: O Khatib and JK Salisbury (eds.) Experimental
Robotics IV, Berlin: Springer, pp. 1-10.

Martins MF and Demiris Y (2010) Learning multirobot joint
action plans from simultaneous task execution demonstrations.
In: Proceedings of the 9th International Conference on Auton-
omous Agents and Multiagent Systems. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems, pp. 931-938.

Matari¢ MJ (1994) Learning to behave socially. In: Infernational
Conference on Simulation of Adaptive Behavior, Vol. 617, pp.
453-462.

Matignon L, Laurent GJ and Le Fort-Piat N (2012) Independent
reinforcement learners in cooperative Markov games: A survey
regarding coordination problems. The Knowledge Engineering
Review 27(1): 1-31.

Modlmeier AP and Foitzik S (2011) Productivity increases with
variation in aggression among group members in Temnothorax
ants. Behavioral Ecology 22: 1026-1032.

Mouret JB and Doncieux S (2011) Encouraging behavioral diver-
sity in evolutionary robotics: An empirical study. Evolutionary
Computation 20(1): 91-133.

Nemeth C (1986) Differential contributions of majority and minor-
ity influence. Psychological Review 93: 23-32.

O’Reilly CA and Flatt S (1989) Executive team demography:
Organizational innovation and firm performance. Working
paper, School of Business, University of California at Berkeley.

Parker LE (1998) Alliance: An architecture for fault tolerant mul-
tirobot cooperation. [EEE Trans Robotics and Automation
14(2): 220-240.

Parker LE and Tang F (2006) Building multirobot coalitions
through automated task solution synthesis. Proceedings of the
IEEE 94(7): 1289-1305.

Pelechano N, Allbeck JM and Badler NI (2007) Controlling indi-
vidual agents in high-density crowd simulation. In: Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA '07). Aire-la-Ville, Switzerland:
Eurographics Association, pp. 99-108.

Peshkin L, Kim K, Meuleau N and Kaelbling LP (2000) Learning
to cooperate via policy search. In: Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence, pp. 489-496.

Pimenta LCA, Kumar V, Mesquita RC and Pereira GAS (2008)
Sensing and coverage for a network of heterogeneous robots.
In: 47th IEEE Conference on Decision and Control, pp. 3947—
3952.

Poole MS and Hollingshead AB (eds.) (2005) Theories of Small
Groups: Interdisciplinary Perspectives. Thousand Oaks, CA:
Sage Publications Inc.

Preiss JA, Hoenig W, Sukhatme GS and Ayanian N (2017) Cra-
zyswarm: A large nano-quadcopter swarm. In: /EEE Interna-
tional Conference on Robotics and Automation.

Prorok A, Hsieh MA and Kumar V (2017) The impact of diversity
on optimal control policies for heterogeneous robot swarms.
IEEE Transactions on Robotics 33(2): 346-358.

Pruitt JN and Riechert SE (2011) How within-group behavioural
variation and task efficiency enhance fitness in a social group.
Proceedings of the Royal Society B: Biological Sciences 278:
1209-1215.

Pugh K J, Soros LB and Stanley KO (2016) Quality diversity: A
new frontier for evolutionary computation. Frontiers in
Robotics and Al 3: 40.

Recchia T, Chung J and Pochiraju K (2013) Improving learning
in robot teams through personality assignment. Biologically
Inspired Cognitive Architectures 3: 51-63.

Rubenstein M, Ahler C and Nagpal R (2012) Kilobot: A low cost
scalable robot system for collective behaviors. In: IEEE Inter-
national Conference on Robotics and Automation, pp. 3293—
3298.

Schneider-Fontan M and Matari¢ MJ (1998) Territorial multi-robot
task division. [EEE Transactions on Robotics and Automation
15(5): 815-822.

Schurr N, Marecki J, Tambe M, Scerri P, Kasinadhuni N and
Lewis J (2005) The future of disaster response: Humans work-
ing with multiagent teams using defacto. In: 4441 Spring Sym-
posium on Al Technologies for Homeland Security.

Steiner ID (1972) Group Process and Productivity. San Diego,
CA: Academic Press.

Sugawara K, Kazama T and Watanabe T (2004) Foraging beha-
vior of interacting robots with virtual pheromone. In: /EEE/
RSJ International Conference on Intelligent Robots and Sys-
tems, Vol. 3, pp. 3074-3079.

Sung C, Ayanian N and Rus D (2013) Improving the performance
of multi-robot systems by task switching. In: /IEEE Interna-
tional Conference on Robotics and Automation. pp. 2999—
3006.

Tang F and Parker LE (2007) A complete methodology for gener-
ating multi-robot task solutions using ASyMTRe-D and


http://www.npr.org/sections/alltechconsidered/2017/03/23/520848983/hungry-call-your-neighborhood-delivery-robot
http://www.npr.org/sections/alltechconsidered/2017/03/23/520848983/hungry-call-your-neighborhood-delivery-robot
http://www.npr.org/sections/alltechconsidered/2017/03/23/520848983/hungry-call-your-neighborhood-delivery-robot

Ayanian

1337

market-based task allocation. In: /EEE International Confer-
ence on Robotics and Automation, pp. 3351-3358.

Tavakoli A, Nalbandian H and Ayanian N (2016) Crowdsourced
coordination through online games (Late Breaking Report). In:
ACM/IEEE International Conference on Human—Robot Inter-
action, Christchurch, New Zealand.

Umedachi T, Ito K and Ishiguro A (2015) Soft-bodied amoeba-
inspired robot that switches between qualitatively different
behaviors with decentralized stiffness control. Adaptive Beha-
vior 23(2): 97-108.

van de Vliert E and de Dreu CKW (1994) Optimizing perfor-
mance by conflict stimulation. International Journal of Con-
Sflict Management 5(3): 211-222.

Vassiliades V and Christodoulou C (2016) Behavioral plasticity
through the modulation of switch neurons. Neural Networks
74:35-51.

Zefran M and Burdick JW (1998) Design of switching controllers
for systems with changing dynamics. In: Proceedings of the
37th IEEE Conference on Decision and Control, Vol. 2, pp.
2113-2118.



