
Understanding Security Vulnerabilities in
File Systems

Miao Cai∗

Nanjing University
Hao Huang

Nanjing University
Jian Huang

UIUC

ABSTRACT

File systems have been developed for decadeswith the security-
critical foundation provided by operating systems. However,
they are still vulnerable to malware attacks and software
defects. In this paper, we undertake the first attempt to sys-
tematically understand the security vulnerabilities in various
file systems. We conduct an empirical study of 157 real cases
reported in Common Vulnerabilities and Exposures (CVE).
We characterize the file system vulnerabilities in different
dimensions that include the common vulnerabilities lever-
aged by adversaries to initiate their attacks, their exploitation
procedures, root causes, consequences, and mitigation ap-
proaches. We believe the insights derived from this study
have broad implications related to the further enhancement
of the security aspect of file systems, and the associated
vulnerability detection tools.

1 INTRODUCTION

File system (fs) is crucial to the data integrity and secu-
rity in modern computer systems. Although it has been
developed for decades with applying numerous data pro-
tection techniques such as access control and sanity check-
ing [6, 17, 20, 24, 25, 32], file systems are suffering from a
significant number of malware attacks, and they often fail
to protect users from severe damages, such as data loss and
leakage, denial of service (DoS), systems crashes, and even
full system compromise [15, 34, 36, 37].
Although prior research has performed intensive studies

on file systems bugs [16, 21, 29], bug-detection tools [27, 41ś
43], and formal verification for bug-free implementation [1,
3, 5, 33], few studies investigate their security vulnerabilities.

∗The work was performed when the author was a visiting student in the

Systems and Platform Research Group at UIUC.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

APSys ’19, August 19ś20, 2019, Hangzhou, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00

https://doi.org/10.1145/3343737.3343753

There is no quantitative research demonstrating their root
causes and consequences. Moreover, there is no study demon-
strating how malicious users exploit these vulnerabilities to
successfully initiate the attacks, and pose a great threat to
the user data and even the safety of the whole system.

In this paper, we conduct the first systematic study on the
security vulnerabilities in Linux file systems. We study 157
real-world cases related to file systems from the list of Com-
mon Vulnerabilities and Exposures (CVE). These cases are
committed from the year of 1999 to 2019, and cover a variety
of file systems that include eight on-disk fs implementations
such as Ext4, XFS [38], and F2FS [18], two in-memory fs

like tmpfs, and the virtual file system (VFS). Note that our
study mainly focuses on the security aspects of the fs design
and implementation. We use the CVE list as our resource
pool, because all the reported cases are confirmed by security
experts, and they represent the real-world threat models.
In order to fully understand each security case, we de-

velop a vulnerability analysis model, which includes three
major steps: vulnerability reproducing, attack exploitation,
and consequence confirmation. We use this analysis model
to guide our study of all the cases, and investigate the fs

vulnerabilities in different dimensions, including what are
their major consequences? what are the common root causes
of these vulnerabilities? what are the popular fs components
that have been exploited by attackers? and how attackers
leverage the fs features to initiate their attacks?
To be specific, we identify four major types of conse-

quences that include denial of service (DoS) (75%), data leak-
age (12%), access permission bypass (7%), and privilege esca-
lation (6%), in which the DoS is the major consequence of fs
vulnerabilities. As for the root causes of these vulnerabilities,
we find that they are mainly caused by sanity checking (45%),
memory errors with fs data structures (23%), race condition
in concurrency implementation (8%), and file permission
(10%). These are the common issues that have been exploited
by attackers. Unfortunately, it is challenging to automatically
detect and fix many of them, especially for those that are
closely related to high-level system semantic and specifica-
tions [13], such as sanity checking issues.
Furthermore, as we map the fs vulnerabilities to fs core

components, including namespace management, inode man-
agement, superblock management, block allocation, page
cache, filemanagement, crash-safetymodel, permissionmodel,

8

APSys ’19, August 19–20, 2019, Hangzhou, China Miao Cai, Hao Huang, and Jian Huang

Table 1: Summary of Linux fs vulnerabilities.

