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Abstract

This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the

creation and design of policies for multi-robot coordination. Although current approaches to multi-robot coordination

have been successful in structured, well-understood environments, they have not been successful in unstructured, uncer-

tain environments, such as disaster response. Although robot hardware has advanced significantly in the past decade, the

way we solve multi-robot problems has not. Even with significant advances in the field of multi-robot systems, the same

problem-solving paradigm has remained: assumptions are made to simplify the problem, and a solution is optimized for

those assumptions and deployed to the entire team. This results in brittle solutions that prove incapable if the original

assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which uses a diverse set

of control policies that work together synergistically within the same team of robots. Such an approach will make multi-

robot systems more robust in unstructured and uncertain environments, such as in disaster response, environmental moni-

toring, and military applications, and allow multi-robot systems to extend beyond the highly structured and highly con-

trolled environments where they are successful today.
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1. Introduction

The field of multi-robot systems (MRS) is growing at a

rapid pace. Research in MRS spans many different areas,

including automated delivery (Agha-mohammadi et al.,

2014; Lonsdorf, 2017; Sung et al., 2013), surveillance

(Glaser, 2017), and disaster response (Jennings et al., 1997;

Schurr et al., 2005). There have also been many successful

demonstrations of increasing numbers of robots (Chung

et al., 2016; Glaser, 2016; Hauert et al., 2011; Kushleyev

et al., 2013; Preiss et al., 2017; Rubenstein et al., 2012).

MRS have also been successfully deployed in the field

including in warehousing (D’Andrea and Wurman, 2008),

manufacturing (Hagerty, 2015), and entertainment (Barret,

2016). Whereas these outcomes show the promise of MRS,

the environments in which MRS have been successful are

highly controlled, and some are highly instrumented,

enabling precise tuning of controllers and nearly perfect

knowledge of environmental conditions.

Many environments where MRS could be beneficial are

not highly controlled or equipped with the extensive infra-

structure often necessary to coordinate large teams of

robots with state-of-the-art algorithms. For example, con-

taining wildfires, searching through collapsed buildings,

patrolling borders, monitoring infrastructure, and contain-

ing oil spills all occur in highly dynamic and unique envir-

onments (no two collapsed buildings are the same), with

high uncertainty and little control over other non-robot

agents in the environment. One of the most desirable bene-

fits of MRS is their robustness, wherein robots can com-

pensate for loss of capabilities by relying on other robots in

the team. However, the uncertainty of many real-world

environments renders current state-of-the-art algorithms

and controllers, even those designed for robustness, ineffec-

tual. Although robot hardware has advanced significantly

in the past decade, the way we solve multi-robot problems

has not. Many control policies are so specialized and opti-

mized for specific capabilities and conditions that they do

not empower robots to cope with uncertainty. Incorporating

diversity, in the form of an ensemble of control policies that
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work synergistically across the team, can help to realize the

true benefits of robustness in the face of uncertainty for

teams of robots. Single-robot systems can also benefit from

ensembles of control policies, from which they can draw

when faced with control failure.

2. Motivation

In disaster response alone, the potential impact of autono-

mous MRS is substantial: 60,000 people die each year in

natural disasters, mostly in developing countries (Kenny,

2009). This makes robots an ideal tool for disaster

response. In fact, DJI announced that one properly

equipped drone can find a missing person more than five

times faster than traditional search methods (DJI, 2016).

However, most robots used in search and rescue today are

teleoperated (Liu and Nejat, 2013), requiring trained opera-

tors that may not be nearby. Autonomous robots equipped

for disaster response that can automatically synthesize

control policies without the need for an expert

operator can reduce response time and save many more

lives, especially when a trained operator may be hours

away.

The potential applications of autonomous MRS go well

beyond disaster response, including military, agriculture,

transportation, manufacturing, and fulfillment applications.

However, current solutions for MRS have not successfully

transitioned from controlled environments such as labora-

tories or warehouse facilities to the inherently high

uncertainty in these complex environments. Without infra-

structure that provides communication and localization,

and without knowledge of or control over the environment,

current state-of-the-art methods fail.

