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Abstract

Byte-addressable, non-volatile memory (NVM) is emerging
as a revolutionary memory technology that provides persis-
tency, near-DRAM performance, and scalable capacity. To
facilitate its use, many NVM programming models have been
proposed. However, most models require programmers to
explicitly specify the data structures or objects that should
reside in NVM. Such requirement increases the burden on
programmers, complicates software development, and intro-
duces opportunities for correctness and performance bugs.
We believe that requiring programmers to identify the data
structures that should reside in NVM is untenable. Instead,
programmers should only be required to identify durable
roots — the entry points to the persistent data structures at
recovery time. The NVM programming framework should
then automatically ensure that all the data structures reach-
able from these roots are in NVM, and stores to these data
structures are persistently completed in an intuitive order.
To this end, we present a new NVM programming frame-
work, named AutoPersist, that only requires programmers to
identify durable roots. AutoPersist then persists all the data
structures that can be reached from the durable roots in an
automated and transparent manner. We implement AutoP-
ersist as a thread-safe extension to the Java language and
perform experiments with a variety of applications running
on Intel Optane DC persistent memory. We demonstrate that
AutoPersist requires minimal code modifications, and signif-
icantly outperforms expert-marked Java NVM applications.

CCS Concepts + Hardware — Non-volatile memory; -
Software and its engineering — Just-in-time compil-
ers; Source code generation.
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1 Introduction

There have recently been significant technological advances
towards providing fast, byte-addressable non-volatile mem-
ory (NVM), such as Intel 3D XPoint [37], Phase-Change Mem-
ory (PCM) [52], and Resistive RAM (ReRAM) [10]. These
memory technologies promise near-DRAM performance,
scalable memory capacity, and data durability, which offer
great opportunities for software systems and applications.

To enable applications to take advantage of NVM, many
NVM programming frameworks have been proposed, such as
Intel PMDK [6], Mnemosyne [60], NVHeaps [21], Espresso
[62], and others [20, 23, 25, 35, 48]. While the underlying
model to ensure data consistency [20, 50] varies across frame-
works, all of these frameworks share a common trait: they
require the programmer to explicitly specify the data struc-
tures or objects that should reside in NVM. This limitation re-
sults in substantial effort from programmers, and introduces
opportunities for correctness and performance bugs due to
the increased programming complexity [53]. Moreover, it
limits the ability of applications to use existing libraries.

We believe that requiring users to identify all the data
structures or objects that reside in NVM is unreasonable. In-
stead, the user should only be required to identify the durable
roots, which are the named entries into durable data struc-
tures at recovery time. Given this input, the NVM framework
should then automatically ensure that all the data structures
reachable from these durable roots are in NVM.

In this paper, we present a new NVM programming frame-
work named AutoPersist that only requires programmers to
identify the set of durable roots. While most NVM frame-
works are implemented in C or C++, we choose to imple-
ment AutoPersist as an extension to the Java language. As
is common for managed languages, Java already provides
transparent support for object movement in memory, as well
as high-level semantics for programmers.
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AutoPersist shifts the burden of NVM programming to
the Java runtime system. In an efficient and thread-safe man-
ner, AutoPersist transparently and dynamically ensures that
objects reachable from the specified durable roots reside in
NVM, and stores to these data structures are persistently
completed in an intuitive order. AutoPersist also provides
support for failure-atomic regions. It provides these features
by extending the behavior of several bytecodes, modifying
the object layout, and introducing new runtime actions. Fur-
thermore, AutoPersist leverages profiling information col-
lected during application warm-up to make intelligent deci-
sions on object placement in advance.

To evaluate the performance and programmability of Au-
toPersist, we use various applications, including the H2 rela-
tional database [2] and a key-value store [8]. We implement
AutoPersist in the Maxine Java Virtual Machine [61], and
evaluate its performance on a server with Intel Optane DC
persistent memory. We find that, with minimal programmer
effort, AutoPersist significantly outperforms expert-marked
Java NVM applications. Overall, we make the following con-
tributions:

e We propose AutoPersist, a new Java-based NVM frame-
work that requires minimal programmer intervention, while
ensuring memory persistency in a transparent manner.
We extend a Java Virtual Machine with support for trans-
parent, efficient, and thread-safe object access and move-
ment across NVM and DRAM.

We propose a profile-guided optimization that enables the
optimizing compiler to eagerly allocate objects in NVM,
reducing AutoPersist’s overhead by avoiding unnecessary
object movements at runtime.

We evaluate AutoPersist on a server with Intel Optane DC
persistent memory, and demonstrate that it significantly
improves both usability and performance.

2 Background
2.1 Byte-Addressable Non-Volatile Memory

Recently, low-latency byte-addressable NVM (also known
as NVRAM), has become realizable. In 2017, Intel released
its first NVM device [3]. Since then, Intel and other compa-
nies have announced plans to introduce many more NVM
products in the near future. NVM has a higher density than
DRAM, allowing NVM to have larger capacities. Currently,
the performance of NVM is slightly worse than DRAM.
Hence, initial systems utilizing NVM are expected to be
hybrid systems consisting of both NVM and DRAM. Hy-
brid systems typically have a unified address space, allowing
applications to allocate data in both DRAM and NVM.
While NVM moves non-volatile storage a level closer to
the processor, many levels of volatile cache still exist between
the processor and the NVM. Hence, one needs to ensure
that a processor write to NVM propagates its value beyond
the levels of caches and into NVM. For this reason, x86-64
processors have introduced the CLWB instruction [9], which
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writes back a cache line to NVM, while retaining the line in
the cache. Placing a CLWB instruction after a write ensures
that the update will reach NVM.

Still, when we have multiple writes, each followed by a
CLWB instruction, the order in which the updates reach
NVM and are made persistent is not deterministic. The hard-
ware may reorder the updates on their way to NVM. Hence,
to guarantee a distinct ordering, fences must be inserted.
Specifically, to guarantee that the CLWB instructions com-
plete one after the other, one needs to place the x86-64 stor-
age fence (SFENCE) instruction after every CLWB instruction.

2.2 Existing Frameworks for NVM

The Storage Networking Industry Association (SNIA) has
been working to standardize the interactions with NVM. It
has created a low-level programming model [4] meant to
be followed by device driver programmers and low-level li-
brary designers. In addition, an open source project has been
created to provide application developers with a high-level
toolset that is compliant with SNIA’s device-level model.
This project has resulted in the development of the Persis-
tent Memory Development Kit (PMDK) [6], a collection of
libraries in C/C++ and Java that a developer can use to build
durable applications on top of NVM.

PMDK requires that programmers explicitly label all the
persistent data in their code with pragmas. As an alternative,
PMDK also contains a few library data structures, such as a
durable array and hashmap, with the necessary persistent
pragmas already built into the library.

For persistently storing data, PMDK requires the program-
mer to either explicitly persist stores, or use demarcated
failure-atomic regions. Failure-atomic regions enable many
stores to persistent memory to appear to be persisted atom-
ically. Recently, PMDK has also introduced C++ templates
that allow some operations to be persistent without explicit
user markings.

In addition to the industrial efforts, academia has also
proposed several frameworks for NVM [20, 21, 23, 25, 35, 48,
60, 62]. The level of support provided by these frameworks
varies. At best, they provide a similar level of abstraction as
PMDK, with the user having to specify all durable objects and
also providing some minimal failure-atomic region support.

As an example, Figure 1 shows how to append to a durable
list of type E using pragmas representative of existing NVM
frameworks. As shown in the figure, the user is expected to
explicitly label all the objects to be allocated in NVM with
durable_new. In addition, after each store, explicit cache line
writebacks must be added to ensure that the values are writ-
ten back to memory. Further, a memory fence is necessary to
ensure that all persist operations have completed before the
method returns. We discuss the limitations of these existing
frameworks in the following section.
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template <class E>

class DurableList{
E *element; DurableList *next;
DurableList append(E *element){
DurableList *head =

durable_new DurableList ();
head—>element=element ;
CLWB(& head —>element);
head—>next=this;
CLWB(& head —>next);

return head;

SFENCE () ;

Figure 1. Example using NVM pragmas.