Name Description Release Year #CVEs

Ext4 A journaling fs with extents 2008 39

VFS Virtual file system 1995 37

XFS A journaling fs created by SGI 1993 20

F2FS A flash-friendly fs 2013 15

Btrfs A copy-on-write based fs 2009 13

procfs A virtual memory file system 2001 9

Ext2 An extended fs 1993 6

Ext3 A journaling fs 2001 6

tmpfs A virtual memory fs 2001 5

ReiserFS A journaling fs created by Namesys 2001 4

JFS A journaling fs created by IBM 1990 3

Total 157

and dentry management, we pinpoint that metadata man-
agement is the most vulnerable component in file systems,
which occupies 74% of the total fs vulnerabilities. As we ex-
pected, fs features could facilitate attackers to compromise
the file systems and even the entire computer systems. We
validate that adversaries usually exploit the unique fs fea-
tures such as block management and data consistency model
to increase the chances of successful attacks. For instance,
attackers would exploit the data inconsistency between page
cache and disk with hole punching operations to cause disk
data corruption in Ext4 (see CVE-2015-8839). We wish our
findings could facilitate the file systems development on the
aspects of systems security and data protection, as well as
the associated vulnerability detection tools.

The rest of this paper is organized as follows. § 2 describes
our study methodology. § 3 presents the consequences and
causes. We discuss how fs vulnerabilities are related to fs

components in § 4, and present how attackers would exploit
fs features to initiate their attacks in § 5. § 6 presents the
related work. We concludes the paper in § 7.

2 STUDY METHODOLOGY

In this work, we focus on the study of the security vulner-
abilities in widely used file systems. We collected the cases
related to the file systems by searching the keywords of łfile
systemsž and fs names like łExt4ž via the search functionality
of CVE. We use the CVE cases as our study samples for two
major reasons. First, the published vulnerabilities through
the CVE have been confirmed by independent experts [30],
they are real cases that provide insightful information. Sec-
ond, each vulnerability could be confirmed or acknowledged
by multiple vendors or platforms, which reflects its impact
on different computing platforms.
Study samples. In our study, we mainly examine the

cases that have a comprehensive and detailed description
in the vulnerability database. Therefore, we study 157 CVE
cases in total (see Table 1). These examined cases are reported
over the last twenty years from 1999 to 2019, which covers
a large portion of the vulnerabilities in many classical file
systems such as Ext4, Ext2, and Btrfs that are still in use today.

In order to precisely categorize each CVE case, we manually
examine the committed report, problem description, and
posted blogs following the approaches described in prior
bug-study work [11, 21]. For the cases whose source codes
are available, we also check the corresponding source codes
and the associated committed patches, and reproduce them
to further understand and confirm the vulnerability.

Similar to prior characteristic studies that may suffer from
limitations on sampling, we take our best effort to collect the
vulnerabilities available in the CVE list. Given that we focus
on the popular and representative file systems, we believe
that these limitations do not invalidate our study result. Also,
we encourage readers to focus on the root causes behind
each individual case rather than the precise numbers, since
a single vulnerability could produce massive damages.
Vulnerability analysis model. To facilitate our study,

we develop a vulnerability analysis model, which includes
three major steps: vulnerability reproducing, attack exploita-
tion, and consequence confirmation, as described as follows.

• Vulnerability reproducing. To initiate a successful at-
tack, the adversary has to verify the effectiveness of the
vulnerability, as it reveals the weakness of the file systems.
Typical file system weaknesses include poor isolation be-
tween namespaces, and insufficient enforcement of file per-
mission model. In this step, we reproduce the vulnerabilities
according to the external references in the CVE. For each
vulnerability, we generate a reproduction report which de-
scribes the conditions to trigger the specific vulnerability.
• Attack exploitation. Adversary would combine various
attack methods to conduct the attack. Typical attack methods
include heap spray, return oriented programming (ROP), and
buffer overflow. Similar to the vulnerability reproduction,
we also generate a report for the attack exploitation, which
records the detailed attack methods of the exploitation and
adversary capability.
• Consequence confirmation. With attack exploitation,
the adversary would initiate the attacks to the file systems
and even the entire computer system. Typical consequences
include denial of service, data leakage and loss, access per-
mission bypass, and privilege escalation. We confirm the
consequences with the damages reported in the CVE.

3 CONSEQUENCE AND CAUSES

In this section, we summarize the major consequences and
causes of the studied fs vulnerabilities.

3.1 Consequences of FS Vulnerability

It is not uncommon that adversaries exploit fs vulnerabil-
ities to cause denial of services, steal or destroy user data,
and obtain kernel privilege to execute further attacks. We
demonstrate the distribution of the common consequences
in different file systems in Figure 1a.

9

Understanding Security Vulnerabilities in fs APSys ’19, August 19–20, 2019, Hangzhou, China

Ex
t2

Ex
t3

Ex
t4

X
FS

F2
FS

R
ei
se
rF
S

Bt
rF
S
JF
S

tm
pf
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(a) Consequences

Ex
t2

Ex
t3

Ex
t4

X
FS

F2
FS

R
ei
se
rF
S

Bt
rF
S
JF
S

Tm
pF
S

0%

20%

40%

60%

80%

100%

(b) Causes
Figure 1: Consequences and causes of fs vulnerabilities.

