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Abstract— With the increasing popularity of mobile phones
and tablets, the explosive growth of query-by-capture applica-
tions calls for a compact representation of the query image
feature. Compact descriptors for visual search (CDVS) is a
recently released standard from the ISO/IEC moving pictures
experts group, which achieves state-of-the-art performance in
the context of image retrieval applications. However, they did
not consider the matching characteristics in local space in a
large-scale database, which might deteriorate the performance.
In this paper, we propose a more compact representation with
scale invariant feature transform (SIFT) descriptors for the
visual query based on Grassmann manifold. Due to the drastic
variations in image content, it is not sufficient to capture all the
information using a single transform. To achieve more efficient
representations, a SIFT manifold partition tree (SMPT) is ini-
tially constructed to divide the large dataset into small groups
at multiple scales, which aims at capturing more discriminative
information. Grassmann manifold is then applied to prune the
SMPT and search for the most distinctive transforms. The
experimental results demonstrate that the proposed framework
achieves state-of-the-art performance on the standard benchmark
CDVS dataset.

Index Terms—Mobile visual search, Grassmann manifold,
subspaces embedding, CDVS, SIFT, compact descriptors.

I. INTRODUCTION

HERE are millions of images and videos added to the

servers daily. For example, every second 777 photos are
posted on Instagram [1] and Snapchat now achieved over
10 billion video views per day during the past year [2].
All these benefit from the rapid development of the technol-
ogy of mobile devices [3]. Hand-held mobile devices, such
as camera-phone, PADs are expected to become ubiquitous
platforms for visual search and mobile augmented reality
applications [4]-[6]. They have evolved into powerful image
and video processing devices equipped with high-resolution
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cameras, color displays, hardware-accelerated graphics, Global
Position System (GPS) and connected to broadband wireless
networks [7]. All these functionalities enable a new class of
applications which use the camera phone to initiate search
queries about objects in visual proximity to users [8].

Mobile Visual Search (MVS) can be used for identifying
interesting products, landmark search, comparison shopping,
searching information about movies, CDs, shops, real estate,
print media or artworks [9]. First commercial deployments of
such systems include Google Goggles [10], Ricoh iCandy [11],
Amazon Snaptell [12] and Layar [13]. Recently, Pinterest [14]
also moves to leverage visual search technologies in order to
connect consumers in the e-commerce business.

In traditional text-based search, users can get the accurate
retrieval results once the exact words are given. However,
it is far more difficult to describe an image if people want to
search for some relevant information. In the past quite a long
time, people have been working on extracting image features
and describing the image compactly and accurately [15]-[17].
Different from text-based content which is very simple and
concise, the image contains much more information and is
much more challenging to generate concise representations.
Therefore, to fully characterize the information of an image,
the existing algorithms tend to generate high-dimensional
features which are usually oversized to transmitted over the
limited-bandwidth wireless networks. Meanwhile, the require-
ments for mobile visual search (MVS) such as lower latency,
better user experience, higher accuracy pose a unique set of
challenges in practical applications. Therefore, an applicable
strategy is feature extraction [18] and feature compression are
performed at the client end while matching and retrieval is
carried out on the server.

There are two aspects researchers are working on, i.e., gen-
erating compact feature descriptors and compressing the fea-
ture descriptors. Developing compact feature descriptors is
an effective solution to reduce the transmission data size.
Initial research on the topic [7], [19]-[25] demonstrated that
the transmission data can be reduced by at least an order of
magnitude via extracting compact visual features.

In order to find compact feature descriptions thus reducing
transmission bits, various of feature descriptors have been
proposed to achieve robust visual content identification under
rate constraints. The early-stage keypoint description algo-
rithms assign to each detected keypoint a compact signature
consisting of a set of real-valued elements. In [26], an image
retrieval system is proposed, based on Harris corner detector
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Fig. 1.

Architecture of the proposed method. SIFT Manifold Partition Tree (SMPT) is constructed to divide the training SIFT descriptors into small groups

wherein each, a transform will be learned with all the SIFT descriptors in that group resulting in a set of local transforms in multiple scales. Grassmann
metric is introduced to measure the similarity of two transforms and remove redundant ones. Those remaining optimal transforms are utilized for compression.

Conventional entropy encoder generates the bit stream.

and local grayvalue invariants. Such an approach is invariant
with respect to image rotation. The work in [27] proposes
Shape Context, a feature extraction algorithm that captures
the local shape of a patch. Edge detection is firstly performed
over a patch surrounding the point (x, y) followed by the radial
grid, finally, a histogram centered in (x, y) counts the number
of edge points falling in a given spatial bin.