3 Removing the Programming Burden
3.1 Limitations of Existing NVM Solutions

All existing NVM frameworks require the application devel-
oper to either mark all the data that should reside in NVM,
or to use specialized libraries where this marking has al-
ready been completed. This is both programmer intensive
and prone to correctness and performance bugs. Correctness
bugs occur when the user fails to mark all the data that must
reside in NVM, preventing the data from being recovered in
the event of a crash. Performance bugs occur when objects
not needed to be recovered are marked, forcing these objects
to unnecessarily use the slower NVM and be updated in a
persistent manner.

Both types of bugs occur because of the difficulty of cor-
rectly identifying the transitive closure of all the objects
reachable from a given object. Such analysis is necessary
when deciding what objects are reachable at recovery time
and hence must be placed in NVM. Determining this transi-
tive closure is difficult for multiple reasons, including alias-
ing, the use of libraries, and the sheer size of modern applica-
tion codebases. The use of libraries is especially problematic,
as it may not be possible to have access to the source code
to mark persistent objects within the libraries.

While requiring the programmer to label many objects is
both user-intensive and bug-prone, it does match the tradi-
tional level of abstraction provided by lower-level languages
such as C and C++. However, in higher-level managed lan-
guages such as Java, Scala, Python, and JavaScript, expecting
the programmer to perform this type of low-level reason-
ing is unacceptable. In managed languages, the underlying
object representation is hidden from the user, which allows
the runtime to decide how to allocate and lay out objects.
In addition, managed languages provide automatic mem-
ory management. The user does not need to reason about
object lifetimes; instead, the runtime automatically detects
and collects dead objects. Requiring developers of managed
language applications to explicitly add markings for objects
to reside in NVM does not match their expectations. Fur-
ther, it exposes part of the allocation process to the user,
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violating the user-runtime boundary. In their paper, Shull
et al. [56] describe in more detail the drawbacks of existing
NVM frameworks and their misalignment with managed
languages.

3.2 A New Framework for Managed Languages

We argue that, in managed languages, it should be the run-
time’s obligation to identify non-volatile objects, and to en-
sure that they are persisted correctly. As managed languages
already transparently manage the underlying memory, it is
a natural extension of the runtime support to automatically
move objects to NVM as necessary when they need to be
recoverable.

Consequently, we propose a new framework model for
managed languages where the user must only identify durable
roots. We call our new model and implementation AutoPer-
sist. In AutoPersist, we define durable roots to be the named
entry points into durable data structures at recovery time.
Given the set of these durable roots, AutoPersist’s runtime
has two requirements:

Requirement 1. All objects reachable from the durable root
set must be in NVM.

This requirement forces the runtime to dynamically check
objects and potentially move them throughout the execution.
To do so, the runtime must add additional checks to the code,
and dynamically update pointers to moved objects.

Requirement 2. All objects reachable from the durable root
set must be automatically persisted when modified.

This requirement forces the runtime to dynamically check
the status of objects throughout execution. When objects
reachable from the durable root set are updated, the updates
need to be persisted in the correct order.

This type of support is natural to have in managed lan-
guages, as they commonly monitor objects, determine reach-
ability from a root set, and move objects while performing
garbage collection (GC). Put in another way, we are propos-
ing to modify the behavior of mutator threads to actively
move objects to NVM when stores make these objects reach-
able from a durable root. This behavior is very similar to
concurrent GC. However, whereas the goal of concurrent
GC is to free memory while not introducing pauses, in our
framework the mutator threads move objects to NVM to en-
sure crash consistency. In addition, in our framework, after
these stores, the mutator threads must insert the necessary
cache line writebacks and fences to ensure the stores are
persisted in the correct order.

3.3 An Example

We present an example of the required behavior of AutoP-
ersist in Figure 2. Figure 2(a) shows the initial state of the
heap, where objects A, B, C, D, and E are in volatile memory,
and F and G are in NVM. Object G is pointed to by a durable
root and, hence, must be in NVM. Object F is reachable from
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Figure 2. Changing heap state to meet the requirements of AutoPersist’s model.

G and must also be in NVM. Because the other objects are
not reachable from a durable root, they do not need to be in
NVM.

The program changes the G — F pointer to G — E in Fig-
ure 2(b), which leaves the heap in an incorrect state. Objects
E and C are now reachable from G but are still in volatile
memory. They could not be recovered if a crash were to occur.
To ensure that our framework’s requirements are met, the
runtime makes the changes shown in Figure 2(c). Specifically,
before G’s pointer changes, the runtime moves E and C from
the volatile to the non-volatile heap (i.e., new objects E,m
and Cy4rm) (operation D). Then, it adjusts all the pointers to
the original E and C objects. Since F is not reachable from a
durable root anymore, eventually it will be moved back to
volatile memory.

4 AutoPersist Programming Model
4.1 Labeling Durable Roots

AutoPersist requires the programmer to declare the set of
durable roots. Declaring a durable root consists of two parts:
identifying the object and associating a name with it. We
add a new annotation to Java [32], @durable_root, which
is used to label fields containing objects. A field labeled with
@durable_root indicates that the object pointed to by this
field is a durable root.

Only static fields can be labeled with @durable_root in
our model. Static fields have a unique name in the application
environment, and hence can be easily identified at recovery
time. While adding support in AutoPersist to allow dynamic
fields to also be @durable_roots is trivial, we believe that
the benefits that this additional feature would provide are
outweighed by the opportunities for programmer mistakes
that it would introduce. As multiple instances of the object
could be created, it would be easy for the programmer to
make mistakes when associating the durable root to a specific
instance of the object.

4.2 Failure-Atomic Region Support

The default behavior of AutoPersist is to ensure that stores
to objects reachable from a @durable_root are persisted in
sequential order. However, in some situations, it may be nec-
essary to provide the appearance of multiple stores complet-
ing atomically from the crash-consistency perspective. To
allow this, our framework supports failure-atomic regions.
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In AutoPersist, the user is expected to label the start and
end of failure-atomic regions. Given these labels, the runtime
ensures that all stores to objects reachable from a durable
root within this region complete atomically from a crash-
consistency perspective at the end of the region. There is
no additional user involvement. AutoPersist uses a flattened
nesting approach to ensure values are not made persistent
prematurely. Like other implementations [6, 31, 42, 46], our
failure-atomic region support is meant solely to provide all-
or-nothing visibility to persistent data in the event of a crash.
It does not detect data races or perform rollbacks like soft-
ware transactional memory. Instead, the user is still expected
to provide any synchronization needed to prevent data races
in accordance with the Java memory model [45]. This type
of concurrency model is known as an open transactional
model [16]. Section 6.5 covers how we implement failure-
atomic region support in AutoPersist.

4.3 Persistency Model

AutoPersist provides a simple and intuitive persistency model.
Outside of failure-atomic regions, all writes to values reach-
able from a @durable_root are persisted in a sequential
order. Inside of failure-atomic regions, no data is made per-
sistent until the end of the region. At that point, all stores to
data reachable from a @durable_root within the region are
made persistent atomically.

To ensure sequential persistency outside of failure-atomic
regions, AutoPersist detects the case when a value V is being
stored into an object O that is reachable from a @durable_root.
When this happens, the actions that AutoPersist takes de-
pend on the state of the value V being stored. If V is ei-
ther a primitive value or was previously reachable from a
@durable_root, then AutoPersist ensures that the store to
object O is done persistently by adding a CLWB and an
SFENCE after the store.

