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Abstract

In this work, we propose a novel framework for unsuper-
vised learning for event cameras that learns motion infor-
mation from only the event stream. In particular, we pro-
pose an input representation of the events in the form of a
discretized volume that maintains the temporal distribution
of the events, which we pass through a neural network to
predict the motion of the events. This motion is used to at-
tempt to remove any motion blur in the event image. We then
propose a loss function applied to the motion compensated
event image that measures the motion blur in this image.
We train two networks with this framework, one to predict
optical flow, and one to predict egomotion and depths, and
evaluate these networks on the Multi Vehicle Stereo Event
Camera dataset, along with qualitative results from a vari-
ety of different scenes.

1. Introduction

Event cameras are a neuromorphically inspired, asyn-
chronous sensing modality, that detect changes in log light
intensity. When a change is detected in a pixel, the camera
immediately returns an event, e = {z,y,t,p}, consisting
of the position of the pixel, x, y, timestamp of the change,
t, accurate to microseconds, and the polarity of the change,
p, corresponding to whether the pixel became brighter or
darker. The asynchronous nature of the camera, and the
tracking in the log image space, provide numerous benefits
over traditional frame based cameras, such as extremely low
latency for tracking very fast motions, very high dynamic
range, and significantly lower power consumption.

However, the novel output of the cameras provide new
challenges in algorithm development. As the events sim-
ply reflect whether a change has occurred at a given pixel, a
model of photoconsistency, as used traditional motion esti-
mation tasks such as optical flow or structure from motion
(SFM), applied directly on the events is no longer valid. As
a result, there has been a significant research drive to de-
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Figure 1: Our network learns to predict motion from motion
blur by predicting optical flow (top) or egomotion and depth
(bottom) from a set of input, blurry, events from an event
camera (left), and minimizing the amount of motion blur
after deblurring with the predicted motion to produce the
deblurred image (right). Best viewed in color.

velop new algorithms for event cameras to solve these tra-
ditional robotics problems.

There have been recent works by Zhu et al. [24] and
Ye et al. [20] that train neural networks to learn to esti-
mate these motion tasks in a self and unsupervised manner.
These networks abstract away the difficult problem of mod-
eling and algorithm development. However, both works still
rely on photoconsistency based principles, applied to the
grayscale image and an event image respectively, and, as a
result, the former work relies on the presence of grayscale
images, while the latter’s photoconsistency assumption may
not hold valid in very blurry scenes. In addition, both works
take inputs that attempt to summarize the event data, and as
a result lose temporal information.

In this work, we resolve these deficiencies by propos-
ing a novel input representation that captures the full spa-
tiotemporal distribution of the events, and a novel set of
unsupervised loss functions that allows for efficient learn-
ing of motion information from only the event stream. Our
input representation, a discretized event volume, discretizes
the time domain, and then accumulates events in a linearly
weighted fashion similar to interpolation. This representa-
tion encodes the distribution of all of the events within the
spatiotemporal domain. We train two networks to predict
optical flow and ego-motion and depth, and use the predic-
tions to attempt to remove the motion blur generated when
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Figure 2: Network architecture for both the optical flow and egomotion and depth networks. In the optical flow network,
only the encoder-decoder section is used, while in the egomotion and depth network, the encoder-decoder is used to predict
depth, while the pose model predicts the egomotion. At training time, the loss is applied at each stage of the decoder, before

being concatenated into the next stage of the network.

the events are projected into the 2D image plane, as vi-
sualized in Fig. 1. Our unsupervised loss then measures
the amount of motion blur in the corrected event image,
which provides a training signal to the network. In addi-
tion, our deblurred event images are comparable to edge
maps, and so we apply a stereo loss on the census transform
of these images to allow our network to learn metric poses
and depths.

We evaluate both methods on the Multi Vehicle Stereo
Event Camera dataset [26][24], and compare against the
equivalent grayscale based methods, as well as the prior
state of the art by [24].

Our contributions can be summarized as:

e A novel discretized event volume representation for
passing events into a neural network.

A novel application of a motion blur based loss func-
tion that allows for unsupervised learning of motion
information from events only.

A novel stereo similarity loss applied on the census
transform of a pair of deblurred event images.