David Lowe introduces Scale Invariant Feature Transform
(SIFT) [28] which is the first to achieve scale invariance. SIFT
computes for each keypoint a real-valued descriptor, based on
the content of the surrounding patch in terms of local intensity
gradients. The final SIFT descriptor consists of 128 elements.
Given its remarkable performance, SIFT has been often used
as starting point for the creation of other descriptors. Inspired
by SIFT, Mikolajczyk and Schmid propose Gradient Location
and Orientation Histogram (GLOH) [29]. In the context of
pedestrian detection, Dalal and Triggs propose Histogram
of Oriented Gradients (HOG) [30], a descriptor based on
spatial pooling of local gradients. SURF [31] includes a fast
gradient-based descriptor. Fan et al. propose MROGH [32],
a 192-dimensional local descriptor. Along the same line, Girod
and co-workers propose rotation invariant features based on
the Radial Gradient Transform [33].

To further reduce transmission bits over the wireless
network, binary descriptors are proposed. Calonder et al.
introduce  Binary = Robust  Independent Elementary
Features (BRIEF) [34], a local binary keypoint description
algorithm. Leutenegger et al. propose Binary Robust Invariant
Scalable Keypoint (BRISK) [35], a binary intensity-based
descriptor inspired by BRISK. Differently from BRIEF,
BRISK is able to produce scale-and rotation-invariant
descriptors. Similarly to the case of BRISK, Fast REtinA
Keypoints (FREAK) [36] uses a novel sampling pattern of
points inspired by the human visual cortex, whereas Oriented
and Rotated BRIEF (ORB) [37] adapts the BRIEF descriptor,
so that it achieves rotation invariance.

However, these descriptors are not compact enough to
transmit between remote server and client directly due to
their large size [38], [39]. Table I shows the sizes of the
descriptors. Take the SIFT as an example, the uncompressed
SIFT descriptor is conventionally stored as 1024 bits per
descriptor (128 dimensions and 1 byte per dimension). Even a
small number of uncompressed SIFT results in tens of KBs.

TABLE I
OVERVIEW OF THE MOST COMMON LOCAL FEATURE DESCRIPTORS

Default size

Descriptor Year (bytes)
Schmid and Mohr [26] 1999 32
Shape context [27] 2002 144
SIFT [28] 2004 128
GLOH [29] 2005 512
HoG [30] 2005 124
SURF [31] 2006 256
DAISY [40] 2010 400
MROGH [32] 2010 192
BRIEF [34] 2011 64
BRISK [35] 2011 64
ORB [37] 2011 32
FREAK [36] 2012 64

Hence, local feature compression of these raw features is
critical for reducing the feature size.

Inspired by these recent developments, CDVS [41] tries to
compress SIFT features as well as provides a standardized
bitstream syntax to enable interoperability in the context
of image retrieval applications and achieves state-of-the-art
performance. The local SIFT compression scheme is proposed
in [42]. The main idea is to group SIFT descriptors into two
groups according to their relative locations and perform linear
projection accordingly. Only a subset of descriptors is empir-
ically selected to achieve different coding bit rates. However
several drawbacks need to be addressed. First, it is not effective
to perform retrieval task in a large-scale dataset by applying
the same transform for all the feature descriptors. Second, with
the ear of high definition broadcasting and the improvement of
hardware, tons of high-resolution images/videos are generated
around us. This requires more efficient algorithms to further
compress these content.

In this work, we focus on exploiting the intrinsic characteris-
tics of local subspaces in SIFT [28] feature space. As depicted
in Fig. 1, a hierarchical partition tree is proposed to divide
the whole SIFT dataset into small groups. In each group,
a transform will be learned from all these SIFT descriptors in
the current group. Grassmann metric is introduced to measure
the similarity between every two transforms. A repetitive
process of merging similar transforms is devised to remove
redundant transforms. Finally, a set of optimal transforms
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will be used to compress query descriptors. This work is an
extension of the previous work [43], [44] with the following
additional contributions:

e We devise a non-linear data partition tree architecture to
divide a large-scale training dataset into local patches.
The proposed scheme is dedicated to an exploration of
capturing the latent characteristics at multiple scales,
different numbers of local spaces are generated in each
level. The affinity relationship is defined to enable
optimization for effective transformation search.

e To search for the optimal local transformations,
Grassmann manifold is adopted to prune the data par-
tition tree. We propose a fast search scheme to find
the optimal K local transformations from the Zlh:l l;
candidates. Instead of traversing all the possibilities
on the data partition tree, we incorporate Grassmann
metric to measure their distinctiveness thus the most
representative candidates will be obtained.

e A novel projection and matching metric is devised which
involves the local space each feature belongs to. This
actually guarantees the fairness of distance computation.

e Theoretical analysis, as well as empirical evidence, are
provided to validate the necessity of the proposed data
partition tree from the information theory perspective.

e Extensive experiments are performed to evaluate the pro-
posed method, including pairwise matching and large-
scale image retrieval. The experimental results show
promising results when compared with state of the art
methods.

