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Restoration efforts have been escalating worldwide in response towidespread
habitat degradation. However, coastal restoration attempts notoriously vary in
their ability to establish resilient, high-functioning ecosystems. Conventional
restoration attempts disperse transplants in competition-minimizing arrays,
yet recent studies suggest that clumping transplants to maximize facilitative
interactions may improve restoration success. Here, we modify the stress
gradient hypothesis to generate predictions about where each restoration
design will perform best across environmental stress gradients. We then test
this conceptual model with field experimentsmanipulating transplant density
and configuration across dune elevations and latitudes. In hurricane-damaged
Georgia (USA) dunes, grass transplanted in competition-minimizing (low-
density, dispersed) arrays exhibited the highest growth, resilience to disturb-
ance and dune formation in low-stress conditions. In contrast, transplants
survived best in facilitation-maximizing (high-density, clumped) arrays in
high-stress conditions, but these benefits did not translate to higher transplant
growth or resilience. In a parallel experiment in Massachusetts where dune
grasses experience frequent saltwater inundation, fewer transplants survived,
suggesting that there are thresholds above which intraspecific facilitation
cannot overcome local stressors. These results suggest that ecological
theory can be used to guide restoration strategies based on local stress
regimes, maximizing potential restoration success and return-on-investment
of future efforts.
1. Introduction
Coastal habitats make up only 2% of the world’s surface, but protect 10% of the
global population and the majority of the world’s largest cities from severe
storms, flooding and sea-level rise [1,2]. However, development, eutrophication,
storms, overfishing and other stressors are causing large-scale destruction of
coastal ecosystems [3,4]. Degradation of coastal systems has been reported
across latitudes and ecosystems, including sand dunes, salt marshes, mangrove
forests, seagrass meadows, and both oyster and coral reefs [5]. As stressors
increase in frequency and intensity, the ability of coastal ecosystems to rebuild
naturally between disturbances is compromised [1,6]. This seemingly runaway
coastal destruction is expected to cost the United States $200 billion in repairs
and lost ecosystem services by 2100 [7]. As such, investment in restoring coastal
wetlands, reefs and dunes has escalated substantially in recent years [8–11].
These efforts, which include both the revitalization of degraded coastal systems
and the strategic creation of new habitats, are aimed at addressing the global
decline of coastal ecosystems and cultivating the valuable ecosystem services
they provide [10,12].

In both coastal [10,13] and terrestrial ecosystems [14,15], habitat-forming
foundation species (e.g. reef-building corals and bivalves, marine and terrestrial
grasses, shrubs, and trees) are often transplanted to restore degraded habitats
and jumpstart ecosystem recovery. In coastal ecosystems, this restoration strategy
is gaining popularity, inspired in part by recent work suggesting that natural
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Figure 1. (a) The original SGH predicts an increase in positive interactions with increasing physical and biological stresses. (b) The SGH for restoration predicts which
transplant configurations (i.e. facilitation-maximizing or competition-minimizing) will show higher performance across a physical and biological stress gradient. The
dashed box represents the physical stress gradient analysed in this study. (c,d) The SGH for restoration modified to predict transplant success in different (c) configurations
and (d ) densities across a physical stress gradient. (Online version in colour.)
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ecosystems are more resilient to storms and better protect
against flooding than built infrastructure (i.e. sea walls,
levees, etc.) [9,10]. Yet there exists a conceptual disconnect
between traditional foundation species deployment, which
focuses on minimizing competition between transplants, and
ecological theory, which proposes that positive interactions
can be essential for species’ survival in high-stress conditions
[16,17], including those that often typify restoration sites.
Conventionally, foundation species transplants are deployed
in uniformly spaced arrays with the expectation that such
dispersed distributions minimize intraspecific competition
[16,18–20]. However, recent theoretical and perspective studies
[13,17,18,21] and follow-up experimental work [16,22–25]
across a variety of ecosystems have shown that harnessing
positive interactions by clustering transplants and/or co-trans-
planting foundation species with their mutualistic partners,
can significantly enhance restoration success. For example,
planting salt marsh grasses in high-density arrays increased
biomass by nearly 200% [16] and deploying seeds under
preestablished nurse shrubs in Mediterranean mountains
increased seedling establishment and survival [21]. Introdu-
cing facilitation theory to restoration is particularly important
as restoration attempts in coastal ecosystems are notorious
for their high cost and low success rate, which is less than
40% in some ecosystems [11]. Despite this need, ecologists
have yet to build and test a predictive model for where
facilitation-maximizing plantings should prevail over more
traditional competition-minimizing arrays.