Quantitative evaluations on the Multi Vehicle Stereo
Event Camera dataset [26], with qualitative and quanti-
tative evaluations from a variety of night time and other
challenging scenes.

2. Related Work

Since the introduction of event cameras, such as Licht-
steiner et al. [10], there has been a strong interest in the de-
velopment of algorithms that leverage the benefits provided
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by these cameras. In the work of optical flow, Benosman et
al. [2] showed that normal flow can be estimated by fitting
a plane to the events in x-y-t space. Bardow et al. [1] show
that flow estimation can be written as a convex optimization
problem that solves for the image intensity and flow jointly.

In the space of SFM and visual odometry, Kim et al. [9]
demonstrate that a Kalman filter can reconstruct the pose
of the camera and a local map. Rebecq et al. [15] simi-
larly build a 3D map, which they localize from using the
events. Zhu et al. [25] use an EM based feature tracking
method to perform visual-inertial odometry, while Rebecq
et al. [16] use motion compensation to deblur the event im-
age, and run standard image based feature tracking to per-
form visual-inertial odometry.

For model-free methods, self-supervised and unsuper-
vised learning have allowed deep networks to learn mo-
tion and the structure of a scene, using only well estab-
lished geometric principles. Yu et al. [8] established that
a network can learn optical flow from brightness constancy
with a smoothness prior, while Meister et al. [12] extend
this work by applying a bidirectional census loss to im-
prove the quality of the flow. In a similar fashion, Zhou et
al. [23] show that a network can learn a camera’s egomotion
and depth using camera reprojection and a photoconsistency
loss. Zhan et al. [22] and Vijayanarasimhan et al. [18] add
in a stereo constraint, allowing the network to learn abso-
lute scale, while Wang et al. [19] apply this concept with a
recurrent neural network.

Recently, there have been several works, such as [4, 5,
, 25, 7] that have shown that optical flow, and other types
of motion information, can be estimated from a spatiotem-
poral volume of events, by propagating the events along the



Figure 3: Our flow network is able to generalize to a variety of challenging scenes. Top images are a subset of flow vectors
plotted on top of the grayscale image from the DAVIS camera, bottom images are the dense flow output of the network at
pixels with events, colored by the direction of the flow. Left to right: Fidget spinner spinning at 13 rad/s in a very dark
environment. Ball thrown quickly in front of the camera (the grayscale image does not pick up the ball at all). Water flowing

outdoors.

optical flow direction, and attempting to minimize the mo-
tion blur in the event image. This concept of motion blur
as a loss can be seen as an analogy to the photometric error
in frames, as applied to events. In this work, we adapt a
novel formulation of this loss from Mitrokhin et al. [13] for
a neural network, by generating a single fully differentiable
loss function that allows our networks to learn optical flow
and structure from motion in an unsupervised manner.

3. Method

Our pipeline consists of a novel volumetric representa-
tion of the events, which we describe in Sec. 3.1, which
is passed through a fully convolutional neural network to
predict flow and/or egomotion and depth. We then use the
predicted motion to try to deblur the events, and apply a loss
that minimizes the amount of blur in the deblurred image,
as described in Sec. 3.2. This loss can be directly applied
to our optical flow network, Sec. 3.3. For the egomotion
and depth network, we describe the conversion to optical
flow in Sec. 3.4.1, as well as a novel stereo disparity loss in
Sec. 3.4.2. Our architecture is summarized in Fig. 2.

3.1. Input: The Discretized Event Volume

Selecting the appropriate input representation of a set
of events for a neural network is still a challenging prob-
lem. Prior works such as Moeys et al. [14] and Maqueda et
al. [11] generate an event image by summing the number of
events at each pixel. However, this discards the rich tem-
poral information in the events, and is susceptible to mo-
tion blur. Zhu et al. [24] and Ye et al. [20] propose image
representations of the events, that summarize the number
of events at each pixel, as well as the last timestamp and
average timestamp at each pixel, respectively. Both works
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show that this is sufficient for a network to predict accurate
optical flow. While this maintains some of the temporal in-
formation, a lot of information is still lost by summarizing
the high resolution temporal information in the events.

We propose a novel input representation generated by
discretizing the time domain. In order to improve the res-
olution along the temporal domain beyond the number of
bins, we insert events into this volume using a linearly
weighted accumulation similar to bilinear interpolation.

