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Abstract

Byte-addressable, non-volatile memory (NVM) is emerging

as a revolutionary memory technology that provides persis-

tency, near-DRAM performance, and scalable capacity. To

facilitate its use, many NVM programming models have been

proposed. However, most models require programmers to

explicitly specify the data structures or objects that should

reside in NVM. Such requirement increases the burden on

programmers, complicates software development, and intro-

duces opportunities for correctness and performance bugs.

We believe that requiring programmers to identify the data

structures that should reside in NVM is untenable. Instead,

programmers should only be required to identify durable

roots ś the entry points to the persistent data structures at

recovery time. The NVM programming framework should

then automatically ensure that all the data structures reach-

able from these roots are in NVM, and stores to these data

structures are persistently completed in an intuitive order.

To this end, we present a new NVM programming frame-

work, named AutoPersist, that only requires programmers to

identify durable roots. AutoPersist then persists all the data

structures that can be reached from the durable roots in an

automated and transparent manner. We implement AutoP-

ersist as a thread-safe extension to the Java language and

perform experiments with a variety of applications running

on Intel Optane DC persistent memory. We demonstrate that

AutoPersist requires minimal code modifications, and signif-

icantly outperforms expert-marked Java NVM applications.

CCS Concepts ·Hardware→ Non-volatile memory; ·

Software and its engineering → Just-in-time compil-

ers; Source code generation.
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1 Introduction

There have recently been significant technological advances

towards providing fast, byte-addressable non-volatile mem-

ory (NVM), such as Intel 3DXPoint [37], Phase-ChangeMem-

ory (PCM) [52], and Resistive RAM (ReRAM) [10]. These

memory technologies promise near-DRAM performance,

scalable memory capacity, and data durability, which offer

great opportunities for software systems and applications.

To enable applications to take advantage of NVM, many

NVMprogramming frameworks have been proposed, such as

Intel PMDK [6], Mnemosyne [60], NVHeaps [21], Espresso

[62], and others [20, 23, 25, 35, 48]. While the underlying

model to ensure data consistency [20, 50] varies across frame-

works, all of these frameworks share a common trait: they

require the programmer to explicitly specify the data struc-

tures or objects that should reside in NVM. This limitation re-

sults in substantial effort from programmers, and introduces

opportunities for correctness and performance bugs due to

the increased programming complexity [53]. Moreover, it

limits the ability of applications to use existing libraries.

We believe that requiring users to identify all the data

structures or objects that reside in NVM is unreasonable. In-

stead, the user should only be required to identify the durable

roots, which are the named entries into durable data struc-

tures at recovery time. Given this input, the NVM framework

should then automatically ensure that all the data structures

reachable from these durable roots are in NVM.

In this paper, we present a new NVM programming frame-

work named AutoPersist that only requires programmers to

identify the set of durable roots. While most NVM frame-

works are implemented in C or C++, we choose to imple-

ment AutoPersist as an extension to the Java language. As

is common for managed languages, Java already provides

transparent support for object movement in memory, as well

as high-level semantics for programmers.
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AutoPersist shifts the burden of NVM programming to

the Java runtime system. In an efficient and thread-safe man-

ner, AutoPersist transparently and dynamically ensures that

objects reachable from the specified durable roots reside in

NVM, and stores to these data structures are persistently

completed in an intuitive order. AutoPersist also provides

support for failure-atomic regions. It provides these features

by extending the behavior of several bytecodes, modifying

the object layout, and introducing new runtime actions. Fur-

thermore, AutoPersist leverages profiling information col-

lected during application warm-up to make intelligent deci-

sions on object placement in advance.

To evaluate the performance and programmability of Au-

toPersist, we use various applications, including the H2 rela-

tional database [2] and a key-value store [8]. We implement

AutoPersist in the Maxine Java Virtual Machine [61], and

evaluate its performance on a server with Intel Optane DC

persistent memory. We find that, with minimal programmer

effort, AutoPersist significantly outperforms expert-marked

Java NVM applications. Overall, we make the following con-

tributions:
• We propose AutoPersist, a new Java-based NVM frame-

work that requiresminimal programmer intervention, while

ensuring memory persistency in a transparent manner.

• We extend a Java Virtual Machine with support for trans-

parent, efficient, and thread-safe object access and move-

ment across NVM and DRAM.

• We propose a profile-guided optimization that enables the

optimizing compiler to eagerly allocate objects in NVM,

reducing AutoPersist’s overhead by avoiding unnecessary

object movements at runtime.

• We evaluate AutoPersist on a server with Intel Optane DC

persistent memory, and demonstrate that it significantly

improves both usability and performance.

2 Background

2.1 Byte-Addressable Non-Volatile Memory

Recently, low-latency byte-addressable NVM (also known

as NVRAM), has become realizable. In 2017, Intel released

its first NVM device [3]. Since then, Intel and other compa-

nies have announced plans to introduce many more NVM

products in the near future. NVM has a higher density than

DRAM, allowing NVM to have larger capacities. Currently,

the performance of NVM is slightly worse than DRAM.

Hence, initial systems utilizing NVM are expected to be

hybrid systems consisting of both NVM and DRAM. Hy-

brid systems typically have a unified address space, allowing

applications to allocate data in both DRAM and NVM.

While NVM moves non-volatile storage a level closer to

the processor, many levels of volatile cache still exist between

the processor and the NVM. Hence, one needs to ensure

that a processor write to NVM propagates its value beyond

the levels of caches and into NVM. For this reason, x86-64

processors have introduced the CLWB instruction [9], which

writes back a cache line to NVM, while retaining the line in

the cache. Placing a CLWB instruction after a write ensures

that the update will reach NVM.

Still, when we have multiple writes, each followed by a

CLWB instruction, the order in which the updates reach

NVM and are made persistent is not deterministic. The hard-

ware may reorder the updates on their way to NVM. Hence,

to guarantee a distinct ordering, fences must be inserted.

Specifically, to guarantee that the CLWB instructions com-

plete one after the other, one needs to place the x86-64 stor-

age fence (SFENCE) instruction after every CLWB instruction.

2.2 Existing Frameworks for NVM

The Storage Networking Industry Association (SNIA) has

been working to standardize the interactions with NVM. It

has created a low-level programming model [4] meant to

be followed by device driver programmers and low-level li-

brary designers. In addition, an open source project has been

created to provide application developers with a high-level

toolset that is compliant with SNIA’s device-level model.

This project has resulted in the development of the Persis-

tent Memory Development Kit (PMDK) [6], a collection of

libraries in C/C++ and Java that a developer can use to build

durable applications on top of NVM.

PMDK requires that programmers explicitly label all the

persistent data in their code with pragmas. As an alternative,

PMDK also contains a few library data structures, such as a

durable array and hashmap, with the necessary persistent

pragmas already built into the library.

For persistently storing data, PMDK requires the program-

mer to either explicitly persist stores, or use demarcated

failure-atomic regions. Failure-atomic regions enable many

stores to persistent memory to appear to be persisted atom-

ically. Recently, PMDK has also introduced C++ templates

that allow some operations to be persistent without explicit

user markings.

In addition to the industrial efforts, academia has also

proposed several frameworks for NVM [20, 21, 23, 25, 35, 48,

60, 62]. The level of support provided by these frameworks

varies. At best, they provide a similar level of abstraction as

PMDK, with the user having to specify all durable objects and

also providing some minimal failure-atomic region support.