The rest of the paper is organized as follows. Section II
introduces the framework of proposed method. The pro-
posed SIFT Manifold Partition Tree (SMPT) is presented in
Section III. Weighted Grassmann pruning of SMPT is detailed
in Section I'V. Experimental setups and results are discussed
in Section V. Section VI concludes the work followed by a
summary.

II. THE FRAMEWORK

The framework of the proposed method is introduced in
this section. As illustrated in Figure 1, CDVS dataset is firstly
divided into training and test dataset and each with half the
number of images, including both paired images and non-
paired images. Each subset in training or test is constructed
so that the number of images belonging to each category is
proportional to the total amount of images in each category
present in the entire database. This paper addresses two
innovations in blue background, e.g., SIFT manifold partition
tree (SMPT) and Grassmann pruning.

A. Training

All the SIFT descriptors from the training dataset are used
for training. A hierarchical multi-level SIFT manifold partition
tree is constructed to divide the training samples into small
groups, a.k.a. cluster or node. In each group, a transform is
learned with all the SIFT descriptors in the current group.
In the following section without special explanation, we will
refer to global space as the transform space learned with
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the whole dataset without partition, and local space as the
transform space learned with samples in small groups after
SMPT.

Since the total number of local transforms might be very
large, in addition, not all these local transforms are optimal
transforms, e.g., in extreme cases, the training samples in
each local space might be only one which definitely will
not be able to train a satisfactory transform. Therefore, there
is no need to encode all the local transforms. Grassmann
metric is introduced after SMPT to prune all these available
local transform candidates. In essence, Grassmann manifold
provides a criterion to measure the similarity of two subspaces.
In practice, it is ideal to have a group of orthogonal transform
bases such that each basis captures the latent characteristics in
a unique direction. While in visual query feature compression
task, it is also desirable to have a bunch of transforms that
they are distinctive to each other. Therefore, under Grassmann
metric, we will remove those transforms which are closer to
each other and only preserve those have larger Grassmann
distances thus they are more likely to capture latent features
in a more efficient manner.

The final optimal local transforms after Grassmann pruning
will be utilized for compression. Conventional entropy encoder
is utilized for encoding to obtain bitstream.

B. Test

As discussed above, half of the randomly-sampled images
in CDVS dataset are used for test. Two main experiments
have been devised to validate the proposed method, e.g.,
pairwise matching and large-scale image retrieval experiments.
For the former one, given a query SIFT descriptor from the
test dataset, it will be assigned to one of those optimal local
transforms obtained from the training process. Corresponding
local transform will be applied on the query SIFT. It should be
noted that the optimal local transforms might be in different
level on the SMPT in order to capture hidden characteristics
in different scales. That is where the significance of the
proposed SMPT structure. Fisher vector [45], [46] aggregation
has been applied to the compressed SIFT descriptors to
generate the image-level representation for image retrieval
experiments.

III. SIFT MANIFOLD PARTITION TREE

In a large-scale dataset, it is usually not sufficient to capture
the intrinsic characteristics in feature space if only one linear
transform is applied. Also, due to the variety of dataset
sizes, it is difficult to determine the appropriate size of local
subspaces. Therefore, it is necessary to design an effective
data partition scheme to divide the whole dataset into different
levels of small groups. In this work, SIFT Manifold Partition
Tree (SMPT) is proposed to divide the global dataset into small
groups at different scales.

The SMPT grows in a top-down manner and the number
of groups is hierarchically increasing. As the total number
of training samples is fixed, different numbers of groups
lead to different numbers of samples in each group. This
makes it possible to exploit latent discriminative property
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at different scales. To assign each sample into a group,
conventional aggregation methods are considered, which could
be roughly divided into two categories: soft assignment and
hard assignment. In our case, it is preferable to use hard
assignment as we need to assign a unique local space for each
training sample. k-means is adopted in this work as it is able
to preserve the geometric structure of the global dataset as
well as its nature of simplicity and effectiveness.

In essence, SMPT is constructed by partitioning the large-
scale SIFT dataset into small patches followed by proper
design of connection relationship. The core of k-means algo-
rithm is an easily-understood optimization problem: given a
set of data points (in some vector space), try to position k
other points at locations that minimize the (squared) distance
between each point and its closest center. We denote the
training dataset containing M SIFTs as X = {x,,}, m =1..M
which has to be partitioned into k clusters. K-means clustering
solves

k k
argmcinZZd(x,,ui)=argmcillZZ||X—ﬂi||% (D

i=1 X€c; i=1 X€c;

where c¢; is the set of points that belong to cluster i. The stan-
dard methods for solving the k-means optimization problem
are Lloyd’s [47] algorithm (a batch algorithm, also known as
Lloyd-Forgy [48]).