Given a set of N input events {(z;,yi,ti, i) tic[1,N]»
and a set B bins to discretize the time dimension, we scale
the timestamps to the range [0, B — 1], and generate the
event volume as follows:

=(B—-1)(t; —t1)/(tn —t1) (1)
V(z,y,t) = Zpikb<w —z)ky(y — vkt — 1) ()

t;

3

where kj(a) is equivalent to the bilinear sampling kernel
defined in Jaderberg et al. [7]. Note that the interpolation
in the x and y dimensions is necessary when camera undis-
tortion or rectification is performed, resulting in non integer
pixel positions. In the case where no events overlap between
pixels, this representation allows us to reconstruct the exact
set of events. When multiple events overlap on a voxel, the
summation does cause some information to be lost, but the
resulting volume retains the distribution of the events across
the spatiotemporal dimensions within the window.

In this work, we treat the time domain as channels in a
traditional 2D image, and perform 2D convolution across
the x,y spatial dimensions. We found negligible perfor-
mance increases when using 3D convolutions, for a signifi-
cant increase in processing time.

kp(a) =max(0,1 — |a|)



Figure 4: Our network learns to predict motion from motion
blur by predicting optical flow or egomotion and depth (1)
from a set of input, blurry, events (2), and minimizing the
amount of motion blur after deblurring with the predicted
motion to produce the deblurred image (3). The color of the
flow indicates direction, as draw in the colorwheel (4).

3.2. Supervision through Motion Compensation

As event cameras register changes in log intensity, the
standard model of photoconsistency does not directly ap-
ply onto the events. Instead, several works have applied the
concept of motion compensation, as described in Rebecq et
al. [16], as a proxy for photoconsistency when estimating
motion from a set of events. The goal of motion compensa-
tion is to use the motion model of each event to deblur the
event image, as visualized in Fig. 4.

For the most general case of per pixel optical
flow, wu(z,y),v(z,y), we can propagate the events,
{(x4,Yi,ti, pi) }i=1,....N, to a single time ¢':

()= () v (i)

If the input flow is correct, this reverses the motion in the
events, and removes the motion blur, while for an incorrect
flow, this will likely induce further motion blur.

We use a measure of the quality of this deblurring ef-
fect as the main supervision for our network. Gallego et
al. [4] proposed using the image variance on an image gen-
erated by the propagated events. However, we found that
the network would easily overfit to this loss, by predicting
flow values that push all events within each region of the
image to a line. This effect is discussed further in the sup-
plemental. Instead, we adopt the loss function described by
Mitrokhin et al. [13], who use a loss which minimizes the
sum of squares of the average timestamp at each pixel.

However, the previously proposed loss function is non-
differentiable, as the timestamps were rounded to generate
an image. To resolve this, we replace the rounding with bi-
linear interpolation. We apply the loss by first separating the
events by polarity and generating an image of the average
timestamp at each pixel for each polarity, 7' , 7"_:

> L(pi = p' k(@ — )k (y — i)t
> L(ps = )kb(x*wi)kb(y*yi) +€
5)

“
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pe{+,-}1e=0
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The loss is, then, the sum of the two images squared.
=S riteaie

However, using a single ¢’ for this loss poses a scaling prob-
lem. In (4), the output flows, u, v, are scaled by (¢’ — t;).
During backpropagation, this will weight the gradient over
events with timestamps further from ¢’ higher, while events
with timestamps very close to ¢’ are essentially ignored. To
mitigate this scaling, we compute the loss both backwards
and forwards, with ¢/ = ¢; and t' = tp:

Eume +7T_ (aja y\t/)Q (6)

Llime :Llime (tl) + Llime (tN) (7)

Note that changing the target time, ¢’, does not change the
timestamps used in (5).

This loss function is similar to that of Benosman et
al. [2], who model the events with a function X, , such that
3., (xi) = t;. In their work, they assume that the function
is locally linear, and solve the minimization problem by fit-
ting a plane to a small spatiotemporal window of events.
We can see that the gradient of the average timestamp im-
age, (dt/dx, dt/dy), corresponds to the inverse of the flow,
if we assume that all events at each pixel have the same flow.