As an example, Figure 1 shows how to append to a durable

list of type E using pragmas representative of existing NVM

frameworks. As shown in the figure, the user is expected to

explicitly label all the objects to be allocated in NVM with

durable_new. In addition, after each store, explicit cache line

writebacks must be added to ensure that the values are writ-

ten back to memory. Further, a memory fence is necessary to

ensure that all persist operations have completed before the

method returns. We discuss the limitations of these existing

frameworks in the following section.
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t emp l a t e < c l a s s E>

c l a s s Du r a b l e L i s t {

E ∗ e lement ; Du r a b l e L i s t ∗ next ;

Du r a b l e L i s t append ( E ∗ e lement ) {

Du r a b l e L i s t ∗head =

durable_new Du r a b l e L i s t ( ) ;

head−>e lement= e lement ;

CLWB(&head−>e lement ) ;

head−>next = t h i s ;

CLWB(&head−>next ) ; SFENCE ( ) ;

r e t u r n head ;

}

}

Figure 1. Example using NVM pragmas.

3 Removing the Programming Burden

3.1 Limitations of Existing NVM Solutions

All existing NVM frameworks require the application devel-

oper to either mark all the data that should reside in NVM,

or to use specialized libraries where this marking has al-

ready been completed. This is both programmer intensive

and prone to correctness and performance bugs. Correctness

bugs occur when the user fails to mark all the data that must

reside in NVM, preventing the data from being recovered in

the event of a crash. Performance bugs occur when objects

not needed to be recovered are marked, forcing these objects

to unnecessarily use the slower NVM and be updated in a

persistent manner.

Both types of bugs occur because of the difficulty of cor-

rectly identifying the transitive closure of all the objects

reachable from a given object. Such analysis is necessary

when deciding what objects are reachable at recovery time

and hence must be placed in NVM. Determining this transi-

tive closure is difficult for multiple reasons, including alias-

ing, the use of libraries, and the sheer size of modern applica-

tion codebases. The use of libraries is especially problematic,

as it may not be possible to have access to the source code

to mark persistent objects within the libraries.

While requiring the programmer to label many objects is

both user-intensive and bug-prone, it does match the tradi-

tional level of abstraction provided by lower-level languages

such as C and C++. However, in higher-level managed lan-

guages such as Java, Scala, Python, and JavaScript, expecting

the programmer to perform this type of low-level reason-

ing is unacceptable. In managed languages, the underlying

object representation is hidden from the user, which allows

the runtime to decide how to allocate and lay out objects.

In addition, managed languages provide automatic mem-

ory management. The user does not need to reason about

object lifetimes; instead, the runtime automatically detects

and collects dead objects. Requiring developers of managed

language applications to explicitly add markings for objects

to reside in NVM does not match their expectations. Fur-

ther, it exposes part of the allocation process to the user,

violating the user-runtime boundary. In their paper, Shull

et al. [56] describe in more detail the drawbacks of existing

NVM frameworks and their misalignment with managed

languages.

3.2 A New Framework for Managed Languages

We argue that, in managed languages, it should be the run-

time’s obligation to identify non-volatile objects, and to en-

sure that they are persisted correctly. As managed languages

already transparently manage the underlying memory, it is

a natural extension of the runtime support to automatically

move objects to NVM as necessary when they need to be

recoverable.

Consequently, we propose a new framework model for

managed languageswhere the usermust only identify durable

roots. We call our new model and implementation AutoPer-

sist. In AutoPersist, we define durable roots to be the named

entry points into durable data structures at recovery time.

Given the set of these durable roots, AutoPersist’s runtime

has two requirements:

Requirement 1. All objects reachable from the durable root

set must be in NVM.

This requirement forces the runtime to dynamically check

objects and potentially move them throughout the execution.

To do so, the runtime must add additional checks to the code,

and dynamically update pointers to moved objects.

Requirement 2. All objects reachable from the durable root

set must be automatically persisted when modified.

This requirement forces the runtime to dynamically check

the status of objects throughout execution. When objects

reachable from the durable root set are updated, the updates

need to be persisted in the correct order.

This type of support is natural to have in managed lan-

guages, as they commonly monitor objects, determine reach-

ability from a root set, and move objects while performing

garbage collection (GC). Put in another way, we are propos-

ing to modify the behavior of mutator threads to actively

move objects to NVM when stores make these objects reach-

able from a durable root. This behavior is very similar to

concurrent GC. However, whereas the goal of concurrent

GC is to free memory while not introducing pauses, in our

framework the mutator threads move objects to NVM to en-

sure crash consistency. In addition, in our framework, after

these stores, the mutator threads must insert the necessary

cache line writebacks and fences to ensure the stores are

persisted in the correct order.

3.3 An Example

We present an example of the required behavior of AutoP-

ersist in Figure 2. Figure 2(a) shows the initial state of the

heap, where objects A, B,C , D, and E are in volatile memory,

and F andG are in NVM. ObjectG is pointed to by a durable

root and, hence, must be in NVM. Object F is reachable from
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Volatile Memory Non-Volatile MemoryVolatile Memory Non-Volatile Memory
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durable root

Volatile Memory Non-Volatile Memory

A
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(c) Correct State Change

durable root

E
nvm

C
nvm

1

Figure 2. Changing heap state to meet the requirements of AutoPersist’s model.

G and must also be in NVM. Because the other objects are

not reachable from a durable root, they do not need to be in

NVM.

The program changes theG → F pointer toG → E in Fig-

ure 2(b), which leaves the heap in an incorrect state. Objects

E and C are now reachable from G but are still in volatile

memory. They could not be recovered if a crash were to occur.

To ensure that our framework’s requirements are met, the

runtime makes the changes shown in Figure 2(c). Specifically,

beforeG’s pointer changes, the runtime moves E andC from

the volatile to the non-volatile heap (i.e., new objects Envm
and Cnvm ) (operation 1⃝). Then, it adjusts all the pointers to

the original E and C objects. Since F is not reachable from a

durable root anymore, eventually it will be moved back to

volatile memory.

4 AutoPersist Programming Model

4.1 Labeling Durable Roots

AutoPersist requires the programmer to declare the set of

durable roots. Declaring a durable root consists of two parts:

identifying the object and associating a name with it. We

add a new annotation to Java [32], @durable_root, which

is used to label fields containing objects. A field labeled with

@durable_root indicates that the object pointed to by this

field is a durable root.

Only static fields can be labeled with @durable_root in

our model. Static fields have a unique name in the application

environment, and hence can be easily identified at recovery

time. While adding support in AutoPersist to allow dynamic

fields to also be @durable_roots is trivial, we believe that

the benefits that this additional feature would provide are

outweighed by the opportunities for programmer mistakes

that it would introduce. As multiple instances of the object

could be created, it would be easy for the programmer to

makemistakes when associating the durable root to a specific

instance of the object.

4.2 Failure-Atomic Region Support

The default behavior of AutoPersist is to ensure that stores

to objects reachable from a @durable_root are persisted in

sequential order. However, in some situations, it may be nec-

essary to provide the appearance of multiple stores complet-

ing atomically from the crash-consistency perspective. To

allow this, our framework supports failure-atomic regions.

In AutoPersist, the user is expected to label the start and

end of failure-atomic regions. Given these labels, the runtime

ensures that all stores to objects reachable from a durable

root within this region complete atomically from a crash-

consistency perspective at the end of the region. There is

no additional user involvement. AutoPersist uses a flattened

nesting approach to ensure values are not made persistent

prematurely. Like other implementations [6, 31, 42, 46], our

failure-atomic region support is meant solely to provide all-

or-nothing visibility to persistent data in the event of a crash.

It does not detect data races or perform rollbacks like soft-

ware transactional memory. Instead, the user is still expected

to provide any synchronization needed to prevent data races

in accordance with the Java memory model [45]. This type

of concurrency model is known as an open transactional

model [16]. Section 6.5 covers how we implement failure-

atomic region support in AutoPersist.

4.3 Persistency Model

AutoPersist provides a simple and intuitive persistencymodel.

Outside of failure-atomic regions, all writes to values reach-

able from a @durable_root are persisted in a sequential

order. Inside of failure-atomic regions, no data is made per-

sistent until the end of the region. At that point, all stores to

data reachable from a @durable_root within the region are

made persistent atomically.