Since the algorithm stops at a local minimum, the initial
position of the clusters is very important. Some common
methods to initialize the centroids:

1) Forgy: set the positions of the k clusters to k observa-
tions chosen randomly from the dataset.

2) Random partition: assign a cluster randomly to each
observation and compute means.

Due to the huge size of MVS datasets, we use the Forgy
initialization to accelerate convergence. Before partitioning,
PCA is applied on the whole SIFT dataset to reduce the
dimensionality. There are two reasons for this dimensional
reduction operation. Firstly, the lower dimensional local fea-
tures help to produce compact final image representation as
the current in image retrieval. Secondly, applying PCA could
help to remove noise and redundancy; hence, enhancing the
discrimination [49].

As illustrated in Fig. 2, in each level, the dimension-
reduced SIFT descriptors of the whole dataset are divided
into small groups via k-means. n'" indicates the Jj-th node
on the i-th level, where i = 1,...,h. It should be noted
that all small groups from certain level are directly from
the whole dataset, not from its parent level, e.g., combining
all SIFT samples from any level would constitute the whole
dataset. The association is specified in a bottom-up manner.
Euclidean distance is calculated between current child-cluster
centroid and its parent-cluster centroid. Current child-cluster
is associated with the nearest parent-cluster.

At each node, a transform (PCA in this paper) is trained
using all full-dimension (128-d) SIFT descriptors. So far, all
the transform candidates are obtained.
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Fig. 2. The SMPT is built in a top-down manner. Each level has /; clusters
obtained from k-means aggregation, where n(.l) represents the j-th node on
the i-th level. The affiliation of child-cluster is processed in a bottom-up
manner. Each child-cluster is associated with one parent-cluster according to
Euclidean distance.

IV. WEIGHTED GRASSMANN PRUNING OF SMPT

As we discussed above, the partition on the global space
serves as the first stage of the proposed work. However, leaf
nodes may not be the best choice for retrieval because of the
following reasons. First, with the increase of the SMPT level,
the number of samples associated with each leaf node will
decrease. Thus there exist a scenario where the number of
samples is not sufficient to train a reliable transform. Take the
extreme case as an instance, there will be only one sample
in each leaf node when the number of nodes equals the total
number of samples in the whole dataset. Second, in practice,
it is expensive to encode all available transform candidates.
Therefore, it is desirable to devise a scheme to search for a
handful of optimal transforms.

We introduce Grassmann manifold [50], [51] into the index-
ing model for manipulating the leaf nodes derived from the
data partition tree. Each point on Grassmann manifold is a
subspace by the columns of an orthonormal matrix which
is invariant to any basis. The notion of principle angle and
Grassmann distance allow us to evaluate the homogeneity of
the SIFT feature space. In this section, we first briefly review
the Grassmannian metric and related concepts, i.e., principal
angles. Then we introduce the details of applying the Grass-
mann metric to the SMPT.

A. Grassmann Manifold

The Grassmann manifold G(d,D) is the set of
d-dimensional linear subspaces of the RP [50]. Consider the
space Rg)d of all D x d matrices, i.e., A € RP*? The group
of transformation A = AS, where S is a d x d full-rank

. . .. (0)
square matrix, defines an equivalence relation in Ry’ ;.

A1 = Asif span(A1) = span(Ay)
where Ay, Ay e RY) )

Therefore, the equivalence classes of Rg) 4 are one-to-one

correspondence with the points on the Grassmann manifold
G(d, D), i.e., each point on the manifold represents a sub-
space. According to the definition, each point on Grassmann
manifold is a subspace. Therefore, to measure the distance
between two points on the Grassmann manifold is equivalent
to measure the similarities between two subspaces. Principle
angle [50]-[52] is a geometrical measure between two sub-
spaces. Fig. 3 has shown the relationship between principal
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Fig. 3. Principal angles and Grassmann distances. Let span(Aj) and
span(Aj) be two subspaces in the Euclidean space RP on the left. The
distance between two subspaces can be measured by the principle angles
0=101,0s,....,0m1".

angle and Grassmann manifold. Suppose A; and A; are two
orthonormal matrices Aj, A, € RP xd on the Grassmann
manifold, the principal angles 0 < 6 < --- < 6y < w/2
between two subspaces span(Ap) and span(A3), are defined
recursively by:

cosby = max u vy,

max
upespan(Ay) vxespan(Az)
’ ’
s.it.ourur =1, v'vg =1,
uu; =0, vi'v; =0, i=1,..,k—1) 3

The vectors (u1, us, ...,ug) and (vy,v2,...,0q) are principal
vectors of the two subspaces. Oy is the kth smallest angle
between two principal vectors uy and vg.