3.3. Optical Flow Prediction Network

Using the input representation and loss described in
Sec. 3.1 and 3.2, we train a neural network to predict op-
tical flow. We use an encoder-decoder style network, as in
[24]. The network outputs flow values in units of pixels/bin,
which we apply to (4), and eventually compute (9).

Our flow network uses the temporal loss in (7), combined
with a local smoothness regularization:

R Z @) + p(0(®) -

T geN (T

(%))
®)

where p(z) = V2 + €2 is the Charbonnier loss func-
tion [3], and N(x,y) is the 4-connected neighborhood
around (z,y).

The total loss for the flow network is:

Lﬂow :['time + /\1 Esmooth (9)

3.4. Egomotion and Depth Prediction Network

We train a second network to predict the egomotion of
the camera and the structure of the scene, in a similar man-
ner to [22, 18]. Given a pair of time synchronized dis-
cretized event volumes from a stereo pair, we pass each
volume into our network separately, but use both at training
time to apply a stereo disparity loss, allowing our network
to learn metric scale. We apply a temporal timestamp loss



outdoor day1 indoor flying1 indoor flying2 indoor flying3
dt=1 frame =~ AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier
Ours 0.32 0.0 0.58 0.0 1.02 4.0 0.87 3.0
EV-FlowNet  0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9
UnFlow 0.97 1.6 0.50 0.1 0.70 1.0 0.55 0.0
outdoor day1 indoor flyingl indoor flying2 indoor flying3
dt=4 frames AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier
Ours 1.30 9.7 2.18 24.2 3.85 46.8 3.18 47.8
EV-FlowNet  1.23 7.3 225 24.7 4.05 45.3 3.45 39.7
UnFlow 295 40.0 3.81 56.1 6.22 79.5 1.96 18.2

Table 1: Quantitative evaluation of our optical flow network compared to EV-FlowNet and UnFlow. For each sequence,
Average Endpoint Error (AEE) is computed in pixels, % Outlier is computed as the percent of points with AEE > 3 pix. dt=1
is computed with a time window between two successive grayscale frames, dt=4 is between four grayscale frames.

defined in Sec. 3.2, and a robust similarity loss between the

. Threshold distance  10m  20m 30m
census transforms [2 1, 17] of the deblurred event images.
. Sequence Method Average depth Error (m)
The network predicts Euler angles, (¢, 3, ¢), a transla-

. . . . . . outdoor_day1 Ours 272 3.84 4.40
tion, 7', and the disparity of each pixel, d;. The disparities Monodepth 344 702 10.03
are generated using the same encoder-decoder architecture outdoor nightl Ours 313 402 4.89
as in the flow network, except that the final activation func- Monodepth 349 633 931
tion is a sigmoid, scaled by the image width. The pose outdoor_night2 Ours 219 3.15 3.92
shares the encoder network with the disparity, and is gen- Monodepth 515 7.8 10.03
erated by strided convolutions which reduce the spatial di- outdoor_night3 Ours 2.86 4.46 5.05
mension from 16 x 16 to 1 x 1 with 6 channels. Monodepth 4.67 8.96 13.36

3.4.1 Temporal Reprojection Loss

Given the network output, the intrinsics of the camera, K,
and the baseline between the two cameras, b, the optical
flow, (u;, v;) of each event at pixel location (x;, y;) is:

<x> —ricr | RO K z +T (10)
u) 1 ) [
() == (G)-G)

where f is the focal length of the camera, R is the rotation
matrix corresponding to (¢, 3,¢) and = is the projection
. T x  v\T

function: 7 ((X Y Z) ) = (7 7) . Note that, as
the network only sees the discretized volume at the input,
it does not know the size of the time window. As a result,
the optical flow we compute is in terms of pixels/bin, where
B is the number of bins used to generate the input volume.
The optical flow is then inserted into (4) for the loss.