To ensure sequential persistency outside of failure-atomic

regions, AutoPersist detects the case when a valueV is being

stored into an objectO that is reachable from a @durable_root.

When this happens, the actions that AutoPersist takes de-

pend on the state of the value V being stored. If V is ei-

ther a primitive value or was previously reachable from a

@durable_root, then AutoPersist ensures that the store to

object O is done persistently by adding a CLWB and an

SFENCE after the store.

However, if V is an object that was not previously reach-

able from a @durable_root, before AutoPersist can store

V in O , AutoPersist must make V and its transitive closure

persistent. Note that the order in which AutoPersist makes

V and its transitive closure persistent does not affect the per-

sistency model. This is becauseV will be unrecoverable until

V is stored into O . It only matters that V and its transitive

closure are made persistent before this store is performed.
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While searching and potentially relocating V and its tran-

sitive closure, AutoPersist also inserts the necessary CLWBs

to ensure their persistency. Before the store of V in O , Au-

toPersist inserts an SFENCE to ensure that all CLWBs have

completed. After the store, AutoPersist inserts a CLWB and

an SFENCE. In Section 6.1, we discuss how to update the

objects that pointed to the old locations ofV or its transitive

closure.

Inside failure-atomic regions, before every store to an

object reachable from a @durable_root, AutoPersist saves in

a persistent undo log the value that will be overwritten. The

undo log operation is followed by a CLWB and SFENCE to

ensure that the log entry has beenmade persistent. After that,

the store to the object is performed and a CLWB is added to

write back the new update to NVM. At the end of the failure-

atomic region, AutoPersist inserts an SFENCE to ensure that

all the stored data has reached the NVM. Then, the undo log

is discarded. With this design, stores to objects reachable

from a @durable_root are allowed to be completed out of

order, but they are all persisted at the end of the region.

Moreover, if the atomic region fails to complete, the undo

log in persistent memory is used to undo all of the updates

in the region that were persisted. Such updates should not

be part of the crash-consistent program state.

This persistencymodel only applies to data reachable from

@durable_roots. None of the other data will be recovered in

the event of a crash. Hence, it does not need to abide by our

framework’s persistency model. Such data can be reordered

in accordance with the Java memory model standard.

4.4 Recovery API

In order to recover data from a @durable_root after a crash,

we must have recovery code that allows the program to

retrieve previous versions of an object as it starts-up. To

allow this, we extend the Java Object class to include a new

method, recover(String image), which attempts to re-

cover the value of the implicit object argument within a

named image. In order to differentiate multiple executions

running simultaneously, when initializing execution, the pro-

grammer is expected to provide an image name for the given

execution. This image name is used to recover objects from

the execution’s non-volatile heap. The recover method is

expected to be called from a @durable_root. If either the

named image cannot be found or the object the method is

invoked from is not a durable root, then null is returned.

Figure 3 shows a simple example of how to use thismethod.

The example tries to recover a key-value store. If the key-

value store cannot be recovered, then a new version of it is

instantiated.

4.5 Introspection API

A strength of AutoPersist is that its simple abstraction frees

the programmer from having to worry about many details.

However, sometimes, such as when debugging, the user may

@durab le_root

public s t a t i c KeyVa lueS tore kv ;

s t a t i c {

i f ( ( kv = kv . r e c ov e r ( " image_name " ) ) == null ) {

kv = new KeyVa lueS tore ( ) ;

}

}

Figure 3. Recovery API example.

want to extract more object information. For this reason, Au-

toPersist includes several method calls that allow for intro-

spection. The method calls are: isRecoverable(), inNVM(),

isDurableRoot(), inFailureAtomicRegion(tid), and

failureAtomicRegionNestingLevel(tid).

The functionality of most of these calls is self-evident. is-

Recoverable(), inNVM(), and isDurableRoot() are called

by an object and return a boolean of the requested infor-

mation. On the other hand, inFailureAtomicRegion(tid)

and failureAtomicRegionNestingLevel(tid) take a

thread identifier as argument, and query it for the desired

information.

4.6 Unrecoverable Keyword

In some situations, a programmer may decide that some

data reachable from a @durable_root does not need to be

recoverable across a crash. To provide this functionality,

AutoPersist includes the @unrecoverable annotation, which

can be applied to any dynamic object field. Any field labeled

with this annotation will disable AutoPersist’s requirements

on stores to that field.

We anticipate that @unrecoverable may be used to limit

the performance impact of persistency when objects can

be recovered or recreated via other means. However, we

strongly argue that the default behavior should be that all

objects reachable from durable roots should be handled in

a crash-consistent manner. This approach minimizes the

likelihood of programmer mistakes.

5 Applying AutoPersist to the JVM

In this section, we describe how we change the Java Virtual

Machine (JVM) to meet our NVM framework’s requirements.

In AutoPersist, an object can be in one of three states: Or-

dinary, Converted, and Recoverable. The ordinary state means

that the object will not be recovered in the event of a crash.

The recoverable state indicates that the object is reachable

from a durable root, and will be recovered in the event of

a crash. The converted state means that the object is in the

process of transitioning from the ordinary to the recoverable

state. The object and its transitive closure may not yet be

reachable from a durable root. However, the runtime is in

the process of making them reachable. For brevity, an object

that is in either the converted or recoverable state is said to

be in the ShouldPersist state.
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A programmer may choose to mark a field in an object as

@unrecoverable. In such case, AutoPersist does not perform

any persistency-related action on the field.

5.1 Modified Object Store Operations

Our framework alters the behavior of several JVM bytecodes.

Below we highlight the main changes to storing to static and

dynamic object fields, as well as to arrays.

5.1.1 Storing to Static Object Fields

Storing to a static field in Java is represented by the putstatic

(C,F,V) bytecode. Normally, this instruction stores value

V into field F of class C’s static object representation. Au-

toPersist’s new implementation of putstatic is shown in

Algorithm 1.

In the putStatic procedure, first, if the value to be stored

is an object, the algorithm finds the real current location

of the object (Line 3). This is necessary because, as we will

discuss in Section 6.1, when an object is moved to NVM, not

all the pointers to it are immediately updated. Instead, Au-

toPersist leaves behind some temporary forwarding objects

that point to the object’s new location in NVM.

Next, if the field being stored to is a persistent root and

the value being stored into the field is not recoverable, then

the value is made recoverable (Lines 4-5). This is the only

case that needs action for stores to static object fields.

After this, if the thread is in a failure-atomic region and

the field is a persistent root, the old value is logged. Next, the

value is written to the field. Finally, if the field is a persistent

root, then the address of the object is stored in a global table

(Line 13) that will be used to retrieve the object in a recovery.

5.1.2 Storing to Dynamic Object Fields and Arrays

Storing to a dynamic object field in Java is represented by

the putfield(H,F,V) bytecode. Normally, this instruction

stores value V into field F of dynamic object field holder H .

Procedure putField in Algorithm 1 shows our new imple-

mentation. It is similar to putStatic, but has a few notable

differences. First, the field being stored to cannot be a persis-

tent root, so this condition does not need to be checked. Sec-

ond, the holder object itself may now be in the ShouldPersist

state. Therefore, for putField, the state of the holder object

dictates whether the value to be stored must be made recov-

erable. Note that if the field is marked as @unrecoverable,

no persistency action is taken. Line 20 reflects the appropri-

ate check used to determine whether the value needs to be

made recoverable.

After the object’s field is updated (Line 27), the state of

the holder determines what additional actions must be per-

formed to satisfy our model. If the holder object is in the

ShouldPersist state and the field stored to is not @unrecoverable,

then the corresponding cache line is written back (Line 29).

Further, if we are not in a failure-atomic region, a fence is

inserted to guarantee completion of the writeback (Line 31).

Algorithm 1Modified object store operations.

