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ABSTRACT: One of the key limitations of Molecular Dynamics (MD) simulations is the
computational intractability of sampling protein conformational landscapes associated with
either large system size or long time scales. To overcome this bottleneck, we present the
REinforcement learning based Adaptive samPling (REAP) algorithm that aims to efficiently
sample conformational space by learning the relative importance of each order parameter as it
samples the landscape. To achieve this, the algorithm uses concepts from the field of
reinforcement learning, a subset of machine learning, which rewards sampling along important
degrees of freedom and disregards others that do not facilitate exploration or exploitation. We
demonstrate the effectiveness of REAP by comparing the sampling to long continuous MD
simulations and least-counts adaptive sampling on two model landscapes (L-shaped and
circular) and realistic systems such as alanine dipeptide and Src kinase. In all four systems, the
REAP algorithm consistently demonstrates its ability to explore conformational space faster
than the other two methods when comparing the expected values of the landscape discovered
for a given amount of time. The key advantage of REAP is on-the-fly estimation of the importance of collective variables, which
makes it particularly useful for systems with limited structural information.

■ INTRODUCTION

Molecular dynamics (MD) simulations have rapidly advanced
into an invaluable tool for understanding the structure−
function relationship in biological molecules.1−4 Although they
aid our understanding of intricate biomolecular dynamics, the
bottleneck lies in the amount of computational resources
available to the researcher. In common practice, running MD
simulations on nonspecialized computing hardware allows for
nanoseconds worth of data per day.1 The reality is that the
salient protein conformational changes can occur at milli-
second and even longer timescales; a six or greater order of
magnitude difference in terms of nanoseconds,2 which can cost
up to years worth of simulation time. Examples include the
transport cycle for membrane transporter proteins,5,6 protein
folding,4,7−9 and large-scale conformational changes involved
in cell signaling.10−17 A number of enhanced sampling
methods have emerged to address this computational draw-
back of conventional simulations. Two general classes exist
among these methods; one class requires the specification of
order parameters, i.e., a function of system degrees of freedom
that guides the simulation to reach the desired end state by
enhancing sampling along the order parameter. This class can
further be broken down into two subclasses, either by biasing
the underlying potential along the order parameter (e.g.,
steered MD,18 metadynamics,19 temperature-accelerated
MD,20 umbrella sampling21) or performing unbiased adaptive
sampling using the order parameters as a metric.22 The second
class of techniques encourages exploration of the conforma-
tional landscape in all directions by modifying the overall

Hamiltonian (e.g., accelerated MD,23 replica exchange MD,24

or weighted-ensemble simulations25). Depending on the
scientific goal, the usefulness of each class of techniques will
differ.
Several techniques exist that combine the ideas from these

methods to achieve enhanced sampling efficiency. For example,
Preto and Clementi introduced a new method called Extended
DM-d-MD26 that enhances the sampling of MD trajectories
within areas that are typically difficult to sample such as the
barriers between metastable regions. It proceeds by iteratively
restarting simulations so as to obtain a uniform distribution
along the first two diffusion coordinates. Since the diffusion
coordinates are obtained from postprocessed simulation data, a
priori order parameter information is not needed to perform
the method. Similarly, the iMapD27 method attempts to
efficiently explore the free energy surface of a system using an
adaptive exploration strategy; it iteratively starts new
simulations at the boundary points of a lower dimensional
space (in their case, diffusion coordinates) and outwardly
explores the space until new metastable configurations are
detected. Another method, named SGOOP,28 attempts to find
the best linear combination of a preselected set of order
parameters using maximum path entropy estimates. This newly
generated coordinate can then be used to sample along using
one of the enhanced sampling method mentioned above.
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For this paper, we will focus on the issue with the first class
which requires a set order parameters as an input. Essentially,
this class of methods can only succeed by knowing which order
parameters are relevant for sampling a priori. In the context of
biomolecular simulations, order parameters are observables
that capture the progress of proteins undergoing the
conformational change between different states. For instance,
the distance between two residues can serve as the order
parameter such that they only approach each other when the
protein is in an activated state. These computational
techniques work by sampling the conformational space
preferentially along the order parameter, “pushing” the protein
process toward some final state of interest.
Order parameters have proven useful for researchers as they

