
DeepStore: In-Storage Acceleration for IntelligentQueries

Vikram Sharma Mailthody∗

UIUC
Zaid Qureshi∗

UIUC
Weixin Liang2

Stanford University

Ziyan Feng
UIUC

Simon Garcia de Gonzalo
UIUC

Youjie Li
UIUC

Hubertus Franke
IBM Research

Jinjun Xiong
IBM Research

Jian Huang
UIUC

Wen-mei Hwu
UIUC

ABSTRACT

Recent advancements in deep learning techniques facilitate intelligent-
query support in diverse applications, such as content-based im-
age retrieval and audio texturing. Unlike conventional key-based
queries, these intelligent queries lack efficient indexing and require
complex compute operations for feature matching. To achieve high-
performance intelligent querying against massive datasets, modern
computing systems employ GPUs in-conjunction with solid-state
drives (SSDs) for fast data access and parallel data processing. How-
ever, our characterization with various intelligent-query workloads
developed with deep neural networks (DNNs), shows that the stor-
age I/O bandwidth is still the major bottleneck that contributes
56%ś90% of the query execution time.

To this end, we present DeepStore, an in-storage accelerator
architecture for intelligent queries. It consists of (1) energy-efficient
in-storage accelerators designed specifically for supporting DNN-
based intelligent queries, under the resource constraints in mod-
ern SSD controllers; (2) a similarity-based in-storage query cache
to exploit the temporal locality of user queries for further per-
formance improvement; and (3) a lightweight in-storage runtime
system working as the query engine, which provides a simple soft-
ware abstraction to support different types of intelligent queries.
DeepStore exploits SSD parallelisms with design space exploration
for achieving the maximal energy efficiency for in-storage accel-
erators. We validate DeepStore design with an SSD simulator, and
evaluate it with a variety of vision, text, and audio based intelligent
queries. Compared with the state-of-the-art GPU+SSD approach,
DeepStore improves the query performance by up to 17.7×, and
energy-efficiency by up to 78.6×.

∗Co-primary authors.
2Work done while visiting the Systems and Platform Research Group at UIUC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-52, October 12ś16, 2019, Columbus, OH, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358320

CCS CONCEPTS

· Computer systems organization → Special purpose systems;
Secondary storage organization; · Information systems → Infor-

mation retrieval.

KEYWORDS

Intelligent Query, In-Storage Computing, Solid-State Drive, Hard-
ware Accelerators, Information Retrieval

ACM Reference Format:

Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon
Garcia de Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang,
and Wen-mei Hwu. 2019. DeepStore: In-Storage Acceleration for Intelligent
Queries. In The 52nd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO-52), October 12ś16, 2019, Columbus, OH, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3352460.3358320

1 INTRODUCTION

Thanks to recent advancements in deep neural networks (DNNs)
and the explosive increase and ubiquitous accessibility of data,
deep learning has been enabling intelligent queries in versatile data
retrieval applications to improve the quality of data services [20, 58,
59, 85]. Typical examples include identifying the same person in an
image database [16], retrieving music with the input of music styles
and instrumentations [72], and online shopping using a picture of
garment item [48]. With the increasing accuracy and performance
of deep learning techniques, we envision such types of intelligent
queries will dominate the emerging data services.

Unlike conventional key-based queries in transactional databases
and key-value stores that organize data in structured manner, intel-
ligent queries leverage feature vectors extracted from unstructured
data to facilitate similarity comparison with deep learning tech-
niques. The intelligent queries can be images, texts, or others de-
scribing the user intention of data to be retrieved [48, 93]. Given an
intelligent query, the query engine first extracts the query feature
vector, and then executes similarity comparison with the feature
vectors of the source data. After that, the query engine sorts the
results based on a similarity score to send top-K results to the user.

As the core component of intelligent queries, the similarity com-
parison often uses neural networks to improve the comparison
accuracy. However, the neural networks have to be trained and
they are highly non-linear, which cannot preserve the geometric

224

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

properties (e.g., triangle inequality) between feature vectors. There-
fore, it is hard to build an efficient index for feature vectors [22].
Thus, we have to scan the entire database to fulfill the queries
with high accuracy. Furthermore, as the feature size of each source-
data item (e.g., an image) is relatively large (i.e., 0.8 - 44KB, see
Table 1), it is hard to place all the extracted features in main mem-
ory to serve queries on large-scale datasets like that of Facebook’s
photo/video services [55, 56]. As different applications may have
different types of intelligent queries, this problem is exacerbated.
Therefore, to achieve high-performance intelligent queries against
massive datasets, a common approach is to use GPUs in-conjunction
with SSDs for fast data retrieval and parallel similarity comparison.

In this paper, we conduct the first characterization study of
typical intelligent query workloads. We use two recent generations
of high-end NVIDIA GPUs to run the query and a high-end NVMe
SSD for data storage (see § 3). We evaluate and profile five different
types of intelligent query workloads that include visual, audio,
and text search (see Table 1). We observe that (1) these intelligent
queries are still bottlenecked by the storage I/O. As we increase the
computational resource, the I/O bottleneck becomes more severe.
(2) The core function (similarity comparison) of intelligent queries
mainly involve convolutional and fully-connected neural network
layers, making it an ideal candidate for hardware acceleration.

To overcome the aforementioned bottlenecks, we present Deep-
Store, an in-storage acceleration system for intelligent queries. Un-
like the existing in-storage computing solutions [12, 38, 63, 64, 81,
94] that rely on the embedded multi-core CPUs in the SSD con-
troller to perform simple computations, DeepStore employs neural-
network accelerators to compute similarity comparison operations.

However, developing accelerators for intelligent queries in SSD
controllers is not easy. First, due to the limited resources in SSDs,
we have to resize the in-storage accelerator with the design space
exploration methodology to meet the power, memory bandwidth,
and area budgets. We abstract the common neural network op-
erations for similarity comparison, and customize the in-storage
accelerators to maximize the resource efficiency for SSD controllers.

Second, to achieve maximum energy efficiency for DeepStore, we
explore different SSD parallelisms that include SSD-level, channel-
level, and chip-level design space. We find that mapping in-storage
accelerators to channel-level parallelisms provides the most energy-
efficient result, as it achieves the best trade-off between perfor-
mance and resource constraints for accelerators. This provides the
guideline for real-world system design for in-storage accelerators.

Third, to further improve the performance for intelligent queries,
we develop an in-storage query cache that leverages the similarity-
comparison techniques to conduct query lookups. Such a cache is
designed with the insight that DNN-based queries have already
tolerated a certain level of errors. Therefore, given a query which
is similar to a cached query in the cache, DeepStore can directly
return the cached query result without conducting the similarity
comparison against the entire feature database. This is especially
useful for intelligent queries that cannot be indexed by simple keys
or hash values for exact matching.

Finally, to enable the applicability and flexibility for different
types of intelligent queries, DeepStore provides a software abstrac-
tion with a set of programming APIs to enable developers to deploy
their models for similarity comparison. DeepStore also develops a

runtime system for in-storage accelerators, which is responsible
for dispatching intelligent queries and collecting results.

To the best of our knowledge, DeepStore is the first in-storage
acceleration system for intelligent queries. Overall, we make the
following contributions in this paper.

• We conduct a characterization study on the typical deep-learning
based intelligent queries, quantify the performance bottlenecks,
and find that storage I/O bandwidth is the major bottleneck for
intelligent queries.

• We develop energy-efficient in-storage accelerators for similarity
comparison of feature vectors, which facilitates the offloading of
intelligent queries to SSDs.

• We exploit SSD parallelisms for in-storage accelerators, conduct a
thorough design space exploration at the SSD-level, channel-level,
and chip-level parallelism, and find that channel-level provides
the best energy-efficiency.

• We design a similarity-based query cache for intelligent queries
that inherently tolerate a certain level of accuracy loss. Such a
cache design would also benefit other types of queries that do
not require exact matching.

We implement DeepStore using an SSD simulator constructed
with SSD-Sim[15] and SCALE-Sim[80]. We evaluate DeepStore
with a variety of visual, audio, and text-based applications support-
ing intelligent queries, and collect query traces from real-world
application workloads. Experimental results show that DeepStore
improves query performance by up to 17.7×, and energy efficiency
by up to 78.6×, compared to the state-of-the-art GPU + SSD system.

The rest of this paper is organized as follows: § 2 provides an
introduction to intelligent queries and SSD architecture. We present
the characterization study of typical intelligent query workloads in
§ 3. § 4 discusses the DeepStore design, followed by implementation
details in § 5. We evaluate DeepStore in § 6 and discuss its related
work in § 7. We summarize the paper in § 8.

2 BACKGROUND

In this section, we provide a brief overview of intelligent query
systems and the internal architecture of SSDs.

2.1 Intelligent Query Systems

Recent advancement in deep neural networks (DNNs) and the ex-
plosive increase and ubiquitous accessibility of data has enabled
intelligent queries in multiple applications [16, 20, 25, 30, 48, 51,
58, 59, 67, 85, 93, 95, 100, 106]. The recent popular applications in-
clude person re-identification [16], style-based music retrieval [72],
and question and answering systems [82]. For these applications,
they require high accuracy and thus DNNs are commonly used for
similarity comparison in the queries [16, 22, 90, 106]. Furthermore,
since the user input of queries are no longer restricted to text (e.g.,
the keys in transactional database and key-value store), and can
comprise of images/image-patches [92, 96, 106], sketch [70], color
map [91], context map [98, 99], music [72, 97], and many more, in-
telligent query systems also leverage DNNs to automatically extract
the features from query input to bridge the semantic gap between
queries and source data [16, 22, 90, 106].