1: procedure putStatic(class, field, value)

2: if typeof(value) is Object then

3: value = getCurrentLocation(value)

4: if isDurableRoot(field) and !isRecoverable(value) then

5: value = makeObjectRecoverable(value)

6: end if

7: end if

8: if inFailureAtomicRegion(tid) and isDurableRoot(field) then

9: logStore(class, field)

10: end if

11: writeField(class, field, value)

12: if isDurableRoot(field) then

13: RecordDurableLink(field, value)

14: end if

15: end procedure

16: procedure putField(holder, field, value)

17: holder = getCurrentLocation(holder)

18: if typeof(value) is Object then

19: value = getCurrentLocation(value)

20: if !isUnrecoverable(field) and isShouldPersist(holder) and !isRe-

coverable(value) then

21: value = makeObjectRecoverable(value)

22: end if

23: end if

24: if inFailureAtomicRegion(tid) and !isUnrecoverable(field) and is-

ShouldPersist(holder) then

25: logStore(holder, field)

26: end if

27: writeField(holder, field, value)

28: if !isUnrecoverable(field) and isShouldPersist(holder) then

29: cachelineWriteback(holder, field)

30: if !inFailureAtomicRegion(tid) then

31: persistFence()

32: end if

33: end if

34: end procedure

35: procedure arrayStore(holder, index, value)

36: holder = getCurrentLocation(holder)

37: if typeof(value) is Object then

38: value = getCurrentLocation(value)

39: if isShouldPersist(holder) and !isRecoverable(value) then

40: value = makeObjectRecoverable(value)

41: end if

42: end if

43: if inFailureAtomicRegion(tid) and isShouldPersist(holder) then

44: logStore(holder, index)

45: end if

46: writeArray(holder, index, value)

47: if isShouldPersist(holder) then

48: cachelineWriteback(holder, index)

49: if !inFailureAtomicRegion(tid) then

50: persistFence()

51: end if

52: end if

53: end procedure

Stores to arrays (JVM’s {a,b,c,d,f,i,l,s}astore byte-

codes) are also modified in a way similar to putfield. Pro-

cedure arrayStore in Algorithm 1 shows the modifications.
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5.2 Object Header

As the internal object representation is hidden from the user

in Java, we modify the object layout to assist with our im-

plementation. We add a 64-bit header word to each object,

which we call the NVM_Metadata header. This header stores

information about the state of the object relevant to AutoP-

ersist. Figure 4 shows the fields in our object header word.

1 1 1 1 1 1 1 1 7 48

forwarding ptr / alloc profile index
m

odifying count

copying

gc m
ark

forw
arded

has profile

queued

non-volatile

converted

requested non-volatile

1

recoverable

Figure 4. NVM_Metadata header contents.

In the header, the converted and recoverable bits denote

the object state: converted objects have the converted bit

set; recoverable ones have the recoverable bit set; ordinary

objects have both bits clear. The rest of the bits are introduced

in subsequent sections.

6 Advanced Implementation Aspects

This section describes transparently updating pointers, de-

termining which objects to move to NVM, thread safety,

garbage collection, and failure-atomic region support.

6.1 Transparently Updating Pointers

When an object is moved from volatile memory to NVM, all

pointers to the original location of the object must be updated

to reflect its new location (Figure 2). However, AutoPersist

adjusts the pointers lazily; for performance, it temporarily

inserts a level of indirection for some pointers until GC

occurs.

For example, in Figure 2, when objectsC and E are moved

to NVM, the pointers from objects A, D, E, and G would

also need to be updated. However, supporting the ability to

change all of these pointers at the time of the move would

have prohibitive performance overheads. Indeed, we would

have to add a pointer table, and introduce a level of indi-

rection to all pointer accesses. Alternatively, at the time of

the move, we could search the entire heap to discover and

update pointers to the moved objects. Either of these options

would result in significant slowdowns.

Consequently, AutoPersist temporarily retains the original

C and E objects and converts them into forwarding objects.

Only the new pointers from the recoverable objects (G and

Envm) point to the new recoverable copies of the objects

(Envm and Cnvm ). The other pointers are left pointing to the

forwarding objects (i.e., A to C , and D to E) until a GC cycle

is executed.

Note that this approach is correct, as it relies on the fol-

lowing key insight: if an object is in volatile memory, then

all pointers to the object must be from objects not reachable

from the durable root set. This is true by Requirement 1.

Hence, if an object is moved, its original location can be used

as a temporary forwarding pointer for pointers from objects

in volatile memory. The only objects that cannot use this

forwarding pointer in volatile memory are the objects that

were in NVM or have been moved to NVM. The pointers

from these objects are updated during the moving process.

In AutoPersist, the NVM_Metadata header of forwarding

objects is set as follows: the forwarded bit is set, and the

48-bit forwarding ptr field points to the object’s real location

in NVM (Figure 4). In addition, some JVM bytecodes are

adjusted to check for forwarding objects.

Algorithm 2 shows how bytecodes must be altered. First,

procedure getCurrentLocation retrieves the current loca-

tion of an object. It checks the object’s forwarded bit in the

NVM_Metadata header to see if the object currently pointed

to is a forwarding object (Line 2). If so, the procedure reads

the real location of the object from the forwarding ptr field

in the header (Line 3).

Algorithm 2Modified object load operation.

1: procedure getCurrentLocation(ob j )

2: if isForwarded(obj) then

3: return getForwardingPtr(obj)

4: end if

5: return obj

6: end procedure

7: procedure getField(holder, field)

8: holder = getCurrentLocation(holder)

9: value = readField(holder, field)

10: if typeof(value) is Object then

11: newValue = getCurrentLocation(value)

12: end if

13: return newValue

14: end procedure

The second procedure, getField(H,F), shows how the

JVM bytecode getfield must be modified. Originally, this

instruction loads the value stored in field F of dynamic

object field holder H onto the JVM stack. Now, we call

getCurrentLocation to ensure that the correct pointers are

being used (Lines 8 and 11). Many of the procedures shown in

Algorithm 1 must also perform this same check. Similar mod-

ifications are made to other JVM bytecodes that load and

store values, namely, getstatic, if_acmpeq, if_acmpne,

monitorenter, monitorexit, and the various array load

bytecodes.

During GC, pointers to forwarding objects are updated

to point to the real objects, and the forwarding objects are

removed. As GC already must adjust pointers, it is natural

for AutoPersist to perform this operation during GC.

6.2 Movement of Objects

In AutoPersist, it is the responsibility of the runtime to move

objects to NVM when necessary during execution, to ensure

all objects reachable from the durable root set are in NVM.
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This means that the runtime must potentially trace the tran-

sitive closure of an object to ensure that all reachable objects

are persistent.

Algorithm 3 shows the various procedures used for this

operation. Procedure makeObjectRecoverablemanages the

phases of the operation. First, the initial object (i.e., the one

that initiates the transitive search) is passed to procedure

addToQueueIfNotCoverted (Line 2) to be added to a thread-

local work queue. This queue holds the objects that need to

be processed to ensure that the transitive closure is in NVM.

To ensure that a given object is not placed twice in the work

queue, we add the queued bit in the NVM_Metadata header

of each object (Figure 4). If an object is in the work queue, the

queued bit is set. Inter-thread dependencies are also detected

at this point (Line 18). Note that multiple threads may be

performing this action simultaneously. Hence, we use a CAS

operation to set the queued bit (Line 22). Once the queued

bit is set, the object is placed in the local work queue without

synchronization.

Next, procedure convertObjects is called. This proce-

dure processes the objects in the work queue (Line 28). For

each object, we first check whether it is already allocated

in NVM. The non-volatile bit in the NVM_Metadata header

(Figure 4) is set if the object is in NVM. If the bit is not set,

the object is moved to NVM (Line 31). In either case, cache

line writebacks must be inserted to guarantee that the entire

contents of the object are persistent (Line 33). Since AutoPer-

sist can precisely determine an object’s layout, the runtime

is able to insert the minimal number of CLWBs necessary

to ensure that the entire object has been written back. Next,

the converted bit of the NVM_Metadata header is set. After

this, we search all the objects that are reachable by pointers

from the current object and, if necessary, add them to the

work queue (Line 36). Note that fields annotated with the

@unrecoverable marking are not searched.