However, if V is an object that was not previously reach-
able from a @durable_root, before AutoPersist can store
V in O, AutoPersist must make V and its transitive closure
persistent. Note that the order in which AutoPersist makes
V and its transitive closure persistent does not affect the per-
sistency model. This is because V will be unrecoverable until
V is stored into O. It only matters that V and its transitive
closure are made persistent before this store is performed.
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While searching and potentially relocating V and its tran-
sitive closure, AutoPersist also inserts the necessary CLWBs
to ensure their persistency. Before the store of V in O, Au-
toPersist inserts an SFENCE to ensure that all CLWBs have
completed. After the store, AutoPersist inserts a CLWB and
an SFENCE. In Section 6.1, we discuss how to update the
objects that pointed to the old locations of V or its transitive
closure.

Inside failure-atomic regions, before every store to an
object reachable from a @durable_root, AutoPersist saves in
a persistent undo log the value that will be overwritten. The
undo log operation is followed by a CLWB and SFENCE to
ensure that the log entry has been made persistent. After that,
the store to the object is performed and a CLWB is added to
write back the new update to NVM. At the end of the failure-
atomic region, AutoPersist inserts an SFENCE to ensure that
all the stored data has reached the NVM. Then, the undo log
is discarded. With this design, stores to objects reachable
from a @durable_root are allowed to be completed out of
order, but they are all persisted at the end of the region.
Moreover, if the atomic region fails to complete, the undo
log in persistent memory is used to undo all of the updates
in the region that were persisted. Such updates should not
be part of the crash-consistent program state.

This persistency model only applies to data reachable from
@durable_roots. None of the other data will be recovered in
the event of a crash. Hence, it does not need to abide by our
framework’s persistency model. Such data can be reordered
in accordance with the Java memory model standard.

4.4 Recovery API

In order to recover data from a @durable_root after a crash,
we must have recovery code that allows the program to
retrieve previous versions of an object as it starts-up. To
allow this, we extend the Java Object class to include a new
method, recover(String image), which attempts to re-
cover the value of the implicit object argument within a
named image. In order to differentiate multiple executions
running simultaneously, when initializing execution, the pro-
grammer is expected to provide an image name for the given
execution. This image name is used to recover objects from
the execution’s non-volatile heap. The recover method is
expected to be called from a @durable_root. If either the
named image cannot be found or the object the method is
invoked from is not a durable root, then null is returned.

Figure 3 shows a simple example of how to use this method.
The example tries to recover a key-value store. If the key-
value store cannot be recovered, then a new version of it is
instantiated.

4.5 Introspection API

A strength of AutoPersist is that its simple abstraction frees
the programmer from having to worry about many details.
However, sometimes, such as when debugging, the user may
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@durable _root

public static KeyValueStore kv;
static {
if ((kv = kv.recover("image_name")) == null){
kv = new KeyValueStore ();
}

Figure 3. Recovery API example.

want to extract more object information. For this reason, Au-
toPersist includes several method calls that allow for intro-
spection. The method calls are: isRecoverable(), inNVM(),
isDurableRoot(), inFailureAtomicRegion(tid), and
failureAtomicRegionNestinglLevel (tid).

The functionality of most of these calls is self-evident. is-
Recoverable(), inNVM(), and isDurableRoot () are called
by an object and return a boolean of the requested infor-
mation. On the other hand, inFailureAtomicRegion(tid)
and failureAtomicRegionNestinglLevel(tid) take a
thread identifier as argument, and query it for the desired
information.

4.6 Unrecoverable Keyword

In some situations, a programmer may decide that some
data reachable from a @durable_root does not need to be
recoverable across a crash. To provide this functionality,
AutoPersist includes the @unrecoverable annotation, which
can be applied to any dynamic object field. Any field labeled
with this annotation will disable AutoPersist’s requirements
on stores to that field.

We anticipate that @unrecoverable may be used to limit
the performance impact of persistency when objects can
be recovered or recreated via other means. However, we
strongly argue that the default behavior should be that all
objects reachable from durable roots should be handled in
a crash-consistent manner. This approach minimizes the
likelihood of programmer mistakes.

5 Applying AutoPersist to the JVM

In this section, we describe how we change the Java Virtual
Machine (JVM) to meet our NVM framework’s requirements.

In AutoPersist, an object can be in one of three states: Or-
dinary, Converted, and Recoverable. The ordinary state means
that the object will not be recovered in the event of a crash.
The recoverable state indicates that the object is reachable
from a durable root, and will be recovered in the event of
a crash. The converted state means that the object is in the
process of transitioning from the ordinary to the recoverable
state. The object and its transitive closure may not yet be
reachable from a durable root. However, the runtime is in
the process of making them reachable. For brevity, an object
that is in either the converted or recoverable state is said to
be in the ShouldPersist state.
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A programmer may choose to mark a field in an object as
@unrecoverable. In such case, AutoPersist does not perform
any persistency-related action on the field.

5.1 Modified Object Store Operations

Our framework alters the behavior of several JVM bytecodes.
Below we highlight the main changes to storing to static and
dynamic object fields, as well as to arrays.

5.1.1 Storing to Static Object Fields

Storing to a static field in Java is represented by the putstatic
(C,F,V) bytecode. Normally, this instruction stores value

V into field F of class C’s static object representation. Au-
toPersist’s new implementation of putstatic is shown in

Algorithm 1.

In the putStatic procedure, first, if the value to be stored
is an object, the algorithm finds the real current location
of the object (Line 3). This is necessary because, as we will
discuss in Section 6.1, when an object is moved to NVM, not
all the pointers to it are immediately updated. Instead, Au-
toPersist leaves behind some temporary forwarding objects
that point to the object’s new location in NVM.

Next, if the field being stored to is a persistent root and
the value being stored into the field is not recoverable, then
the value is made recoverable (Lines 4-5). This is the only
case that needs action for stores to static object fields.

After this, if the thread is in a failure-atomic region and
the field is a persistent root, the old value is logged. Next, the
value is written to the field. Finally, if the field is a persistent
root, then the address of the object is stored in a global table
(Line 13) that will be used to retrieve the object in a recovery.

5.1.2 Storing to Dynamic Object Fields and Arrays

Storing to a dynamic object field in Java is represented by
the putfield(H,F,V) bytecode. Normally, this instruction
stores value V into field F of dynamic object field holder H.
Procedure putField in Algorithm 1 shows our new imple-
mentation. It is similar to putStatic, but has a few notable
differences. First, the field being stored to cannot be a persis-
tent root, so this condition does not need to be checked. Sec-
ond, the holder object itself may now be in the ShouldPersist
state. Therefore, for putField, the state of the holder object
dictates whether the value to be stored must be made recov-
erable. Note that if the field is marked as @unrecoverable,
no persistency action is taken. Line 20 reflects the appropri-
ate check used to determine whether the value needs to be
made recoverable.

After the object’s field is updated (Line 27), the state of
the holder determines what additional actions must be per-
formed to satisfy our model. If the holder object is in the

ShouldPersist state and the field stored to is not @unrecoverable,

then the corresponding cache line is written back (Line 29).
Further, if we are not in a failure-atomic region, a fence is
inserted to guarantee completion of the writeback (Line 31).
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Algorithm 1 Modified object store operations.