help reduce the high dimensionality of the system. Since
protein dynamics involves highly complex processes, it is
desirable to project this high-dimensional space onto order
parameters that simplify the simulation data without losing
essential information regarding conformational changes.
Furthermore, it is not uncommon to characterize the
conformational dynamics as a projection onto two order
parameters (i.e., on two-dimensional space); nonetheless, one
is not limited to a 2-D projection but is obviously preferred as
it makes interpretation easier. This is especially useful if the
protein under investigation undergoes a series of intermediate
steps to achieve some final state. For instance, many protein
kinases (proteins involved in signaling via phosphotransfer)
only become active after two molecular events occur: the A-
loop unfolding and the formation of the K−E salt bridge after
the αc-helix rotates to form a K−E salt bridge.17,29−31 In other
words, while one order parameter changes, the other remains
relatively constant. Plotting the progression of these events
gives rise to an “L-shaped” landscape. Kinases are not the only
biological systems that can be projected onto an L-shaped
landscape using two order parameters; these include
membrane transporter proteins32,33 and protein folding1,4,8,9

(see Figure 1 to visualize the landscape).
It is evident from these three landscapes that as one order

parameter becomes important for sampling, the other becomes
less relevant. To illustrate this point concretely, consider the
typical landscape associated with kinase activation.11,17,29−31,34

If simulations started with a kinase in the inactive state (Figure
1 a, top left), the optimal sampling strategy would be to first
explore in the positive x-direction (rightward) along the A-
loop unfolding coordinate. Once state 2 has been reached, the
x coordinate no longer becomes relevant for sampling (since
the A-loop has completely unfolded) and now the y coordinate

(the K−E bond distance) becomes the optimal direction to
sample. By sampling along this L landscape, we can be assured
that the most relevant protein conformations have been
sampled, i.e., the complete kinase activation cycle. However,
the only reason the optimal directions are known beforehand is
from closely examining the differences between crystal
structures captured in various states. If in this example the
protein were sampled without well-established structural
information, the only option is to use a “brute-force” approach
by which the landscape must be explored in all directions when
there is clearly an optimal path in this case.
The concept of optimal sampling along with some order

parameter at different points on the landscape has led us to
develop the REAP (REinforcement learning based Adaptive
samPling) algorithm that is “smart” enough to determine the
relative importance of each order parameter as it explores
conformational space. Reinforcement learning (RL) consti-
tutes a significant aspect of the artificial intelligence field with
numerous applications ranging from finance to autonomous
vehicles.35 It is based on the Pavlovian conditioning and
control theory, where the feedback from the environment is
learned to maximize the accumulated award. REAP takes
principles from the field of RL36,37 by which an agent (or
learning system) takes actions in an environment to maximize
a reward function. In this study, the action is picking new
structures to start a swarm of simulations, while the reward is a
mathematical function proportional to how far order
parameters sample the landscape (see the REAP Algorithm
section for more details). The agent keeps track of which
direction is most rewarding, allowing it choose the optimal
sampling strategy. In other words, the agent attempts to find
the path of least resistance.
The REAP algorithm builds upon a count-based adaptive

sampling method. Both methods perform the following: (1)
Run a series of short MD simulations from a collection of
starting structures. (2) Cluster the proteins based on order
parameters of interest. (3) Pick structures from these clusters
according to some sampling criterion to start new simulations.
The difference between these methods resides in step 3, least
count based adaptive sampling chooses new structures based
on least populated states, while REAP chooses new structures
based on a reward function. This reward function is dependent
on weights (a parameter representing how important an order
parameter is) and how on the landscape the new simulation
data samples compared to the current data. The advantage of
REAP over adaptive sampling is that it decreases the chance of
choosing structures for the next round of simulations that are

Figure 1. Three significant biological processes can be projected onto an L-shaped landscape, given the selection of appropriate order parameters.
These include (a) the activation process in kinases, (b) transport cycle for transporter proteins, and (c) protein folding. In (a), the inactive kinase
state is denoted as state 1, the intermediate state as 2, and the activated state as 3.
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irrelevant for sampling given the current state. Consider the “I”
(Illinois) potential in Figure 2a where the importance of the
order parameters X and Y changes in each basin. In the
situation, where sampling occurs in basin 2, a count-based38,39

adaptive sampling would give equal importance to both X and
Y, allowing structures in the orange regions to be chosen for
the next round of sampling. The disadvantage is that a lot of
these structures are irrelevant toward reaching the final area of
sampling, basin 3. The REAP algorithm is able to identify that
the most important structures, that is, the white highlighted
region (Figure 2b) since they facilitate sampling along the Y
direction. As a result, exploring low-energy, biologically
relevant regions of the landscape becomes faster, effectively
saving precious computational resources for the user.
The use of reward functions to increase the efficiency of