While doing this, the algorithm also checks each of the

pointers to see if they will need to be updated. Pointers will

need to be updated if the object they point to will be moved

to NVM while executing this algorithm. Such pointers are

placed in another queue, the ptr queue, for later processing

(Line 38). Recall that these updates are necessary to pre-

vent persistent objects from pointing to volatile forwarding

objects.

Finally, if the object has moved, we want the work queue

to point to the new location of the object (Line 41).

When the convertObjects procedure returns, the thread

must ensure that other objects reachable from the initial

object and that are being persisted by other threads are al-

ready persisted. This is done by monitoring a global table

and checking whether the other threads have finished their

work (Line 4). If they have not, the thread waits until they

do. In practice, we observe very little wait time.

The next step is to call procedure updatePtrLocations

to update all pointer locations within the ptr queue (Lines 47

Algorithm 3 Transitive persist.

1: procedure makeObjectRecoverable(object)

2: addToQueueIfNotConverted(object)

3: convertObjects()

4: wait for other threads to complete phase

5: updatePtrLocations()

6: wait for other threads to complete phase

7: markRecoverable()

8: return getCurrentLocation(object)

9: end procedure

10: procedure addToQueueIfNotCoverted(obj)

11: do

12: obj = getCurrentObject(obj)

13: oldHeader = readPersistentHeader(obj)

14: if isRecoverable(obj) then

15: return

16: end if

17: if isConverted(obj) or isQueued(obj) then

18: detect any inter-thread dependency

19: return

20: end if

21: newHeader = setIsQueued(oldHeader)

22: while !CAS(obj, oldHeader, newHeader)

23: workQueue.add(obj)

24: return

25: end procedure

26: procedure convertObjects

27: idx = 0

28: while idx != workQueue.size() do

29: obj = workQueue[idx]

30: if !isNonVolatile(obj) then

31: obj = moveToNonVolatileMem(obj)

32: end if

33: write back entire object to NVM

34: setIsConverted(obj)

35: for (ref, offset) in nonUnrecoverableReferences(obj) do

36: addToQueueIfNotConverted(ref)

37: if !isNonVolatile(ref) then

38: ptrQueue.add(obj, offset, ref)

39: end if

40: end for

41: workQueue[idx] = obj

42: idx += 1

43: end while

44: end procedure

45: procedure updatePtrLocations

46: while ptrQueue.size() != 0 do

47: (obj, offset, ref) = ptrQueue.pop()

48: ref = getCurrentLocation(ref)

49: writeOffset(obj, offset, ref)

50: end while

51: end procedure

52: procedure markRecoverable

53: idx = 0

54: while !workQueue.isEmpty() do

55: obj = workQueue.pop()

56: setRecoverable(obj)

57: end while

58: end procedure
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to 49). Afterwards, once again in rare cases, the thread pauses

for other threads to complete their work (Line 6).

The last step of this algorithm is to call the markRecoverable

procedure to set the recoverable flag of all objects modified

by this thread (Line 7). Recall that when recoverable is set for

an object, it means that all objects reachable from this object

are also persistent. This is stronger than the converted flag,

which is a transition state. Finally, the process returns the

object’s current location (Line 8).

Mapping our three object states to traditional tri-color

GC terms [27], the ordinary state is the white color, the con-

verted state is the gray color, and the recoverable state is the

black color. In other words, if a mutator thread encounters a

converted object while performing a store, then it must proac-

tively make the object’s new transitive closure recoverable,

even though the object is not yet reachable from a durable

root. This is necessary to ensure that a crash-consistent state

is maintained in the presence of concurrent mutations.

6.3 Thread Safety

Since Java is multithreaded, it is possible for a thread to try

to access an object as the object is being moved to NVM.

Without precautions, this can create a race condition that

creates an execution state not possible in the Java memory

model. To prevent this, caution must be taken in two places:

when moving objects to NVM, and when storing to objects.

This is because, without synchronization, it may be possible

for these two events to race and for stores to be lost.

To prevent this race from occurring, we introduce two new

fields in the NVM_Metadata header: copying and modifying

count (Figure 4). The copying flag is set while the object

is being copied over to NVM. The modifying count field

indicates the number of threads that are currently in the

process of modifying the object. Both fields are updated

using CAS operations.

Algorithm 4 shows moveToNonVolatileMem, the thread-

safe procedure to move an object to NVM. A thread is only

allowed to copy an object to NVM when no other thread is

in the process of modifying the object. Hence, the procedure

checks the object’s modifying count and waits to perform

the copy until the modifying count is zero (Line 6).

To improve performance, we perform two optimizations.

First, while an object is being copied, we still allow another

thread to modify the object. To modify the object, a thread

clears the copying flag before performing the modification.

Hence, if the copying thread detects that the copying flag

has been cleared during the copying (Line 14), then the copy

must be performed again. Otherwise, the operation has been

successful, and the thread resets the copying flag (Line 18).

The second optimization is not to increment the modify-

ing count unless necessary. Incrementing the count is only

necessary if the modifying thread detects that the object may

have moved while it was performing the modification. The

thread can check this by reading the object’s NVM_Metadata

Algorithm 4Moving object to NVM.

1: procedure moveToNonVolatileMem(obj)

2: newObj = allocateNVM(sizeof(obj))

3: while true do

4: do

5: oldHeader = readPersistentHeader(obj)

6: if getModifyingCount(oldHeader) > 0 then

7: continue

8: end if

9: newHeader = setIsCopying(oldHeader)

10: while !CAS(obj, oldHeader, newHeader)

11: copyMem(obj, newObj, sizeof(obj))

12: do

13: oldHeader = readPersistentHeader(obj)

14: if !isCopying(oldHeader) then

15: continue

16: end if

17: newHeader = unsetIsCopying(oldHeader)

18: while !CAS(obj, oldHeader, newHeader)

19: return newObj

20: end while

21: end procedure

header state and the object’s address before and after it per-

forms the write. Note that we need to place a fence between

the write and subsequent reads to ensure that the write has

completed by the time the reads are issued. If a change is

detected, the write is repeated, this time incrementing the

modifying count. This code is not shown due to lack of space.

6.4 Allocation and Garbage Collection

Since there are now volatile and non-volatile portions of the

heap, our runtime’s allocator and garbage collector must be

adjusted to account for this expansion, and to ensure that

objects are placed in the correct portion of the heap. For

allocation, thread local allocation buffers (TLABs) are used.

Each thread has both a volatile and a non-volatile TLAB,

which it can use to bump-allocate objects.

For GC, our implementation uses a stop-the-world copying

collector for both parts of the heap. During a collection, if a

forwarding object is encountered, all pointers to that object

are adjusted to point to the object’s new location, and the

forwarding object is reaped.

Normally, during GC, objects are copied to either volatile

memory or NVM based on their original location. One opti-

mization we add to our GC implementation is to detect if an

object is no longer reachable from a durable root and, if so,

move the object back to volatile memory. To implement this

optimization, we use two new flags in the NVM_Metadata

header: gc mark and requested non-volatile (Figure 4). The

gc mark flag is used during the GC cycle to identify which

objects are reachable from a durable root. Before a GC cycle

starts, our collector walks the heap and sets the gc mark

flag for all objects that are reachable from a durable root.

These are the objects that must stay in NVM. The requested

non-volatile flag indicates to the collector that this object

should remain in NVM even if it is not reachable by any
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durable root. We use this flag so as not to interfere with the

optimization we propose in Section 7.