The stress gradient hypothesis (SGH) [26,27] predicts that
positive interactions are relatively more important in structur-
ing communities at physical and biological stress extremes,
while competition is the principle driver at intermediate
stress levels (figure 1a). The SGH may provide a useful frame-
work for resolving the disconnect between experimental
research and application by informing how practitioners
may adapt restoration strategies to local stress and resource
gradients. Here, we modify the SGH to improve its appli-
cation to restoration (figure 1b) by suggesting that, in low-
stress areas, planting designs should minimize competition
to enhance transplant success (i.e. survival, growth, resili-
ence), given the predicted importance of this interaction in
benign conditions. As either physical or biotic stress levels
increase, planting designs should instead promote positive
interactions. For simplicity in presentation and direct appli-
cation to our study system, we focus on low to high
physical stress gradients, although this theoretical framework
additionally extends to biotic stress gradients. Competitive
and facilitative interactions can increase in strength when
plants are clumped together [28] or at high densities [29].
Accordingly, we further modify the SGH to predict that dis-
persed and low-density arrays will outperform clumped
and high-density arrays under low physical stress conditions,
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while the reverse pattern will arise under high physical stress
conditions (figure 1c,d ).

To test if the modified SGH can be used to optimize
restoration success, we conducted a field experiment along a
hurricane-damaged coastal dune system in Georgia (GA),
USA and a high-energy beach in Massachusetts (MA). Across
physical stress and nutrient gradients, we manipulated the
transplant configuration and planting density of the dominant
dune grass. We then tracked transplant growth, resilience to a
standardized disturbance (GA only), dune formation and
transplant survivorship. At the Georgia site, we hypothesized
that high-density, clumped configurations promoting facilita-
tive interactions would have the highest restoration success
on the more physically stressful dune slope (hereafter ‘Slope’,
figure 2a). In contrast, on the high nutrient Georgia Front
Line (lower elevation than the Slope), low-density, dispersed
arrays that minimize competition would outperform high den-
sity and clumped configurations. We additionally predicted
that facilitation would be critical for transplant survival and
growth at the Massachusetts site, which exhibits higher stress
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levels, resulting in facilitation-maximizing transplants outper-
forming low-density, dispersed transplants across zones.
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2. Methods
The primary experiment was performed from March through
November 2018 on Sapelo Island, Georgia (31.409, −81.256). In
September 2017, five months prior to the experiment’s deploy-
ment, Hurricane Irma hit the region, removing 10–25 m of dune
along the island’s eastern side. Following Irma, dead plants and
algae from the hurricane surge, material known as wrack,
remained at the base of the surviving dunes and was used to
define the two zones of interest in the experiment: the Slope was
defined as the landward margin of the storm wrack line while
the Front Line was defined as the area between the mean high
tide line and storm wrack line (figure 2a).