Denial of service (75%): we find that the Denial of Ser-
vice (DoS) is the dominant consequence of fs vulnerabilities.
Specifically, we identify four major types of DoS caused by fs
vulnerabilities: kernel crash (35%), memory corruption (16%),
memory consumption (13%), and system hang (9%).

• Kernel crash and memory corruption: file systems are man-
aging complicated storage states such as inode in the host
memory, it is inevitable that malicious users can exploit the
memory errors (e.g., NULL/invalid pointer deference and out-
of-bounds memory access) to generate memory corruptions
and kernel crashes.
• Memory consumption: it is another way to achieve DoS by
exhausting the physical memory of the system. File systems
request memory from kernel space via slab-based memory
allocator. If the allocated memory objects are not freed prop-
erly, malicious attackers can exploit such types of memory
leakage to quickly consume the memory space. For exam-
ple, XFS does not free the kernel heap memory in its file
extended attribute module (CVE-2016-9685), attackers can
exploit this vulnerability by keeping issuing relevant fs op-
erations, which leads to the DoS eventually.

static int __get_data_block(struct inode *inode, ...) {

if (!err) {

...

- bh->b_size = map.m_len << inode->i_blkbits;

+ bh->b_size = (u64)map.m_len << inode->i_blkbits;

}}

Listing 1: Attackers exploit an infinite loop in allocating
data blocks in F2FS to achieve DoS attack.

• System hang: according to our study, it is mainly caused
by the over-consumption of CPU resource. We find that the
infinite loop and deadlock are the two main causes to the sys-
tem hang in file systems. For instance, as discussed in List 1
(CVE-2017-18257), attackers could exploit the integer over-
flow to trigger an infinite loop in data block allocation in F2FS.
The type conversion from an unsigned integer to a size_t re-
sults in an integer overflow, as a consequence, the bh→b_size

becomes zero. Therefore, the function f2fs_fiemap invok-
ing the get_data_block will run into an infinite loop.

Table 2: Causes of Linux file system vulnerabilities.

Causes Sub-type Description

Sanity checking
miss check Check is missing

inapt check Inappropriate check

Memory error

null ptr Null pointer deference

invalid ptr invalid pointer deference

integer Integer overflow/underflow

uninit data Uninitialized data structure

Concurrency
race condition Task synchronization

lock order Incorrect lock order

File permission
miss perm Missed permission check

inapt perm Inapt permission check

Other N/A Other causes

Data leakage (12%): we find that the data leakage hap-
pened in file systems mainly through three ways: (1) the
critical data (e.g., kernel stack/heap memory, file cache, and
block data, see CVE-2011-0711) could be copied from the
file system to the user space. Once the data is exposed to the
untrusted world, attackers can use these crucial kernel infor-
mation to perform other severe attacks, such as code reuse
attack. (2) attackers could leverage race condition occurred
in the OS kernel to bypass the file permissions to access
the sensitive file content (e.g., CVE-2012-4508). (3) attackers
could exploit the uninitialized data structures in file systems
to obtain critical system information, which includes the
file data, journal descriptor block, and kernel memory (e.g.,
CVE-2005-0400, CVE-2004-0177).

Access permission bypass (7%): file systems use the per-
mission model to restrict user access behavior on files. When
users access a file, they should obey the restriction in the tra-
ditional file permission model and access control list (ACL).
As a result, if a file system misses or performs an insufficient
checking for file permissions, attackers would bypass the
permission control of file accesses, therefore, critical files
could be read or modified.
Privilege escalation (6%): it allows users with a lower

privilege to access data or perform certain operations re-
served for the higher privilege. With higher privilege gained
through file system vulnerabilities, adversaries can exploit
further attacks against the whole system. For instance, as
shown in CVE-2010-1146, a vulnerability in ReiserFS enables
unprivileged users to access the .reiserfs_priv directory
that stores the attributes (i.e., xattrs) of files. Henceforth,
malicious users could modify the attribute of any file includ-
ing the POSIX ACLs, which compromises the access control
of the entire file system.

Summary: By exploiting the vulnerabilities in file sys-

tems, adversaries can execute various attacks against the

system, including DoS, data leakage, access permission

bypass, and privilege escalation. Among those attacks, the

DoS is the dominant threat, which is more prevalent than

data leakage.