1: procedure PUTSTATIC(class, field, value)
2 if typeof(value) is Object then
3 value = getCurrentLocation(value)
4 if isDurableRoot(field) and !isRecoverable(value) then
5: value = makeObjectRecoverable(value)
6 end if
7 end if
8 if inFailureAtomicRegion(tid) and isDurableRoot(field) then
9: logStore(class, field)
10: end if
11: writeField(class, field, value)
12: if isDurableRoot(field) then
13: RecordDurableLink(field, value)
14: end if
15: end procedure
16: procedure PUTFIELD(holder, field, value)
17: holder = getCurrentLocation(holder)
18: if typeof(value) is Object then
19: value = getCurrentLocation(value)
20: if lisUnrecoverable(field) and isShouldPersist(holder) and !isRe-
coverable(value) then
21: value = makeObjectRecoverable(value)
22: end if
23: end if
24: if inFailureAtomicRegion(tid) and !isUnrecoverable(field) and is-
ShouldPersist(holder) then
25: logStore(holder, field)
26: end if
27: writeField(holder, field, value)
28: if lisUnrecoverable(field) and isShouldPersist(holder) then
29: cachelineWriteback(holder, field)
30: if !inFailureAtomicRegion(tid) then
31: persistFence()
32: end if
33: end if

34: end procedure

35: procedure ARRAYSTORE(holder, index, value)

36: holder = getCurrentLocation(holder)

37: if typeof(value) is Object then

38: value = getCurrentLocation(value)

39 if isShouldPersist(holder) and !isRecoverable(value) then
40: value = makeObjectRecoverable(value)

41: end if

42: end if

43: if inFailureAtomicRegion(tid) and isShouldPersist(holder) then
44: logStore(holder, index)

45: end if

46: writeArray(holder, index, value)

47: if isShouldPersist(holder) then

48: cachelineWriteback(holder, index)

49: if !inFailureAtomicRegion(tid) then

50: persistFence()

51: end if

52: end if

53: end procedure

Stores to arrays (JVM’s {a,b,c,d,f,i,1,s}astore byte-
codes) are also modified in a way similar to putfield. Pro-
cedure arrayStore in Algorithm 1 shows the modifications.
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5.2 Object Header

As the internal object representation is hidden from the user
in Java, we modify the object layout to assist with our im-
plementation. We add a 64-bit header word to each object,
which we call the NVM_Metadata header. This header stores
information about the state of the object relevant to AutoP-
ersist. Figure 4 shows the fields in our object header word.
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Figure 4. NVM_Metadata header contents.

In the header, the converted and recoverable bits denote
the object state: converted objects have the converted bit
set; recoverable ones have the recoverable bit set; ordinary
objects have both bits clear. The rest of the bits are introduced
in subsequent sections.

6 Advanced Implementation Aspects

This section describes transparently updating pointers, de-
termining which objects to move to NVM, thread safety,
garbage collection, and failure-atomic region support.

6.1 Transparently Updating Pointers

When an object is moved from volatile memory to NVM, all
pointers to the original location of the object must be updated
to reflect its new location (Figure 2). However, AutoPersist
adjusts the pointers lazily; for performance, it temporarily
inserts a level of indirection for some pointers until GC
occurs.

For example, in Figure 2, when objects C and E are moved
to NVM, the pointers from objects A, D, E, and G would
also need to be updated. However, supporting the ability to
change all of these pointers at the time of the move would
have prohibitive performance overheads. Indeed, we would
have to add a pointer table, and introduce a level of indi-
rection to all pointer accesses. Alternatively, at the time of
the move, we could search the entire heap to discover and
update pointers to the moved objects. Either of these options
would result in significant slowdowns.

Consequently, AutoPersist temporarily retains the original
C and E objects and converts them into forwarding objects.
Only the new pointers from the recoverable objects (G and
Enom) point to the new recoverable copies of the objects
(Enom and Cpom). The other pointers are left pointing to the
forwarding objects (i.e., A to C, and D to E) until a GC cycle
is executed.

Note that this approach is correct, as it relies on the fol-
lowing key insight: if an object is in volatile memory, then
all pointers to the object must be from objects not reachable
from the durable root set. This is true by Requirement 1.
Hence, if an object is moved, its original location can be used
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as a temporary forwarding pointer for pointers from objects
in volatile memory. The only objects that cannot use this
forwarding pointer in volatile memory are the objects that
were in NVM or have been moved to NVM. The pointers
from these objects are updated during the moving process.

In AutoPersist, the NVM_Metadata header of forwarding
objects is set as follows: the forwarded bit is set, and the
48-bit forwarding ptr field points to the object’s real location
in NVM (Figure 4). In addition, some JVM bytecodes are
adjusted to check for forwarding objects.

Algorithm 2 shows how bytecodes must be altered. First,
procedure getCurrentlLocation retrieves the current loca-
tion of an object. It checks the object’s forwarded bit in the
NVM_Metadata header to see if the object currently pointed
to is a forwarding object (Line 2). If so, the procedure reads
the real location of the object from the forwarding ptr field
in the header (Line 3).

Algorithm 2 Modified object load operation.

1: procedure GETCURRENTLOCATION(0b )
2 if isForwarded(obj) then

3: return getForwardingPtr(obj)

4: end if

5 return obj

6: end procedure

7: procedure GETFIELD(holder, field)

8: holder = getCurrentLocation(holder)
9: value = readField(holder, field)

10: if typeof(value) is Object then

11: newValue = getCurrentLocation(value)
12: end if

13: return newValue

14: end procedure

The second procedure, getField(H,F), shows how the
JVM bytecode getfield must be modified. Originally, this
instruction loads the value stored in field F of dynamic
object field holder H onto the JVM stack. Now, we call
getCurrentlLocation to ensure that the correct pointers are
being used (Lines 8 and 11). Many of the procedures shown in
Algorithm 1 must also perform this same check. Similar mod-
ifications are made to other JVM bytecodes that load and
store values, namely, getstatic, if_acmpeq, if_acmpne,
monitorenter, monitorexit, and the various array load
bytecodes.

During GC, pointers to forwarding objects are updated
to point to the real objects, and the forwarding objects are
removed. As GC already must adjust pointers, it is natural
for AutoPersist to perform this operation during GC.

6.2 Movement of Objects

In AutoPersist, it is the responsibility of the runtime to move
objects to NVM when necessary during execution, to ensure
all objects reachable from the durable root set are in NVM.



RIGHTS

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

This means that the runtime must potentially trace the tran-
sitive closure of an object to ensure that all reachable objects
are persistent.

Algorithm 3 shows the various procedures used for this
operation. Procedure makeObjectRecoverable manages the
phases of the operation. First, the initial object (i.e., the one
that initiates the transitive search) is passed to procedure
addToQueueIfNotCoverted (Line 2) to be added to a thread-
local work queue. This queue holds the objects that need to
be processed to ensure that the transitive closure is in NVM.
To ensure that a given object is not placed twice in the work
queue, we add the queued bit in the NVM_Metadata header
of each object (Figure 4). If an object is in the work queue, the
queued bit is set. Inter-thread dependencies are also detected
at this point (Line 18). Note that multiple threads may be
performing this action simultaneously. Hence, we use a CAS
operation to set the queued bit (Line 22). Once the queued
bit is set, the object is placed in the local work queue without
synchronization.

Next, procedure convertObjects is called. This proce-
dure processes the objects in the work queue (Line 28). For
each object, we first check whether it is already allocated
in NVM. The non-volatile bit in the NVM_Metadata header
(Figure 4) is set if the object is in NVM. If the bit is not set,
the object is moved to NVM (Line 31). In either case, cache
line writebacks must be inserted to guarantee that the entire
contents of the object are persistent (Line 33). Since AutoPer-
sist can precisely determine an object’s layout, the runtime
is able to insert the minimal number of CLWBs necessary
to ensure that the entire object has been written back. Next,
the converted bit of the NVM_Metadata header is set. After
this, we search all the objects that are reachable by pointers
from the current object and, if necessary, add them to the
work queue (Line 36). Note that fields annotated with the
@unrecoverable marking are not searched.

While doing this, the algorithm also checks each of the
pointers to see if they will need to be updated. Pointers will
need to be updated if the object they point to will be moved
to NVM while executing this algorithm. Such pointers are
placed in another queue, the ptr queue, for later processing
(Line 38). Recall that these updates are necessary to pre-
vent persistent objects from pointing to volatile forwarding
objects.