sampling has been implemented in other studies as well. For
example, Zimmerman and Bowman40 have developed one of
the first goal-oriented sampling methods named FAST that
consider exploration/exploration trade-offs. The reward
function, in this case, is a trade-off between maximizing (or
minimizing) a single collective variable and favoring poorly
sampled states. REAP differs from FAST since it does not
require a priori information regarding which single collective
variable should be maximized or minimized such as RMSD,
residue pair distance, solvent accessible area, etc. The only
input needed is a list of possible order parameters. Furthermore,
Perez et al.41 have used the concept relevant to RL such as
“explore-and-exploit”42 to enhance conformational exploration
using data derived from experiments. REAP differs from them
as it does not require modification of the original Hamiltonian.
This paper discusses and outlines the basic algorithm of

REAP and then evaluates its performance compared to
conventional single long trajectories (SL) and least counts
sampling (LC) using two idealized potentials; an L-shaped and
a circular landscape. The algorithm is then applied to alanine
dipeptide MD simulations and Src kinase. The kinase system
was sampled using a kinetic Monte Carlo sampling scheme
based on Markov state models obtained from a previous
study.29 For each case, we plotted the distribution of landscape
discovered using repeated simulation trials. The expected
values for the REAP distributions were consistently higher than
LC and SL, suggesting that REAP is a successful improvement

of LC since it explores new areas of conformational space more
efficiently. To avoid terminological confusion, we will
interchangeably use “collective variable” (CV) and “order
parameter” (OP) for the remainder of this article.

■ METHODS

REAP Algorithm. Here, we present each step involved in
the implementation of the REAP algorithm. We also introduce
the RL concept of a policy which defines the agent’s way of
behaving at a given time. In a mathematical sense, the policy π
is the mapping between “states” belonging to the environment
and “actions” to achieve the agent’s goal π: S → A. Put
differently, the policy tells the agent how to behave at any
point in time. The environment is defined as the landscape that
is to be explored; with the state S defined as the set of all
discovered points on the landscape or simply the current data
available. The action A is defined as the agent choosing protein
structures to run more simulations on. The user can provide
different policies which differ in the OPs provided. By
employing the sampling algorithm below, the user can evaluate
which of these different policies ensures the most reward while
sampling and then evaluate which OPs are relevant for
sampling. To avoid any misunderstanding, the definition of
“states” (S) here should not be confused with the common
usage familiar to biophysicists to represent one particular
protein configuration.
(1) Identify some sampling policy πK and its corresponding

set of OPs K = {θ1, θ2, ..., θk}. These OPs could be based on
known or likely OPs associated with the conformational
transition under investigation. Each policy differs depending on
the set of OPs and how new protein structures are chosen for
each round of simulation. In our implementation for this work,
the sampling policy involves choosing structures based on least
populated clusters (performed at step 5, denoted as Cp) and
the reward function of each cluster (eq 1).
(2) Set the weight wi for each θi ∈ K where wi ∈ [0, 1]. The

initialization of each wi signifies which OP θi is important for
the first round of sampling. Of course, if no prior knowledge is
available regarding the importance of each weight, each wi can
be fixed to the constant value of 1/k, where k is the total
number of OPs for the given policy πK. Every iteration of this
algorithm produces a new state S (the set of all discovered

Figure 2. (a) The “I” (Illinois) landscape illustrates that the local optimal sampling strategy changes depending which basin that is currently being
sampled (each labeled 1, 2, and 3). The importance of each order parameter is denoted as weights that are updated in each iteration of the REAP
algorithm, WX and WY. (b) Given that sampling occurs in basin 2, the orange regions shows structures selected from count based sampling are not
optimal for reaching basin 3, more efficiently than the count-based sampling. Instead, REAP is able to identify the appropriate structures (white
circular highlight) that facilitate sampling along Y, eventually reaching basin 3.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b06521
J. Phys. Chem. B 2018, 122, 8386−8395

8388

http://dx.doi.org/10.1021/acs.jpcb.8b06521


points), and since wi is different for each S, we will introduce a
new notation for the weights wi