10

APSys ’19, August 19–20, 2019, Hangzhou, China Miao Cai, Hao Huang, and Jian Huang

STATIC int xfs_ioc_fsgetxattr(xfs_inode_t *ip,int attr,...){

struct fsxattr fa;

+ memset(&fa, 0, sizeof(struct fsxattr));

xfs_ilock(ip, XFS_ILOCK_SHARED);

fa.fsx_xflags = xfs_ip2xflags(ip);

if (copy_to_user(arg, &fa, sizeof(fa)))

return -EFAULT; }

Listing 2: Uninitialized fsxattr data structure.

3.2 Causes of FS Vulnerability

We carefully explore the root causes of the Linux fs vulnera-
bilities and summarize them in Table 2 and Figure 1b.
Sanity checking (45%): We find that sanity checking is

a major cause of the fs vulnerabilities. However, a majority
of them are related to the fs semantics. These sanity checks
focus on validating fs states, such as fs namespace, inode
attributes, file path length, file category (i.e., regular file,
symbolic link), and file permissions.

It is challenging to detect and fix these vulnerabilities since
they are restricted by the high-level system semantics and
specifications. Recently, researchers are leveraging formal
method to verify the correctness of file system implementa-
tions [2, 3, 5, 33]. However, as the fs codebase is increased
dramatically (e.g., the codebase of Ext4 has increased by 3×
since the Linux kernel 2.6.19), it requires significant efforts
to achieve a full system verification.
Memory errors (23%): File systems are utilizing various

in-memory data structures to improve their performance.
We observe that a significant number of vulnerabilities are
caused by the uncleaned data structures in file systems. As
discussed in List 2, XFS does not initialize the file extended
attribute variable fsxattr allocated from kernel stack mem-
ory. However, fsxattr would be copied to user space in line
9, resulting in the leakage of sensitive kernel information.

As file systems cache substantial disk-related data in mem-
ory, the state entanglement betweenmemory and disk causes
many security vulnerabilities. For instance, XFS will write
in-memory data (including the data structures that are not
properly initialized) to the underlying storage device, mali-
cious users can obtain sensitive information by reading data
from the raw storage device (CVE-2004-0177).
Concurrency (8%): Adversaries usually exploit the race

conditions in the concurrency implementation to initiate
their attacks. As multiple tasks execute concurrently, the race
condition could generate an uncertain period of time, during
which malicious users can update the values of the shared
data structures. For example, system crash could happen
when an asynchronous I/O request and the fcntl system
call are executed concurrently as demonstrated in Figure 2.
The thread T1 issue a write request to Ext4 in step s1. Since
this file does not set the O_DITECT flag, Ext4 will not initialize

Thread1: s1

write

s3

iocb→private=NULL

s5a

BUG_ON(!private)

O_DIRECT

s5b !O_DIRECT

Thread2: s2

fcntl

s4

set O_DIRECT flag

Time

Figure 2: A concurrency vulnerability in Ext4.

the iocb→private variable in step s3. Suppose another thread
T2 issues a fcntl system call, it would set the O_DIRECT flag
of the shared file. This will change the execution path of the
thread T1 from step s5b to step s5a. Finally, the kernel
would hit a BUG_ON once it performs sanity checking on
iocb→private variable, resulting in kernel crash.

File permissions (10%): The basic permissions (r/w/x)
of a file are preserved in the file and inode structure. Be-
sides that, file systems also support fine-grained, flexible,
and powerful access control list (ACL) for users. We find
that most vulnerabilities happen because of missing or in-
sufficient checking of these permissions. Adversaries could
leverage these vulnerabilities to bypass the access restriction,
leading to privilege escalation.

Summary: The file system vulnerabilities are mainly

caused by the sanity checking and memory errors such as

uncleaned data structures. However, most of their causes

are related to system semantics, which are not easy to be

detected with the existing bug-finding tools.

4 VULNERABLE FS COMPONENTS

We list the vulnerable fs components in Table 3, according
to our study on the vulnerability distribution in file systems.
We will discuss these vulnerable fs components respectively.

4.1 Inode Management

Our study shows that the core fs component ś inode man-
agement is the most vulnerable in file systems, in which the
extended attribute management and file inline data manage-
ment are the worst parts (74%). This is probably because of
its flexibility and complexity. For example, Ext4 supports
three on-disk formats to store extended attributes, including
inside inode, additional block, and dedicated inode. When
the size of file extended attribute is small, Ext4 stores the
extended attributes inside the inode by default. When the
attribute size is large, Ext4 will use an additional block to
store the extended attributes. Vulnerabilities would happen
when we adjust the store format of these extended attributes
(e.g., CVE-2018-11412). Similar issues will happen in the
inline data management, adversaries would exploit these
vulnerabilities to crash the file systems.

11

Understanding Security Vulnerabilities in fs APSys ’19, August 19–20, 2019, Hangzhou, China

Table 3: The most vulnerable fs components in Linux.