Finally, if the object has moved, we want the work queue
to point to the new location of the object (Line 41).

When the convertObjects procedure returns, the thread
must ensure that other objects reachable from the initial
object and that are being persisted by other threads are al-
ready persisted. This is done by monitoring a global table
and checking whether the other threads have finished their
work (Line 4). If they have not, the thread waits until they
do. In practice, we observe very little wait time.

The next step is to call procedure updatePtrLocations
to update all pointer locations within the ptr queue (Lines 47
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Algorithm 3 Transitive persist.

1: procedure MAKEOBJECTRECOVERABLE(object)
2: addToQueuelfNotConverted(object)

3 convertObjects()

4: wait for other threads to complete phase

5: updatePtrLocations()

6 wait for other threads to complete phase

7 markRecoverable()

8: return getCurrentLocation(object)

9: end procedure

10: procedure ADDTOQUEUEIFNOTCOVERTED(0bj)

11: do

12: obj = getCurrentObject(obj)

13: oldHeader = readPersistentHeader(obj)
14: if isRecoverable(obj) then

15: return

16: end if

17: if isConverted(obj) or isQueued(obj) then
18: detect any inter-thread dependency
19: return

20: end if

21: newHeader = setlsQueued(oldHeader)
22: while !CAS(obj, oldHeader, newHeader)
23: workQueue.add(obj)

24: return

25: end procedure

26: procedure CONVERTOBJECTS

27: idx=0

28: while idx != workQueue.size() do

29: obj = workQueue[idx]

30: if !isNonVolatile(obj) then

31: obj = moveToNonVolatileMem(obj)
32: end if

33: write back entire object to NVM

34: setIsConverted(obj)

35: for (ref, offset) in nonUnrecoverableReferences(obj) do
36: addToQueuelfNotConverted(ref)
37: if lisNonVolatile(ref) then

38: ptrQueue.add(obj, offset, ref)
39: end if

40: end for

41: workQueue[idx] = obj

42: idx +=1

43: end while

44: end procedure

45: procedure UPDATEPTRLOCATIONS

46: while ptrQueue.size() != 0 do

47: (obj, offset, ref) = ptrQueue.pop()
48: ref = getCurrentLocation(ref)

49: writeOffset(obj, offset, ref)

50: end while

51: end procedure

52: procedure MARKRECOVERABLE

53: idx =0

54: while !workQueue.isEmpty() do

55: obj = workQueue.pop()

56: setRecoverable(obj)

57: end while

58: end procedure
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to 49). Afterwards, once again in rare cases, the thread pauses
for other threads to complete their work (Line 6).

The last step of this algorithm is to call the markRecoverable

procedure to set the recoverable flag of all objects modified
by this thread (Line 7). Recall that when recoverable is set for
an object, it means that all objects reachable from this object
are also persistent. This is stronger than the converted flag,
which is a transition state. Finally, the process returns the
object’s current location (Line 8).

Mapping our three object states to traditional tri-color
GC terms [27], the ordinary state is the white color, the con-
verted state is the gray color, and the recoverable state is the
black color. In other words, if a mutator thread encounters a
converted object while performing a store, then it must proac-
tively make the object’s new transitive closure recoverable,
even though the object is not yet reachable from a durable
root. This is necessary to ensure that a crash-consistent state
is maintained in the presence of concurrent mutations.

6.3 Thread Safety

Since Java is multithreaded, it is possible for a thread to try
to access an object as the object is being moved to NVM.
Without precautions, this can create a race condition that
creates an execution state not possible in the Java memory
model. To prevent this, caution must be taken in two places:
when moving objects to NVM, and when storing to objects.
This is because, without synchronization, it may be possible
for these two events to race and for stores to be lost.

To prevent this race from occurring, we introduce two new
fields in the NVM_Metadata header: copying and modifying
count (Figure 4). The copying flag is set while the object
is being copied over to NVM. The modifying count field
indicates the number of threads that are currently in the
process of modifying the object. Both fields are updated
using CAS operations.

Algorithm 4 shows moveToNonVolatileMem, the thread-
safe procedure to move an object to NVM. A thread is only
allowed to copy an object to NVM when no other thread is
in the process of modifying the object. Hence, the procedure
checks the object’s modifying count and waits to perform
the copy until the modifying count is zero (Line 6).

To improve performance, we perform two optimizations.
First, while an object is being copied, we still allow another
thread to modify the object. To modify the object, a thread
clears the copying flag before performing the modification.
Hence, if the copying thread detects that the copying flag
has been cleared during the copying (Line 14), then the copy
must be performed again. Otherwise, the operation has been
successful, and the thread resets the copying flag (Line 18).

The second optimization is not to increment the modify-
ing count unless necessary. Incrementing the count is only
necessary if the modifying thread detects that the object may
have moved while it was performing the modification. The
thread can check this by reading the object’s NVM_Metadata
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Algorithm 4 Moving object to NVM.

1: procedure MOVETONONVOLATILEMEM(obj)
2 newObj = allocateNVM(sizeof(obj))
3 while true do
4: do
5: oldHeader = readPersistentHeader(obj)
6 if getModifyingCount(oldHeader) > 0 then
7 continue
8: end if
9: newHeader = setIsCopying(oldHeader)
10: while !CAS(obj, oldHeader, newHeader)
11: copyMem(obj, newObj, sizeof(obj))
12: do
13: oldHeader = readPersistentHeader(obj)
14: if lisCopying(oldHeader) then
15: continue
16: end if
17: newHeader = unsetIsCopying(oldHeader)
18: while !CAS(obj, oldHeader, newHeader)
19: return newObj
20: end while

21: end procedure

header state and the object’s address before and after it per-
forms the write. Note that we need to place a fence between
the write and subsequent reads to ensure that the write has
completed by the time the reads are issued. If a change is
detected, the write is repeated, this time incrementing the
modifying count. This code is not shown due to lack of space.

6.4 Allocation and Garbage Collection

Since there are now volatile and non-volatile portions of the
heap, our runtime’s allocator and garbage collector must be
adjusted to account for this expansion, and to ensure that
objects are placed in the correct portion of the heap. For
allocation, thread local allocation buffers (TLABs) are used.
Each thread has both a volatile and a non-volatile TLAB,
which it can use to bump-allocate objects.

For GC, our implementation uses a stop-the-world copying
collector for both parts of the heap. During a collection, if a
forwarding object is encountered, all pointers to that object
are adjusted to point to the object’s new location, and the
forwarding object is reaped.

Normally, during GC, objects are copied to either volatile
memory or NVM based on their original location. One opti-
mization we add to our GC implementation is to detect if an
object is no longer reachable from a durable root and, if so,
move the object back to volatile memory. To implement this
optimization, we use two new flags in the NVM_Metadata
header: gc mark and requested non-volatile (Figure 4). The
gc mark flag is used during the GC cycle to identify which
objects are reachable from a durable root. Before a GC cycle
starts, our collector walks the heap and sets the gc mark
flag for all objects that are reachable from a durable root.
These are the objects that must stay in NVM. The requested
non-volatile flag indicates to the collector that this object
should remain in NVM even if it is not reachable by any
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durable root. We use this flag so as not to interfere with the
optimization we propose in Section 7.

Note that since some objects are moved back from NVM
to volatile memory during a GC cycle, it is possible for some
objects not reachable from the durable root set to be still in
NVM when an application crashes. To ensure consistency,
at recovery time, when an existing image is loaded, a GC
cycle is performed on the NVM to free all the objects not
reachable from the durable root set.