Note that since some objects are moved back from NVM

to volatile memory during a GC cycle, it is possible for some

objects not reachable from the durable root set to be still in

NVM when an application crashes. To ensure consistency,

at recovery time, when an existing image is loaded, a GC

cycle is performed on the NVM to free all the objects not

reachable from the durable root set.

6.5 Failure-Atomic Region Support

As described in Section 4.2, AutoPersist supports failure-

atomic regions. Given the semantics of AutoPersist, we are

given much flexibility in choosing how to design our imple-

mentation. Currently, AutoPersist uses per-thread undo logs

with write-ahead logging. As shown in Algorithm 1 (Lines 9,

25, and 44), inside a failure-atomic region, any value within a

durable object that will be overwritten is first logged ahead of

the store. This involves copying the original value, a pointer

to the object, and the value’s offset within the object’s in-

ternal layout to a thread-local log. Logging this information

ensures that the object can be correctly restored in the event

of a crash.

For each JVM thread, AutoPersist adds a counter indicating

the current failure-atomic region nesting level, and a pointer

to its thread-local undo log. The undo log is also considered

a durable root, to ensure that all objects pointed to by the log

continue to be persisted correctly. At the end of the failure-

atomic region, the thread’s undo log is cleared, allowing any

dead objects to be reclaimed.

Many previous works have tried to optimize the perfor-

mance of logging within failure-atomic regions [28, 30, 31, 40,

42, 46, 55, 60]. We believe that many of their optimizations

can also be applied to AutoPersist. Since the implementation

of our failure-atomic region support is transparent to the

user, our runtime is free to internally change its implemen-

tation. We leave this as future work.

7 Optimizing Object Allocation

Modern Java implementations support tiered compilation.

When a method is first invoked, it is compiled by a compiler

that completes quickly but does not generate very optimized

code. Later, if the method is deemed important, it is recom-

piled using an optimizing compiler that produces higher-

quality code. In addition, the initial compiler tier typically

inserts profiling information into the code, which is later

used by the optimizing compiler to generate better code.

In AutoPersist, we modify the initial compiler to produce

profiling information that is used by the optimizing compiler

to reduce object handling overhead. Specifically, a source of

overhead in our implementation is when an object is moved

to NVM because it becomes reachable from a durable root.

AutoPersist reduces this overhead by predicting that an ob-

ject will eventually be moved to NVM, and eagerly allocating

it in NVM in the first place. To support this optimization,

AutoPersist inserts profiling information to identify which

allocation sites often create objects that later need to be

moved to NVM. Once these sites are identified, AutoPersist

eagerly allocates objects from these sites in NVM. Note that

determining such information statically is hard due to the

presence of numerous control-flow paths and aliasing, and

the need for inter-procedural analysis.

AutoPersist’s profiling information is implemented as fol-

lows. First, each profiled allocation site is given an entry in

a global table called allocProfile. The entry contains a count

of the number of objects allocated from this site that are

later moved to NVM. During execution, as objects are in-

stantiated, two new fields in their NVM_Metadata header

(Figure 4) are set as follows: the has profile flag is set, and

the alloc profile index field is set to the index of the entry

within the allocProfile table corresponding to its allocation

site. If the object is later moved to NVM, the entry within

allocProfile corresponding to the object’s allocation site is

incremented. To access the correct entry within allocProfile,

the object’s alloc profile index field is read. Note that it is

fine for both the forwarding ptr and the alloc profile index

to share the same field in the NVM_Metadata header, as they

are not needed at the same time.

The compiler also retrieves profiling information on the

number of method invocations and branch behavior. Via this

information, the compiler is able to accurately estimate the

total number of objects allocated from a site. Later, when the

optimizing compiler recompiles a method, for each of its al-

location sites, it checks the total number of objects allocated

and the allocProfile count. Based on these values, it decides

on whether the site should either continue to allocate objects

in volatile memory or switch to eagerly allocating in NVM.

To prevent the GC from moving objects eagerly allocated in

NVMback to volatile memory, these objects set the requested

non-volatile flag (Section 6.4) in their NVM_Metadata header.

Note that deciding which memory to use for initial object

allocation is a performance issue and not a correctness one.

AutoPersist guarantees that the necessary objects will be

moved to NVM to meet our model’s requirements. This pro-

filing information simply helps to attain higher performance.

8 Evaluation Environment

Compiler Platform.We implement the AutoPersist frame-

work within the Maxine JVM [61]. Maxine is an open-source

research JVM that enables the fast prototyping of new fea-

tures while achieving competitive performance. We use Max-

ine 2.0.5, and modify both its initial tier compiler (T1X) and

its optimizing compiler (Graal). In addition, we modify its ob-

ject layout to integrate our NVM_Metadata header (Figure 4),

add new NVM heap regions, extend its GC (Section 6.4), and

implement failure-atomic regions (Section 6.5).

ServerConfiguration.Weuse a serverwithmultiple 128GB

Intel Optane DC persistent memory modules and 384GB of
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DDR4 DRAM. The server contains two 24-core Intel® second

generation Xeon® Scalable processors (codenamed Cascade

Lake), and runs Fedora 27 on Linux 4.15. In all of our exper-

iments, we set up AutoPersist to reserve 20GB for each of

the volatile and non-volatile heap spaces. To create the non-

volatile heap, we use libpmem [6] to map a portion of the

application’s virtual address space to NVM. After that, via

the Direct Access (DAX) protocol, applications can directly

interact with the Intel Optane DC persistent memory. We

use cache line writebacks (CLWB) and store memory fences

(SFENCE) to persist values.

8.1 Applications

To evaluate AutoPersist, we perform experiments on two

real-world applications, namely, a key-value store and the

H2 relational database, and several kernels.

Key-Value Store. We implement a persistent version of a

key-value store using AutoPersist. Specifically, we modify

QuickCached [8], a pure Java implementation of Memcached

to use persistent data structures internally for its key-value

storage. The different backends that we compare are:

• IntelKV. This is Intel’s pmemkv library [7], along with its

Java bindings. This backend uses its kvtree3 configuration,

which consists of a hybrid b+ tree written in C++ using the

PMDK library version 1.5. Similar to existing works [49],

in this implementation, only the leaf nodes are in persis-

tent memory. Note that the IntelKV backend does not use

AutoPersist. Hence, it runs on an unmodified JVM.

• Func. This backend uses the PCollection library [5] and

is implemented in Java. We create two versions: one in

AutoPersist and one using the Espresso framework [62].

Espresso requires the user to add markings identifying

objects to allocate in NVM, to mark stores that must be

flushed to NVM, and to insert memory fences.

• JavaKV. This backend uses the same B+ tree structure as

IntelKV and is implemented in Java. Like Func, we create

two versions: one in AutoPersist and one in Espresso.

H2 Database.We modify the H2 relational database [2] to

use AutoPersist. H2 is a popular SQL database written in

Java. Currently, H2 has two persistent storage engines. One

is MVStore, which is a log structured store and is currently

H2’s default storage engine. The other is PageStore, which is

H2’s legacy backend. We modify MVStore to use AutoPersist

to persist the database’s internal data structures instead of

writing them out to files. In the evaluation, we compare our

modified storage engine against bothMVStore and PageStore.

For a fair comparison, we direct MVStore and PageStore to

use NVM as storage, as opposed to SSDs, to ensure their file

operations execute as efficiently as possible.

Database Driver. To evaluate the performance of both the

key-value store and H2 database, we use the Yahoo! Cloud

Serving Benchmark (YCSB) [24]. This is a benchmark suite

commonly used to evaluate the performance of cloud storage

services. We run its A, B, C, D, and F workloads after loading

the databases with one million records. Each record is 1KB by

default. For each workload, we perform 500,000 operations.