Name #CVEs

Inode management 43

Permission model 22

Page cache 13

Block allocation 13

Superblock management 12

File management 11

Crash-safety model 7

Dentry management 6

4.2 File Permission Model

File system permission model restricts the file access for
users. Currently, it has two parts: (1) traditional file permis-
sion, i.e., u/g/o:r/w/x; (2) POSIX access control list (ACL).
Almost all fs-related system calls require correct file access
restriction. As confirmed in § 3, we find that most vulnera-
bilities happened in the permission model component are
caused by missing or insufficient permission checks. Adver-
saries could exploit these vulnerabilities to bypass the file
access permission and thus gain unauthorized kernel privi-
leges. Although this type of security bug is trivial, we find
that a large number of fs calls suffer from this security issue.

Most importantly, we find that the current file systems do
not have rigorous and formal specification for the permission
model. System developers have to manually perform permis-
sion checks on the system-call execution path to enforce
the permission model. Inevitably, developers could miss or
perform insufficient permission checking.

4.3 Page Cache

Modern file systems use page cache to improve application
performance. Specifically, page cache usually storesmetadata
blocks temporarily. File systems would flush these metadata
blocks to the underlying device via fsync-based system calls.
However, if system developers forget to initialize certain
fields of metadata structure in the page cache, these unini-
tialized data structures, which contain the kernel sensitive
information, would be persisted to the underlying storage
device. As a result, a malicious attacker could obtain such
sensitive data via reading the raw device, and thus lever-
age such kernel information to perform further attacks (e.g.,
CVE-2005-0400).

4.4 File Block Organization

File system adopts various strategies to organize the file
blocks. Previous file system like Ext2/Ext3 use direct/indirect
block to organize the file block. Currently, popular file sys-
tems (e.g., Ext4, BtrFS) prefer to use extent to manage file
blocks. Although extent could manage file blocks efficiently,
however, our study shows that extent management is much
more error-prone than direct/indirect block organization.
Their causes are diverse, including improper extent oper-
ation, race condition, and integer overflow. Ext4 supports

Table 4: Security vulnerabilities in fs block management.

FS Extent Extended
Attribute

Delay Al-
location

Flex/Meta
Block Group

Inline
data

Ext4 9 4 1 5 2
XFS 2 5 - - -
F2FS - 2 - - -
JFS - 1 - - -
Total 11 12 1 5 2

both extent-based and direct/indirect block organization. As
system developers take great effort to develop extent man-
agement, the size of its codebase (7K lines of codes) is much
larger than the codebase of direct/indirect block organiza-
tion (1.5K LoC). Such complexity obviously generates more
security issues (9×) than direct/indirect block organization.
As more features are integrated into file systems, such as flex-
ible/metadata block group and delay block allocation, they
bring more security issues. We summarize them in Table 4.

4.5 Crash-safety Model

Crash consistency models like journaling [35], logging [31],
shadow paging [12] are widely used in file systems. Take JFS
as an example, it employs a synchronous writing strategy
to log the storage operations and inode. Attackers could
exploit the vulnerability in JFS to obtain the kernel informa-
tion (CVE-2004-0181). Specifically, as JFS logs all relevant
in-memory data structures, some of them may not be prop-
erly initialized. Attackers could obtain the sensitive kernel
information by reading the raw device directly.

In addition, we find that vulnerability would occur when
the crash-safety model does not cooperate well with other
OS components like I/O scheduler (e.g., CVE-2017-7495).
For example, the I/O scheduler may reorder inode block and
data block. As a result, the inode block may come to the disk
before the data block, which violates the semantic ordered
journal model of JBD2. In this case, malicious users may read
stale data from disk, which include other users’ file content.

4.6 Semantic Mismatch with VFS

Virtual file system (VFS) provides the general data structures
and interfaces for underlying fs implementations. Each spe-
cific fs implementation must obey the specification provided
by the VFS. However, we find that there are many seman-
tic mismatches between VFS and fs implementations (e.g.,
CVE-2016-6198, CVE-2008-3275). For example, if a file is
renamed to a hardlink of itself, the underlying implementa-
tion of VFS ś OverlayFS unifies multilple file systems and
provides a hierarchical namespaces [28]. Different OverlayFS
layer has different inode for the same namespace. Therefore,
suppose a file is renamed to a hardlink of itself, VFS must
retrieve the real inode via d_select_inode during vfs_rename

procedure. Otherwise, VFSmay proceedwith incorrect inode,
resulting in data loss. It is desirable to develop techniques
to enforce the consistent assumption and implementation
across the storage stack from the VFS to underlying real fs.