225

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Table 1: Intelligent query applications and their characteristics

Application Type Description
Feature
Size (KB)

#CONV
layers

#FC
layers

#Element
wise layers

Total
FLOPs

Total Weight
Size

Dataset

Person Re- Identifica-
tion (ReId) [16]

Visual
Identify the same person across database of
stored images

44 2 2 1 9.8M 10.7MB CUHK03 [67]

Music Information Re-
trieval (MIR) [72]

Audio
Retrieve music based on styles and instru-
mentations

2 0 3 0 1.05M 2MB MagnaTagTune [72]

Exact Street to Shop
(ESTP) [48]

Visual
Online shopping of garment item using a
real-world garment item

16 0 3 0 4.72M 9MB Street2Shop [48]

Text-based image Re-
trieval (TIR) [93]

Text/
Image

Retrieve images based on the description
provided over a sentence query

2 0 3 1 0.79M 1.5MB
MSCOCO [27],
Flickr30K [77]

Question and Answer
(TextQA) [82]

Text
Rerank short text pairs that are closely re-
lated to given query

0.8 0 1 1 0.08M 0.16MB TREC QA [82]

aa

cc

Feature
vector DB
Feature

vector DB

bb
Bag with owlBag with owl

b
Bag with owl

Offline PPhhaasese

Online PPhhaasese

Similairty y
Score

Similarity y
Comparison

Network

a

c

Feature
vector DB

b
Bag with owl

Figure 1: Workflow of DNN-based intelligent query system. In the

(a) offline phase, a DNN model extracts and stores the feature vec-

tors in storage devices such as SSDs. During the online phase, (b)

the feature vector extracted from a given query, is compared against

feature vectors in the stored database using (c) a similarity compari-

son network and a score is obtained. Finally, dataset images are then

sorted based on their given score to get top-K responses (not shown).

A typical intelligent query system uses a two-branch neural
network model architecture [24]. We demonstrate an example in
Figure 1. During training, the network learns to score similarity
by being fed with positive or negative pairs of queries and feature
vectors of the source dataset. The trained network is then deployed
to perform intelligent query execution in two phases, the first of
which is offline and the second online. In the offline phase, for
each image in the dataset, a feature vector is extracted from the
intermediate layer of the dataset representation network model and
stored in a feature database, as shown in Figure 1a.

In the online phase, a query feature representation network
model (Figure 1b) extracts feature vectors from a given intelligent
query [48, 93]. The query feature vector is then fed to similarity
comparison network (SCN) model (Figure 1c). The SCN model
computes the similarity between the query and the dataset feature
vectors, and generate a similarity score. The similarity scores are
sorted to find the top-K items that match the given query (where K
is the number of data items to be retrieved). The application then
fetches the corresponding matched contents from the database
using the top-K results.

Compared with the traditional key-based query systems that
rely on structured data, intelligent query systems extract feature
vectors from unstructured data using deep learning techniques [17,
24, 66]. Since DNNmodels are highly non-linear and do not preserve
geometric properties, such as triangle inequality, between input
and feature vectors, it is hard to build an effective index over the
dataset using traditional fixed metrics like Euclidean or cosine

distances [16, 22, 90, 106]. Thus, we have to scan the entire database
of feature vectors using the SCN to find similar results.

As the SCN execution involves compute-intensive DNN opera-
tions, intelligent query systems typically employ GPUs, which are
efficient for such operations [3, 5, 31], to accelerate the SCN com-
putation. To get the optimal GPU resource utilization, a batch of
database feature vectors are compared against an intelligent query
on a GPU at the same time. As feature databases are usually large
since they store billions of feature vectors [40, 59] and each vector
can be upto a few kilobytes in size [16], SSDs are used to store
feature vector databases [59], as they provide terabytes of capacity
with access latencies in the order of tens of microseconds [8]. In this
paper, we focus on the in-storage acceleration design for intelligent
queries with SSDs.

2.2 Modern SSD Architecture

The internal architecture and organization of an SSD are shown
in Figure 3 (in gray and blue). The SSD controller contains 2-4 em-
bedded CPU cores that execute the SSD management with Flash
Translation Layer (FTL), whose functionalities include parsing block
I/O commands, garbage collection, and wear-leveling [47]. To pro-
vide terabytes of capacity [54, 73], SSDs have a large number of
dense NAND flash memory elements organized into multiple levels
of hierarchy such as channels, chips, and planes. An SSD can have
about 16-32 channels [53, 64]. Each channel consists of 4-8 flash
chips that are controlled by the same flash controller and accessed
via the shared channel. Each flash chip consists of 2-4 planes. Each
plane has a group of blocks and each block has multiple pages.

The flash is accessed at page granularity. A page buffer is present
in each plane to cache accessed flash page. During a read operation,
the required page is read from a block and stored in the page buffer
of the associated plane. SSDs have massive internal bandwidth [53,
64]. However, the external bandwidth of modern SSDs is limited by
flash channel arbitration [79, 86], the weak processor cores in the
SSD controller [81], and the bandwidth of the PCIe interface [2, 14].

3 INTELLIGENT QUERY STUDY

As intelligent queries cater to a diverse set of applications, we envi-
sion they will dominate emerging data services. However, no prior
work has systematically studied these intelligent query workloads.
In this section, we provide an in-depth study of a variety of intel-
ligent query workloads and identify the performance bottlenecks
and opportunities for system-level optimizations.

Experimental setup.We study five different types of intelligent
query workloads that span across visual, audio, and text search,
as shown in Table 1. They include (1) Person Re-identification

226

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

(ReId [16]) that searches for the same person in the image dataset;
(2) Exact Street to Shop (ESTP [48]) that searches for the queried
product across the produce dataset; (3) Text-based image retrieval
(TIR [93]) that takes a textual query to retrieve the matched im-
ages based on the understanding of the user description. (4) Music
information retrieval (MIR [72]) that searches for music samples
matching a given audio clip; (5) Text-based Question and Answer
(TextQA [82]) that takes a question as a query to find relevant
answers from a large corpus of documents. We believe these identi-
fied intelligent query applications show the generality of emerging
intelligent query systems [23, 30, 43, 46, 51, 57, 69, 83, 84, 102].

We re-implement these intelligent queries using the Tensorflow
framework [13] (see details in §6). Initially, we train the models
for the applications until the model accuracy is within 5% of the
advertised accuracy. We extract and store the feature vectors for
each application in the SSD. We use two recent generations of high-
end NVIDIA GPUs: Titan Xp (Pascal) and Titan V (Volta) [3, 5]. We
implement the online phase by extracting the feature vector of the
query using the query feature representation network model. The
stored feature database is loaded in multiple batches to perform
the similarity comparison on the GPU. The GPU+SSD system is
optimized such that batches of features are prefetched to host mem-
ory while the GPU computes the SCN for the previous batch. The
batch sizes are taken such that the GPU utilization is nearly at 100%
during the similarity comparison operation.

Study results.We breakdown the query latency into three com-
ponents: GPU compute time (Compute Time), CPU to GPU data
transfer time (CudaMemcpy Time), and SSD to CPU data transfer
time (SSD Read Time). The profiling results are shown in Figure 2.
As we can see, the storage I/O constitutes 56-90% of total query
execution time. Although feature dataset is prefetched from the
SSD while the computation executes on the GPU, the I/O time is so
significant that prefetching barely improves the performance of the
system. Furthermore, as we move to the newer generation of GPUs
(from NVIDIA Pascal to Volta), the compute-intensive layers of the
SCN perform faster by 33%. However, the overall performance of
these intelligent-query workloads is not improved, since they are
limited by the storage I/O bandwidth.

Observation 1: New and emerging intelligent query applica-
tions are primarily bottlenecked by the storage I/O bandwidth.
With the emergence of faster GPUs [5, 31] and DNN accelera-
tors [7, 29, 60], we expect that the performance gap between the
compute and storage I/O will continue to widen.

To further understand the intelligent-query workload, we also
characterize the computational patterns in the SCN and summarize
the quantified results in Table 1. We observe that SCNs mainly
comprise of convolutional, fully connected, and element-wise layers.
Take the text-based image retrieval TIR for example, it consists of
a vector dot product and three fully connected layers with sizes of
512 × 512, 512 × 256, 256 × 2.

Observation 2: New and emerging intelligent-query workloads
involve complex operations such as convolutional and fully con-
nected layers. Wimpy processors are not sufficient to perform
the computation of similarity comparison networks, as it would
add significant overhead to query latencies.

To address the challenge in the Observation 1, a natural solu-
tion is to move the computation closer to the data inside the storage.
However, the wimpy processors in the SSD controller are not per-
formant in executing the SCN operations. Therefore, to address the
challenge in the Observation 2, we propose to develop in-storage
accelerators to perform the SCN computation in SSDs.

4 DEEPSTORE DESIGN

According to our study of intelligent-query workloads, we show
that the storage I/O is the major bottleneck, and the similarity
comparison is critical to the intelligent queries. Our observations
motivate us to pursue an in-storage acceleration system for DNN-
based intelligent queries. However, developing accelerators in the
resource-constrained SSD is non-trivial.

4.1 Design Goals and Principles

The goal of DeepStore is to achieve high performance for intelli-
gent queries against massive dataset while providing the maximal
energy-efficiency under the resource constraints in SSD controllers.
In our design, we will follow the following specific principles.

• First, as the SSD controllers have limited power budget, memory
capacity, and area sizes, we have to explore the design space to
achieve the maximal resource efficiency for in-storage accelera-
tors in DeepStore.

• Second, in-storage accelerators need to be scalable to exploit the
internal parallelisms of SSDs. As the storage capacity could be
increased by packing more flash chips, DeepStore should scale
as well to achieve the maximal energy-efficiency.

• Third, like conventional database systems, DeepStore should also
provide an efficient query cache to exploit the locality of user
queries for better performance.

• Fourth, DeepStore should support diverse intelligent-query ap-
plications, which enables programmers to manipulate feature
databases, specify neural network models, and execute queries
with simple interface.

4.2 System Overview

We show the DeepStore architecture in Figure 3. DeepStore exploits
the internal parallelism of the SSD and places the accelerator at
three levels: the SSD-level, channel-level and chip-level as shown
by (❶), (❷) and (❸) in Figure 3, respectively. DeepStore executes a
lightweight query engine that parses incoming queries, manages the
Query Cache (QC), and uses themap-reduce [36] computationmodel
to execute the qurey across the accelerators inside the storage. It
maps the SCN computational model to the accelerators and collects
the results from each accelerator to generate the query response.

For a given query, its feature vector is extracted by the host and
sent to DeepStore. The engine parses the query specific information
and checks if a similar query exists in the Query Cache. The compar-
ison between the new query and each cached queries is done with
a Query Comparison Network (QCN) that executes on the channel-
level accelerators. If there is a hit, the engine schedules the SCN on
the cached entries, reports top-K results, and updates the QC. If it is
a miss, the query engine loads the model weights to the SSD DRAM.