S.
(3) Run simulations to generate a series of initial structures.

This can be obtained either from a single trajectory or from
running short simulations from multiple structures that can be
obtained from homology modeling, crystal structures, biased
MD methods, etc.
(4) Cluster the data S into a set of L clusters C = {c1, c2, ...,

cL}. For each cluster cj ∈ C, identify all the structures that are
closest to the cluster cj. The user could also assign a
representative structure to each cluster, e.g., the centroid of
each cluster. The goal of this step is to reduce the data size by
clumping together structures in OP space. Nonetheless, the
clustering method can be arbitrarily chosen during this step.
(5) Identify the set of clusters Cp ⊂ C which contain the

least number of data points. The cardinality (size) of Cp is at
the discretion of the user. As mentioned in step 1, the set Cp
can be obtained using different criteria.
(6) Given the set of K OPs for policy πK, calculate the

reward for each cm ∈ Cp.

r c w
c C

C
( )

( ( ) ( )
( )

K
m

i

k

i
S i m i

i1

∑ θ θ
σ

=
| − ⟨ ⟩|

= (1)

where wi
S represents the weight or importance of each OP for a

given set of discovered points SRL, θi(cm) is the OP calculated
for the cluster cm, ⟨θi(C)⟩ is the arithmetic mean of θi for all cj
∈ C, and σi(C) represents the standard deviation of θi for all cj
∈ C. Vertical bars indicate the absolute value being taken.
(7) Calculate the cumulative reward.

R C r c( ) ( )p
m

C
K

m
1

p

∑=
=

| |

(2)

where the sum is over each element in the set Cp, and |Cp| is
cardinality of Cp.
(8) The next step is to maximize eq 2 by tuning the

parameter wi
S. This can be achieved by choosing from a myriad

of optimization algorithms already implemented. In our case,
we took advantage of the SciPy python library43 and used the
Sequential Least SQuares Programming (SLSQP)44 to find the
optimal weights that maximize the cumulative reward. The
following conditions were enforced as a constraint: ∑i wi = 1
and |wi

t−1 − wi
t |≤ δ, ∀i, where 0 < δ < 1. t represents the

current round of sampling while t − 1 represents the previous
round. We found these constraints to make the algorithm more
robust. The first constraint is to normalize the values of
weights, while the second constraint prevents weights from
changing too much from round to round. If we do not consider
the second constraint, optimization algorithms would always
give a weight of one to a single OP and a weight of zero to all
other OPs due to the normalization factor (the first
constraint). If δ is closer to 1, we let the weights to move
freely regardless of the history of the reward function, just to
maximize eq 2. Whereas, if δ is closer to 0, we chose the
weights mainly based on the history of the reward function.
Choice of δ should be a balance between these two factors.
Given the updated weights, step 6 is repeated to find the new
rewards.
(9) Choose the structures from the clusters that give the

highest reward to start new simulations given the updated
weights. The two additional parameters, structures and
clusters, were chosen with the highest reward, which is up to
the discretion of the user.
(10) Repeat steps 3−9 until the user deems the sampling is

sufficient enough.
The primary reason for using least count adaptive sampling

as specified in step 4 is because it is widely considered as the

Figure 3. Regions sampled using (a) single long trajectory, (b) least count based adaptive sampling, and (c) REAP algorithm methods performed
on L-shaped potentials are shown with white circles on top of the potential. The white circles represent data points generated from eq 3 (d)
Weights for each OP signify the importance of each OP depending on the round number (or iteration of the algorithm). The fluctuations of
weights show that the algorithm is able to identify the importance of each weight. The weight of an additional OP orthogonal to X and Y, called Z,
was expected and shown to go to zero. For more information on what the weights signify, see step 2 in the REAP Algorithm section. (e) Plot
showing the distribution for the portion of landscape discovered using REAP, LC, and SL sampling over 100 repeated trials. Dashed lines represent
the expected value of each distribution.
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most efficient strategy for exploration of free energy land-
scapes.38,39,45 Even if the reward function cannot properly
assign rewards to states to achieve optimal sampling, the least-
count adaptive sampling protocol will still be used. The crucial
step in this algorithm is step 8, which estimates the relative
importance of these OP as the agent explores the landscape. If,
for example, some θi is provided that gives poor information on
conformational changes (i.e., changes little for each round of
simulations), the weights will eventually drop to zero from the
optimization step. This essentially informs the user that the OP
is not important for understanding the conformational changes
of the protein. In theory, one can provide different policies πK
with the same reward function to determine which OPs are
most relevant for sampling by simply looking how each wi
changes over time.