3.4.2 Stereo Disparity Loss

From the optical flow, we can deblur the events from the
left and right camera using (4), and generate a pair of event
images, corresponding to the number of events at each pixel
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Table 2: Quantitative evaluation of our depth network com-
pared to Monodepth [6]. The average depth error is pro-
vided for all points in the ground truth up to 10m, 20m and
30m, with at least one event.

after deblurring. Given correct flow, these images represent
the edge maps of the corresponding grayscale image, over
which we can apply a photometric loss. However, the num-
ber of events between the two cameras may also differ, and
so we apply a similarity loss on the census transforms [21]
of the images. For a given window width, W, we encode
each pixel with a W2 length vector, where each element is
the sign of the difference between the pixel and each neigh-
bor inside the window. For the left event volume, the right
census transform is warped to the left camera using the left
predicted disparities, and we apply a Charbonnier loss [3]
on the difference between the two images, and vice versa
for the right. In addition, we apply a left-right consistency
loss between the two predicted disparities, as defined by [6].
Finally, we apply a local smoothness regularizer to the dis-
parity, as in (8). The total loss for the SFM model is:

£SFM :Ltempor(zl + )\2Lstereo+

)\SLconsistency + )\4£smoothness (12)
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Figure 5: Ablation study on the effects of interpolation on
the event volume. Flow prediction errors are shown against
a held out validation set on two models with fixed random
seed, with and without interpolation.

4. Experiments
4.1. Implementation Details

We train two networks on the full outdoor_day2 sequence
from MVSEC [26], which consists of 11 mins of stereo
event data driving through public roads. At training, each
input consists of N = 30000 events, which are converted
into discretized event volumes with resolution 256x256
(centrally cropped) and B = 9 bins. The weights for each
loss are: {A1, A2, A3, Aq} = {1.0,1.0,0.1,0.2}.

4.2. Optical Flow Evaluation

We tested our optical flow network on the indoor_flying
and outdoor_day sequences from MVSEC, with the ground
truth provided by [24]. Flow predictions were generated at
each grayscale frame timestamp, and scaled to be the dis-
placement for the duration of 1 grayscale frame (dt=1) and
4 grayscale frames (dt=4), separately. For the outdoor_day
sequence, each set of input events was fixed at 30000, while
for indoor_flying, 15000 events were used due to the larger
motion in the scene. For comparison against ground truth,
we convert our output, (u, v), from units of pixels/bin into
units of pixel displacement with the following: (@,9) =
(u,v) X (B — 1) X dt/(t]v — to).

We present the average endpoint error (AEE), and the
percentage of points with AEE greater than 3 pixels, over
pixels with valid ground truth flow and at least one event.
These results can be found in Tab. 1, where we compare
our results against EV-FlowNet [24] and the image method
UnFlow [12]. We do not provide results from ECN [20]. As
their model assumes a rigid scene, and predicts egomotion
and depth, they train on 80% of the indoor_flying sequences,
and test on the other 20%. These results thus do not pose
a fair comparison to our method, which is only trained on
outdoor_day2. We do note that their outdoor_dayl errors
are slightly lower than ours, at 0.30 vs 0.32. However, we
believe that our method is more general, as it does not rely
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on a rigid scene assumption.
4.3. Egomotion Evaluation

We evaluate our ego-motion estimation network on the
outdoor_day1 sequence from MVSEC. As there is currently
no public code to the extent of our knowledge for unsu-
pervised deep SFM methods with a stereo loss, we com-
pare our ego-motion results against SFMLearner [23], and
ECN [20], which learn egomotion and depth from monoc-
ular images and events. We train the SFMLearner models
on the VI-Sensor images from the outdoor_day2 sequence,
once again cropping out the hood of the car. These im-
ages are of a higher resolution than the DAVIS images, but
are from the same scene, and so should generalize as well
as training on the DAVIS images. The model is trained
from scratch for 100k iterations. As the translation pre-
dicted by SFMLearner is only up to a scale, we present
errors in terms of angular error. The relative pose errors
(RPE) and relative rotation errors (RRE) are computed as:

_ t red'tgl _ T
RPE = arccos (7“})“;’”2”%[”2), RRE = [[logm(R, . Ret)||2,
where Rpeq is the rotation matrix corresponding to the Eu-

ler angles from the output, and logm is the matrix logarithm.

4.4. Depth Network Evaluation

We compare our depth results against Monodepth [6],
which learns monocular disparities from a stereo pair at
training time. As the DAVIS grayscale images are not
time synchronized, we train on the cropped VI-Sensor im-
ages. The model is trained for 50 epochs, and we provide
depth errors with thresholds up to 10m, 20m and 30m in the
ground truth and with at least one event. In Tab. 3, we pro-
vide the scale invariant depth metrics reported by ECN [20].