Kernels. To characterize our framework, we combine into a

benchmark several kernels that perform a random collection

of reads, writes, inserts, and deletes to five persistent data

structures: MArray, MList, FARArray, FArray, and FList. We

list them in Table 1. We hand-wrote MArray, MList, and

FARArray to ensure correct persistent operation. FArray and

FList are functional data structures from the PCollections

library [5], and inherently use persistent-safe structures.

Table 1. Persistent data structure description.

Data Structure & Description

Mutable ArrayList (MArray): ArrayList using copying to maintain

persistency for inserts and deletes. Updates are in place.

Mutable LinkedList (MList): Doubly-linked list.

Failure-Atomic Region ArrayList (FARArray): ArrayList using

failure-atomic regions to allow in-place insertions and deletions.

Functional ArrayList (FArray): Functional data structure that uses

copying for data structure writes. Uses PCollection’s PTreeVector class.

Functional LinkedList (FList): Functional data structure that uses

copying for writes to the structure. Uses PCollection’s ConsPStack class.

Table 2 shows the different AutoPersist-based NVM frame-

works we use in this evaluation. NoProfile is AutoPersist

without the profiling optimization described in Section 7.

T1X is NoProfile but only using the initial tier compiler (T1X).

T1XProfile is T1X plus collecting the profiling information de-

scribed in Section 7. In other words, both T1X and T1XProfile

are not using the optimizing compiler (Graal). AutoPersist is

the full AutoPersist framework with all of its optimizations.

Table 2. Frameworks evaluated.

Framework Description

NoProfile AutoPersist without the profiling opt. of Section 7

T1X NoProfile but only using the initial tier compiler (T1X)

T1XProfile T1X plus collecting the profiling info of Section 7

AutoPersist Complete AutoPersist

Espresso* Our implementation of Espresso [62]

We also created our own implementation of Espresso [62],

which we call Espresso*. Espresso* requires the user to add

markings identifying objects to allocate in NVM, to mark

stores that must be flushed to NVM, and to insert memory

fences. We have tried to faithfully implement Espresso* in the

most optimal way possible, including creating new compiler

intrinsics and developing new JVM built-in calls to ensure

that the Espresso* markings execute as efficiently as possible.

9 Evaluation

9.1 Model Usability

A key benefit of AutoPersist is that it requires a developer

to add only minimal markings in their program to ensure

crash consistency. Specifically, the markings are: identifying

the durable root set, inserting failure-atomic region entry

and exit points, and marking unrecoverable fields for higher
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Table 3. Number of markings for memory persistency.

Framework Applications Kernels Total Markings

Func JavaKV H2 MArray MList FARArray FArray FList without H2

AutoPersist 4 6 6 1 1 5 1 1 19

Espresso* 55 45 N/A 49 48 63 47 14 321
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Figure 5. Key-value store execution time.
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Figure 6. H2 execution time.

performance. This is in contrast to Espresso*, which needs

explicit markings for each persistent object allocation, cache

line writeback to NVM, and fence [62].

Table 3 shows the number of markings added for each

application when using AutoPersist and Espresso*. Table 3

shows that AutoPersist only needs 25 markings in total (or

19 markings without H2). In contrast, when using Espresso*,

the programmer needs to add 321 markings in the programs

to ensure crash consistency. Note that we did not implement

a persistent version of H2 in Espresso* due to the difficulty

of implementing it correctly. In their paper, Wu et al. [62]

claim to need to modify around 600 LoC to implement a

persistent version of H2 in their framework, built on top

of DataNucleus [1]. They also estimated that, if they had

implemented their system directly on top of H2, they would

have needed to modify over 3,000 LoC.

There is a significant difference in the number of mark-

ings required in the two frameworks. However, in our ex-

perience, even this difference does not do justice to the fact

that we found itmuch more difficult to create a correct crash-

consistent application in Espresso*. Overall, using AutoPer-

sist greatly reduces programmer effort and the likelihood of

introducing performance or correctness bugs.

9.2 Analysis of the Key-Value Store

Figure 5 shows the execution time of different persistent

key-value store backends while running YCSB. In the figure,

the different versions of the Func and JavaKV backends are

named as {backend}-{framework}, where framework can be

E for Espresso* and AP for AutoPersist. We also show a

bar for IntelKV. The execution time is normalized to Func-

E. We break down the execution time into four categories

which, from top to bottom, are: Logging, Runtime, Memory,

and Execution. Logging is the time spent performing logging

in failure-atomic regions. Note that it does not include the

time spent executing CLWB or SFENCE instructions while

performing this logging. Runtime is the time spent by the

AutoPersist runtime ensuring that the transitive closure of

the durable root set resides in NVM, and moving objects to

NVM as necessary. It corresponds to the execution of the

makeObjectRecoverable method (Algorithm 3). Memory is

the overhead of executing CLWB and SFENCE instructions.

Finally, Execution is the remaining execution time. Note that

Logging and Runtime only apply to AutoPersist backends.

Also, IntelKV cannot be broken down because it uses a C++

library that we cannot instrument; all its time is Execution.

Looking at the Average bars, we see that the execution

time of IntelKV is 116% and 119% higher than of Func-E and

JavaKV-E, respectively, which correspond to a previously

proposed system. More importantly, the execution times of

our Func-AP and JavaKV-AP backends are 31% and 28% lower

than of Func-E and JavaKV-E, respectively.

The reason why IntelKV is substantially slower than the

others is that, since the QuickCached application is written

in Java and the pmemkv library in C++, the data objects must

be serialized in order to pass them from QuickCached to the

pmemkv library. For the backends implemented in pure Java,

the data does not need to be serialized, as the non-volatile

portion of the heap provides crash consistency.

AutoPersist significantly outperforms Espresso* due to

having a practically negligible Memory time. This is because

AutoPersist’s runtime is able to limit the number of CWLBs

when objects become reachable from the durable root set.

Specifically, as AutoPersist is built into the JVM, it has precise

knowledge of the address and layout of the objects. Hence,

when objects become recoverable, it emits a single CLWB

per cache line, reducing the total number of CLWBs. On the

other hand, since Espresso* adds cache line writebacks at the

source code level, it does not have any information about

the object’s layout or alignment within cache lines. Hence, it

must insert a CLWB for every object field to ensure that the

object is entirely persistent. This is an inherent limitation

of performing markings at the Java source code level. It is

a strong argument for why, in managed languages such as

Java, it is best to let the runtime decide when to emit cache

line writebacks.

How much AutoPersist outperforms Espresso* is directly

proportional to the number of insert and update operations
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Figure 7. Espresso* and AutoPersist kernel execution time.
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Figure 8. Kernel execution time with AutoPersist configs.

within the given YCSB benchmark. For instance, in the read-

only C workload and read-mostly B workload, Espresso*

performs about the same as AutoPersist. However, for work-

loads with writes, such as A, D, and F, AutoPersist is able to

significantly outperform Espresso*.

Figure 5 also shows that the Logging and Runtime times

in AutoPersist are negligible. Importantly, the Runtime over-

head is negligible because of the efficiency of our algorithms.

Finally, when using the same framework, the performance

difference between Func and JavaKV is minimal. This is be-

cause both data structures are tree-based and have similar

branching factors.

9.3 Analysis of the H2 Database

Figure 6 shows the execution time of the H2 database with

the MVStore, PageStore, and AutoPersist storage backends

when running the YCSB workloads. Recall that MVStore and

PageStore are file-based backends, which we direct to use

NVMas storage.MVStore and PageStore do not haveMemory

time because, rather than using CLWBs and SFENCEs, they

persist data via file operations.

On average, the execution time using AutoPersist is 38%

and 3% lower than using MVStore and PageStore, respec-

tively. Similar to the key-value store applications, the exe-

cution time reductions of AutoPersist are higher when exe-

cuting write-heavy workloads. Surprisingly, the PageStore

storage engine significantly outperforms MVStore. As men-

tioned in Section 8, currently our AutoPersist H2 backend

is based on the MVStore engine. We anticipate that we can

achieve greater speedups by implementing an AutoPersist

version of the PageStore backend.