In literature, there are a variety of methods to compute
the principal angles between two subspaces. One numerically
stable way is to apply Singular Value Decomposition (SVD)
on the product of the two matrices A/lAz, i.e.,

AlAy =USV’ 4)
where U = [ui,uz,...,uq]l, V. = J[v1,02,...,04] and
S = diag(cosby,...,co86;). The cosine values of

principal angles coséj,...,cosf; are known as canonical

correlations [52].

B. Subspace Optimization With Grassmann Metric

The distance on Grassmann manifold is defined as follows.
A distance is referred to as Grassmann distance if it is invariant
under different basis representations. Grassmannian distances
between two linear subspaces span(Aj) and span(A;) can be
described by principal angles. The smaller principal angles are,
the more similar two subspaces are i.e., the closer they are on
the Grassmann manifold.

In literature, various Grassmann distance metrics based on
principal angle have been developed for different purposes,
e.g., projection, Binet-Cauchy, max correlation, min corre-
lation, Procrustes metric [50]. Since the distance metrics are
defined with a particular combination of the principal angles,
the best distance depends highly on the probability distribution
of the principal angles of the given data. Among all these
metrics, max correlation and min correlation only use the max-
imum and minimum principal angle, respectively, thus may
perform less stable when the noise in the data varies. Another
criterion for choosing the distance is the degree of structure in
the distance. Without any structure, a distance can be used only
with a single K-Nearest Neighbor (KNN) algorithm. When a
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distance having an extra structure such as triangle inequality,
for example, we can speed up the nearest neighbor search by
estimating lower and upper limits of unknown distances. From
this point of view, only Binet-Cauchy metric and projection
metric are the most structured metrics as they are induced
from a positive definite kernel [50]. In application, they are
also the most commonly used Grassmann metrics. Therefore,
in the final experimental section, both projection distance
and Binet-Cauchy Grassmann distance will be evaluated. The
projection Grassmann metric and Binet-Cauchy Grassmann
metric can be computed as follows, respectively:

m
dp(A1, A2) = (D sin*6)'/? 5)

i=1
dpc(Ar, A2) = (1 —[Jcos® )"/ (6)

i
We denote the number of nodes in each level as L = {/;},
where i = 1,...,h. Hence, the total number of available
transforms is

h
S = Zli @)
i=1

Grassmann metric is applied to measure the similarities
between the candidates. The similarity between every two
candidates will be measured. The two transforms with the
shortest Grassmann distance indicates they are the most sim-
ilar, thus should be merged according to the principle of
maximizing distinctiveness. Let us denote all the S available
transforms as {A, ..., Ag}, each of which is trained with all
the SIFT descriptors in that node. The number of training SIFT
descriptors in each node is W = {wy, ..., ws}.

Before the merge, suppose the query SIFT descriptors are
assigned to R leaf nodes. A merge cost L is calculated before
each merge operation. Children nodes of which LCA node
with lowest merge cost will be merged. First, we need to find
out the Lowest Common Ancestor (LCA) of any two existing
nodes. As we have R nodes currently, if each two share an
LCA node, there would be Clze LCA nodes in total. Let us
use G represent C12e for simplicity. The LCA of Node i and
Node j can be expressed as follows.

and i,j=1,....,5 (8

Aij = LCA(A;, Aj), i # ],
It should be noted that not all LCA node has only two children.
For example in Figure 4, Ag,g = Nodey which only has two
children 8 and 9, while Aig = Nodej has three children 8,
9, and 5. We denote the number of children each LCA node
has as {#1,...,tG}. The merge cost of the g-th LCA Ag is
calculated as

Ig
(g) ~
Lo=> wh) xdosu(Ae, AP, (g=1....,G) (9)
i=1
~ (g)
where Afg) is the i-th child of Ag, w(Aig) is the number of

SIFT descriptors in node Al(g), dgsm(a, b) is the Grassmann
distance between transform a and b. All the children of the
LCA which has the lowest cost among all the G LCA nodes
will be removed and current LCA node will be a new node.
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Fig. 4. An example of a 3-level SMPT showing the process of pruning. The
top figure is the initial state where the query samples are assigned to the leaf
nodes. According the merge cost, 10 and 11 are merged to 5; 14 and 15 are
merged to 7; 8, 9 and 5 are merged to 2.