227

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA
0.5 1.0 1.5 2.0

Batch Size (x1000)
0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0

200

400

600

To
ta

l T
im

e(
m

s)

Compute Time(Pascal)
Compute Time(Volta)

CudaMemcpy Time(Pascal)
CudaMemcpy Time(Volta)

SSD Read Time(Pascal)
SSD Read Time(Volta)

Total Time(Pascal)
Total Time(Volta)

0.5k 1k 1.5k 2k
Batch Size

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0

100

200

300

400

To
ta

l T
im

e
(m

s)

(a) ReId

5k 10k 20k 50k
Batch Size

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)
0

50

100

150

200

To
ta

l T
im

e
(m

s)

(b) MIR

5k 10k 20k 50k
Batch Size

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0

300

600

900

1200

1500

To
ta

l T
im

e
(m

s)

(c) ESTP

5k 10k 20k 50k
Batch Size

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0

50

100

150

200

To
ta

l T
im

e
(m

s)

(d) TIR

10k 20k 50k 100k
Batch Size

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0

50

100

150

To
ta

l T
im

e
(m

s)

(e) TextQA

Figure 2: Performance breakdown of compute and I/O time for different intelligent query workloads, when running with two different gen-

eration of GPUs: Pascal and Volta. For these applications, 56%ś90% of the execution time is spent on reading the feature dataset from SSD.

SSD controller/firmware

Embedded
cores DRAM

B
lo

c
k
 I

/O
 I

n
te

rf
a

c
e

Flash
controller

Flash
controller

Flash
controller

Flash
controller

Internal bus

Query
interface

DeepStore
SSD Acc

Query
engine Channel

Acc-0

Channel
Acc-1

Channel
Acc-2

Channel
Acc-N

flash flash flash flashflash flash flash flashflash flash flash flash

Channel-0

Flash Flash Flash FlashFlash Flash Flash Flashflash flash flash flash

Channel-0

Flash Flash Flash Flash

flash flash flash flashflash flash flash flashflash flash flash flash

Channel-1

Flash Flash Flash FlashFlash Flash Flash Flashflash flash flash flash

Channel-1

Flash Flash Flash Flash

flash flash flash flashflash flash flash flashflash flash flash flash

Channel-2

Flash Flash Flash FlashFlash Flash Flash Flashflash flash flash flash

Channel-2

Flash Flash Flash Flash

flash flash flash flashflash flash flash flashflash flash flash flash

Channel-N

Flash Flash Flash FlashFlash Flash Flash Flashflash flash flash flash

Channel-N

Flash Flash Flash Flash

Chip level accelerators

❶

❷

❸

Figure 3: DeepStore augments a traditional SSD with a SSD-level

(❶) and channel-level accelerators (❷) interfaced to the NAND flash

controllers, and chip-level accelerators (❸) interfaced to the NAND

flash chips. The SSD’s embedded cores execute the query engine.

It then maps the execution of the SCN to in-storage accelerators.
Individual accelerators execute the computational model in parallel.
Each accelerator then writes its top-K results to the SSD DRAM
where the query engine merges them to generate final top-K results
(i.e., the K matching results with the highest similarity scores). The
query engine inserts the query with its results into the QC. When the
application requests query results, the results are copied to a host
specified memory location using a Direct Memory Access (DMA)
operation. Each result is associated with an ObjectID, physical
address of the feature vector, for reading the respective raw data.

To support different types of queries and neural network models,
a programmer can interact with the DeepStore query engine using
the DeepStore API (see Table 2) to specify the SCN computation
model and query for their application.

4.3 In-Storage Accelerator

Based on our study in §3 of intelligent-query workloads, we clas-
sify the core intelligent-query operations into four types: fully
connected, convolutional, element-wise operations and top-K sort-
ing. An intelligent query accelerator must support these operations
in an efficient manner. We demonstrate its architecture in Figure 4.

DeepStore accelerator consists of three major components: (1) a
systolic array of processing engines (PEs), (2) a scratchpad memory,
and (3) a controller. We use rectangular systolic array based spatial
architecture, as it enables efficient mapping of fully connected and
convolutional layers. We modify the regular systolic array archi-
tecture to support element-wise operations such as dot-product,
subtraction, and addition, which are required for intelligent queries.

QFV
PE1,NPE1,1

DFV

PEM,NPE1,M

QFVIN

Systolic
Array

QFV

Weights

Outputs

Scratchpad

Controller &&
top-K Sorter

Weights

Inputs

EW
InputsMM

EW
Inputs11

PE1,NPE1,1

DFV

PEM,NPE1,M

QFVIN

FLASH__DDFFVVININ

WeightsININ

Result

QFV : : Query Feature Vector
DFV : : Dataset Feature Vector
EW :: Element--wise

Figure 4: In-storage accelerator design of DeepStore.

This is enabled by adding an input line for each row in the first col-
umn of the systolic array. Over a simple systolic array, this speeds
up the throughput of element-wise operations by the number of
rows in the systolic array.

The scratchpad memory, implemented in SRAM, is used to buffer
the query feature vector (QFV), database feature vector (DFV), SCN
model weights, intermediate results, and final outputs. The scratch-
pad memory is highly banked to support the multiple parallel re-
quests raised by the systolic array. The systolic array and scratchpad
memory are controlled by the controller’s finite state machine.

The controller is responsible for loading the model weights from
the SSD DRAM location provided by the query engine. Given a
QFV, the controller prefetches the DFVs from the flash chips and
then schedules the SCN computation. To support top-K sorting,
the controller is equipped with a priority queue that keeps the
temporary top-K results during intelligent query execution. The
priority queue is implemented with the help of a sorted tag array
and mapping table. The mapping table is indexed with a tag and
each entry consists of an accuracy value and feature ID. When the
systolic array computes a similarity score, the controller does a
binary search on the tag array, comparing the new accuracy with
those in the mapping table. When the position of the new entry
is identified, all entries in the tag array with a lower priority are
shifted down by one, the last element is dropped and its tag is given
to the new entry. The mapping table is then appropriately updated.

4.4 Interaction with Flash Memory

The DeepStore accelerator reads database feature vectors from
flash memory and compares them with the query feature vector
as shown in Figure 5. The accelerator’s controller is responsible
for programming the flash controller to move data from the flash
chips to accelerator scratchpad. It does this by generating flash page

228

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

Flash Plane

Flash Plane

Flash Plane

Flash Plane
Accelerator
Scratchpad

Accelerator
Controller

FLASH_DFV
Queue

CTRL

ADDR
Page Buffer

DFV

❶

❷

❸ ❹
Chip

NAND Flash
Controller

Figure 5: DeepStore accelerator interaction with the flash memory.

DeepStore employs a queue to isolate prefetching data feature vec-

tor from the flash chips while performing the SCN computation.

addresses for the pages of a feature vector from the address range
provided by the query engine ❶. The flash controller issues a read
request to the flash chips. The pages are read from the planes in the
flash chip to their associated page buffer ❷. Afterward, the flash
controller moves the pages from the page buffers to the FLASH_DFV
queue❸. When the accelerator has completed the computationwith
all the features in its scratchpad, the accelerator controller consumes
the pages for the next set of features from the FLASH_DFV queue ❹.
The addition of the FLASH_DFV queue isolates the computation in
the accelerator and the data loading from flash chip. This enables
feature vectors to be prefetched while the accelerator computes on
a different set of features.

To perform computation, the accelerator needs to know where
to read the dataset feature vectors (DFV) from. To exploit the inter-
nal parallelisms of SSDs, DeepStore stripes the feature database
of each application across channels and chips. Each of the feature
vectors is page aligned. DeepStore employs a regular block-level
FTL, and uses the FTL to get a starting physical address for the
database. DeepStore stores this physical address along with the
metadata to specify the db_id, feature-vector size, and the number
of feature-vectors. This metadata is persisted in a reserved flash
block, but will be cached in SSD DRAM for fast look-up for query
execution. During query execution, the query provides the db_id
of the database. The query engine uses the db_id to send the data-
base’s metadata along with the number of channels and chips of
the SSD to the accelerator controller. The accelerator controller
uses this information to compute the offset for the physical address
of each feature vector it needs to fetch, avoiding the FTL address
translation overhead. After that, the controller schedules the SCN
computation to the systolic array. We next describe how DeepStore
exploits the SSD’s internal parallelism to improve performance.

4.5 Exploiting Internal Parallelisms of SSDs

Mapping the general accelerator design to the different levels of
parallelism inside the SSD requires optimization along two dimen-
sions: power budget and memory bandwidth. Modern SSDs usually
have only a few GBs of DRAM memory that provides 15-26GBps
of memory bandwidth to the SSD controller [14, 64], while each
flash chip can provide up to 1.2GBps of bandwidth[11, 73]. Further-
more, SSDs are constrained by limited power budget (up to 75W)
provided by the PCIe interface [2], of which ~20W is consumed
by the existing SSD hardware during peak operation [8], leaving a
power budget of 55W for DeepStore’s design.

To maximize DeepStore’s energy efficiency, we conduct a design
space exploration for in-storage accelerators at different parallelism

128 256 512 1024 2048 4096 8192 16384 32768
Number of PEs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

Convolution
Fully Connected

Figure 6: Performance of a systolic array accelerator with varying

number of PEs for ‘Convolution’ and ‘Fully Connected’. At each

point, the aspect ratio with the fastest performance is considered.

levels in SSDs. We constrain our exploration with the available
power budget of 55W, DRAM bandwidth of 20GBps, and flash chip
bandwidth of 800MBps. We use the simulation platform described
in §5 and the intelligent query workloads presented in Table 1.

To find the highest performing systolic array configuration, we
vary the number of PEs (up to 32K) and aspect ratio of the systolic
array, under the assumption of having infinite memory bandwidth.
First, we gradually increase the number of PEs considering all
possible aspect ratios. As shown in Figure 6, for the largest FC and
ConvD layers in the studied applications, there is no performance
gain beyond 512 and 1024 PEs, respectively. This is because these
neural network layers require less than 1024 floating-point multiply-
accumulate operations per cycle for a feature vector. After that,
we search for the systolic array aspect ratios that work well for
all studied intelligent query workloads. With the experiments for
Figure 6, we observed that the best performing aspect ratio for the
FC layer is 512 PEs in one row, and for the ConvD layer is 1024 PEs
in one column. Since our applications contain both types of layers,
we use these ratios as the range to bound our design space search.

To further reduce the design space, we now introduce the mem-
ory bandwidth constraints of DRAM and flash, and vary the scratch-
pad sizes of each accelerator. We eliminate all the design choices
that cannot meet the power budget allocated for each accelerator,
which covers the power consumed by the PEs as well as both on-
chip and off-chip memory accesses during SCN computation. We
summarize the results of our design space exploration and decisions
for the accelerator at each parallelism level in SSDs as follows.