6.5 Failure-Atomic Region Support

As described in Section 4.2, AutoPersist supports failure-
atomic regions. Given the semantics of AutoPersist, we are
given much flexibility in choosing how to design our imple-
mentation. Currently, AutoPersist uses per-thread undo logs
with write-ahead logging. As shown in Algorithm 1 (Lines 9,
25, and 44), inside a failure-atomic region, any value within a
durable object that will be overwritten is first logged ahead of
the store. This involves copying the original value, a pointer
to the object, and the value’s offset within the object’s in-
ternal layout to a thread-local log. Logging this information
ensures that the object can be correctly restored in the event
of a crash.

For each JVM thread, AutoPersist adds a counter indicating
the current failure-atomic region nesting level, and a pointer
to its thread-local undo log. The undo log is also considered
a durable root, to ensure that all objects pointed to by the log
continue to be persisted correctly. At the end of the failure-
atomic region, the thread’s undo log is cleared, allowing any
dead objects to be reclaimed.

Many previous works have tried to optimize the perfor-
mance of logging within failure-atomic regions [28, 30, 31, 40,
42, 46, 55, 60]. We believe that many of their optimizations
can also be applied to AutoPersist. Since the implementation
of our failure-atomic region support is transparent to the
user, our runtime is free to internally change its implemen-
tation. We leave this as future work.

7 Optimizing Object Allocation

Modern Java implementations support tiered compilation.
When a method is first invoked, it is compiled by a compiler
that completes quickly but does not generate very optimized
code. Later, if the method is deemed important, it is recom-
piled using an optimizing compiler that produces higher-
quality code. In addition, the initial compiler tier typically
inserts profiling information into the code, which is later
used by the optimizing compiler to generate better code.

In AutoPersist, we modify the initial compiler to produce
profiling information that is used by the optimizing compiler
to reduce object handling overhead. Specifically, a source of
overhead in our implementation is when an object is moved
to NVM because it becomes reachable from a durable root.
AutoPersist reduces this overhead by predicting that an ob-
ject will eventually be moved to NVM, and eagerly allocating
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it in NVM in the first place. To support this optimization,
AutoPersist inserts profiling information to identify which
allocation sites often create objects that later need to be
moved to NVM. Once these sites are identified, AutoPersist
eagerly allocates objects from these sites in NVM. Note that
determining such information statically is hard due to the
presence of numerous control-flow paths and aliasing, and
the need for inter-procedural analysis.

AutoPersist’s profiling information is implemented as fol-
lows. First, each profiled allocation site is given an entry in
a global table called allocProfile. The entry contains a count
of the number of objects allocated from this site that are
later moved to NVM. During execution, as objects are in-
stantiated, two new fields in their NVM_Metadata header
(Figure 4) are set as follows: the has profile flag is set, and
the alloc profile index field is set to the index of the entry
within the allocProfile table corresponding to its allocation
site. If the object is later moved to NVM, the entry within
allocProfile corresponding to the object’s allocation site is
incremented. To access the correct entry within allocProfile,
the object’s alloc profile index field is read. Note that it is
fine for both the forwarding ptr and the alloc profile index
to share the same field in the NVM_Metadata header, as they
are not needed at the same time.

The compiler also retrieves profiling information on the
number of method invocations and branch behavior. Via this
information, the compiler is able to accurately estimate the
total number of objects allocated from a site. Later, when the
optimizing compiler recompiles a method, for each of its al-
location sites, it checks the total number of objects allocated
and the allocProfile count. Based on these values, it decides
on whether the site should either continue to allocate objects
in volatile memory or switch to eagerly allocating in NVM.
To prevent the GC from moving objects eagerly allocated in
NVM back to volatile memory, these objects set the requested
non-volatile flag (Section 6.4) in their NVM_Metadata header.

Note that deciding which memory to use for initial object
allocation is a performance issue and not a correctness one.
AutoPersist guarantees that the necessary objects will be
moved to NVM to meet our model’s requirements. This pro-
filing information simply helps to attain higher performance.

8 Evaluation Environment

Compiler Platform. We implement the AutoPersist frame-
work within the Maxine JVM [61]. Maxine is an open-source
research JVM that enables the fast prototyping of new fea-
tures while achieving competitive performance. We use Max-
ine 2.0.5, and modify both its initial tier compiler (T1X) and
its optimizing compiler (Graal). In addition, we modify its ob-
ject layout to integrate our NVM_Metadata header (Figure 4),
add new NVM heap regions, extend its GC (Section 6.4), and
implement failure-atomic regions (Section 6.5).

Server Configuration. We use a server with multiple 128GB
Intel Optane DC persistent memory modules and 384GB of



RIGHTS

AutoPersist: An Easy-To-Use Java NVM Framework Based on Reachability

DDR4 DRAM. The server contains two 24-core Intel® second
generation Xeon® Scalable processors (codenamed Cascade
Lake), and runs Fedora 27 on Linux 4.15. In all of our exper-
iments, we set up AutoPersist to reserve 20GB for each of
the volatile and non-volatile heap spaces. To create the non-
volatile heap, we use 1libpmem [6] to map a portion of the
application’s virtual address space to NVM. After that, via
the Direct Access (DAX) protocol, applications can directly
interact with the Intel Optane DC persistent memory. We
use cache line writebacks (CLWB) and store memory fences
(SFENCE) to persist values.

8.1 Applications

To evaluate AutoPersist, we perform experiments on two
real-world applications, namely, a key-value store and the
H2 relational database, and several kernels.

Key-Value Store. We implement a persistent version of a
key-value store using AutoPersist. Specifically, we modify
QuickCached [8], a pure Java implementation of Memcached
to use persistent data structures internally for its key-value
storage. The different backends that we compare are:

o IntelKV. This is Intel’s pmemkyv library [7], along with its
Java bindings. This backend uses its kvtree3 configuration,
which consists of a hybrid b+ tree written in C++ using the
PMDK library version 1.5. Similar to existing works [49],
in this implementation, only the leaf nodes are in persis-
tent memory. Note that the IntelKV backend does not use
AutoPersist. Hence, it runs on an unmodified JVM.
Func. This backend uses the PCollection library [5] and
is implemented in Java. We create two versions: one in
AutoPersist and one using the Espresso framework [62].
Espresso requires the user to add markings identifying
objects to allocate in NVM, to mark stores that must be
flushed to NVM, and to insert memory fences.

JavaKV. This backend uses the same B+ tree structure as
IntelKV and is implemented in Java. Like Func, we create
two versions: one in AutoPersist and one in Espresso.

H2 Database. We modify the H2 relational database [2] to
use AutoPersist. H2 is a popular SQL database written in
Java. Currently, H2 has two persistent storage engines. One
is MVStore, which is a log structured store and is currently
H2’s default storage engine. The other is PageStore, which is
H2’s legacy backend. We modify MVStore to use AutoPersist
to persist the database’s internal data structures instead of
writing them out to files. In the evaluation, we compare our
modified storage engine against both MVStore and PageStore.
For a fair comparison, we direct MVStore and PageStore to
use NVM as storage, as opposed to SSDs, to ensure their file
operations execute as efficiently as possible.

Database Driver. To evaluate the performance of both the
key-value store and H2 database, we use the Yahoo! Cloud
Serving Benchmark (YCSB) [24]. This is a benchmark suite
commonly used to evaluate the performance of cloud storage
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services. We run its A, B, C, D, and F workloads after loading
the databases with one million records. Each record is 1KB by
default. For each workload, we perform 500,000 operations.

Kernels. To characterize our framework, we combine into a
benchmark several kernels that perform a random collection
of reads, writes, inserts, and deletes to five persistent data
structures: MArray, MList, FARArray, FArray, and FList. We
list them in Table 1. We hand-wrote MArray, MList, and
FARArray to ensure correct persistent operation. FArray and
FList are functional data structures from the PCollections
library [5], and inherently use persistent-safe structures.