Although the field of MRS has advanced significantly,

the same problem-solving paradigm has remained. First,

the problem is defined. Next, complexity is reduced by

making several assumptions to simplify the problem, such

as terrain and communication range. Finally, an optimal

solution to that specific problem is designed and applied to

all the robots in the team. This paradigm, pictured in

Figure 1(left), limits the capability of MRS to cope with

real-world environments. The solutions are brittle, as the

assumptions made are easily invalidated and the optimized

controller is not designed for real environments. In the best

case, the controller is able to overcome these challenges,

but it is not the best solution to the problem, defeating the

purpose of optimization. In the worst case, the controller

cannot cope, potentially causing mission failure, loss of

high-value assets, and casualties; after all, if the environ-

ment violates the assumptions and the same ill-equipped

controller is applied to all robots, it is possible that all of

them will fail.

2.1. Leveraging diversity

Instead of applying the same controller to all robots, a new

approach leveraging diversity in policies within the robot

team can allow MRS to better cope with uncertain environ-

ments. Using an ensemble of diverse control policies to

accomplish a coordinated task within a single team of

robots can enable the team to adjust to different conditions.

For example, with two unmanned aerial vehicles (UAVs)

on a large security task, a natural result of using an ensem-

ble of controllers is for one UAV to position itself high, to

view the entire area, while the other UAV takes a closer

look at areas of interest. Diversity allows the robots to per-

ceive and respond to failure as they encounter it in the

environment.

2.1.1. Diversity in human workgroups. Diversity is well

established as a way to improve the performance of human

workgroups: studies have shown repeatedly that diverse

groups outperform homogeneous groups (Hoffman and

Maier, 1961; Hoffman, 1978; Jackson, 1992; Nemeth,

1986). Whereas diverse groups do have a higher likelihood

of conflict (Ancona and Caldwell, 1992; O’Reilly and

Flatt, 1989; Steiner, 1972), that conflict can be productive.

In studies where conflict due to diverse skill sets was pur-

posely introduced into the workgroup, it was shown to con-

sistently lead to higher-quality solutions (de Wit et al.,

2012; Jehn, 1995; van de Vliert and de Dreu, 1994).

2.1.2. Diversity in insect and animal behavior. Heterogeneity

has also been studied extensively in insect and animal beha-

vior. Jandt et al. (2014) studied personality at multiple levels

with regard to behavioral syndromes and insect societies,

discussing fitness consequences of intra-colony behavioral

variation. Specifically, under varying environmental condi-

tions, maintaining a mixture of individuals with different

behavioral types may be more effective than individuals

switching between behavioral types, which might be costly

and inefficient. Slower, more accurate individuals can bring

large quantities of food back to the colony when good abun-

dance is constant, whereas faster ‘‘sloppier’’ individuals might

be more efficient at exploiting resources in more frequently

changing environments (Chittka et al., 2009). Burns and

Dyer (2008) found that ant colonies that maintain a mixture

of different foraging types within a group allows the colonies

to respond more quickly to environmental fluctuation. In cer-

tain species, groups with a mixture of aggression types tend

to have higher fitness than groups with only one type

(Modlmeier and Foitzik, 2011; Pruitt and Riechert, 2011). On

the other hand, maintaining a mixture of inflexible behavioral

types can incur costs to the colony, such as overly aggressive

types being aggressive to their own nestmates (Crosland,

1990).

These results in insect and animal behavior studies point

strongly to behaviorally heterogeneous teams with the abil-

ity to adapt to the environment and task having higher fit-

ness in uncertain and dynamic environments, which has

inspired many multi-robot approaches. However, there is a

need to further study the use of diversity as a tool for MRS,
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especially in tightly coordinated tasks, as well as single-

robot systems operating in uncertain environments.

2.2. A new paradigm

Thus, the current problem-solving paradigm in MRS may

not reflect an effective approach to working in teams. In

the current paradigm, one set of assumptions is made, a

single control policy is developed, and it is uniformly

deployed to all robots in the team as in Figure 1(left).

Instead, an ensemble of control policies may be able to

leverage the strengths of the different control policies under

different conditions much as in human workgroups: vary-

ing control policies should be developed using different

sets of assumptions and/or different styles of interaction,

and the best approaches combined synergistically within

the team, as in Figure 1(right). In this way, MRS may lever-

age diversity much as human workgroups do, to improve

robustness in uncertain environments. Single-robot systems

may also benefit from ensembles of control policies, as

they would allow the system to swap policies in the case of

control failure.