Aparallel experimentwasdeployed inWellfleet,Massachusetts
(41.916, −70.071) from May through October 2018 to evaluate the
relative success of the restoration treatments across a broader
stress gradient. Wrack lines fromwinter storms were used to delin-
eate the Slope and Front Line zones. Due to a shift in species
composition and local restoration approaches, Uniola paniculata
(hereafter sea oats)was planted inGeorgia andAmmophila breviligu-
lata (hereafter American beachgrass) was planted inMassachusetts.
Both grass species dominate the foredune of their respective
latitudes [19,20] and display vegetative growth strategies that pro-
voke the formation of embryo dune [30]. Because the two species’
ranges overlap in the Mid-Atlantic [31] and sea oats show an
increased growth at temperatures above 27° while the growth of
American beachgrass decreases above this threshold [32,33], it is
likely that temperature tolerances set the range limits of the two
species. Importantly, the two plant species show near-identical
sensitivity to soil moisture [34,35] and salinity [32,33] stress.

In each latitude, we deployed five experimental ‘blocks’ (i.e.
approx. 120 m long sections of dune) located along a 2 km stretch
of shoreline that exhibited a similar per cent cover of wrack, beach
width, foredune slant and elevation. In each block, we marked 8
plots in both the Front Line and Slope zones, and randomly
assigned one of four planting configurations (no plant, single
plant, clumped or dispersed) and one of five planting densities
(0, 1, 4, 9 or 16 transplants) to each plot (n = 5 replicate plots of
each treatment, 8 treatment types, 40 plots per zone). Each plot
was 4 ft2 (0.37 m2), a size chosen based on standard restoration
practices calling for the planting of dune grasses at 1 ft (0.30 m)
centres [19,20], which we mirrored the nine-plant dispersed treat-
ment. Transplants were purchased from wholesale suppliers
(Aquatic Plants of Florida, Sarasota FL and Cape Coastal Nursery,
Orleans MA) and planted into 15 cm deep holes.

To evaluate stresses experienced by dune-building grasses,
we measured four physical variables known to limit dune
plant survival [33,35–37]: sand mobility, water limitation, soil sal-
inity and wrack cover in July 2018. Sand mobility was quantified
by hammering 3 cm diameter posts to refusal and then trimming
them to 20 cm above surface level (n = 15 posts per zone, see elec-
tronic supplementary material, figure S1 for details). Posts were
spaced within and between replicate blocks, greater than 2 m
away from any plants, to capture sand mobility levels of each
zone at both sites. Sand mobility was reported as the cm of sand
accreted or eroded after 30 days. Soil moisture was quantified
using a TH150 ThetaProbe (Dynamax, Huston TX) inserted to
15 cm depth in each plots (n = 2 measurements per plot). Salinity
was measured using a HI98331 Direct Soil Conductivity Tester
(Hanna Instruments, Woonsocket RI) by collecting 10 replicate
0.5 g samples of sand per zone and suspending each in 3 ml of
deionized water. The percentage cover of wrack, which functions
as a major source of carbon and nutrients along the dune face
[36,38], was estimated in each plot.
Every four weeks, we assessed growth by counting the total
numberof fullyemergent stemsperplot, the average andmaximum
height of leaves in each plot, and the number of expansion tillers,
which we defined as stems emerging from the initial transplant
(electronic supplementary material, figure S2). Additionally, we
quantified both transplant stem production (the number of stems
produced by individual transplants) and whole plot production
(thenumberof stemsperaplot) to assess plant growth at two spatial
scales. As everyMassachusetts plot lost leaves over the course of the
experiment, we just report the results from Georgia.

Given both the vulnerability of coastal dune environments to
disturbances and the interest of practitioners in establishing habi-
tats capable of recovering from episodic disturbances [22], we
trimmed all Georgia transplants to surface level five months
into the experiment. Plant growth was then monitored for an
additional three months. Percentage change in stem counts were
calculated at one and three months post-disturbance. At the
end of the growing season in November 2018, we measured
the dimensions of sand mounds, known as embryo dunes, that
had accreted in each plot and calculated their volume. As trans-
plant survival was low and no measurable dunes had formed
around the transplants in Massachusetts, these measurements
were only completed in Georgia. Across both latitudes, trans-
plant survival was assessed at the experiment’s conclusion. As
the growing season length differs with latitude (five months in
Massachusetts versus eight months in Georgia), plant survival
after one growing season, rather than a standardized length of
time, was compared. We did not harvest final plant biomass
due to permitting constraints.