9.4 Analysis of the Kernels

9.4.1 Execution Time

Figure 7 shows the kernel execution times for Espresso*

and AutoPersist. For each kernel, the bars are normalized

to Espresso*. The bars are broken down into the usual cat-

egories. We see that, on average, AutoPersist reduces the

execution time by 59% over Espresso*. The AutoPersist gains

largely come from a large reduction in Memory time. This is

because, as discussed in Section 9.2, AutoPersist inserts the

minimal number of CLWBs necessary to ensure that objects

reachable from the durable root set are persistent.

We see that the AutoPersist configuration of FARArray

does not reduce the Memory time much. This is because, in

this kernel, many CLWBs and SFENCEs are executed while

performing logging. AutoPersist cannot easily reduce the

number of such CLWBs and SFENCEs because a given log

entry must be persisted before its program store can execute.

MList has little Memory time because it does not need to

performmanywrites. AutoPersist increases theMemory time

because it supports sequential persistency and, therefore,

introduces more SFENCEs.

To highlight the benefits of optimizations within AutoPer-

sist, Figure 8 compares the execution time of the kernels in

the different AutoPersist frameworks: T1X, T1XProfile, No-

Profile, and AutoPersist (Table 2). The bars are normalized to

T1X and are broken down into the usual categories.

As shown in Figure 8, we find that, on average, NoProfile

and AutoPersist reduce the execution time by 36% and 38%

over T1X, respectively. This reduction is due to using the

optimizing compiler, which reduces the Execution time. We

also see that T1XProfile takes only a bit longer to execute

than T1X, which shows that the overhead of our profiling in

the baseline compiler is minimal.

Comparing NoProfile and AutoPersist shows the perfor-

mance impact of our profiling pass. We see that, by eagerly

allocating in NVM objects anticipated to become persistent,

our pass reduces the Runtime by an average of 39%. However,

the total execution time decreases by an average of only 2%.

Nevertheless, we believe that, as NVM technologies improve,

the amount of time needed to perform CLWBs and SFENCEs

will decrease. Hence, it will be important to ensure that other

bottlenecks, like runtime overhead, are minimized. There-

fore, we believe that our profiling optimization will become

more important.

9.4.2 Runtime Events

To further understand the behavior of AutoPersist, we profile

theNoProfile andAutoPersist frameworks while running each

kernel (Table 4). For NoProfile, Column 1 shows the number

of objects allocated during execution; Column 2 shows the

number of objects copied to NVM; and Column 3 shows the

number of pointers updated as a result of the copies.

The rest of the columns show the impact of our profiling

optimization inAutoPersist. Specifically, Column 4 shows the

number of objects that are eagerly allocated in NVM. We see

that our optimization allocates a large fraction of the objects

eagerly. Columns 5 and 6 show the data corresponding to

Columns 2 and 3. We see that our profiling optimization
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significantly reduces the number of objects to be copied and

the number of pointers to be updated. Note that the FArray

and FList kernels still performmany copies and updates. This

is because some of their methods do not get recompiled by

the optimizing compiler.

Table 4. NoProfile and AutoPersist event counts.

Kernel NoProfile AutoPersist
Obj Obj Ptr NVM Obj Ptr
Alloc Copy Update Alloc Copy Update
(K) (K) (K) (K) (K) (K)

MArray 29.9 29.9 7.4 29.9 0 0

MList 22.5 22.5 7.4 22.5 0 0

FARArray 15.1 15.1 0 15.1 0 0

FArray 468.4 304.4 281.9 225.9 170.8 170.8

FList 11447.6 11440.1 11417.6 7548.4 3891.7 3884.1

It can be shown that the number of allocation sites in the

source code that are profiled by our profiling pass ranges

from 208 to 279 sites per kernel. Of those, only a small num-

ber are converted to eagerly allocate objects in NVM. Specif-

ically, only 4 to 43 sites per kernel (on average, 15 sites per

kernel) are converted. However, we believe that identifying

such sites manually would be hard.

9.5 AutoPersist Runtime Overheads

The changes proposed in AutoPersist introduce two new

overheads over normal Java execution: its augmented JVM

bytecodesmust perform extra actions, and theNVM_Metadata

header adds extra memory overhead. The execution over-

head of the extra actions is modest, in part thanks to the appli-

cation of the biasing techniques described inQuickCheck [57]

and implemented here. Such overhead appears within the

Execution category of AutoPersist in Figures 5 to 8. Overall,

it was shown in QuickCheck [57] that the resulting over-

head of this effect is, on average, less than 10% of the total

execution time.

The memory overhead of the larger header increases the

memory consumption of the key-value store and the H2

database by an average of 9.4% and 1.6%, respectively. The

overhead is greater for the key-value store than for H2 due to

the relatively low branching factor within the B+tree nodes

used in both the Func and JavaKV backends of the key-value

store. Fortunately, this overhead is tolerable due to the large

memory capacity that NVM can provide.

10 Related Work

Many NVM frameworks have been proposed [6, 20ś23, 25,

35, 41, 48, 60, 62]. We describe their limitations in Section 3.1.

While most existing frameworks are written in C or C++,

Wu et al. [62] proposed a framework in Java called Espresso.

In Espresso, like in previous frameworks, the user has to ex-

plicitly identify all non-volatile allocations, and perform the

persist operations necessary for crash consistency. Section 9

compares AutoPersist and Espresso.

Many previous works propose both software [31, 36, 42,

46, 60] and hardware [28, 40, 55] techniques to limit the

overhead of logging in atomic regions and transactions. We

implement a simple undo log and leave more advanced im-

plementations as future work.

Forwarding pointers and write barriers are used in concur-

rent and generational garbage collectors [15, 26, 29, 51, 59].

To our knowledge, this the first time that such runtime tech-

niques have been applied to help create crash-consistent

applications in NVM. This use case is different than GC,

since the behavior is dictated by static user markers instead

of the temporal behavior of GC. However, AutoPersist’s for-

warding pointers and barriers can be shared with GC when

used in conjunction with advanced GC implementations.

Analysis techniques have been proposed to anticipate long

living objects [17], to prevent wearout [11], and to predict

when object resources can be reclaimed [33, 63]. We expect

to further improve AutoPersist with such techniques.

Previous papers have proposed many persistency mod-

els [19, 31, 38, 41, 44, 50], which define how stores to NVM

can be reordered both in software and hardware. AutoPer-

sist’s persistency model is described in Section 4.3. Currently,

AutoPersist uses sequential persistency outside of failure-

atomic regions and epoch persistency inside failure-atomic

regions. However, more relaxed persistency models can also

leverage our runtime reachability analysis.

Many persistent programming languages [12, 18, 34, 39,

54, 58] and implementations [13, 43, 47] were proposed be-

fore the introduction of byte-addressable NVM. These lan-

guages focus on attaining the orthogonal persistency defined

by Atkinson and Morrison [14], where the persistency of an

application is orthogonal to its design. AutoPersist’s model is

different in that it does not seek to attain complete orthogo-

nal persistency. Furthermore, previous papers on orthogonal

persistency describe approaches to optimize for a two-level

storage model with orders of magnitude differences in perfor-

mance, whereas AutoPersist targets byte-addressable NVM.

11 Conclusion

In this paper, we introduced AutoPersist, a new NVM frame-

work where the programmer only needs to identify durable

roots. We described its implementation as an extension of

Java, including its support for transparent, efficient, and

thread-safe object access and movement across NVM and

DRAM. To evaluate the performance and programmability

of AutoPersist, we used various applications running on In-

tel Optane DC persistent memory. We demonstrated that,

with minimal programmer effort, AutoPersist significantly

outperforms expert-marked Java NVM applications.
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