3. Current state of the art

Diversity of robots with different physical embodiments or

capabilities has been studied previously (Huang et al.,

2006; Parker, 1998; Pimenta et al., 2008; Prorok et al.,

2017), but has not led to significant improvements in

robustness of MRS. However, controllers for those teams

are developed using a similar paradigm, making the same

assumptions across the entire team. There has been rela-

tively little exploration into diversity in control policies

within a single team of robots. Most research in this area is

a result of studying ants that take different roles in foraging

and house hunting (Berman et al., 2007; Dorigo et al.,

2006; Sugawara et al., 2004) or collective transport (Kumar

et al., 2013), and applied to similar problems in robotics.

Unfortunately, in trying to model ant algorithms closely,

these works do not take advantage of robot capabilities,

including communication, sensing, and computation, which

could expand the solution space and lead to better, more

appropriate solutions for a larger set of problems.

Behavioral or control diversity in teams of robots has

also been explored. In Tang and Parker’s ASyMTRe archi-

tecture based on schemas, robots take different roles

depending on environmental conditions (Parker and Tang,

2006; Tang and Parker, 2007), but the robots are all pro-

grammed to react the same. This leaves them vulnerable to

unforeseen changes in capabilities or the environment, and

does not enable robots to individually adjust their

approaches.

A majority of work exploring control diversity in robots

exists in behavior-based systems, most notably Balch’s

work in learning behavioral specialization for robot teams

(Balch, 1997, 2000). Goldberg and Matarić (1997) evalu-

ated multi-robot controllers based on the amount of inter-

ference and describe caste arbitration, where all robots

have the same capabilities, but have different conditions for

activating behaviors. Schneider-Fontan and Matarić (1998)

concluded that adapting group behavior is a balance

between minimizing interference and maximizing synergy,

and interference is the key stumbling block in the way of

efficient group interactions.

More recently, evolutionary robotics and agent-based

systems have been appearing as a method for encouraging

behavioral diversity and plasticity (individuals changing

roles over time). Mouret and Doncieux (2011) reviewed

and benchmarked published approaches to behavioral

diversity, and showed that fostering behavioral diversity

substantially improves the evolutionary process in the

investigated experiments, regardless of task. Pugh et al.

(2016) reviewed quality diversity algorithms, which have

resulted in a new class of algorithms that return an archive

of diverse, high-quality behaviors in a single run.

Vassiliades and Christodoulou (2016) designed behavio-

rally plastic agents (capable of switching between different

behaviors in response to environmental changes), by taking

inspiration from neuroscience, using artificial neural net-

works, neuromodulation, and synaptic gating. Umedachi

et al. (2015) attempted to understand the underlying

mechanism of the behavioral diversity of animals, then

used the findings to build truly adaptive robots. However,

all of these approaches focused on training agents to act

independently in the environment, and thus are not directly

applicable to multi-robot problems where task completion

relies on tight coordination, such as box-pushing, shape

formation, wildfire containment, cooperative transport, etc.

Furthermore, agents are trained in the environments where

they will be used, which, in natural disasters in particular,

may not be possible.

There is also a significant body of work on large-scale

simulation of crowds, that generate realistic-appearing

simulated crowds (Bera et al., 2016; Guy et al., 2010; Lee

et al., 2007; Pelechano et al., 2007). Although these

approaches generate diverse behaviors, diversity in crowd

simulation plays a different role than the one we seek.

Fig. 1. (Left) The current MRS problem-solving paradigm is

linear, making the same assumptions and deploying the same

solution to all robots in the team. (Right) The proposed novel

paradigm takes advantage of diversity in controllers to handle

various scenarios. Varying assumptions are made, and a

complementary ensemble of control policies is deployed across

the team.
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Whereas we seek diversity to enhance performance, diver-

sity in crowd simulation is cosmetic.

3.1. Diversity improving performance

Diversity has already been shown to improve performance

in some scenarios. In multi-agent systems, Marcolino et al.