All statistics were performed in R (v. 3.3.3). Due to differences
in the transplanted species’ identity, experiment duration and local
weather, we do not directly compare physical stress variables or
transplant performance metrics across the two sites. Using separ-
ate tests for each latitude, we evaluated the main effect of zone
on sand mobility, salinity and wrack using one-way ANOVAs.
Soil moisture was analysed using a mixed effects nested ANOVA
where configuration, density and their interaction were nested
within zone (fixed effects), and block was treated as a random
effect. Stem counts were analysed at the transplant and plot scale
with a mixed effects four-way repeated-measures date × zone ×
density × configuration ANOVA, where date was used to indicate
repeated measurements. We then evaluated final stem counts,
transplant height, number of expansion tillers and embryo dune
volume with a nested ANOVA where configuration, density and
their interaction were nested within zone, and block was treated
as a random effect. We used a linear regression to assess the
relationship between stem counts and embryo dune volume.
Nested ANOVAs (transplant configuration or density nested
within zone) was used to evaluate treatment effects on transplant
survival in both Georgia and Massachusetts. All ANOVAs were
followed by Tukey’s HSD tests with adjusted p-values of p <
0.01. Tables summarizing all ANOVA tests are presented in the
electronic supplementary material (electronic supplementary
material, tables S2–S10). One Georgia plot was lost shortly
after deployment due to sand burial and was dropped from all
analyses. All values are presented as means ± s.e.m.
3. Results
(a) Physical stress and nutrient gradients
Measurements of physical stressors and nutrient levels
revealed differences between zones at both sites. In Georgia,
sediment mobility posts (figure 2b) showed that background
sand accretion is 11 times higher on the Slope than Front Line
(F1,28 = 7.8, p = 0.009). On the Georgia Front Line, 33% of the
posts eroded while all posts on the Slope accumulated sand.
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In Massachusetts, sand accumulation did not differ between
zones ( p = 0.42). In both Georgia and Massachusetts, soil
moisture (figure 2c) was elevated in the Front Line, especially
in clumped and high-density plantings relative to dispersed
or low-density plantings, but did not vary between treatments
in the Slope zone at either site (GA: zone [density × configura-
tion]: F4,122 = 6.9, p < 0.001;MA: zone [density × configuration]:
F4,129 = 13.4, p < 0.001). Soil moisture was three times higher
in clumped relative to dispersed plots, and plots with 4, 9
or 16 plants had approximately two times higher soil
moisture levels than single plant or bare plots in both Front
Lines (Tukey’s HSD p < 0.01). Soil salinity (figure 2d) in the-
Massachusetts Front Line was six times higher than the
Massachusetts Slope (F1,18 = 19.1, p < 0.001). In Georgia, soil
salinity was far lower and did not vary with zone ( p = 0.20).
The per cent cover of wrack (figure 2e) was 1.5 times higher
on the Georgia Front Line than Slope (F1,78 = 14.9, p < 0.001),
while the reverse trend occurred in Massachusetts where
wrack was higher on the Slope than the more tidally exposed
Front Line (F1,78 = 13.4, p < 0.001). Based on this compilation
of measurements and prior research evaluating the sensitivity
of sea oats and American beachgrass [32–35], we consider the
Georgia Front Line to be the lowest-stress zone, the Georgia
and Massachusetts Slopes to be intermediate-stress zones and
the Massachusetts Front Line to be the highest-stress zone
(see electronic supplementary material, table S1 for more
information on stress levels across latitudes).
(b) Transplant growth
By tracking the number of stems produced per an initial trans-
plant in Georgia, we discovered that stem counts varied over
time, across zones and with transplant density and configur-
ation (date × zone × configuration × density: F12,317 = 4.4, p <
0.001; electronic supplementary material, figure S3). After
eight months, transplants on the Front Line (33 ± 6 stems) pro-
duced more stems per an initial transplant than those on the
Slope (6 ± 1 stems), and single transplants located on the
Front Line (78 ± 37 stems) produced two to five times more
stems than all other plantings (zone [configuration]: F4,51 =
6.3, p < 0.001). Transplant stem production did not differ for
any other intra-zone pairwise comparisons (all Tukey’s HSD
p > 0.01).