12

APSys ’19, August 19–20, 2019, Hangzhou, China Miao Cai, Hao Huang, and Jian Huang

Summary: We identify that fs vulnerabilities center

around metadata management and data access permis-

sion checking. Particularly, metadata management is the

most vulnerable component in file systems, which occupies

74% of the total studied vulnerabilities.

5 EXPLOITING FS FEATURES

As we expected, we find that fs features could be exploited
by adversaries. In this section, we use two case studies to
demonstrate how adversaries could exploit the fs features to
facilitate their attacks.

5.1 Malformed Disks

Due to the complicated disk layout in file systems, adver-
saries could leverage a crafted disk image to conduct evil
maid attack. Most OS kernels automatically detect andmount
the untrusted devices with supported file systems [40]. Dur-
ing themounting procedure, only data fields in the superblock
are sanity checked, other critical system structure (e.g., block
metadata) are not verified. Consequently, the insane on-disk
structures pose severe threats to the computer system. Ac-
cording to our study, substantial vulnerabilities (29 cases) are
caused by mounting and manipulating malformed disk im-
ages. Recently, researchers propose solutions like Recon [9]
to perform fs consistency check to avoid metadata corrup-
tion. However, they assume that the disk is well-formed and
thus fail to detect malformed disk images.

5.2 Data Caching

Modern file systems use kernel page cache to improve ap-
plication performance. They cache data blocks in the page
cache for accelerating file accesses. We observe that page
cache could be exploited by attackers to corrupt the disk
data. For example, as reported in CVE-2015-8839, Ext4 pro-
vides hole punching to remove a portion of a file without
changing its size. To fulfill this function, the corresponding
data blocks resided in the page cache will be freed. However,
Ext4 does not synchronize the page fault and hole punching
procedure, leading to a race condition. In this case, page fault
handler would map the pages containing the freed blocks
into another process’s address space. Thus, disk data cor-
ruption would happen if these pages are written to disk. To
mitigate this issue, file systems should carefully handle the
consistency between memory states and disk states.

Summary: Adversaries do exploit fs features to facilitate

their attacks, and most of these vulnerabilities are not

easy to be detected. To defend against such attacks, file

systems should integrate security as an intrinsic property

to enforce essential checks in critical system components.

6 RELATED WORK

Bug and vulnerability study. Previous research has con-
ducted intensive studies on file systems bugs [21, 27], con-
currency bugs [8, 11, 19, 23], Linux kernel vulnerabilities [4],
virtual memory manager [14], and Linux malware [7]. Our
work uses a similar study methodology. However, it focuses
on the security vulnerability in Linux file systems. To the
best of our knowledge, this is the first work conducting such
a detailed study on the security vulnerability of file systems.

Bug and vulnerability detection. Fighting against fs
bugs has attracted much attention recently. We classify ex-
isting research works into two categories: debugging and
verification. Debugging tools like FiSC [43] and eXplode [41]
can detect fs bugs based on the identified bug patterns. The
patterns and insights derived from our study could inspire
researchers to build efficient tools to detect fs vulnerabili-
ties. Formal verification is another approach [1ś3, 5, 10, 33].
However, it is still challenging to verify the correctness of
an entire file system, due to their huge codebase [10, 33, 39].
Our study pinpoints the critical fs functions and components
that suffer from the most vulnerabilities, which could help
researchers narrow their codebase for verification.
Secure file systems. Beyond bug study and detection, re-

searchers also aim to build secure and reliable file systems [22,
26]. Lu et al. [22] proposed physical disentanglement to min-
imize storage faults propagation. Min et al. [26] leveraged
transaction flash storage to build a crash-consistent file sys-
tem. Our vulnerability study would motivate researcher to
enhance the security aspect of file systems and provide them
insights to build secure file systems.

7 CONCLUSION AND FUTUREWORK

In this paper, we conduct an empirical study on the security
vulnerabilities in popular file systems. Our findings reveal
their existing and potential design and implementation flaws.
We expect our study would motivate and inspire system
researchers and developers to build more secure file systems
and vulnerability-detection tools.

As the future work, we propose to extend such a vulnera-
bility study to more popular file systems running on different
computing platforms, such as distributed file systems and
mobile file systems. Inspired by the insights provided in this
paper, we plan to develop generic vulnerability-detection
and verification tools that can address a category of security
issues in file systems. And meanwhile, we will rethink the
design and implementation of file systems to integrate the
security as their inherent property.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feed-
back. This work was supported in part by NSF grant CNS-
1850317 and NetApp Faculty Fellowship Award.