SSD-level design: For the SSD-level accelerator, the full power
budget of 55W and full DRAM bandwidth are available. To maxi-
mize the reuse for computing FC layers, we use output stationary
(OS) data flow in the SSD-level accelerator.[29, 49]. The accelera-
tor has access to an 8MB scratchpad to minimize the number of
DRAM transactions. This sized scratchpad avoids unnecessary off-
chip memory accesses while remaining within the allocated power
budget. Increasing the scratchpad size does not obtain further per-
formance improvement, because, for applications like ReId whose
weights are larger than the scratchpad size, fetching weights in
DRAM and computing the SCN with the accelerator can be fully
pipelined. Based on the allocated power budget, the SSD-level ac-
celerator uses a systolic array of 2048 PEs organized in 32 rows and
64 columns (32×64) to maximize the performance of element-wise
operations in DeepStore. We end up with a systolic array with more
columns than rows, because of the studied applications predomi-
nantly consist of FC layers, and the accelerator’s width has a direct
impact on the performance for these layers.

229

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Channel-level design: Assuming the SSD has 32 channels,
each channel-level accelerator has a power budget of 1.71W and has
to share the DRAM memory bandwidth with the 31 other channel-
level accelerators. Since SRAMs are expensive in terms of power,
each channel-level accelerator scratchpad has a small size. Similar
to the SSD-level accelerator, the channel-level accelerator uses OS
data flow. However, OS data flow requires data access with high
memory bandwidth, as the weights and inputs need to be fetched
frequently [29]. To support high bandwidth for accessing inputs
and weights, we create a multi-level scratchpad memory hierar-
chy. The channel-level accelerator uses the SSD-level scratchpad
as second level memory thus minimizing the DRAM traffic and
improving the re-use of weights across multiple channel-level ac-
celerators. The reduction in DRAM accesses results in lower power
requirements. Instead of using the SSD-level accelerator’s configu-
ration, each channel-level accelerator uses a systolic array of 1024
PEs organized in a 16×64 configuration, due to the channel-level
accelerator’s limited power budget. In this case, for applications
with large ConvD and FC layers, such as ReId, the channel-level
accelerator will be limited by the performance of executing SCN
with one input feature vector. For applications with smaller layers,
such as TextQA, the flash channel bandwidth becomes the bottle-
neck, as it can only access one flash channel at 800MBps to fetch
the input feature vectors.

Chip-level design: Assuming the SSD has 32 channels and 4
chips per channel, each chip-level accelerator has a power budget of
0.43W. Similar to the channel-level accelerator, the chip-level accel-
erator has a small scratchpad as adding large scratchpad increases
design and area complexity. Recall that the chip level accelerator ac-
cesses data over the channel bus. The flash interface of these chips
have minimal bandwidth and it runs at a slow frequency [11, 73].
Thus, the chip-level accelerator uses weight stationary (WS) data
flow, maximizing the reuse of the weights and minimizing the
bandwidth requirement across the channel bus. But the chip-level
accelerator cannot be the master of the bus. Thus, the channel-
level accelerator has an additional responsibility of scheduling the
weights in a lockstep manner to perform the execution across all
the chip-level accelerators in its channel. The chip-level accelerator
uses a systolic array of 128 PEs organized in a 4×32 configuration.
Addingmore PEs to the chip-level accelerator would require a larger
on-chip scratchpad memory or higher off-chip memory bandwidth.
However, adding either would increase the power consumption
of the chip-level design. Therefore, the chip-level accelerator in
DeepStore is mainly limited by its computing capability.

Accelerator Placement: DeepStore supports regular read and
write operations for accessing application specific feature vectors.
Since DeepStore accelerators do not perform any write operations
to the flash, the accelerators are placed only in the read path at any
level of the design. To implement this, the read path from the flash
chips are multiplexed between the regular read and accelerator
response. The accelerator path is selected during query operations
and the SSD controller responds to regular read/write operations
with a busy signal. Thus, DeepStore accelerators do not introduce
much overhead to regular storage operations.

QFV TopKFV ObjectID

Query
QCN

&
max_score

SCN
TopK Result
Confidence

=max_score

Query Cache

Query feature
extractor

Query feature
extractor

Threshold

hit

V

Figure 7: Learning based query cache design.Miss in the query cache

results in searching over the dataset.

4.6 Query Cache

We now discuss how we leverage temporal locality and semantic
similarity of queries to further improve the overall performance of
DeepStore.We add a programmable similarity-based software query
cache (QC). It resides in the DRAM of commodity SSD controllers
for fast look-up. Each QC entry is tagged with a query feature vector
(QFV). It has a valid bit (Valid), top-K database feature vectors
(TopKFV), and top-K address location (ObjectID) fields, as shown
in Figure 7. We use the ObjectID to store the physical address of
feature vectors in the SSD.

To exploit temporal locality of queries [35], a well-known solu-
tion is to cache recent queries and their results. For any incoming
query, if it exists in QC, the cached results are returned without
scanning over the dataset. However, such a solution cannot exploit
the semantic similarities that might exist between queries [93], like
in the example described below:

(1) A brown dog is running in the sand

(2) A brown dog plays at the beach

Compared to traditional caches, where the cache is checked for
exact matches, QC can exploit semantic similarity between queries
to boost the performance of intelligent query workloads. QC is de-
signed with the intuition that intelligent queries tolerate certain
level of errors, detecting similarity between the queries with high
confidence can further improve the system performance. A highly
accurate model can guarantee greater confidence in its compari-
son score, thus, avoiding unnecessary misses for similar queries.
Therefore, we propose to determine query similarity using a Query
Comparison Network (QCN) whose structure is similar to the SCN
described in § 2. Although neural network based comparison adds
additional overhead (see §6.5), it is far less than the time required
to scan over the dataset with the SCN.

The QCN compares two queries and returns a similarity score
(qcn_score) that is used along with the QCN’s accuracy (QCN_Acc)
to quantify whether the cached querymeets the required confidence
or not. As shown in Algorithm 1, the query engine compares QFVnew
against each of the cached entries. The query engine offloads the
execution of the QCN to the DeepStore channel-level accelerators for
fast comparison. It generates a score, the product of qcn_score,
and the QCN_Acc. A hit occurs when the query engine finds that a
QFVnew has a match where the complement of the score is within
the specified threshold. The threshold is a hyper-parameter that
depends on the model and can be tuned during deployment. The
query engine selects the entry with the maximum score. When
the complement of the score is beyond the threshold, QFVnew is

230

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

Variables: QC(n), QCN_Acc, Dataset
1: procedure lookup(QFV new, threshold)
2: max_index← 0 ▷ Index of highest scoring hit
3: max_score← 0 ▷ Score of highest scoring hit
4: for i← 1,n do

5: if QC[i].valid then

6: qcn_score← QCN(QFV new, QC[i])
7: score← qcn_score × QCN_Acc
8: if score > max_score then
9: max_index← i
10: max_score← score

11: if max_index , 0 and (1− max_score) ≤ threshold then

12: QC.promote(max_index)
13: return SCN(QFV new, QC[max_index].features)
14: else

15: features← SCN(QFV new, Dataset)
16: QC.insert(QFV new, features)
17: return features

Algorithm 1: Query engine’s algorithm for Query Cache. QCN and

SCN are query and similarity comparison networks, respectively.

compared against the entire dataset using the SCN. In this paper,
we use the product of the QCN’s accuracy and the QCN’s similarity
score to compare against the threshold, we believe other metrics
can also be exploited.

The size of each QC entry depends on the query feature vector,
application being used, and the number of database feature vec-
tors cached. In DeepStore, each query and database feature vectors
ranges from 0.8KB to 44KB, the top-K values are user defined, and
the ObjectID is 8 bytes. Taking ReId, the studied application with
the largest query feature vector, as an example, each query/database
feature vector is 44KB and 10 top-K results for each query, then the
total query cache size is 484KB. The QC is updated using an LRU re-
placement policy. Developers can train their similarity-comparison-
network models for the QueryCache, and define the upper-bound
for the error threshold that can be tolerated in their applications.

4.7 DeepStore Runtime System

In this section, we discuss how DeepStore supports diverse intelli-
gent query applications. We first discuss the query engine and how
it schedules work on the DeepStore accelerators. We then discuss
the programming API the developer uses to manipulate feature
databases and specify SCN models.

4.7.1 Query Engine. Query engine is a software running on the
SSD embedded cores. It is responsible for consuming queries, man-
aging the QC, scheduling work on the DeepStore accelerators, and
aggregating the results. Before an accelerator can start the computa-
tion due to QC miss, the query engine must provide the accelerator
with the physical addresses of the feature database. The query en-
gine caches the metadata of stored databases in the SSD DRAM to
facilitate fast access of the dataset for query execution (see § 4.4).

We use the map-reduce [36] parallel model to schedule SCN
computation in DeepStore accelerators. On a QCmiss, query engine
maps the user specified model to the address space of the accel-
erators. This informs each accelerator the location of the model
in the SSD-DRAM and the computation it needs to perform per
feature vector. Query engine distributes the physical start and end

Table 2: DeepStore API.

API Description

readDB(db_id,

addr, num)
Read num features starting at addr in the database specified by db_id.

writeDB(addr,

num, sz)

Create a new feature vector database and write num features to it,
where each feature is of size sz bytes. The source of the data is read
from a location, specified by addr, in system memory. The newly cre-
ated database’s db_id is returned.

appendDB(db_id,

addr, num)

Appends num features to a feature vector database specified by db_id.
The source of the data is read from a location, specified by addr, in
system memory.

loadModel(cg,

cg_size)

Load the SCN computational model and model weights, specified by
cg, of cg_size bytes to DeepStore. The loaded model’s model_id is
returned.

query(qfv, sz, K,

model_id, db_id,

db_start, db_end,

accel_level)

Submit an query feature vector, specified by qfv, of sz bytes in size.
K specifies how many top-K results to retrieve. The SCN model, speci-
fied by model_id, is used to search over the sub-range of the database,
specified by db_id and db_start and db_end locations.accel_level
specifies which accelerator level to use. The query_id is returned for
retrieving results.

getResults(

query_id, addr,

sz)

Retrieve top-K results, of sz bytes in size, for a query, specified by
query_id, to a location, addr.

setQC(qcn_cg,

qcn_cg_sz, sz,

thr)

Configures the QC with the QCN model specified by qcn_cg and
qcn_cg_sz, feature vector size of sz bytes, and a threshold of thr.

addresses of feature database to the accelerators. The query engine
instructs each accelerator to write its current top-K results to the
SSD-DRAM. Each result contains dataset feature vector, associated
ObjectID, and the similarity score. The query engine merges the
results to generate the final top-K.