(2013) addressed the problem of selecting the best possible

team to accomplish a goal given limited resources. Varied

agents form a team and vote on the best course of action in

the computer game Go. They compared teams with the

strongest individual members and teams with diverse mem-

bers, and found that a team of diverse agents can outper-

form a uniform team of the strongest agents when

individual agents outperform the overall strongest agent in

certain states. It is important to keep in mind, however, that

their diverse agents combine to make a single decision,

whereas in MRS, each agent encounters different scenarios

and must make their own decision. Nonetheless, in scenar-

ios where the team of robots encounters similar challenges,

they may be able to share useful information about which

actions were successful and unsuccessful with certain para-

meters. If this can propagate throughout the team, the entire

team may be more informed and thus perform better.

In single-robot systems, diversity can be provided by

switching controllers. For example, Zefran and Burdick

(1998) designed stable control schemes for systems with

changing dynamics; in their case, a different controller is

activated in each dynamic regime of the system. However,

to successfully design such a system, one must fully under-

stand the dynamics of the system and how to stabilize

the system in each regime. For MRS in uncertain

environments, it may not be possible to fully understand

the dynamics of each robot under all possible environmen-

tal conditions, thus it may be difficult to know how to sta-

bilize the system in advance. Equipping the team with

varied control policies or a set of parameters enables per-

formance observation of each control policy or parameter

set in parallel, which can then quickly inform individuals

of how to stabilize themselves.

Lyu et al. (2016) explored k-survivability in MRS. The

k-survivability of n paths is the probability that ‘‘at least k

out of n robots following those paths through a stochastic

threat environment reach goals.’’ The main idea is that if

the best and safest path is known, then it is still not robust

for all robots to take that path, because all the robots on that

path can fall to a single trap. k-survivability demonstrates

that in uncertain environments, diversity can be leveraged

to improve the performance, and in this case the survivabil-

ity, of a team of robots.

In swarm robotics, Li et al. (2004) studied the effect of

diversity and specialization in self-organizing, distributed,

artificial systems, correlating the degree of specialization

with the swarm’s overall performance. As not all diversity

will lead to better performance, they defined specialization

as diversity that is evoked for better performance. They

studied the stick-pulling problem, where robots search an

arena pulling sticks out of the ground; each stick requires

two (or more, in the generalized case) robots to remove the

stick from the ground, and each robot has a gripping time

parameter, which can be homogeneous or heterogeneous

across the team (Ijspeert et al., 2001; Martinoli et al., 2004;

Martinoli and Mondada, 1997). When the number of robots

was smaller than the number of sticks, this problem could

lead to a deadlock situation where all robots wait for assis-

tance for extended periods of time. In this scenario, hetero-

geneous swarms, in which agents had in parallel learned

their own gripping time parameters, outperformed both

swarms with hardwired homogeneous and learned homoge-

neous gripping time parameters, owing to the specialization

of the agents.

4. Some open problems in DART

Much as human workgroups, as well as insects and animals,

benefit from diversity in the composition of the group, such

variation of behavior would be beneficial for teams of

robots operating in uncertain and unstructured environ-

ments. Thus, it is natural to consider enhancing multi-robot

autonomy with diverse control policies designed to work

synergistically together. There exist many open problems in

DART; some of the challenging open problems that must

be addressed by the community are described here.

4.1. Learning for MRS

In order to learn from humans, or to learn directly from

simulations, new machine learning tools must be developed

for many-agent systems. Multi-agent learning is an area

that is not yet well represented in the literature, save for

several works (Foerster et al., 2016; Lowe et al., 2017;

Matignon et al., 2012; Peshkin et al., 2000), most of which

cannot handle more than a few agents. Other works focus

on tasks that can be learned and completed alone (Matarić,

1994; Recchia et al., 2013). Tight coordination between a

large team of agents, for example in wildfire containment,

currently presents a significant computational challenge for

existing multi-agent learning tools. Those that are suitable

for tightly coordinated tasks for a few (two or three) agents

are intractable for tasks that require tight coordination

among large numbers of agents (Amato et al., 2015, 2014;

Buffet et al., 2007). Given tightly coordinated multi-robot

tasks, such as pattern formation, border patrol, or wildfire

containment, automatically learn sets of control policies

for individual robots that enable a team of robots, equipped

with one or more of those control policies, to complete

those tasks.