Fig. 4 is an example of SMPT showing the procedure of
merge similar transforms to achieve the final most distinctive
local transforms. At initial status, there are 8 leaf nodes on a
3-level SMPT. The objective is to search for 4 most represen-
tative transforms. The first step is to find the corresponding
LCAs according to Eq. 8. Then calculate all the merge cost
according to Eq. 9. Finally, find the LCA with minimum merge
cost and all the children corresponding to that LCA will be
merged. This process iterates until the number of remaining
nodes is 4. By incorporating Grassmann metric, the most
distinctive transformations can be achieved.

C. Projection and Matching

Given N query SIFT features F = {fi,..., fn} and
K optimal local transforms {A1, ..., Agx}, where f, € R128
is a SIFT descriptor. Each query feature in JF is assigned
to one of the K nodes. Suppose feature f, is assigned to
transform A, the projection is applied as follows.

O = (fy — ux) x Ay

where u; € R'?8 is the mean of all the training samples in
node Ay, fn(t) is the representation of feature f, in transform
domain.

In transform domain, given a descriptor, its nearest neighbor
is searched across the transform domain. The descriptor which
has the smallest distance will be marked as its matching pair.
Given two projected features f,flt) and fn(;), different schemes
are applied in matching procedure if they are associated with
different optimal transforms.

It is not fair if computing the distance between two projected
features directly. Because they are in different local spaces,
their projections are based on different centers, i.e., centroids

(10)
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TABLE 11
PAIR-WISE MATCHING RESULTS WITH AND WITHOUT
PSEUDO-INVERSE PROJECTION
preserved dimensionality kd
test # w/o pseudo-inverse w/ pseudo-inverse
4 8 16 32 4 8 16 32

1 023 054 069 073 | 041 071 075 0.76
2 027 057 065 074 | 039 0.65 0.72 0.80
3 0.19 049 062 072 | 041 0.63 073 0.77
4 028 047 059 075 | 038 0.69 0.74 0.78
5 032 051 063 074 | 042 0.65 0.77 0.75
6 024 048 064 076 | 037 0.75 0.73 0.76
7 026 052 066 070 | 039 0.68 0.70 0.74
8 028 051 062 073 | 039 0.68 0.73 0.76
9 030 055 070 075 | 040 0.65 075 0.79
10 029 054 067 071 | 040 0.74 073 0.78
Avg. 027 052 065 073 | 040 0.68 0.74 0.77

are different. Directly computing their distance may exagger-
ate their real distance. As we do not have the original feature
information, so using pseudo inverse is an appropriate way to
reduce the error introduced in this procedure.

Suppose f,, is associated with transform Ay, and f;, is
associated with transform Ay,. If they are in the same local
space, i.e. ki = kp, the distance between these two features
is Euclidean distance. If they are in different clusters, i.e.
k1 # ko, they have to be converted into a uniform local space
via pseudo inverse. Empirically, the number of samples in
each cluster while training is the factor to determine in which
local space to convert to, i.e., the node with more training
samples will be selected. Let us use wy, and wy, representing
the number of training samples used to train Ay, and Ag,,
respectively, and wy, > wy,, the distance is calculated as
follows.

o = ik =k 0

ij= () _ (inv) : (11)
| fny” — fa, "llL, otherwise

) — (£O 5 pinv(Agy) + phy — fay) X A (12)

where pinv is pseudo inverse.

To validate the pseudo-inverse hypothesis, we randomly
select 10k matching SIFT pairs from CDVS dataset and
check the matching performance with or without pseudo-
inverse. The 10k matching SIFT pairs will be assigned to
one of 16 leaf nodes of SMPT. Projection with and without
pseudo-inverse will be applied to calculate the distance of each
SIFT pair in projection domain. Multiple numbers of preserved
dimensions are considered. The top-3 accuracy is used to
measure the pairwise matching performance. This process is
repeated 10 times and different SIFT pairs are used for each
time. The accuracy has been listed in Table II.

As can be observed in Table II, the pairwise matching
performance of the proposed method with pseudo-inverse is
better than that without pseudo-inverse. The superiority in low-
dimension cases is more obvious than in high-dimension cases.
This might be caused by that in low-dimension circumstances,
the distance is more sensitive to noise as more information loss
has been induced due to dimensionality reduction.
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TABLE III
OVERVIEW OF MPEG CDVS DATASET

# # matching  # non-matching  # retrieval ~ Mean # relevant
Dataset Category images pairs pairs queries images per query
1 Graphics 2500 3000 30000 1500 2
2 Museum Paintings 455 364 3640 364 1
3 Video Frames 500 400 4000 400 1
4 Buildings 14935 4005 48675 3499 4
5 Common Objects 10200 2550 25500 2550 3
Distribution Preserved energy

V. EXPERIMENTS

Extensive tests have been conducted to evaluate the per-
formance of the proposed method. There are three parts in
this chapter: 1) Evaluation framework description. 2) Energy
compaction validation and analysis. 3) The final results of
pairwise matching and image retrieval experiments along with
the analysis of computational complexity.