Whole-plot stem production also varied across time, zones,
transplant densities and transplant configurations in Georgia
(date × zone × configuration × density: F12,317 = 12.7, p < 0.001;
figure 3). After eight months, whole-plot stem production
was four times higher on the less stressful Front Line (189 ±
19 stems) than the Slope (45 ± 7 stems). Dispersed configur-
ations in the Front Line (258 ± 27 stems) produced 150%
more stems than clumped configurations (157 ± 20 stems;
zone [configuration]: F4,51 = 14.7, p < 0.001), and high-density
plantings (9 and 16 transplants per plot; 243 ± 22 stems) pro-
duced twice as many stems as low density plantings (1 and 4
transplants; 117 ± 21 stems; zone [density]: F4,51 = 7.5, p <
0.001). On the less productive Slope, neither transplant con-
figuration nor density influenced whole plot stem production
(Tukey’s HSD p > 0.01). Importantly, high density plantings
had 2–16 times more stems per plot than low density plantings
at the start of the experiment,meaning high density transplants
underperformed relative to low density plantings in the
Front Line, despite producing more leaves at the plot scale.
The results collectively suggest that low density, dispersed
plantings are optimal in the Front Line while neither configur-
ation nor density impacted plant production in the Slope zone.
(c) Transplant resilience to disturbance
In Georgia, short-term resilience, the per cent change in stem
counts one month after the standardized disturbance, was
110 ± 6% on the Front Line but only 71 ± 8% on the Slope
(figure 3), indicating that transplants on the Front Line more
than fully re-sprouted while those on the Slope did not.
Regardless of zone and transplant configuration, four-plant
treatments exhibited higher short-term resilience compared
to all other planting densities (zone [density]: F4,51 = 7.0, p <
0.001). Single plant treatments on the Slope displayed the
lowest short-term resilience (zone [configuration]: F4,51 = 6.5,
p < 0.001). Similarly, long-term resilience, the percentage
change in stem counts three months after the standardized
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disturbance, was two times higher on the Front Line (226 ±
18%) than on the Slope (112 ± 17%). The four-plant density
plots continued to outperform all other density treatments,
and single plantings on the Slope again showed the lowest resi-
lience (zone [configuration × density]: F4,51 = 4.12, p = 0.005;
Tukey’s HSD p < 0.01).

(d) Transplant growth strategies
Sea oats transplants displayed plasticity in their growth strat-
egies based on planting zone and configuration (figure 4).
Dispersed transplants on the Front Line produced three times
more expansion tillers than their clumped counterparts and
clumped transplants grew an average of 16 cm taller than
dispersed ones (zone [configuration]: F4,51 = 14.1, p< 0.001
(height); F4,51 = 5.8, p< 0.001 (expansion tillers)). Interestingly,
this plasticity in growth allocation only occurred in the Front
Line where plants were 45% taller and produced 6.5 times
more expansion tillers than those on the Slope.On the Slope, con-
figuration did not affect expansion tiller production or stem
height and transplant density had no effect on plant growth
strategy in either zone (Tukey’s HSD p> 0.01). These findings
indicate that sea oats are highly responsive to the configuration,
but not density, of conspecifics in benign conditions.