13

Understanding Security Vulnerabilities in fs APSys ’19, August 19–20, 2019, Hangzhou, China

REFERENCES
[1] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter

Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,

Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby C.Murray, Gerwin

Klein, and Gernot Heiser. 2016. CoGENT: Verifying High-Assurance

File System Implementations. In Proceedings of the Twenty-First Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016.

175ś188.

[2] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,

Emina Torlak, and Xi Wang. 2016. Specifying and Checking File

System Crash-Consistency Models. In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April

2-6, 2016. 83ś98.

[3] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay

Ileri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017.

Verifying a high-performance crash-safe file system using a tree speci-

fication. In Proceedings of the 26th Symposium on Operating Systems

Principles, Shanghai, China, October 28-31, 2017. 270ś286.

[4] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-

dovich, and M. Frans Kaashoek. 2011. Linux kernel vulnerabilities:

state-of-the-art defenses and open problems. In APSys ’11 Asia Pacific

Workshop on Systems, Shanghai, China, July 11-12, 2011. 5.

[5] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for

certifying the FSCQ file system. In Proceedings of the 25th Symposium

on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October

4-7, 2015. 18ś37.

[6] Ann Chervenak, Vivekenand Vellanki, and Zachary Kurmas. 1998.

Protecting file systems: A survey of backup techniques. In Proceedings

of Joint NASA and IEEE Mass Storage Conference.

[7] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide

Balzarotti. 2018. Understanding Linux Malware. In 2018 IEEE Sympo-

sium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San

Francisco, California, USA. 161ś175.

[8] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010.

A study of the internal and external effects of concurrency bugs. In

Proceedings of the 2010 IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1

2010. 221ś230.

[9] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Ben-

jamin, Ashvin Goel, and Angela Demke Brown. 2012. Recon: verifying

file system consistency at runtime. In Proceedings of the 10th USENIX

conference on File and Storage Technologies, FAST 2012, San Jose, CA,

USA, February 14-17, 2012. 7.

[10] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Ker-

nels. In 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.

653ś669.

[11] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,

Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.

Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues

in Cloud Systems. In Proceedings of the ACM Symposium on Cloud

Computing, Seattle, WA, USA, November 03 - 05, 2014. 7:1ś7:14.

[12] Dave Hitz, James Lau, and Michael A. Malcolm. 1994. File System

Design for an NFS File Server Appliance. In USENIX Winter 1994 Tech-

nical Conference, San Francisco, California, USA, January 17-21, 1994,
Conference Proceedings. 235ś246.

[13] Jian Huang, Michael R. Allen-Bond, and Xuechen Zhang. 2017. Pallas:

Semantic-Aware Checking for Finding Deep Bugs in Fast Path. In Pro-

ceedings of the 22nd International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’17), Xi’an,

China, April 8-12, 2017.

[14] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. 2016. An

Evolutionary Study of Linux Memory Management for Fun and Profit.

In 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver,

CO, USA, June 22-24, 2016. 465ś478.

[15] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K. Qureshi.

2017. FlashGuard: Leveraging Intrinsic Flash Properties to Defend

Against Encryption Ransomware. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017. 2231ś2244.

[16] Jian Huang, Xuechen Zhang, and Karsten Schwan. 2015. Understand-

ing Issue Correlations: A Case Study of the Hadoop system. In Pro-

ceedings of ACM Symposium on Cloud Computing (SoCC’15), Kohala

Coast, Hawaii, 2015.

[17] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and

Kevin Fu. 2003. Plutus: Scalable Secure File Sharing on Untrusted

Storage. In Proceedings of the FAST ’03 Conference on File and Storage

Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco,

California, USA.

[18] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho.

2015. F2FS: A New File System for Flash Storage. In Proceedings of the

13th USENIX Conference on File and Storage Technologies, FAST 2015,

Santa Clara, CA, USA, February 16-19, 2015. 273ś286.

[19] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and

Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic

Concurrency Bugs in Datacenter Distributed Systems. In Proceedings

of the Twenty-First International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’16, Atlanta,

GA, USA, April 2-6, 2016. 517ś530.

[20] Yan Li, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger,

Ethan L. Miller, and Darrell D. E. Long. 2013. Horus: fine-grained

encryption-based security for large-scale storage. In Proceedings of the

11th USENIX conference on File and Storage Technologies, FAST 2013,

San Jose, CA, USA, February 12-15, 2013. 147ś160.

[21] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Shan Lu. 2013. A study of Linux file system evolution. In Proceedings

of the 11th USENIX conference on File and Storage Technologies, FAST

2013, San Jose, CA, USA, February 12-15, 2013.