4.1.1. Multi-robot learning from humans. Humans provide

a pool of diverse resources that can be tapped to develop
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diverse controllers that work well together. However, owing

to differences in human and robot capabilities (communica-

tion, locomotion, sensing, etc.), it is difficult to learn con-

trollers by observing human in-person interaction. By

limiting interaction to an interface (such as a mobile phone,

tablet, or laptop), communication, locomotion, and sensing

can be restricted to robot-like capabilities (Tavakoli et al.,

2016). A major benefit of human-inspired controllers is the

ability to communicate with and easily motivate study

participants, as opposed to animal-inspired controllers.

However, learning from human cooperation requires multi-

agent learning tools for many agents. Although there is

recent interest in learning from demonstration for MRS

(Chernova and Veloso, 2010; Freelan et al., 2015; Martins

and Demiris, 2010), these works either require a significant

amount of domain knowledge, leading to potential bias in

the creation of design policies, or do not apply to tightly

coordinated tasks. New approaches to learning are neces-

sary in order to learn truly novel behaviors from demon-

stration. Given data generated by humans completing a

coordinated task, find a set of control policies that, when

deployed on a team of agents, produce qualitatively and

quantitatively similar results. In order to produce func-

tional behaviors, this requires automatic solutions to the

correspondence problem, which would eliminate designer

bias and pave the way for novel behaviors; the agents to

understand both the state of the human as well as the goal

of the behavior; and measures of behavioral similarity

between humans and agents.

4.1.2. Automatic correspondence. In learning from humans

or other animals, it is necessary to solve the mapping

between demonstrators and imitators automatically. Using

primitive behaviors that are hand-coded, as has traditionally

been done, limits the behavior space of the team of robots

to those determined by the system designer, which can lead

to a biased set of behaviors. Given demonstrative data gen-

erated by a human or animal completing a coordinated

task, find automatically, without hand-coding, a set of robot

behaviors that produce qualitatively similar results to the

demonstrator.

4.2. Automatic abstractions for complex

observations

With large numbers of agents interacting in a space, and a

very rich set of possible observations or features (poten-

tially millions or more), it is necessary to use abstractions

for the observation or feature space of each agent. For

example, variations of regular or polar grids can be used

with occupancies or sampling can be utilized. Abstractions

can simplify the decision-making process, but their utility

depends on encoding relevant information, which can be

task-specific. Thus, developing useful abstractions, whether

automatic or hand-coded, is imperative; if done automati-

cally, one can avoid the use and potential bias of expert

knowledge. Given a large number of agents interacting in a

space, find efficient representations for the agents’ observa-

ble state that enable decision making in individual agents.

With respect to learning from demonstration, find efficient

representations of the observable state of the demonstrator

that enable computer-controlled agents to mimic the beha-

viors of the demonstrator. Efficiency can be measured by

how much information is encoded in the representation,

and how quickly it can be accessed and shared if necessary.

4.3. Measures of behavioral similarity

It is necessary to measure quantitatively how similar two

behaviors are, whether comparing between two computer-

generated behaviors or a demonstrator–imitator pair. Given

two behavioral policies, develop metrics that measure their

similarity.

4.4. Measures of diversity

Taking inspiration from the study of behavioral diversity in

social insect colonies, there is a need to understand the

impact of behavioral diversity on MRS in tightly coordi-

nated tasks, and, if learning from demonstration, to mea-

sure the diversity in the demonstrators’ behaviors and the

resulting imitators’ behaviors. This is distinct from measur-

ing behavioral similarity, as similarity compares a pair of

behaviors whereas diversity pertains to the team as a whole.

To that end, measures of diversity must be developed that

apply to MRS, such as the Hierarchic Social Entropy of

Balch (2000) or the diversity metric of Prorok et al. (2017).

Given an ensemble of agent behaviors or control policies,

find a metric that quantifies the diversity of the team in a

way that meaningfully differentiates between agents. As in

the social science literature, diversity of a robot team can

be measured in many different ways. Thus, the word mean-

ingful here can be subjective: there are many possible mea-

sures, and perhaps different measures would be useful for

different tasks, for example, depending on whether a team

with small differences in parameters that do not lead to sig-

nificant differences in behavior should be considered diverse.