■ RESULTS AND DISCUSSION
L-Shaped Potential. To demonstrate that the REAP

algorithm outperforms other sampling strategies, we will first
consider an idealized system by which the time-evolution of
two OPs, X and Y, are governed by the overdamped Langevin
equation:

t V t tr r( ) 1/ ( ( )) ( ) 2 1γ η β γ̇ = − ∇ + −
(3)

Here, r  (t) denotes time derivatives of the position vector r,
∇ is the gradient operator, γ is the friction coefficient, β = 1/
kBT, where kB is the Boltzmann constant and T is the
temperature in Kelvin, and η(t) represents a random force that
models the collisions of molecules in a fluid. The random force
obeys a Gaussian distribution with a zero mean and satisfies
the following autocorrelation condition ⟨ηi(t)ηj(t′)⟩ = δijδ(t −
t′).46
The goal is to study the performance of this sampling

method for a model potential representing landscapes common
in protein conformational change, such as ion transports,

activation processes, and protein folding (see Figure 1 for
examples). We will first assume that the potential is L-shaped
with five metastable states, i.e., long-lived intermediate states
between the initial and final state. To compare each sampling
method, we performed the same amount of simulation time on
the L-shaped landscape for each sampling procedure: tradi-
tional simulation (single long trajectory, SL), least count based
adaptive sampling (LC), and the REAP algorithm (Figure 3a,
b, and c, respectively). All three simulations were initiated at
the bottom right corner of the landscape (point (1.1, 0) in
Figure 3; details of the simulations and REAP parameters are
provided in Table S1). These model simulations clearly
demonstrate the advantage of using REAP for exploring the
landscape. This is due to the algorithm’s ability to quickly
identify the important directions of sampling. These directions
are quantified as weights for each OP (see eq 1), facilitating
immediate exploration to the left. This learning of directional
importance can be visualized by looking at the change in
weight values over time (see Figure 3d). We additionally
included an unvarying OP, Z, to demonstrate the algorithms
capability to identify its insignificance. At the very start of the
simulations, REAP quickly assigns this additional OP with zero
weight, thereby preventing further sampling along this
coordinate. REAP’s ability to identify unimportant OPs in a
more realistic system, such as Src kinase, will be elaborated on
in a later section.
In the first rounds of simulations, both X and Y directions

are equally important (Figure 3d up to round 10) as sampling
in all directions gives equal rewards. It is not until trajectories
reach the high-energy states in the Y direction where the X
direction becomes more rewarding than Y. As a result, the X
weight increases while the Y weight decreases. When the
trajectories reach the point where X no longer becomes
rewarding near round 300 (point (0, 0) in Figure 3c), then the
X weight decreases and Y weight dramatically increases until

Figure 4. Regions sampled using (a) single long trajectory, (b) least count based adaptive sampling, and (c) REAP algorithm methods performed
on circular potentials are shown with white circles on top of the potential. The white circles represents a data point generated from eq 3. (d)
Weights for each OP signify the importance of each OP depending on the round number (or iteration of the algorithm). (e) Plot showing the
distribution for portion of landscape discovered for REAP, LC, and SL simulations using 100 repeated simulations. The expectation value of each
distribution is depicted with dashed lines.
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the trajectories reach the fifth basin (top left corner, point (0,
1.1) in Figure 3c). It is worth mentioning that while running
simulation, if a weight goes to zero, it means that the
corresponding OP has not become relevant so far, but there is
no way to tell if it is because of inadequate sampling or it is
really irrelevant. For example, if one stopped REAP at around
50 rounds in Figure 3d, then one might conclude that the Y
direction is irrelevant, but in this case, we can see that the
weight on the Y direction ends up climbing to almost 1 around
round 300.
To compare the performances between REAP, LC, and SL,

we plotted the distribution of landscape discovered using 100
repeated simulation trials (Figure 3e). The distribution for SL
and LC were concentrated around 0.2 and 0.25, respectively,
while REAP is populated mostly at 0.8 with more distribution
spread. Furthermore, the expected value for REAP is, at least,
twice as much as LC and SL, suggesting that REAP is expected
to perform better than the latter two. Additional plots showing
the distribution for each individual OPs were calculated (SI
Figures 1 and 2) and the time evolution of average smallest
value of Xs (SI Figure 3). These different metrics provide an
alternative perspective for showing how REAP outperforms the
other two methods. We further assessed how REAP performs
with an additional, nonfunctional OP (i.e., an OP that does not
change in time). Our results suggest that the distributions were
very similar compared to using two OPs (SI Figure 4).
Circular Potential. In the second model system, we tested

the performance of the algorithm in which there is no
important direction of sampling at any given time. Thus, we
considered a single circular potential with a single metastable
state. The reason for choosing this model potential is to show

that the REAP algorithm performance is the same as the least-
count adaptive sampling for a system with no preferred
direction of sampling. The dynamics were governed by eq 3
with a single circular metastable state (Figure 4).
We performed three sampling procedures, SL, LC, and