(e) Dune formation
By quantifying embryo dune volume in each Georgia plot,
we discovered that embryo dune volumewas positively related
to whole plot stem production (adj. R2 = 0.93, p < 0.001;
figure 5a), indicating that planting arrays that produce the lar-
gest numbers of stems also build the largest embryo dunes.
Additionally, dispersed transplants built embryo dunes six
times larger than clumped transplants on the Front Line
(zone [configuration]: F4,51 = 6.2, p < 0.001; figure 5b). Planting
density did not influence embryo dune volume on the Slope
(zone [density]: p = 0.14). Thus, dispersing transplants in the
lower-stress Front Line supports high stem production and
therefore increases dune formation.

( f ) Context dependency of transplant survivorship
On the Massachusetts Front Line, only 28% of plots contained
at least one surviving transplant at the end of the experiment
whereas 74%, 80% and 100% of plots contained living trans-
plants in the Massachusetts Slope, Georgia Slope and
Georgia Front Line, respectively (figure 6a). Due to the high
mortality rates, therewas no significant effect of density or con-
figuration on transplant survival in the Massachusetts Front
Line. In the moderately stressful Massachusetts Slope, survi-
vorship of clumped transplants was 43% greater than that
of dispersed transplants (zone [configuration]: F2,12 = 6.9,
p = 0.01; figure 6a). Similarly, on the Georgia Slope, clumping
resulted in a 15% increase in transplant survival (zone [con-
figuration]: F2,12 = 5.0, p = 0.03). Survivorship by density
followed similar patterns in the Massachusetts and Georgia
Slopes (electronic supplementary material, figure S4). Inter-
mediate and high density plantings (4, 9 or 16 plants per
plot) survived 55–80% better in Massachusetts (zone [density]:
F4,20 = 5.8, p = 0.003) and 65–70% better in Georgia (zone [den-
sity]: F4,20 = 9.6, p < 0.001). However, clumping or increasing
density did not alter any other metric of plant success (i.e.
tiller counts, transplant heights, numbers of expansion tillers)
on the Slope at either site (all p > 0.05). These results predomi-
nantly alignwith the predictions of the configuration extension
of the modified SGH (figure 6b).
4. Discussion
These experimental results indicate that competition-minimiz-
ing planting arrays are far superior to facilitation-maximizing
ones for recreating resilient, high-functioning dunes in low-
stress areas, supporting the low-stress portion of the modified
SGH (figure 1b). In high-stress locations, survivorship was
increased in clumped treatments relative to dispersed ones,
but all othermetrics of transplant performancewere unaffected
by transplant density and configuration.

(a) Transplant growth and resilience
The results from the Georgia experiment indicate that dune
grass performance is significantly higher within the less phys-
ically stressful Front Line at both the transplant and plot scale.
These results align with findings from coral reef restoration
experiments inwhich coral growthwas fastest when fragments
were deployed individually at sites exhibiting low transplant
mortality [39]. However, contrary to the modified SGH predic-
tions (figure 1c,d ) and evidence from salt marshes where
clumping grass transplants in high-stress zones increased
stem densities by 80% [16], clustering transplants to enhance
facilitation did not support higher transplant or whole plot
stem production in the more physically stressful Slope. This
result may have occurred due to the notoriously low levels of
nutrients present in this zone [38], which can significantly
stifle the potential growth of transplants.

Sea oats planted in the Front Line not only grew vigorously,
but also rapidly re-sprouted post disturbance. Our finding that
4-density plantings exhibited the highest resilience suggests
that low and intermediate planting densities allow transplants
access to sufficient belowground resources due to reduced



0 200 400

no. stems

90

60

30

0

lo
g 

(e
m

br
yo

 d
un

e 
vo

lu
m

e)

0.025

0.020

0.015

0.010

0.005

0

em
br

yo
 d

un
e 

vo
lu

m
e 

(m
3 )

4 9 16

no. plants

(a) (b)

(c)

dispersedclumped dispersedclumpedSlope: Front Line:

adj. R2 = 0.93

*

*
*

Figure 5. Embryo dune formation in Georgia. (a) Stem count is tightly linked to dune formation. (b) On the Front Line, dispersed arrays built significantly larger
embryo dunes than clumped ones. (c) Photograph of embryo dune form in a nine-plant dispersed treatment on the Front Line. Error bars in (b) are mean dune
volume ± s.e. Asterisk indicates significant differences between configurations (Tukey’s HSD p < 0.01); density did not influence embryo dune volume. (Online
version in colour.)