Table 1. Persistent data structure description.

H Data Structure & Description H

Mutable ArrayList (MArray): ArrayList using copying to maintain
persistency for inserts and deletes. Updates are in place.

Mutable LinkedList (MList): Doubly-linked list.

Failure-Atomic Region ArrayList (FARArray): ArrayList using
failure-atomic regions to allow in-place insertions and deletions.
Functional ArrayList (FArray): Functional data structure that uses
copying for data structure writes. Uses PCollection’s PTreeVector class.
Functional LinkedList (FList): Functional data structure that uses
copying for writes to the structure. Uses PCollection’s ConsPStack class.

Table 2 shows the different AutoPersist-based NVM frame-
works we use in this evaluation. NoProfile is AutoPersist
without the profiling optimization described in Section 7.
T1Xis NoProfile but only using the initial tier compiler (T1X).
T1XProfileis T1X plus collecting the profiling information de-
scribed in Section 7. In other words, both T1X and T1XProfile
are not using the optimizing compiler (Graal). AutoPersist is
the full AutoPersist framework with all of its optimizations.

Table 2. Frameworks evaluated.

H Framework [ Description H

NoProfile AutoPersist without the profiling opt. of Section 7
T1X NoProfile but only using the initial tier compiler (T1X)
T1XProfile | TiX plus collecting the profiling info of Section 7
AutoPersist | Complete AutoPersist

Espresso* Our implementation of Espresso [62]

We also created our own implementation of Espresso [62],
which we call Espresso”. Espresso” requires the user to add
markings identifying objects to allocate in NVM, to mark
stores that must be flushed to NVM, and to insert memory
fences. We have tried to faithfully implement Espresso™ in the
most optimal way possible, including creating new compiler
intrinsics and developing new JVM built-in calls to ensure
that the Espresso” markings execute as efficiently as possible.

9 Evaluation
9.1 Model Usability

A key benefit of AutoPersist is that it requires a developer
to add only minimal markings in their program to ensure
crash consistency. Specifically, the markings are: identifying
the durable root set, inserting failure-atomic region entry
and exit points, and marking unrecoverable fields for higher
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Table 3. Number of markings for memory persistency.

Framework Applications Kernels Total Markings
Func [ JavaKV | H2 | MArray | MList | FARArray [ FArray [ FList || without H2
AutoPersist 4 6 6 1 1 5 1 1 19
Espresso” 55 45 N/A 49 48 63 47 14 321
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Figure 5. Key-value store execution time. Figure 6. H2 execution time.
performance. This is in contrast to Espresso”, which needs makeQObjectRecoverable method (Algorithm 3). Memory is
explicit markings for each persistent object allocation, cache the overhead of executing CLWB and SFENCE instructions.
line writeback to NVM, and fence [62]. Finally, Execution is the remaining execution time. Note that
Table 3 shows the number of markings added for each Logging and Runtime only apply to AutoPersist backends.
application when using AutoPersist and Espresso™. Table 3 Also, IntelKV cannot be broken down because it uses a C++
shows that AutoPersist only needs 25 markings in total (or library that we cannot instrument; all its time is Execution.
19 markings without H2). In contrast, when using Espresso”, Looking at the Average bars, we see that the execution
the programmer needs to add 321 markings in the programs time of IntelKV is 116% and 119% higher than of Func-E and
to ensure crash consistency. Note that we did not implement JavaKV-E, respectively, which correspond to a previously
a persistent version of H2 in Espresso™ due to the difficulty proposed system. More importantly, the execution times of
of implementing it correctly. In their paper, Wu et al. [62] our Func-AP and JavaKV-AP backends are 31% and 28% lower
claim to need to modify around 600 LoC to implement a than of Func-E and JavaKV-E, respectively.
persistent version of H2 in their framework, built on top The reason why IntelKV is substantially slower than the
of DataNucleus [1]. They also estimated that, if they had others is that, since the QuickCached application is written
implemented their system directly on top of H2, they would in Java and the pmemkyv library in C++, the data objects must
have needed to modify over 3,000 LoC. be serialized in order to pass them from QuickCached to the
There is a significant difference in the number of mark- pmemkyv library. For the backends implemented in pure Java,
ings required in the two frameworks. However, in our ex- the data does not need to be serialized, as the non-volatile
perience, even this difference does not do justice to the fact portion of the heap provides crash consistency.
that we found it much more difficult to create a correct crash- AutoPersist significantly outperforms Espresso* due to
consistent application in Espresso®. Overall, using AutoPer- having a practically negligible Memory time. This is because
sist greatly reduces programmer effort and the likelihood of AutoPersist’s runtime is able to limit the number of CWLBs
introducing performance or correctness bugs. when objects become reachable from the durable root set.
9.2 Analysis of the Key-Value Store Specifically, as AutoPersist is built into the JVM, it has precise
. L . . knowledge of the address and layout of the objects. Hence,
Figure 5 shows the execution time of different persistent : . . .
. . when objects become recoverable, it emits a single CLWB
key-value store backends while running YCSB. In the figure, . .
. . per cache line, reducing the total number of CLWBs. On the
the different versions of the Func and JavaKV backends are . . . .
other hand, since Espresso” adds cache line writebacks at the
named as {backend}-{framework}, where framework can be . . .
N . source code level, it does not have any information about
E for Espresso* and AP for AutoPersist. We also show a L, . . . .
L . the object’s layout or alignment within cache lines. Hence, it
bar for IntelKV. The execution time is normalized to Func- . .
N . must insert a CLWB for every object field to ensure that the
E. We break down the execution time into four categories S . . ha ) o
. ) . object is entirely persistent. This is an inherent limitation
which, from top to bottom, are: Logging, Runtime, Memory, . . .
. e . . . of performing markings at the Java source code level. It is
and Execution. Logging is the time spent performing logging .
o . ; . . a strong argument for why, in managed languages such as
in failure-atomic regions. Note that it does not include the .S . . .
. . . . . Java, it is best to let the runtime decide when to emit cache
time spent executing CLWB or SFENCE instructions while . .
. . . L . line writebacks.
performing this logging. Runtime is the time spent by the . .o 1
. . . L How much AutoPersist outperforms Espresso™ is directly
AutoPersist runtime ensuring that the transitive closure of roportional to the number of insert and update operations
the durable root set resides in NVM, and moving objects to prop p P
NVM as necessary. It corresponds to the execution of the
327
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Figure 7. Espresso” and AutoPersist kernel execution time.

within the given YCSB benchmark. For instance, in the read-
only C workload and read-mostly B workload, Espresso*
performs about the same as AutoPersist. However, for work-
loads with writes, such as A, D, and F, AutoPersist is able to
significantly outperform Espresso™.

Figure 5 also shows that the Logging and Runtime times
in AutoPersist are negligible. Importantly, the Runtime over-
head is negligible because of the efficiency of our algorithms.
Finally, when using the same framework, the performance
difference between Func and JavaKV is minimal. This is be-
cause both data structures are tree-based and have similar
branching factors.

9.3 Analysis of the H2 Database

Figure 6 shows the execution time of the H2 database with
the MVStore, PageStore, and AutoPersist storage backends
when running the YCSB workloads. Recall that MVStore and
PageStore are file-based backends, which we direct to use
NVM as storage. MVStore and PageStore do not have Memory
time because, rather than using CLWBs and SFENCE:s, they
persist data via file operations.

On average, the execution time using AutoPersist is 38%
and 3% lower than using MVStore and PageStore, respec-
tively. Similar to the key-value store applications, the exe-
cution time reductions of AutoPersist are higher when exe-
cuting write-heavy workloads. Surprisingly, the PageStore
storage engine significantly outperforms MVStore. As men-
tioned in Section 8, currently our AutoPersist H2 backend
is based on the MVStore engine. We anticipate that we can
achieve greater speedups by implementing an AutoPersist
version of the PageStore backend.