4.7.2 Programming API. DeepStore enables programmers to read
and write feature vector databases and use the accelerators by
means of five proposed APIs: readDB, writeDB, loadModel, query,
and getResults, described in Table 2. These APIs internally use
new NVMe commands to interact with the query engine.

An application developer can read and write databases of feature
vectors to DeepStore using the readDB and writeDB, respectively.
After writing a new feature database, DeepStore will generate 32-
byte metadata that includes a db_id (8-byte), starting physical
address of the database (8-byte), size of each feature (8-byte), and
the number of features (8-byte). Amapping table stores the database
metadata along with its db_id. DeepStore guarantees that when
a feature database is written, it is stored in the format discussed
in 4.4. On a read of a feature database, the user will provide the
db_id as well as a range of features to read.

However, it is noted that intelligent queries are generally read-
only workloads, they typically write the database once, and then
query it many times. Upon a database write, typically in the form
of updating the whole database with new feature vectors for each
data item or adding feature vectors for new data items, DeepStore
will handle it in an append fashion with writeDB or appendDB
APIs. DeepStore buffers writes to ensure the alignment criteria are
fulfilled and the metadata for the database is updated accordingly.

The loadModel API transfers the computational graph and the
model weights, specified in the ONNX format [6], and registers it
in the SSD. This enables the DeepStore APIs to be integrated with
any deep learning framework. On successful execution of the API,
it returns a model ID that can be used by the application to target
queries with specific models.

The query API transfers the query feature from the host to the
SSDDRAM.With the queryAPI, application developers provide the
db_id to specify the feature database. Query information such as
model_id, db_start, and db_end is also transferred to the SSD. The

231

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Table 3: DeepStore accelerator configurations. DeepStore exploits

output stationary (OS) dataflow for SSD and channel-level accelera-

tors andweight stationary (WS) dataflow for chip-level accelerators.

Properties SSD-level Channel-level Chip-level

Technology 32nm
Configuration Systolic, OS Systolic, OS Systolic, WS
PEs 32×64 16×64 4×32
Arithmetic Precision 32bit FP
Frequency 800MHz 800MHz 400MHz
Scratchpad Size 8MB (shared) 512KB 512KB

Accelerator Area (mm2) 31.7 7.4 2.5

query engine uses the accel_level value to determine which level
of accelerators to use for the query. On successful transfer of these
values to the SSD, the API returns a query_id. The getResults
API returns the result of a query, specified by the query_id, to a
host memory location given by an API argument. The setQC API
allows users to configure the QC with the QCN, feature vector size,
and threshold for their applications.

5 DEEPSTORE IMPLEMENTATION

We implement DeepStore using a simulator constructed with SSD-
Sim [15] and SCALE-Sim [80]. We modify SCALE-Sim to support
query cache and element wise layers, and add thememory hierarchy
described in § 4. SCALE-Sim is modified to generate the access
patterns for the different levels of the memory hierarchy as well as
the traces for loading dataset feature vectors from flash.

For each feature database, multiple flash pages can be accessed
(it depends on the size of the feature vector) from the flash. We use
the flash access trace generated by the modified SCALE-Sim as the
input to SSD-Sim. We modified SSD-Sim to generate the overall
execution time for a given query batch size and different levels of
accelerators. To support multiple channel and chip-level accelera-
tors, both SCALE-Sim and SSD-Sim are modified to generate and
accept parallel accesses to flash channels and chips.

In our simulator, we implement the query engine that takes a
trace of queries. To keep the simulated system and baseline system
comparable, we collect the query traces from the applications run-
ning on the baseline GPU+SSD system, and pass them as input to
the query engine in our simulator.

The design parameters used in our simulation are shown in
Table 3. We assume the access latency for SSD scratchpad is 4
cycles and for channel/chip level scratchpads is 1 cycle. The design
supports 32-bit floating point units to maintain the same accuracy
as the original application.

6 EVALUATION

Our evaluation shows that: (1) DeepStore improves performance
of intelligent query applications by removing the storage I/O bot-
tleneck and exploiting different levels of parallelism inside an SSD.
(2) It remains performant even when using flash chips with higher
latency. (3) It provides energy efficiency over the state-of-the-art
system for intelligent queries. (4) The Query Cache helps improve
overall performance by exploiting temporal locality and semantic
similarity of intelligent queries.

6.1 Experimental Setup

We compare DeepStore against the state-of-the-art system used for
intelligent query processing consisting of an SSD for storing feature
databases and a GPU for executing similarity comparison [58, 100].
For all systems, it is assumed that the query features have been
extracted in a pre-processing step. We use the five applications
described in § 3 and Table 1. For all evaluations, we use 32-bit
floating point operations.

We compare DeepStore design with the GPU+SSD system using
the latest NVIDIA Titan V (Volta) GPU. We use a server machine
with a 16-core Skylake based Intel CPU running at 3.6GHz with
64GB of DRAM and a 1TB Intel DC P4500 PCIe-based SSD. The
measured external bandwidth of this SSD is up to 3.2GBps. We use
the simulator described in § 5 to evaluate DeepStore. We assume
a flash array access latency of 53µs, 32 channels, 4 flash chips per
channel, 8 planes per chip, 512 blocks per plane, and 128 pages per
block. Each flash page is 16KB in size[4] and each flash channel has
a bandwidth of 800MBps [11]. All DeepStore accelerator designs
are evaluated in a 32nm process with a frequency of 800MHz for
the SSD and channel-level accelerators, and 400MHz for the chip
level accelerators.

To compute the overall accelerator energy utilization, we use
existing models described in [29, 52]. We collect the number of
arithmetic operations, read/write access to memory PE utilization
factor, and the number of flash chip accesses from SCALE-Sim. A
linear energy model is used to convert these metrics to the energy
consumption of each accelerator for the neural network layers of
the applications, which is similar to the ones used in [29, 52]. We
scale the energy numbers for arithmetic units to 32nm [101] and use
CACTI 6.5 [74] to estimate energy utilization of all SRAMs in the
32nm technology node. We assume the itrs-hp model for SRAMs
of the SSD and channel-level accelerators, and the itrs-lowmodel
for the SRAMs of the chip-level accelerators due to the power
constraints. DRAM energy is assumed to be 20-pJ/bit [101]. We
use the power consumption of flash page access in the Intel DC
P4500 SSD to compute the energy consumed by flash accesses. We
extrapolate the network-on-chip energy based on the estimated
wire lengths and area from CACTI.

We first disable the Query Cache to evaluate the performance of
individual components of the DeepStore architecture. We warm the
system by populating the SSD with 20 feature databases, each with
25GB of feature vectors. We summarize the experimental results in
Table 4. We discuss the Query Cache performance in §6.5

6.2 DeepStore Performance

We first evaluate the performance of the three levels of accelerators
in DeepStore, and compare them with wimpy cores inside SSD
and also the GPU+SSD system. We use a high-end 8-core ARM-
A57[64] CPU as wimpy cores inside the SSD controller. We pick 2K,
50K, 50K, 50K, and 100K batch sizes for ReId, MIR, ESTP, TIR, and
TextQA, respectively. The batch sizes are picked such that the GPU
utilization is maximized during SCN computation.

We show the performance gains of wimpy cores and DeepStore
against the solution of using a GPU for all tested applications in

1The chip-level accelerator can not execute ReId due to limited compute and on-chip
memory resources.

232

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

Table 4: Applications used in our evaluation. We summarize Deep-

Store’s improvements on both performance and energy compared

to the traditional system using GPUs.

Application
Level of

Parallelism
Speedup

Energy Efficiency
Improvement

ReId 1 SSD 0.1× 0.7×
Channel 3.9× 17.1×

MIR
SSD 0.3× 1.6×

Channel 8.3× 28.0×
Chip 1.0× 2.6×

ESTP
SSD 0.6× 2.8×

Channel 13.2× 38.6×
Chip 1.9× 3.2×

TIR
SSD 0.4× 2.1×

Channel 10.7× 35.6×
Chip 1.5× 3.7×

TextQA
SSD 0.4× 2.2×

Channel 17.7× 78.6×
Chip 4.6× 13.7×

ReId MIR ESTP TIR TextQA
0.0

0.1

0.5

2.0

8.0

32.0

Sp
ee

du
p

0.09

0.32
0.59

0.44 0.4

3.92

8.26
13.16 10.68

17.74

1.01
1.9 1.47

4.62

0.0 0.02
0.04 0.03

0.09

Wimpy Cores SSD Level Channel Level Chip Level

Figure 8: Performance comparison of wimpy cores, SSD, channel,

and chip-level accelerators with the traditional GPU+SSD system.

DeepStore performs 1.0-4.7× and 3.1-17.7× faster than GPU+SSD

with the chip and channel-level accelerators, respectively.

Figure 8. The wimpy cores are 4.5-22.8× slower than GPU+SSD
baseline system. Since in-storage accelerators have much higher
parallelism than wimpy cores, it is obvious that DeepStore performs
much better than using wimpy cores. Henceforth, we exclude the
comparison with wimpy cores in the remaining evaluation.

SSD-Level Accelerator: According to Figure 8, DeepStore’s
SSD-level accelerator performs the worst of all systems compared
in all applications. The SSD-level accelerator performs 1.7-11.0×
slower than the GPU+SSD system for the intelligent query work-
loads. Although the SSD-level accelerator has access to high SSD
internal bandwidth and does not suffer from the storage I/O bottle-
neck, its performance becomes limited by the performance of the
similarity comparison between the query and feature database, and
the lack of parallelism (see Figure 6).

Channel-Level Accelerators: Using channel level accelera-
tors gives the best performance out of all compared systems. The
channel-level accelerators perform 3.9-17.7× and 14.8-44.5× better
than GPU+SSD baseline and SSD-level accelerator, respectively.
The performance gains are attributed to the removal of the storage
I/O bottleneck, exploitation of the SSD’s internal channel-level par-
allelism, and higher reuse of weights (32×) in the shared scratchpad.

Chip-Level Accelerators: DeepStore’s chip-level accelerator
has limited computing and on-chip memory resources, and thus
cannot execute large models, like the one for ReId. The same limi-
tations lead to higher latency when compared to the channel-level
accelerators, in the applications using fully connected layers like
MIR, ESTP, and TIR. However, due to the 128-way (32 channels
× 4 chips) parallelism exploited, and the removal of the high la-
tency copy over PCIe, the chip-level accelerator design performs
1.1×, 2.1×, 1.6×, and 5.2× better than the GPU+SSD system for MIR,
ESTP, TIR, and TextQA, respectively.