0

25

50

75

100
*

(a) (b)

pe
r 

ce
nt

 s
ur

vi
va

l

tr
an

sp
la

nt
 s

uc
ce

ss

physical stress highlow

GA Front Line Slopes MA Front Line

higher
growth

dispersed

higher
survivorship

clumped

low
survivorship
and growth

Front Line Front LineSlope Slope

Georgia (GA) Massachusetts (MA)

clumped
dispersed *

Figure 6. (a) Survival across experimental zones in Georgia (GA) and Massachusetts (MA) by planting configuration. (b) Zones marked along the modified SGH
predicting optimal planting configuration across a physical stress gradient. Error bars are mean survival ± s.e. Asterisk indicates significant differences (Tukey’s HSD
p < 0.01) between clumped and dispersed arrays. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191978

7



royalsocietypublishing.org/journal/rspb
Proc.

8
intraspecific competition. Dispersed transplants on the Front
Line also re-sprouted more tillers than those in clumped
configurations post-disturbance (although the percentage
increase in tiller counts were similar across these treatments),
indicating configurations that promote growth also promote
resilience. Research on dune resilience has thus far focused pre-
dominantly on large-scale sediment transport and dune
migration processes [40,41], with little known about disturb-
ance effects on individual dune plants. Here, we show that
the resilience of dune plants to disturbance depends on their
spatial configuration, both with regards to the number and
proximity to neighbouring conspecifics. In short, bothnaturally
occurring and restored dune plants are most likely display resi-
lience when they occur in low-stress, high-nutrient areas and
experience little competition from neighbours.
R.Soc.B
286:20191978
(b) Transplant growth strategies
Similar to many foundation species in marshes, seagrass and
other dune systems, sea oats and American beachgrass pro-
pagate via vegetative expansion and can exhibit trade-offs
in lateral versus vertical growth [42]. We show such morpho-
logical plasticity can be sensitive to environmental settings
and planting configurations. Specifically, sea oats were con-
sistently taller and grew more stems on the low-stress Front
Line (figures 3 and 4). Within this zone, transplants in
clumped, facilitation-maximizing arrays increased their allo-
cation to vertical growth, while the competition-minimizing
plantings allocated more resources to rhizomatic growth.
Similar intraspecific plasticity has been observed in seagrass
meadows, where rhizome morphology varied based on pos-
ition within a patch and number of competitors [43], and in
grassland systems, where lateral expansion was reduced in
the presence of competitors [44]. In both of these studies
and in our experiment, plants in low-competition environ-
ments showed a greater tendency to colonize new areas,
which is a critical dimension of transplant performance for
restoration efforts focused on rehabilitating large habitats.
Thus, our results can probably be expanded to other ecosys-
tems, where varying transplant configuration can be used as
a tool to maximize either plant vertical growth or lateral
expansion to meet project-specific performance targets.
(c) Dune formation
Embryo dune formation has been a key focus of dune restor-
ation efforts as it is a crucial first step to establishing new
habitat [30,45]. The formation of these structures depends on
geo-physical factors such as beach width, sediment grain size,
wind speed, storm frequency [45,46] and biological factors
such as plant cover and species composition [30]. By allocating
resources to lateral expansion, we discovered that dispersed
plantings on the Front Line created biogenic conditions particu-
larly conducive to dune building (figure 5). As such, transplant
configuration and planting location appear to play important
roles in mediating habitat formation rates. While embryo
dune formation is unique to sand dunes, many coastal restor-
ation projects rely on sediment capture by foundation species
to expand the focal habitat and re-establish its ecological func-
tionality [10,12]. Sediment instability often leads to failure in
restoration efforts across coastal ecosystems including man-
groves [47], marshes [48] and seagrass beds [49], and thus
stabilizing sediment with dispersed plantings of clonally
propagating species may be a broadly applicable mechanism
for improving restoration outcomes.