REAP, with the same amount of sampling (details of the
simulations and REAP parameters is provided in Table S1).
The majority of generated points from traditional SL
simulation and least count adaptive sampling were mostly
confined to the stable basin (Figure 4a,b), while the REAP
algorithm explored more regions of the landscape (Figure 4c).
The trajectories using REAP demonstrated some directionality,
attempting to sample one direction at a time. The importance
of each coordinate as a function of round number is illustrated
in Figure 4d. We again found that REAP outperforms both LC
and SL for this landscape. This is evident from the distribution
plots for portion of landscape discovered in Figure 4e. Three
distinct distributions arise from this landscape, with REAP’s
distribution shifted toward higher values than LC and SL.
REAP again demonstrates better performance relative to the
other sampling methods. Since model potentials are only
insofar useful for conceptual demonstrations, we will further
consider two molecular systems such as alanine dipeptide, a
ubiquitous benchmark in the enhanced sampling literature, and
Src kinase.

Alanine Dipeptide. To illustrate that our algorithm
remains effective when using MD to sample, we applied the
REAP algorithm to alanine dipeptide. We performed a total of
2 ns simulations to sample the dihedral angle landscape using
SL trajectories, LC, and REAP (Figure 5, details of the
simulations and REAP parameters are provided in Table S1).

Figure 5. Alanine dipeptide landscapes were generated using three simulation methods: (a) single long trajectory simulation, (b) least counts
adaptive, and (C) the REAP algorithm. Representative molecular structures are shown on top of the landscape to illustrate the new regions sampled
using REAP within the same simulation time.

Figure 6. (a) The weights corresponding to alanine dipeptide OPs (ϕ and ψ) change over each simulation round. As a result, these change in
weights demonstrate how the algorithm identifies important direction of sampling as it explores the landscape (b) A plot showing the distribution
of portion of landscape discovered over 10 repeated simulation trials. Dashed lines indicate the expected value for each distribution.
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With regard to simulation details, the starting structure of
alanine dipeptide was obtained from the Python package
MSMBuilder 3.8.47 The simulation was carried out using
OpenMM.48 The AMBER99SB force field49 was used along
with the TIP3P50 water model. A cubic box with periodic
boundaries was employed to model bulk solvent. The final
system consisted of 1831 atoms and simulated at temperature
of 300 K while using a Langevin integrator to propagate
particle motion and regulate temperature. A friction coefficient
of 1.0/ps. A Monte Carlo barostat51 was used to maintain a
pressure of 1 bar. To deal with long-range interactions, a
nonbonded cutoff of 10 Å was used with the Particle Mesh
Ewald (PME)52 method to calculate long distance interactions.
The system was initially minimized for 1 ps (500 steps) then
equilibrated for 200 ps. A total of 2 ns was generated from
production MD runs. Trajectories were saved every 0.1 ps. A
time step of 2 fs and hydrogen bonds were constrained for the
entire simulation.
Simulations started from the most stable state of the peptide

at (−π/2, π) (Figure 5). After 2 ns, SL of alanine dipeptide
captured two metastable state in the landscape but failed to
sample new metastable states at (π/4, −π/2) revealed using
REAP. LC improves on SL, as it is able to better sample the
regions for ψ = π/4 and ψ = −π/2. Additional landscapes are
provided to visualize how the majority of REAP trials explored
more regions (SI Figures 5−7). With regard to directionality,
the algorithm initially starts to ϕ direction, but quickly learns
that the OP that is best to sample along is along the ψ

coordinate (Figure 6a). This change in weights effectively
allowed the discovery of new regions along ψ. At the second
intersection shown in the plot in Figure 6 near round number
800, the least-counts sampling built into REAP (step 5) allows
for sampling of an entirely new region (with ϕ taking a value
near π/4). The distribution in Figure 6b illustrates that the
REAP algorithm can be expected to outperform LC and SL
upon inspecting the resulting expected values. It appears that
two distributions arise from using REAP; one centers around
0.85 and the other around 0.6 near the LC distribution. This
can be interpreted to indicate that it is unlikely that REAP will
ever perform worse than LC. In addition, distributions of the
individual angles, ϕ and ψ, were provided to demonstrate that
REAP samples transitions better (SI Figures 8 and 9).
We considered the performance of REAP using two extra

OPs, θ, and ζ. Much like the results with the L landscape (SI
Figure 4), sampling of four OPs is comparable to that with two
OPs (SI Figure 10). Moreover, distributions with respect to ϕ
and ψ remained alike (SI Figures 11 and 12). These data
indicate that REAP’s performance does not diminish as extra
OPs are added.