DeepStore’s channel-level accelerator design achieves the best per-

formance, as it provides the best trade-off between the parallelism

level exploited and resource utilized per accelerator.

6.3 SSD Sensitivity Analysis

In this section, we change different SSD parameters to evaluate the
sensitivity of DeepStore.

Impact of Flash Page Read Latency.We vary the read latency
of the flash array from 7µsec, modeling a fast high-end SSD [10], to
212µsec, modeling a more commodity SSD [1, 9], and show that our
designs remain performant even for slow flash chips. Figure 9c and
Figure 9d show the effect on the performance of the channel and
chip level accelerators, respectively. The performance of the system
with a flash read latency of 53µsec was used as the baseline for this
evaluation. The flash read latency does not affect the performance of
the SSD-level accelerator and GPU+SSD system as they are bounded
by compute latency and external SSD bandwidth, respectively.

For the channel and chip-level accelerators, decreasing the flash
latency does not improve the performance of the accelerators signif-
icantly. However, if the flash latency is increased by a factor of 4, to
212µsec, the performance is reduced by only 10.1% and 3.9% for the
channel and chip-level accelerators, respectively. This low variation
in performance is because the accelerator is bounded by compute
latency. Thus, DeepStore accelerators can be used with cheaper and

higher-latency flash chips while obtaining reasonable performance.

Impact of External and Internal SSD Bandwidth. We now
evaluate the performance of all systems, as we vary the internal and
external I/O bandwidth. We use MIR for this evaluation, however
all of the intelligent query applications mentioned in § 3 exhibit
the same behavior.

First, we vary the internal SSD bandwidth by varying the number
of channels inside the SSD. As shown in Figure 10a, as the number
of channels increases beyond 8, the performance of the GPU+SSD
system does not change because the system is limited by the exter-
nal SSD bandwidth over PCIe (3.2GBps). Due to the limited external
bandwidth, the high internal SSD bandwidth can not be exposed to
the GPU+SSD system. The SSD-level accelerator does not see any
change in performance because its bounded by its compute latency
for these applications and it can not exploit the higher parallelism.
However, the performance of the channel and chip-level accelerators

scales linearly with the number of channels, as this improves both the

internal bandwidth and the parallelism exploited by these designs.

The GPU+SSD system can exploit multiple SSDs to get a higher
aggregate I/O bandwidth when reading the dataset batch from
SSDs to the host memory. As shown in Figure 10b, although the
performance of the traditional system improves as more SSDs are
added, it does not scale at the same rate as the number of SSDs,
like the case of DeepStore. This is because in the GPU+SSD system,
the storage I/O performance improves but the time to compute the
SCN remains constant. On the other hand, the compute capability of

all DeepStore designs scales linearly with the number of SSDs.

6.4 Energy Efficiency

In this section, we evaluate the energy efficiency of DeepStore. We
first evaluate the energy efficiency of each level of acceleration
in DeepStore against the Volta GPU. The power consumption of

233

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

1:8 1:4 1:2 1:1 2:1 4:1
Latency Ratio

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

Sp
ee

du
p

ReId
MIR
ESTP
TIR
TextQA

(a) Traditional System

1:8 1:4 1:2 1:1 2:1 4:1
Latency Ratio

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

Sp
ee

du
p

(b) DeepStore - SSD Level

1:8 1:4 1:2 1:1 2:1 4:1
Latency Ratio

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.0

1.01
1.02
1.03
1.04

Sp
ee

du
p

(c) DeepStore - Channel Level

1:8 1:4 1:2 1:1 2:1 4:1
Latency Ratio

0.97
0.9725

0.975
0.9775

0.98
0.9825

0.985
0.9875

0.99
0.9925

0.995
0.9975

1.0
1.0025

1.005
1.0075

1.01

Sp
ee

du
p

(d) DeepStore - Chip Level

Figure 9: Effect of varying flash read latency on the performance of each tested system. All values are normalized to the tested system’s

performance with a flash read latency of 53µsec. As the flash read latency is quadrupled to 212µsec, DeepStore remains within 89.9% of its

performance with a flash read latency of 53µsec.

4 8 16 32 64
Number of Channels

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

Sp
ee

du
p

Traditional
SSD Level
Channel Level
Chip Level

(a) Varying Internal SSD BW

1 2 4 8
Number of SSDs

0.1
0.2
0.5
1.0
2.0
4.0
8.0

16.0
32.0
64.0

128.0

Sp
ee

du
p

(b) Varying External I/O BW

Figure 10: Effect of varying the internal SSD bandwidth (BW) by

varying the number of channels in the SSD and varying the exter-

nal bandwidth by varying the number of SSDs on the performance

ofMIR. All values are normalized to the traditional system’s perfor-

mance with one SSD consisting of 32 channels.

ReId MIR ESTP TIR TextQA
0.5

1
2
4
8

16
32
64

128

N
or

m
al

iz
ed

 P
er

f/W
at

t

SSD Level
Channel Level
Chip Level

Figure 11: Energy efficiency of DeepStore designs normalized to the

Volta GPU in the traditional system.

Volta GPU is measured using nvidia-smi. As shown in Figure 11,
the channel-level accelerators are the most energy efficient design,
providing up 78.6× better performance per watt, compared to the
Volta GPU. This is because the channel-level accelerators provide
the best trade-off between systolic array size and on-chip SRAM
utilization with the shared second-level scratchpad. The SSD-level
accelerator is only 0.7× as efficient as the GPU for ReId, a compute
intensive workload, as it is only 0.1× as fast as the GPU for this
workload. However, it is up to 2.8× more energy efficient than
the GPU for data-intensive workloads, like TextQA, as it takes
only 12.5% of the power of the GPU. The design using chip-level
accelerators provides up to 13.7× better energy efficiency than the
Volta GPU. However, due to its stricter resource constraints on the
systolic array and on-chip SRAM, it only achieves 8.2-17.5% of the
energy efficiency of channel-level accelerators.

We also show the energy breakdown of DeepStore. The SSD-level
accelerator mainly consumes energy on memory accesses and flash
accesses, as shown in Figure 12. The channel-level accelerators’
energy consumption is dominated by memory accesses. This is
mainly due to the higher reuse of the 8MB scratchpad shared by all

ReId MIR ESTP TIR TextQA
S C CP S C CP S C CP S C CP S C CP0

25

50

75

100

Pe
rc

en
ta

ge
 (%

) Compute Memory Flash

Figure 12: Power consumption breakdown of DeepStore for SSD

level accelerator (S), channel level accelerators (C), and chip level

accelerators (CP) for the different applications.

32 channel-level accelerators. The chip-level accelerators consume
most of their energy in accessing the flash. As for ReId, most of the
SSD and channel-level accelerators’ energy is caused by the flash
accesses, as each of its feature vector uses three flash pages.

6.5 Query Cache Performance

We now demonstrate the benefit of the Query Cache for intelligent
query applications. We use TIR [93] for evaluation. We add noise
to the Flickr30K Entities test dataset [77, 104] without affecting the
ground truth, to get 100M images (192GB of feature vectors) and
100K queries. We use the Universal Sentence Encoder [26], which
has been trained on the SNLI corpus [21], to compare incoming
queries with queries cached in the Query Cache. The Universal
Sentence Encoder gives a similarity score between two intelligent
queries. We use the product of this score and the encoder’s average
test accuracy to compare against the defined threshold. We gener-
ate a stream of queries by sampling the dataset queries with two
different distributions: uniform and Zipfian with α equal to 0.7. We
warm-up the Query Cache using the query trace and then measure
the query performance.

First, we evaluate the performance of the Query Cache with
1K cache entries across the different query distributions and error
thresholds. The cost of searching the entire query cache of 1K
entries for this application is 0.3 milliseconds, which is significantly
less than the cost, 34.1 milliseconds, of scanning the entire feature
database with SCN.

As shown in Figure 13, adding the Query Cache to the GPU+SSD
system and DeepStore provides performance gains of up to 2.8×
and 25.9×, respectively, compared to the GPU+SSD system without
the Query Cache. Although the GPU+SSD baseline system benefits
from the Query Cache, DeepStore benefits 10×more because of the
significantly lower miss penalty for intelligent queries. To reach
the same performance as DeepStore configured without a Query
Cache, the GPU+SSD baseline system needs to cache at least 64.7%
of the dataset. Relaxing the query comparison error threshold from

234

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

Traditional + QCache over Traditional
DeepStore over Traditional

DeepStore + QCache over Traditional
Miss Rate

0% 2% 5% 8% 10% 12% 15% 18% 20%
Error Threshold

0

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
p

60

65

70

75

80

85

90

95

M
is

s
R

at
e

(%
)

(a) Uniform

0% 2% 5% 8% 10% 12% 15% 18% 20%
Error Threshold

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Sp
ee

du
p

40

45

50

55

60

65

70

75

80

M
is

s
R

at
e

(%
)

(b) Zipfian α=0.7

Figure 13: Query Cache performance and Query Cache miss rate

with Uniform and Zipfian(α = 0.7) distributions on the queries.

100 200 300 400 500 600 700 800 900 1000
Entries in Query Cache

45
50
55
60
65
70
75
80
85
90
95

100

M
is

s
Ra

te
 (%

)

Uniform
Zipfian(α=0.7)
Zipfian(α=0.8)

Figure 14: Query Cache miss rate as a function of cache size. With

distributions providing locality, the benefit of larger caches reduces.

0% to 20% improves the query performance by up to 1.7×, as the
miss rate decreases. We evaluate different α values for Zipfian, and
observe similar performance trends.

Next, we evaluate the impact of the Query Cache size on the miss
rate of the cache. We choose a query comparison threshold of 10%
for this evaluation. As shown in Figure 14, although larger Query
Cache sizes reduce the miss rate, for query distributions exhibiting
locality (i.e., Zipfian), the benefit reduces with larger caches. Thus,
it suffices to have a small Query Cache (about 22MB in size for TIR
with top-K=10 and caching 1K entries) in the DRAM of the SSD.