[22] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. Physical Disen-

tanglement in a Container-Based File System. In 11th USENIX Sym-

posium on Operating Systems Design and Implementation, OSDI ’14,

Broomfield, CO, USA, October 6-8, 2014. 81ś96.

[23] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-

ing from mistakes: a comprehensive study on real world concurrency

bug characteristics. In Proceedings of the 13th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008. 329ś339.

[24] EthanMiller, Darrell Long, William Freeman, and Benjamin Reed. 2001.

Strong Security for Distributed File Systems. In 2001 IEEE International

Performance, Computing, and Communications Conference, IPCCC’01,

Phoenix, AZ, USA, April 4-6, 2001.

[25] Ethan L. Miller, Darrell D. E. Long, William E. Freeman, and Benjamin

Reed. 2002. Strong Security for Network-Attached Storage. In Pro-

ceedings of the FAST ’02 Conference on File and Storage Technologies,

January 28-30, 2002, Monterey, California, USA. 1ś13.

[26] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and

Young Ik Eom. 2015. Lightweight Application-Level Crash Consistency

14

APSys ’19, August 19–20, 2019, Hangzhou, China Miao Cai, Hao Huang, and Jian Huang

on Transactional Flash Storage. In 2015 USENIX Annual Technical

Conference, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA. 221ś234.

[27] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,

and Taesoo Kim. 2015. Cross-checking semantic correctness: the case

of finding file system bugs. In Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October

4-7, 2015. 361ś377.

[28] Overlayfs. 2019. https://wiki.archlinux.org/index.php/Overlay_

filesystem.

[29] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-

natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created

Equal: On the Complexity of Crafting Crash-Consistent Applications.

In 11th USENIX Symposium on Operating Systems Design and Imple-

mentation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. 433ś448.

[30] CVE Researcher Reservation Guidelines. 2019. https://cve.mitre.org/

cve/researcher_reservation_guidelines.

[31] Mendel Rosenblum and John K. Ousterhout. 1991. The Design and

Implementation of a Log-Structured File System. In Proceedings of the

Thirteenth ACM Symposium on Operating System Principles, SOSP 1991,

Asilomar Conference Center, Pacific Grove, California, USA, October

13-16, 1991. 1ś15.

[32] Andy Sayler and Dirk Grunwald. 2014. Custos: Increasing Security

with Secret Storage as a Service. In 2014 Conference on Timely Results

in Operating Systems, TRIOS ’14, Broomfield, CO, USA, October 5, 2014.

[33] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

2016. Push-Button Verification of File Systems via Crash Refinement.

In 12th USENIX Symposium on Operating Systems Design and Imple-

mentation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 1ś16.

[34] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N.

Soules, and Gregory R. Ganger. 2000. Self-Securing Storage: Protecting

Data in Compromised Systems. In 4th Symposium on Operating System

Design and Implementation (OSDI 2000), San Diego, California, USA,

October 23-25, 2000. 165ś180.

[35] Stephen Tweedie. 1998. Journaling the Linux ext2fs filesystem. In The

Fourth Annual Linux Expo, 1998.

[36] WannaCry Ransomware Attack. 2017.

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack.

[37] Jake Wires and Michael J. Feeley. 2007. Secure file system versioning

at the block level. In Proceedings of the 2007 EuroSys Conference, Lisbon,

Portugal, March 21-23, 2007. 203ś215.

[38] XFS. 2017.

https://en.wikipedia.org/wiki/XFS.

[39] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and

Zhaohui Li. 2016. A Practical Verification Framework for Preemptive

OS Kernels. In Computer Aided Verification - 28th International Con-

ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,

Part II. 59ś79.

[40] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and

Taesoo Kim. 2019. Fuzzing File Systems via Two-Dimensional Input

Space Exploration. In 2019 IEEE Symposium on Security and Privacy,

SP 2019, Proceedings, 20-22 May 2019, San Francisco, California, USA.

161ś175.

[41] Junfeng Yang, Can Sar, andDawson R. Engler. 2006. EXPLODE: A Light-

weight, General System for Finding Serious Storage System Errors. In

7th Symposium on Operating Systems Design and Implementation (OSDI

’06), November 6-8, Seattle, WA, USA. 131ś146.

[42] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson R.

Engler. 2006. Automatically Generating Malicious Disks using Sym-

bolic Execution. In 2006 IEEE Symposium on Security and Privacy (S&P

2006), 21-24 May 2006, Berkeley, California, USA. 243ś257.
[43] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musu-

vathi. 2004. Using Model Checking to Find Serious File System Errors.

In 6th Symposium on Operating System Design and Implementation

(OSDI 2004), San Francisco, California, USA, December 6-8, 2004.

15