Src Kinase. We furthermore demonstrated that the REAP
algorithm’s effectiveness in a protein system that has
implications in cancer drug discovery. To provide some
background, protein kinases are a family of enzymes that
catalyze the transfer of phosphate group to serine, threonine,
or tyrosine residues.29,53,54 When the activity of this kinase
becomes deregulated (perhaps due to a genetic mutation), it

Figure 7. (a) Simulation data of Src kinase using a single trajectory approach is plotted using two OPs: K−E distances and RMSD of the A loop.
Simulations started in the inactive conformation and ran for a total time of 15 μs. (b) Simulations data using least counts adaptive sampling.
Sampling improves on (a),but fails to reach the active state (c) This plot shows how the REAP sampling algorithm outperforms that of the single
trajectory approach in (a). The algorithm was able to facilitate sampling of the active kinase conformation.

Figure 8. (a) Weights for each OP signify the importance of each OP depending on the round number (or iteration of the algorithm). (b) A plot
showing the frequency of portion of landscape discovered for REAP, LC, and SL simulations for 100 trials. Dashed lines represent the expected
value of each distribution.
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can cause uncontrolled cell proliferation leading to tumor
development. Extensive analysis has been done previously
using markov state models (MSMs)3,31,55 to characterize the
kinase dynamics.29 Furthermore, it has been shown that the
conformational dynamics can be projected onto two OPs,
forming an L-shaped landscape.29 This system is therefore
appropriate to apply REAP, as it is a natural extension of the
aforementioned L model potential. Using the same MSM from
this work,29 we generated trajectories using kinetic Monte
Carlo (KMC) sampling. This sampling scheme uses the
kinetics derived from the MSM to stochastically propagate the
dynamics over time as opposed to integrating Newton’s laws of
motion.
We used the python package MSMBuilder version 3.647 to

carry out our stochastic simulations. Using KMC, we generated
15 μs of long continuous simulations and compared that to
using the REAP algorithm. All of the simulations started from
the same MSM state (the inactive kinase conformation), and
we showed that the long simulation approach could not sample
the active state within the given amount of time (see Figure 7a
and SI Figure 13 for additional plots; details of the simulations
and REAP parameters is provided in Table S1). The LC
strategy (Figure 7b and SI Figure 14) demonstrated improved
sampling for the intermediate state and the region between the
active and intermediate. REAP, on the other hand, was able to
discover an entire new area of the landscape corresponding to
the active kinase conformation (Figure 7c and SI Figure 15), a
region that the other two methods failed to sample.
A plot of the weight fluctuations is shown in Figure 8a. It

shows how the algorithm initially finds sampling along the A-
loop RMSD more important than the K−E distance (round
20−60). Afterward, the weights fluctuate about 0.5 until the
K−E distance then becomes relevant for sampling from 90 and
onward to reach the active conformation. The efficacy of the
REAP algorithm is demonstrated in Figure 8b, which shows a
distribution of portion of landscape discovered for 100
repeated trials. The expected values are nearly equally spaced,
with REAP’s distribution aggregating around 0.9. The
distribution for LC is split, centering at 0.6 and 0.8. On the
other hand, SL is shifted to the left, concentrated at 0.5. Given
this data, REAP can be expected to explore the landscape faster
than SL and LC. Not only is REAP efficient at landscape
exploration, but it also reaches the active state of Src kinase in
less time (SI Figure 16, 17, and 18). REAP and LC both
perform better than SL, with about half the median value for
the time to reach active. REAP is further shifted toward shorter
times to reach the active state compared to LC, accompanied
by a difference of about 5 μs (SI Figure 19). Furthermore,
REAP samples the active state and transition better than LC
and SL. This is evident from the distribution of K−E distances
shown in SI Figure 20.
We were further interested in determining the efficiency of

our algorithm when extra nonfunctional order parameters (i.e.,
distances that do not change significantly over time) are
considered. This was achieved by first providing one
insignificant distance on the αE helix (three OPs total, SI
Figure 21) then, in a separate case, 10 additional distances
situated on the αE and αF helix56 (12 OPs total, SI Figure 22).
The time to reach active using three and 12 OPs are
comparable with using only two OPs by a median difference of
2 and 3 μs, respectively (SI Figure 23). Despite this difference,
three and 12 OPs still maintain a faster median time than LC.
We moreover plotted the time series of the average smallest