7 RELATEDWORK

In-storage Computing: There have been several works exploring
near-storage or in-storage processing for applications such as data-
base query processing [38, 39, 63, 64, 81], key-value store [81], map-
reduce workloads [45, 63], signal processing [19], and data analy-
sis [87, 88]. They leverage the embedded CPU in the SSD’s controller
to perform compute operations to avoid data transfer overhead
over PCIe. Unlike these applications, intelligent query workloads
require support for complex compute operations such as FC and
ConvD layers as discussed in §3. Although it is possible to execute
these workloads using the wimpy embedded cores [45, 64, 81, 89],
it is significantly slower than DeepStore. Prior work has tried to
place application specific hardware accelerators in the SSD such
as [12, 18, 33, 61, 62]. However, to the best of our knowledge, we are
the first to explore intelligent-query workloads for in-storage accel-
eration as well as to discuss the trade-offs for exploiting different
levels of parallelism in the SSD.

DNN Accelerator: Several accelerator designs have been pro-
posed to speed up the training and inference computation of popular
DNN models [28, 29, 34, 44, 49, 50, 52, 60, 65, 68, 71, 75, 78]. Addi-
tional optimizations such as quantization, weight pruning [49, 103,

105], data-flow optimizations [29, 44, 65] are discussed to speed up
the computation and improve energy efficiency. However, none
of these accelerators are incorporated in flash storage and are not
optimized for intelligent query workloads. Although we do not per-
form any optimization like quantization, low-precision operations,
and others, we believe the optimization work in the accelerator
community can be incorporated into the DeepStore architecture to
gain higher performance and energy efficiency. We consider these
possibilities as the extensions of our DeepStore work.

Exploiting Query Properties: Conventional query systems
leverage similarity between their data to build indices for fast
lookups [20, 37, 58, 59, 85]. In the case of intelligent-query systems,
such indices cannot be built due to the non-linearity introduced
by extracting feature vectors from DNN models and query diver-
sity [16, 22, 90, 106]. To gain performance, traditional systems have
exploited caching of queries and their results [32, 42]. They use
linear methods to search the cache for exact or similar matches.
However, these cannot provide highly accurate semantic similarity
between queries, resulting in unnecessary expensive miss penal-
ties. In DeepStore, the query cache uses a DNN-based similarity
comparison network to perform similarity lookup in the cache.
Recent work [41, 76] has explored reorganizing feature vectors
in-storage for efficient search operations. Such techniques can also
be exploited by DeepStore to further improve performance. The
query cache proposed in DeepStore can be leveraged in several
other domains as well, which we wish to explore in the future.

8 CONCLUSION

In this work, we study a diverse set of representative intelligent
query workloads, and show that on a state-of-the-art GPU+SSD sys-
tem, these applications are limited by storage I/O bandwidth. To ad-
dress this, we propose DeepStore, an in-storage accelerator system.
It consists of energy-efficient in-storage accelerators, a light-weight
runtime query engine, and a similarity based in-storage query cache.
We study various trade-offs associated with designing accelerators
for intelligent queries at different parallelism levels of SSD, and
provide a detailed system design and implementation of DeepStore.
We show that DeepStore improves the query performance by up
to 17.7× and energy efficiency by up to 78.6×, compared to the
state-of-the-art system using GPUs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and shepherd
for their helpful comments and feedback. This work was partially
supported by the Applications Driving Architectures (ADA) Re-
search Center and Center for Research on Intelligent Storage and
Processing-in-memory (CRISP), JUMP Centers co-sponsored by
SRC and DARPA, IBM-ILLINOIS Center for Cognitive Computing
Systems Research (C3SR) - a research collaboration as part of the
IBM AI Horizon Network, NSF grant CNS-1850317, and NSF grant
CCF-1919044.

REFERENCES
[1] 2007. Micron C200 1.8inch NAND Flash SSD.
[2] 2015. PCIe 3.0 Specification. https://pcisig.com/specifications.
[3] 2016. NVIDIA Tesla P100 Architecture Whitepaper. https://www.nvidia.com/

object/pascal-architecture-whitepaper.html.

235

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

[4] 2017. Intel/Micron 64L 3D NAND Analysis.
[5] 2017. NVIDIA Tesla V100 GPU Architecture Whitepaper. https://images.nvidia.

com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
[6] 2017. Open Neural Network Exchange format. https://onnx.ai/.
[7] 2018. Intel Nervana Nueral Network Processors. https://ai.intel.com/nervana-

nnp/.
[8] 2018. Intel SSD DC P4500 Series.
[9] 2018. Micron 9200 NVMe SSD.
[10] 2018. Ultra-Low Latency with Samsung Z-NAND SSD.
[11] 2019. Open NAND Flash Interface Specification 4.1. http://www.onfi.org/-

/media/client/onfi/specs/onfi_4_1_gold.pdf?la=en.
[12] 2019. See Our Machine Learning Accelerator at Embedded World.
[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). Savannah, GA.

[14] Ahmed Abulila, Vikram S Mailthody, Zaid Qureshi, Jian Huang, Nam Sung
Kim, Jinjun Xiong, and Wen-mei Hwu. 2019. FlatFlash: Exploiting the Byte-
Accessibility of SSDs within A Unified Memory-Storage Hierarchy. In Proceed-
ings of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19). Providence, RI, USA.

[15] Nitin Agrawal, Vijayan Prabhakaran, TedWobber, John D. Davis, Mark Manasse,
and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In Proceeding
of the USENIX 2008 Annual Technical Conference (USENIX ATC’08). Boston, MA.

[16] Ejaz Ahmed, Michael Jones, and Tim K Marks. 2015. An Improved Deep Learn-
ing Architecture for Person Re-identification. In Proceedings of the 28th IEEE
Conference on Computer Vision and Pattern Recognition(CVPR’15). Boston, MA.

[17] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. 2014.
Neural codes for image retrieval. In Proceedings of the European conference on
computer vision (ECCV’14). Zurich, Switzerland.

[18] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim, Hyunok Oh, and Chanik Park.
2013. Intelligent SSD: A Turbo for Big Data Mining. In Proceedings of the 22nd
ACM International Conference of Information Knowledge Management (CIKM’13).
San Francisco, CA.

[19] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M. Shipman. 2012.
Active Flash: Out-of-core Data Analytics on Flash Storage. In Proceedings of
the IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST’12).
Monterey, CA.

[20] Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar. 2018. Rosetta: Large
Scale System for Text Detection and Recognition in Images. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’18). London, United Kingdom.

[21] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. 2015. A large annotated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP’15). Lisbon, Portugal.

[22] Tolga Bozkaya and Meral Ozsoyoglu. 1997. Distance-based Indexing for High-
dimensional Metric Spaces. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’97). Tucson, AZ.

[23] Joel Brogan, Paolo Bestagini, Aparna Bharati, Allan Pinto, Daniel Moreira, Kevin
Bowyer, Patrick Flynn, Anderson Rocha, and Walter Scheirer. 2017. Spotting
The Difference: Context Retrieval and Analysis for Improved Forgery Detection
and Localization. In Proceedings of the IEEE International Conference on Image
Processing (ICIP’17). Beijing, China.

[24] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
Proceedings of the 6th International Conference on Neural Information Processing
Systems (NIPS’93). San Francisco, CA.

[25] Matthew Brown, Gang Hua, and Simon Winder. 2011. Discriminative Learning
of Local Image Descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI’11) 33, 1 (2011).

[26] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
arXiv e-prints (March 2018).

[27] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollar, and C. Lawrence Zitnick. 2015. Microsoft COCO Captions: Data
Collection and Evaluation Server. arXiv:cs.CV/1504.00325

[28] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadiannao: A machine-
learning supercomputer. In Proceedings of the 47th IEEE/ACM International
Symposium on Microarchitecture (MICRO’14). Cambridge, England.

[29] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits (SSC’17) 52, 1 (Jan 2017).

[30] Z. Cheng, X. Wu, Y. Liu, and X. Hua. 2017. Video2Shop: Exact Matching Clothes
in Videos to Online Shopping Images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’17). Honolulu, HI.

[31] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[32] Flavio Chierichetti, Ravi Kumar, and Sergei Vassilvitskii. 2009. Similarity
Caching. In Proceedings of the Twenty-eighth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’09). Providence, Rhode
Island, USA.

[33] Benjamin Y. Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. 2013. XSD:
AcceleratingMapReduce by Harnessing the GPU inside an SSD. In Proceedings of
the 1st Workshop on Near-Data Processing in Conjunction with the 46th IEEE/ACM
International Symposium on Microarchitecture (WoNDP). Davis, CA.

[34] Jason Clemons, Chih-Chi Cheng, Iuri Frosio, Daniel Johnson, and Stephen W
Keckler. 2016. A Patch Memory System for Image Processing and Computer
Vision. In Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’16). Taipei, Taiwan.

[35] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC’10). ACM, New York, NY,
USA.

[36] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data process-
ing on large clusters. Commun. ACM 51, 1 (2008), 107ś113.

[37] J. Deng, A. C. Berg, and L. Fei-Fei. 2011. Hierarchical semantic indexing for large
scale image retrieval. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’11).

[38] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities
and Challenges. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’13). New York, NY.

[39] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and
Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (SIGMOD’13). New York, NY, USA.

[40] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM Footprint with NVM in Facebook. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys’18). Porto, Portugal.

[41] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018. Bandana: Using
non-volatile memory for storing deep learning models. In proceedings of SysML
Conference (SysML’18) (2018).

[42] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fausto
Rabitti. 2008. A Metric Cache for Similarity Search. In Proceedings of the 2008
ACM Workshop on Large-Scale Distributed Systems for Information Retrieval.
Napa Valley, California, USA.

[43] Yuxun Fang, Qiuxia Wu, and Wenxiong Kang. 2018. A Novel Finger Vein
Verification System Based on Two-stream Convolutional Network Learning.
Neurocomputing (2018).

[44] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory.
In Proceedings of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’17). Xi’an, China.

[45] B. Gu, A. S. Yoon, D. H. Bae, I. Jo, J. Lee, J. Yoon, J. U. Kang, M. Kwon, C. Yoon,
S. Cho, J. Jeong, and D. Chang. 2016. Biscuit: A Framework for Near-Data
Processing of Big Data Workloads. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA’16). Seoul, Korea.

[46] X. Gu, Y. Wong, L. Shou, P. Peng, G. Chen, and M. S. Kankanhalli. 2018. Multi-
Modal and Multi-Domain Embedding Learning for Fashion Retrieval and Anal-
ysis. IEEE Transactions on Multimedia (2018).

[47] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A Flash
Translation Layer Employing Demand-based Selective Caching of Page-level
Address Mappings. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’09).
Washington, DC, USA.