9.4 Analysis of the Kernels
9.4.1 Execution Time

Figure 7 shows the kernel execution times for Espresso*
and AutoPersist. For each kernel, the bars are normalized
to Espresso™. The bars are broken down into the usual cat-
egories. We see that, on average, AutoPersist reduces the
execution time by 59% over Espresso”. The AutoPersist gains
largely come from a large reduction in Memory time. This is
because, as discussed in Section 9.2, AutoPersist inserts the
minimal number of CLWBs necessary to ensure that objects
reachable from the durable root set are persistent.

We see that the AutoPersist configuration of FARArray
does not reduce the Memory time much. This is because, in

i,
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this kernel, many CLWBs and SFENCEs are executed while
performing logging. AutoPersist cannot easily reduce the
number of such CLWBs and SFENCEs because a given log
entry must be persisted before its program store can execute.
MList has little Memory time because it does not need to
perform many writes. AutoPersist increases the Memory time
because it supports sequential persistency and, therefore,
introduces more SFENCEs.

To highlight the benefits of optimizations within AutoPer-
sist, Figure 8 compares the execution time of the kernels in
the different AutoPersist frameworks: T1X, T1XProfile, No-
Profile, and AutoPersist (Table 2). The bars are normalized to
T1X and are broken down into the usual categories.

As shown in Figure 8, we find that, on average, NoProfile
and AutoPersist reduce the execution time by 36% and 38%
over T1X, respectively. This reduction is due to using the
optimizing compiler, which reduces the Execution time. We
also see that T1XProfile takes only a bit longer to execute
than T1X, which shows that the overhead of our profiling in
the baseline compiler is minimal.

Comparing NoProfile and AutoPersist shows the perfor-
mance impact of our profiling pass. We see that, by eagerly
allocating in NVM objects anticipated to become persistent,
our pass reduces the Runtime by an average of 39%. However,
the total execution time decreases by an average of only 2%.
Nevertheless, we believe that, as NVM technologies improve,
the amount of time needed to perform CLWBs and SFENCEs
will decrease. Hence, it will be important to ensure that other
bottlenecks, like runtime overhead, are minimized. There-
fore, we believe that our profiling optimization will become
more important.

9.4.2 Runtime Events

To further understand the behavior of AutoPersist, we profile
the NoProfile and AutoPersist frameworks while running each
kernel (Table 4). For NoProfile, Column 1 shows the number
of objects allocated during execution; Column 2 shows the
number of objects copied to NVM; and Column 3 shows the
number of pointers updated as a result of the copies.

The rest of the columns show the impact of our profiling
optimization in AutoPersist. Specifically, Column 4 shows the
number of objects that are eagerly allocated in NVM. We see
that our optimization allocates a large fraction of the objects
eagerly. Columns 5 and 6 show the data corresponding to
Columns 2 and 3. We see that our profiling optimization
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significantly reduces the number of objects to be copied and
the number of pointers to be updated. Note that the FArray
and FList kernels still perform many copies and updates. This
is because some of their methods do not get recompiled by
the optimizing compiler.

Table 4. NoProfile and AutoPersist event counts.

Kernel NoProfile AutoPersist
Obj Obj Pir NVM | Obj Pir
Alloc Copy Update Alloc Copy | Update
&) &) &) X) &) &)
MArray 29.9 29.9 7.4 29.9 0 0
MList 22.5 22.5 7.4 22.5 0 0
FARArray 15.1 15.1 0 15.1 0 0
FArray 468.4 304.4 281.9 225.9 170.8 170.8
FList 11447.6 | 11440.1 11417.6 7548.4 | 3891.7 3884.1

It can be shown that the number of allocation sites in the
source code that are profiled by our profiling pass ranges
from 208 to 279 sites per kernel. Of those, only a small num-
ber are converted to eagerly allocate objects in NVM. Specif-
ically, only 4 to 43 sites per kernel (on average, 15 sites per
kernel) are converted. However, we believe that identifying
such sites manually would be hard.

9.5 AutoPersist Runtime Overheads

The changes proposed in AutoPersist introduce two new
overheads over normal Java execution: its augmented JVM
bytecodes must perform extra actions, and the NVM_Metadata
header adds extra memory overhead. The execution over-
head of the extra actions is modest, in part thanks to the appli-
cation of the biasing techniques described in QuickCheck [57]
and implemented here. Such overhead appears within the
Execution category of AutoPersist in Figures 5 to 8. Overall,
it was shown in QuickCheck [57] that the resulting over-
head of this effect is, on average, less than 10% of the total
execution time.

The memory overhead of the larger header increases the
memory consumption of the key-value store and the H2
database by an average of 9.4% and 1.6%, respectively. The
overhead is greater for the key-value store than for H2 due to
the relatively low branching factor within the B+tree nodes
used in both the Func and JavaKV backends of the key-value
store. Fortunately, this overhead is tolerable due to the large
memory capacity that NVM can provide.

10 Related Work

Many NVM frameworks have been proposed [6, 20-23, 25,
35, 41, 48, 60, 62]. We describe their limitations in Section 3.1.
While most existing frameworks are written in C or C++,
Wu et al. [62] proposed a framework in Java called Espresso.
In Espresso, like in previous frameworks, the user has to ex-
plicitly identify all non-volatile allocations, and perform the
persist operations necessary for crash consistency. Section 9
compares AutoPersist and Espresso.

Many previous works propose both software [31, 36, 42,
46, 60] and hardware [28, 40, 55] techniques to limit the
overhead of logging in atomic regions and transactions. We
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implement a simple undo log and leave more advanced im-
plementations as future work.

Forwarding pointers and write barriers are used in concur-
rent and generational garbage collectors [15, 26, 29, 51, 59].
To our knowledge, this the first time that such runtime tech-
niques have been applied to help create crash-consistent
applications in NVM. This use case is different than GC,
since the behavior is dictated by static user markers instead
of the temporal behavior of GC. However, AutoPersist’s for-
warding pointers and barriers can be shared with GC when
used in conjunction with advanced GC implementations.

Analysis techniques have been proposed to anticipate long
living objects [17], to prevent wearout [11], and to predict
when object resources can be reclaimed [33, 63]. We expect
to further improve AutoPersist with such techniques.

Previous papers have proposed many persistency mod-
els [19, 31, 38, 41, 44, 50], which define how stores to NVM
can be reordered both in software and hardware. AutoPer-
sist’s persistency model is described in Section 4.3. Currently,
AutoPersist uses sequential persistency outside of failure-
atomic regions and epoch persistency inside failure-atomic
regions. However, more relaxed persistency models can also
leverage our runtime reachability analysis.

Many persistent programming languages [12, 18, 34, 39,
54, 58] and implementations [13, 43, 47] were proposed be-
fore the introduction of byte-addressable NVM. These lan-
guages focus on attaining the orthogonal persistency defined
by Atkinson and Morrison [14], where the persistency of an
application is orthogonal to its design. AutoPersist’s model is
different in that it does not seek to attain complete orthogo-
nal persistency. Furthermore, previous papers on orthogonal
persistency describe approaches to optimize for a two-level
storage model with orders of magnitude differences in perfor-
mance, whereas AutoPersist targets byte-addressable NVM.

11 Conclusion

In this paper, we introduced AutoPersist, a new NVM frame-
work where the programmer only needs to identify durable
roots. We described its implementation as an extension of
Java, including its support for transparent, efficient, and
thread-safe object access and movement across NVM and
DRAM. To evaluate the performance and programmability
of AutoPersist, we used various applications running on In-
tel Optane DC persistent memory. We demonstrated that,
with minimal programmer effort, AutoPersist significantly
outperforms expert-marked Java NVM applications.
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