(d) Context dependency of transplant survivorship
Our results from Georgia clearly support the planting of
low-density, dispersed treatments in areas of low physical
stress. As stress increased, clumping transplants and increas-
ing transplant density stimulated intraspecific facilitation
and increased transplant survival at both sites. However, all
other metrics of restoration success (stem production, resilience,
dune formation) did not respond to planting configuration or
density in high-stress areas. These findings align with other
studies in sand dunes [50] and streamside plant communities
[51], where, in highly stressful and nutrient poor conditions,
facilitation increased plant survival but not growth. These
results highlight that the predictions from the modified SGH
hold as stress levels increase but that additional interventions,
such as nutrient amendments via wrack addition or fertiliza-
tion, may be needed to boost the growth of surviving plants in
high stress locations. Finally, in the zone most influenced by
saltwater inundation, the Massachusetts Front Line, we saw
reduced growth and survival of all transplants, regardless of
treatment. This suggests that investment in restoration may
not be wise in such locations, as simple solutions such as
clumping transplants are unable to ameliorate stressors. Alter-
natively, additional interventions may be needed to restore
dune zones experiencing such high-stress regimes, such as
the placement of offshore shoals to reduce wave stress.
More broadly, this finding highlights that at levels of extreme
physical or biological stress, facilitation benefits derived from
re-configuring transplants can be exceeded and thus using the
modified SGH alone may not be sufficient for developing
successful restoration designs.
5. Conclusion
This studysheds lightonhowplanting location,densityandcon-
figuration affect restoration yields.We observed strong evidence
for the use of competition-minimizing arrays in low-stress
environments, and showed that facilitation-maximizing arrays
can increase transplant survival as stressors increase, up to a cer-
tain threshold. As transplant success was highest in dispersed
configurations on the Georgia Front Line but lowest in those
same treatments on the Massachusetts Front Line, our study
reveals that identifying the stress gradients of a systemandasses-
sing how those stressors act on the habitat-forming foundation
species are crucial first steps in restorationdesign.Once suchgra-
dients are understood, practitioners can prioritize the restoration
of relatively low-stress locations, where transplants are most
likely to exhibit fast growth, high resilience and significant
habitat formation, and use competition-minimizing planting
strategies in these locations. With increasing stress, clustering
plantings can increase survivorship, but additional interventions
may be needed to increase growth. Additionally, as stressors
such as storm frequency, heatwaves, rising sea levels and
drought increase, novel restoration strategies may be needed
given our finding that facilitation did not increase restoration
outcomes in the highest-stress zone of our study.

Further work is now needed to evaluate if facilitation-
maximizing arrays improve restoration success on the larger
scales at which restoration typically takes place and over
the longer time frames needed for transplants to converge
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and develop into contiguous habitats. While revegetation is
the most common form of dune restoration globally, it is
inherently limited in scale as transplants must be individually
planted [52]. Our results and many other restoration studies
focus on improving restoration strategies at this transplant
scale. Additional research is now needed to assess the poten-
tial for competition-minimizing and facilitation-maximizing
strategies to be integrated into restoration designs at larger
‘patch’ and ecosystem scales. Such optimization of patch-to-
patch and cross-ecosystem facilitation benefits for foundation
species may be vital for enhancing the pace and scales at
which restoration is needed to regain degraded ecosystems.
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