[48] M Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexander C Berg, and
Tamara L Berg. 2015. Where to Buy It: Matching Street Clothing Photos in
Online Shops. In Proceedings of the IEEE international conference on computer
vision (ICCV’15). Santiago, Chile.

[49] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA’16). Seoul, Republic of Korea.

[50] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. In Proceedings of the 6th International Conference on Learning Represen-
tations (ICLR’16). Vancouver, Canada.

236

MICRO-52, October 12ś16, 2019, Columbus, OH, USA V.S. Mailthody and Z. Qureshi, et al.

[51] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C
Berg. 2015. Matchnet: Unifying Feature and Metric Learning for Patch-based
Matching. In Proceedings of the 28th IEEE Conference on Computer Vision and
Pattern Recognition(CVPR’15). Boston, MA.

[52] Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W Fletcher. 2018.
Morph: Flexible Acceleration for 3D CNN-based Video Understanding. In Pro-
ceedings of the 51th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’18).

[53] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta,
Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for Virtualized SSDs. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (FAST’17). Santa
clara, CA.

[54] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015.
Unified Address Translation for Memory-mapped SSDs with FlashMap. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA’15). Portland, OR.

[55] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito VI, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, and Wyatt Lloyd.
2017. SVE: Distributed Video Processing at Facebook Scale. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP’17). Shanghai, China.

[56] Qi Huang, Ken Birman, Robbert van Renesse, , Wyatt Lloyd, Sanjeev Kumar,
and Harry C. Li. 2013. An Analysis of Facebook Photo Caching. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP’13). Farmington,
PA.

[57] Y. Huang, W. Wang, and L. Wang. 2017. Instance-Aware Image and Sentence
Matching with Selective Multimodal LSTM. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’17). Honolulu, HI.

[58] Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Jeff Donahue,
and Sarah Tavel. 2015. Visual Search at Pinterest. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’15). Sydney, Australia.

[59] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with gpus. arXiv preprint arXiv:1702.08734 (2017).

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA’17). Toronto,
Canada.

[61] S. Jun, A. Wright, S. Zhang, S. Xu, and Arvind. 2018. GraFBoost: Using Ac-
celerated Flash Storage for External Graph Analytics. In Proceedings of the
45th Annual International Symposium on Computer Architecture (ISCA’18). Los
Angeles, CA.

[62] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance for Big Data Analytics.
SIGARCH Comput. Archit. News 43, 3 (June 2015).

[63] Y. Kang, Y. Kee, E. L. Miller, and C. Park. 2013. Enabling cost-effective data
processing with smart SSD. In Proceedings of the 28th IEEE Conference on Mass
Storage Systems and Technologies (MSST’13). Lake Arrowhead, CA.

[64] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-
Wei Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trad-
ing Communication with Computing Near Storage. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’17).
Cambridge, Massachusetts.

[65] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: En-
abling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. SIGPLAN Not. 53, 2 (March 2018).

[66] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
(2015).

[67] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. 2014. Deepreid: Deep Filter
Pairing Neural Network for Person Re-identification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’14). Columbus,
OH.

[68] Youjie Li, Xiaohao Wang, Iou-Jen Liu, Deming Chen, Alexander Schwing, and
Jian Huang. 2019. Accelerating Distributed Reinforcement Learning with In-
Switch Computing. In Proceedings of the 46th International Symposium on Com-
puter Architecture (ISCA’19). Phoenix, AZ.

[69] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and Tiejun Huang. 2016.
Deep relative distance learning: Tell the difference between similar vehicles. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’16). Las Vegas, NV.

[70] Li Liu, Fumin Shen, Yuming Shen, Xianglong Liu, and Ling Shao. 2017. Deep
Sketch Hashing: Fast Free-hand Sketch-based Image Retrieval. In Proceedings of
the 30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR’17).
Honolulu, HI.

[71] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An Instruction Set Architecture for Neural
Networks. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA’16). Seoul, South Korea.

[72] R. Lu, K. Wu, Z. Duan, and C. Zhang. 2017. Deep ranking: Triplet MatchNet
for music metric learning. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’17).

[73] Micron. 2017. Micron 3D NAND technology. https://www.micron.com/
products/nand-flash/3d-nand.

[74] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A Tool to Model Large Caches. HP laboratories (2009).

[75] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks. SIGARCH Comput. Archit. News 45, 2 (June 2017).

[76] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,
Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur,
et al. 2018. Deep Learning Inference in Facebook Data Centers: Characteriza-
tion, Performance Optimizations and Hardware Implications. arXiv preprint
arXiv:1811.09886 (2018).

[77] Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo,
Julia Hockenmaier, and Svetlana Lazebnik. 2017. Flickr30K Entities: Collect-
ing Region-to-Phrase Correspondences for Richer Image-to-Sentence Models.
International Journal of Computer Vision (IJCV’17) 123 (2017).

[78] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and StephenW
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In Proceedings of the 49th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’16). Taipei, Taiwan.

[79] Dong-ryul Ryu. 2012. Solid State Disk Controller Apparatus. US Patent
8,159,889.

[80] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and
Tushar Krishna. 2018. SCALE-Sim: Systolic CNN Accelerator. arXiv preprint
arXiv:1811.02883 (2018).

[81] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. 2014. Willow: A User-
programmable SSD. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14). Broomfield, CO.

[82] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’15). New York, NY, USA.

[83] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiaogang Wang. 2017.
Learning Deep Neural Networks for Vehicle Re-id with Visual-spatio-temporal
Path Proposals. In Proceedings of the International Conference on Computer Vision
(ICCV’17). Venice, Italy.

[84] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiaogang Wang. 2018.
End-to-End Deep Kronecker-Product Matching for Person Re-Identification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’18). Salt Lake City, UT.

[85] Cooper Smith. 2013. Facebook users are uploading 350 million new photos each
day. Business insider 18 (2013).

[86] Vinay Ashok Somanache, Timothy W Swatosh, Pamela S Hempstead, Jackson L
Ellis, Michael S Hicken, and Martin S Dell. 2013. Flash controller hardware
architecture for flash devices. US Patent App. 13/432,394.

[87] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter J. Desnoyers, and Yan Solihin. 2013. Active Flash: Towards
Energy-efficient, In-situ Data Analytics on Extreme-scale Machines. In Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies (FAST’13).
San Jose, CA.

[88] Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Simona
Boboila, and Peter J. Desnoyers. 2012. Reducing Data Movement Costs Using
Energy Efficient, Active Computation on SSD. In Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems (HotPower’12). Hollywood,
CA.

237

DeepStore: In-Storage Acceleration for Intelligent Queries MICRO-52, October 12ś16, 2019, Columbus, OH, USA

[89] H. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson. 2016. Morpheus: Cre-
ating Application Objects Efficiently for Heterogeneous Computing. In Proceed-
ings of the 43rd IEEE Annual International Symposium on Computer Architecture
(ISCA’16). Taipei, Taiwan.

[90] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu,
Yongdong Zhang, and Jintao Li. 2014. Deep Learning for Content-Based Image
Retrieval: A Comprehensive Study. In Proceedings of the 22nd ACM International
Conference on Multimedia (ACM Multimedia’14). Orlando, FL.

[91] Jingdong Wang and Xian-Sheng Hua. 2011. Interactive Image Search by Color
Map. ACM Trans. Intell. Syst. Technol. 3, 1 (Oct. 2011).

[92] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. 2016. A com-
prehensive survey on cross-modal retrieval. arXiv preprint arXiv:1607.06215
(2016).

[93] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. 2018. Learning Two-
branch Neural Networks for Image-text Matching Tasks. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI’18) (2018).

[94] Xiaohao Wang, You Zhou, Chance C. Coats, and Jian Huang. 2019. Project
Almanac: A Time-Traveling Solid-State Drive. In Proceedings of the 14th European
Conference on Computer Systems (EuroSys’19). Dresden, Germany.

[95] S. Winder, G. Hua, and M. Brown. 2009. Picking the best DAISY. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09).
Miami, FL.

[96] Pengcheng Wu, Steven C.H. Hoi, Hao Xia, Peilin Zhao, Dayong Wang, and
Chunyan Miao. 2013. Online Multimodal Deep Similarity Learning with Appli-
cation to Image Retrieval. In Proceedings of the 21st ACM International Conference
on Multimedia (MM’13). New YorK, NY.

[97] Baixi Xing, Kejun Zhang, Shouqian Sun, Lekai Zhang, Zenggui Gao, Jiaxi Wang,
and Shi Chen. 2015. Emotion-driven Chinese Folk Music-image Retrieval Based
on DE-SVM. Neurocomputing 148 (2015).

[98] Hao Xu, Jingdong Wang, Xian-Sheng Hua, and Shipeng Li. 2010. Image Search
by Concept Map. In Proceedings of the 33rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR’10). Geneva,

Switzerland.
[99] Hao Xu, Jingdong Wang, Xian-Sheng Hua, and Shipeng Li. 2010. Interactive

Image Search by 2D Semantic Map. In Proceedings of the 19th International
Conference on World Wide Web (WWW’10). Raleigh, NC.

[100] Fan Yang, Ajinkya Kale, Yury Bubnov, Leon Stein, QiaosongWang, Hadi Kiapour,
and Robinson Piramuthu. 2017. Visual Search at eBay. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’17). Halifax, Canada.

[101] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak, Qiaoyi Liu, Steven Em-
berton Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, Christos Kozyrakis, and
Mark Horowitz. 2018. DNN Dataflow Choice is Overrated. arXiv preprint
arXiv:1809.04070 (2018).

[102] Hantao Yao, Shiliang Zhang, Dongming Zhang, Yongdong Zhang, Jintao Li,
Yu Wang, and Qi Tian. 2017. Large-scale person re-identification as retrieval.
In Proceedings of the IEEE International Conference on Multimedia and Expo
(ICME’17). Hong Kong.

[103] R. Yazdani, M. Riera, J. Arnau, and A. GonzÃąlez. 2018. The Dark Side of DNN
Pruning. In Proceedings of the 45th Annual International Symposium on Computer
Architecture (ISCA’18). Los Angeles, CA.

[104] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. Transactions of the Association for Computational
Linguistics (TACL’14) 2 (2014).

[105] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-x: An accelerator for sparse
neural networks. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’16). Taipei, Taiwan.

[106] Wengang Zhou, Houqiang Li, and Qi Tian. 2017. Recent Advance in Content-
based Image Retrieval: A Literature Survey. CoRR (2017).

238