A. Evaluation Framework

The experiments are performed over CDVS [41] dataset
which consists 10,115 matching image pairs and 112,175 non-
matching image pairs. The dataset contains images of
5 categories: graphics, paintings, video frames, buildings and
common objects. They were captured with a variety of camera
phones and under widely varying lighting conditions. A brief
summary is shown in Table III. As stated in Section II, half
the number of randomly-sampled images are used for training
and the other half for test, including both paired images and
non-paired images. The number of images in each category
is proportional to the percentage of the number of images in
current category to that of the total number of images in the
dataset.

Before constructing the SMPT for pairwise matching and
image retrieval experiments, we preprocess the data with PCA
to reduce the dimensionality. The lower dimensional SIFT
features help to produce compact representation. In addition,
applying PCA could help to remove noise and redundancys;
hence, enhancing the discrimination [49]. A 7-level SMPT
is constructed with the number of nodes in each level of
L ={2,4,8,16,32,64, 128} e.g., the first level has 2 nodes,
the second level has 4 nodes, etc. The connection relationship
is processed in a bottom-up manner as illustrated in Fig. 2.
In each node on the SMPT, a local PCA transform will be
achieved using full-dimensionality (128-d) SIFT descriptors
in that node thus resulting in a total number of ZZ l; =254
local transforms. The Grassmann pruning is applied to obtain
the final K = {4, 8, 16} optimal local transforms.

The energy compaction validation experiment provides
empirical evidence from the information theory perspective.
The objective is to demonstrate the necessity of partitioning
the whole dataset into small groups in order to obtain local
transforms. The True Positive Rate (TPR) at less than 1%
False Positive Rate (FPR) is reported in the pairwise matching
experiment. In compliance with CDVS anchor, average bits
per descriptor is used to describe the bit stream. SIFT feature
extraction and selection is performed in CDVS software,
resulting in about 300 SIFT descriptors for each image.
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-=- W/ SMPT

—— w/o SMPT
--- W/SMPT -
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Fig. 5. SIFT descriptor probability distribution and energy preservation plots
in transform domain.

Euclidean distance is used to measure the distance in the
transform domain. The mean Average Precision (mAP) is used
to evaluate the image retrieval performance. The results of
each subset are reported for both pairwise matching and image
retrieval experiments.

B. Energy Compaction Validation

To study the effects of SMPT, we need to verify the coding
efficiency which can be measured by probability distribution
histogram. If local transforms are more efficient, the data
distribution in transform domain should be more compact,
i.e., the probability of a value closer to zero is larger.

We randomly select 60 images from each subset and
extract corresponding SIFT descriptors, thus comprises a
total of 90k SIFT descriptors. Training samples are achieved
by randomly selected by 70%, and the other 30% is used
for the test. Before constructing the SMPT, dimensionality
reduction technique (e.g., PCA) is applied to reduce the
dimension. The dimensionality-reduced SIFTs are used to
build a 5-level SMPT with the number of nodes in each
level L = {4, 8, 16,32, 64}. A PCA local transform is trained
using all the full-dimensionality (128-d) SIFT descriptors in
each node. To remove redundant local transforms, they will
be pruned on the Grassmann manifold to achieve final 8 local
transforms from 3 3_, [; = 124 available candidates.

After the SMPT model is obtained, the test SIFT descriptors
are assigned to one of the 8 optimal nodes according to the
Euclidean distance. The test SIFT descriptors in each node will
be projected separately using the associated local transform.
Fig. 5 shows the probability distribution and preserved energy
in the transform domain. It is observed that with SMPT
more data value aggregates around zero which is definitely
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Results of True Positive Rate (TPR) of the proposed method for SIFT pairwise matching. The proposed method controls bitrate by adjusting the

feature dimension in the transform domain, while CDVS provides fixed bitrate configuration. The number of optimal transforms is set as K = {4, 8, 16}.