K−E distance for each instance, illustrating that introducing
these nonproductive OPs will still perform better than LC over
time (compare SI Figures 17 and 26). Similarly, distributions
of the K−E distance for cases with multiple OPs still sample
active state better than LC (compare SI Figures 18 and 27).
When contrasting the distribution for the portion of

landscape discovered using three and 12 OPs (SI Figure 24),
we found that the expectation values are still greater than that
of the LC sampling with two OPs. Further, the distributions
contain overlapping regions, with an expectation value
difference of only ∼0.1. These results, as well as the ones of
alanine dipeptide and L-shaped landscape (SI Figures 10 and
4, respectively), suggest that the introduction of additional
OPs will not dramatically decrease the performance of the
algorithm and can still be expected to perform better than LC.
With regard to how active state sampling is affected when
introducing multiple OPs, our results indicate that these
superfluous distances bear no affect (compare SI Figure 20c
and SI Figure 25). REAP successfully attributes low weights to
these additional/irrelevtant distances as their values remain
low throughout the simulations (SI Figures 28 and 29).

■ CONCLUSION
The proposed algorithm, REAP, has been shown to efficiently
sample landscapes in the case of model potentials (L-shaped,
circular), alanine dipeptide, and Src kinase. It achieves this
efficiency by identifying which OPs maximizes a reward
function that encourages exploratory behavior. This is
mathematically represented as weights, and we have demon-
strated that the algorithm is able to determine which OPs are
preferable while exploring the conformational landscape. In all
systems that were studied, REAP consistently outperformed
the traditional simulation approach and LC sampling when
examining the distribution landscape discovered for the same
simulation time. A rule of thumb that the slowest dynamic
process captured by an MSM based adaptive sampling is
comparable by the order of magnitude to the aggregate
duration of all MD trajectories used to build the MSM is
employed to describe ability of adaptive sampling to explore
conformational landscapes.57 In this study, we show that REAP
enhances efficiency of adaptive sampling by an order of
magnitude. Therefore, we expect processes that are an order of
magnitude slower than the aggregate simulation time could be
explored using REAP.
Regarding algorithm improvement, it is possible to introduce

multiple structures at different positions along the landscape,
essentially allowing the simulations to be explored from
different starting points. This idea is motivated from the
concept of “multi-agent reinforcement learning”58−60 by which
agents can either interact in a cooperative or competitive
fashion. One drawback of REAP is that the selection of initial
OPs will most likely depend on structural or biophysical data.
However, the algorithm allows for a use of a large number of
OPs and the algorithm reduces the weight associated with the
fast directions to zero within a few rounds of sampling.
Another possible way of choosing OPs is using the approach
outlined by Tajkhorshid and co-workers that involves
estimating the work done by performing short pulling
simulations along the OP directions associated with the
conformational change process.6,61 If none are available, then
one possibility is to use evolutionary coupling (EC) pairs62 as
OPs (distance between residues that evolve together over
time) for the given sampling policy.
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In our recent work,22,63 we have shown that using
evolutionary coupling distances as a criteria for least-counts
adaptive sampling can enhance the exploration of the
landscape. Given that the REAP algorithm uses this count
based sampling strategy, we expect that using ECs as OPs for
REAP will not only sample the landscape faster, but also
differentiate between ECs that are actually relevant for
conformational dynamics from those that are only important
for protein folding. The separation between these two types of
EC is still an open scientific question to the community.
We believe this algorithm will be particularly beneficial for

those interested in building MSMs. This is because it uses the
swarm of simulation approach, which runs many small
trajectories in parallel. MSMs are the preferred theoretical
framework at the moment to merge these discontinuous
simulations and accurately reproduce the same observables as
traditional MD. Additionally, REAP has advantages other than
building MSMs. The principle challenge with most biased MD
methods is that the original Hamiltonian is altered to
preferentially sample some subset of the high dimensional
space of proteins. The result of this alteration will then modify
the probability distributions of protein configurations, with the
possibility of favoring states that are less likely in actual
biological systems. Therefore, observations on the dynamics of
these biased simulations may not be useful for predicting the
detailed kinetic or thermodynamic mechanism of conforma-
tional change in proteins.
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