4.5. Event Volume Ablation

To test the effects of the proposed interpolation when
generating the discretized event volume, we provide results
in Fig. 5 of flow validation error during training between
a model with and without interpolation. These results show
that, while both models are able to converge to accurate flow
estimates and similar % outliers, the interpolated volume
achieves lower AEE.

5. Results
5.1. Optical Flow

From the quantitative results in Tab. 1, we can see that
our method outperforms EV-FlowNet in almost all experi-
ments, and nears the performance of UnFlow on the short 1
frame sequences. Qualitative results can be found in Fig. 6.

In general, we have found that our network generalizes to
a number of very different and challenging scenes, includ-
ing those with very fast motions and dark environments. A



Figure 6: Qualitative outputs from the optical flow and egomotion and depth network on the indoor_flying, outdoor_day and
outdoor_night sequences. From left to right: Grayscale image, event image, depth prediction with heading direction, ground
truth with heading direction. Top four are flow results, bottom four are depth results. For depth, closer is brighter. Heading
direction is drawn as a circle. In the outdoor_night results, the heading direction is biased due to events generated by flashing
lights.
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Sequence  Method AbsRel RMSElog SIlog <125 6<1.252 §<1.25%
outdoor_day1 Ours 0.36 0.41 0.16 0.46 0.73 0.88
ECN 0.33 0.33 0.14 0.97 0.98 0.99
outdoor_night  Ours 0.37 0.42 0.15 0.45 0.71 0.86
ECN 0.39 0.42 0.18 0.95 0.98 0.99

Table 3: Quantitative evaluation of standard depth metrics from our depth network against ECN [

]. Left to right, the

metrics are: absolute relative distance, RMSE log, scale invariant log, and the percentage of points with predicted depths
beyond 1.25, 1.252 and 1.252 times larger or smaller than the ground truth.

ARPE (deg) ARRE (rad)
Ours 7.74 0.00867
SFM Learner [23] 16.27 0.00939
ECN [20] 3.98 0.000267

Table 4: Quantitative evaluation of our egomotion network
compared to SFM Learner. ARPE: Average Relative Pose
Error. ARRE: Average Relative Rotation Error.

few examples of this can be found in Fig. 3. We believe this
is because the events do not have the fine grained intensity
information at each pixel of traditional images, and so there
is less redundant data for the network to overfit.

5.2. Egomotion

Our model trained on outdoor_day2 was able to general-
ize well to outdoor_day1, despite the environment changing
significantly from an outdoor residential environment to a
closed office park area. In Tab. 2, we show that our rel-
ative pose and rotation errors are significantly better than
that of SFM-Learner, but worse than ECN. However, ECN
only predicts Sdof pose, up to a scale factor, while our net-
work must learn the full 6dof pose with scale. We believe
that additional training data may bridge this gap.

As the network was only trained on driving sequences,
we were unable to achieve good egomotion generalization
to the outdoor_night sequences. We found that this was
due to the fluorescent lamps found at night, which gener-
ated many spurious events due to their flashing that were
not related to motion in the scene. As our egomotion net-
work takes in global information in the scene, it tended to
perceive these flashing lights as events generated by camera
motion, and as a result generated an erroneous egomotion
estimate. Future work to filter these kinds of anomalies out
will be necessary. For example, if the rate of the flashing is
known a-priori, the lights can be simply filtered by detecting
events generated at the desired frequency.
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Figure 7: Failure case of our depth network. The flashing
street light is detected as very close due to spurious events.

5.3. Depth

Our depth model was able to produce good results for all
of the driving sequences, although it is unable to general-
ize to the flying sequences. This is likely because the net-
work must memorize some concept of metric scale, which
cannot generalize to completely different scenes. We out-
perform Monodepth in all of the sequences, which is likely
because the events do not have intensity information, so the
network is forced to learn geometric properties of objects.
In addition, the network generalizes well even in the face of
significant noise at night, although flashing lights cause the
network to predict very close depths, such as in Fig. 7.

For the scale invariant metrics in Tab. 3, our method
compares comparably to ECN [20] in most errors, despite
having to predict the absolute scale of the depth, whereas
the depths in ECN are corrected for scale. However, our §
percentages are lower than expected. We believe that addi-
tional training data can alleviate this issue in the future.
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