TABLE IV

REPEATABILITY COMPARISON OF GRASSMANN PROJECTION
DISTANCE AND BINET-CAUCHY DISTANCE WITH CDVS

CDVS Proposed Projection Proposed Binet-Cauchy

bitrate | repeatability | bitrate | repeatability | bitrate repeatability
32 51.00% 29 52.37% 26 47.48%
- - 58 68.25% 56 67.92%
65 67.83% 84 72.99% 82 73.72%
- - 105 76.09% 108 76.68%
103 72.70% 137 78.32% 134 78.20%
- - 159 79.27% 152 79.54%
129 74.14% 182 80.03% 176 79.54%
- - 202 80.44% 199 80.76%
205 76.13% 228 80.76% 222 80.92%
- - 248 80.93% 250 81.17%

beneficial for compression. The preserved energy is calculated
by cumulatively summing the probability within range r away
from the origin. When we set the 7 = 200, 4.21% more
information will be preserved with SMPT than without SMPT.

C. Experimental Results

To compare the difference of Grassmann projection dis-
tance and Grassmann Binet-Cauchy distance, repeatability
experiments are conducted using SIFT descriptors from all
5 categories. Table IV shows the repeatability results of CDVS,
proposed method with Grassmann projection distance and the
proposed method with Binet-Cauchy distance, respectively.
The bitrate variation of the proposed method is achieved by
adjusting the number of the preserved dimensionality of SIFT
descriptors. It is observed that the proposed methods perform
better than CDVS. Compared with the best repeatability of
CDVS, the proposed SMPT with Grassmann projection and
Binet-Cauchy achieves about 4.31% and 4.63% improvement
with comparable bitrate, respectively. No significant difference

has been observed between two Grassmann distance metrics
but Binet-Cauchy is slightly better than projection.

Binet-Cauchy is adopted for pairwise matching and image
retrieval experiments. Figure 6 and Figure 7 show the pair-
wise matching and image retrieval results for each subset,
respectively. It can be observed that the proposed method
achieves the best performance when K = 8, where K is
the number of optimal transforms after Grassmann pruning.
The performance increases when K decreases from 16 to 8§,
but deteriorates when continue decreasing from 8 to 4. This
phenomenon demonstrates that there exists an optimal solution
by adjusting the number of transforms. It is a trade-off between
the number of training samples to train a transform and the
number of transforms utilized to perform projection.

At best performance, it can be seen that the proposed
methods perform better than CDVS with only a few exceptions
in buildings and Common Objects. As the proposed method
controls bitrate by adjusting the reduced feature dimension-
ality, it provides more flexibility in practice. In pairwise
matching experiments, the proposed method achieves an
improvement of 7.1%, 5.3%, 2.4%, 4.8% and 4.6% at lowest
bitrate for Graphics, Paintings, Video Frames, Buildings
and Common Objects, respectively. At highest bitrate,
an improvement of 0.4%, 0.7%, 0.6% and 0.35% has been
observed for Graphics, Paintings, Video Frames and Common
Objects, respectively. While in Buildings, the proposed
method is 0.6% worse than CDVS. Similar patterns can been
witnessed in image retrieval results. The improvement at
lowest bitrate are 4.98%, 3.84%, 2.03%, 3.87% and 4.54% for
Graphics, Paintings, Video Frames, Buildings and Common
Objects, respectively. At highest bitrate, the proposed method
achieves 1.23%, 0.66%, 0.65% and 0.40% improvement for
Graphics, Video Frames, Buildings and Common Objects,
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Fig. 7. Results of mean Average Precision (mAP) of proposed method for image retrieval. The proposed method controls the bitrate by adjusting the preserved
dimension and CDVS provides fixed descriptor lengths. The number of optimal transforms is set as K = {4, 8, 16}.

respectively. A tiny drop of 0.51% exists in Buildings.
Buildings and Common Objects contain more images and
the content vary more substantially in illumination and
deformation and contain more undistinguishable distractors
than the other three categories. That might be the reason
causing relatively lower performance in these two categories.

The experiments are conducted on a Windows PC with
Intel Core CPU i7-7700HQ 2.80GHz. The proposed method
requires an average of 1.37 milliseconds per query in pair-
wise matching experiments for highest performance. In image
retrieval experiments, an average of 2.49 seconds is required
per query at highest performance. The CDVS has been tested
using the same dataset and achieves an average of 0.43 mil-
liseconds and 1.84 seconds per query for pairwise matching
and image retrieval experiments, respectively. Future work will
focus on reducing the computational complexity.

VI. CONCLUSION

In this paper, we present an effective framework to produce
more discriminative image representations for image retrieval
using SIFT feature. In the proposed framework, we propose
to enhance the discriminative properties in two main steps:
i) Use different transforms for query features to capture
latent characteristics in multiple scales by constructing SMPT.
ii) Prune available local transforms on SMPT to achieve
optimal ones by introducing Grassmann metric. Extensive
experimental results show that the proposed method achieves
promising performance comparing with state of the art. Deep
learning-based methods are future research directions as well
as a further push to reduce the computational complexity for
the proposed scheme.
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