4.5. Value of diversity

Diversity alone will not solve the robustness issue; it should

bring value to the team as they work on the task. Some

tasks, for example where the optimal policy can be com-

puted and all robots can execute the optimal policy, may

not require diversity. In the presence of uncertainty, how-

ever, diversity can bring significant value to the team.

Given a team task, predict the value that diversity will bring

to that task. This value can depend on the level of uncer-

tainty, the size and nature of the task, and potential restric-

tions on robot capabilities (whether inherent or induced by

the environment). Prediction is necessary in order to avoid

wasting significant time and resources on developing diver-

sity within the team.
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4.6. Architectures for diversity

Diversity of behavior within the team may also lead to

different architectures for cooperation. For example, it

may lead to leader–followers-type behavior, a hierarchy

of subgroups within the team, a flat organization with

each agent making independent decisions, and many

other possibilities. These architectures will likely be

influenced by the nature of the task as well as the cap-

abilities of the robots themselves (e.g., computation and

communication). Given a team of robots on a team task,

determine the best architecture for cooperation among

the robots.

4.7. Integrating small group theory

Considering potential architectures for diversity leads natu-

rally to the problem of creating an effective mix of beha-

viors within the team. Outside of robotics, human

workgroups have been studied extensively. Many theories

have been developed on effective groups (see, for example,

Poole and Hollingshead (2005) for a collection of works).

These theories can be leveraged in order to better coordi-

nate teams of robots on complex tasks. Small group theory,

however, must be adapted in order to compensate for dif-

ferences in human and robot capabilities. Collaboration

with social scientists who study human workgroups can

lead to novel methods of cooperation for MRS, but only if

we understand the role diversity plays in team success.

Quantify such a property, then use it to construct effective

teams for completing team tasks that perform better than

existing approaches. Given a team of robots on a team

task, determine the best combination of diverse behavioral

types to include in the team.

4.8. Adjusting policies online

To successfully utilize a diverse set of controllers, the team

of robots must collectively reason about the role that each

team member plays and automatically adjust their own roles

to achieve an appropriately diverse team with an effective

skill set. To do so, they must have the ability to measure the

success of individual agents on a coordinated task, adjust-

ing based on their own and others’ shortcomings and suc-

cesses. Evaluating an individual’s performance within the

team may not be straightforward. For example, the value of

a defender in a soccer game cannot be quantified by the

number of goals the defender’s team scores. Thus, given a

robot completing part of a team task, develop a metric to

evaluate its performance within that team. Once we can

quantify an individual’s performance, we can consider

adjusting control policies within the team accordingly.

Given an ensemble of control policies within a team of

robots, develop methods to adjust individual agents’ beha-

viors, either parametrically or otherwise, based on the

agent’s observations of itself or other agents.

5. Discussion

This paper has proposed DART, Diversity-enhanced

Autonomy for Robot Teams, a new research thrust that rep-

resents a paradigm shift in problem-solving for MRS. The

current problem-solving paradigm is linear: control policies

are optimized for a specific set of assumptions and applied

to the entire team. We have proposed a paradigm wherein

an ensemble of control policies is developed, with multiple

sets of assumptions or interaction strategies, and exists syner-

gistically within a team of robots. Such diversity in control

policies may better prepare the team of robots for unstruc-

tured and uncertain environments, much like diversity in the

knowledge base in human workgroups leads to higher-quality

solutions. Adoption of this new paradigm may lead to

expanded success of MRS in the field, especially in challen-

ging dynamic environments. The DART philosophy can also

be applied to single-robot systems, by enabling individual

robots to switch or adjust controllers in response to failure

conditions. In this way, single-robot systems may also be

more successful in uncertain and unstructured scenarios.

A small sample of open problems in DART were dis-

cussed, but there exist many open problems in this space.

To further the reach of MRS into such environments will

require collaboration of roboticists with experts in machine

learning, biological and social sciences, human–computer

interaction, and many other fields. By explicitly defining

DART, we hope to inspire the development of new tools for

coping with uncertain, unstructured environments such as

disaster response, precision agriculture, surveillance, and

others.
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