
FlatFlash: Exploiting the Byte-Accessibility of SSDs
within A Unified Memory-Storage Hierarchy

Ahmed Abulila
UIUC

Vikram Sharma Mailthody
UIUC

Zaid Qureshi
UIUC

Jian Huang∗

UIUC
Nam Sung Kim

UIUC
Jinjun Xiong
IBM Research

Wen-mei Hwu
UIUC

Abstract

Using flash-based solid state drives (SSDs) as main memory
has been proposed as a practical solution towards scaling
memory capacity for data-intensive applications. However,
almost all existing approaches rely on the paging mechanism
to move data between SSDs and host DRAM. This inevitably
incurs significant performance overhead and extra I/O traffic.
Thanks to the byte-addressability supported by the PCIe
interconnect and the internal memory in SSD controllers, it
isfeasible to access SSDs in both byte and block granularity
today. Exploiting the benefits of SSD’s byte-accessibility in
today’s memory-storage hierarchy is, however, challenging
as it lacks systems support and abstractions for programs.
In this paper, we present FlatFlash, an optimized unified

memory-storage hierarchy, to efficiently use byte-addressable
SSD as part of the main memory. We extend the virtual mem-
ory management to provide a unified memory interface so
that programs can access data across SSD and DRAM in
byte granularity seamlessly. We propose a lightweight, adap-
tive page promotion mechanism between SSD and DRAM
to gain benefits from both the byte-addressable large SSD
and fast DRAM concurrently and transparently, while avoid-
ing unnecessary page movements. Furthermore, we propose
an abstraction of byte-granular data persistence to exploit
the persistence nature of SSDs, upon which we rethink the
design primitives of crash consistency of several represen-
tative software systems that require data persistence, such
as file systems and databases. Our evaluation with a variety

∗The corresponding author of this work is Jian Huang (jianh@illinois.edu).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’19, April 13ś17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304061

of applications demonstrates that, compared to the current
unified memory-storage systems, FlatFlash improves the per-
formance for memory-intensive applications by up to 2.3×,
reduces the tail latency for latency-critical applications by up
to 2.8×, scales the throughput for transactional database by
up to 3.0×, and decreases the meta-data persistence overhead
for file systems by up to 18.9×. FlatFlash also improves the
cost-effectiveness by up to 3.8× compared to DRAM-only
systems, while enhancing the SSD lifetime significantly.

CCS Concepts · Hardware → Memory and dense

storage; Non-volatile memory; · Software and its engi-

neering→ Memory management.
Keywords byte-addressable SSD; unified memory man-

agement; page promotion; data persistence

ACM Reference Format:

Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian
Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. 2019.
FlatFlash: Exploiting the Byte-Accessibility of SSDs within A Uni-
fied Memory-Storage Hierarchy. In 2019 Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’19), April

13ś17, 2019, Providence, RI, USA.ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3297858.3304061

1 Introduction

Using SSDs as main memory [5, 20, 27, 60] has been pre-
sented as a practical approach to expanding the memory
capacity for data-intensive applications, as the cost of SSDs
is fast approaching that of hard disk drives, and their perfor-
mance has improved by more than 1,000× over the past few
years [23, 29, 59]. Also, SSDs today can scale up to terabytes
per PCIe slot [44], whereas DRAM scales only to gigabytes
per DIMM slot [26].

To overcome the DRAM scaling issue, the state-of-the-art
approaches leverage the memory mapped interface and pag-
ing mechanism in operating systems and treat SSDs as fast
backing storage for the DRAM [20, 27, 60]. Although these
approaches simplify the development, they suffer from three
drawbacks. First, the paging mechanism incurs performance
overhead. For each memory access to data that is not present

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

971

in DRAM, a page fault is triggered and a software page han-
dler moves the accessed page from SSD to main memory,
resulting in an execution delay. Second, the paging mecha-
nism faces the thrashing problem caused by data-intensive
applications whose working set sizes are significantly larger
than the available DRAM capacity. Third, the page granu-
larity of data access incurs a tremendous amount of extra
I/O traffic by moving the whole page even if a small portion
within that page is needed [47], which not only affects SSD
performance but also hurts the SSD lifetime.
Thanks to the byte-addressability provided by the PCIe

interconnect and the internal memory in SSD controllers, it
is feasible today to have a byte-addressable SSD by leverag-
ing the available Base Address Registers (BARs) in the SSD
controller through the PCIe memory-mapped I/O interface
(MMIO) [6]. Henceforth, we can access SSDs in both byte
and block granularity. However, this inevitably increases the
complexity of managing SSDs in modern memory-storage
hierarchy and it is still unclear how systems software and
applications will benefit from this new property.
In this paper, we exploit the byte-accessibility of SSDs

and rethink the design of a unified memory-storage hier-
archy to address the aforementioned challenges. We first
map the SSD page locations into the host address space and
extend virtual memory management to make use of the phys-
ical pages across the byte-addressable SSD and host DRAM.
Since NAND flash chips are not natively byte-addressable
and can only be accessed in page granularity, we utilize the
DRAM present in the SSD controller and use it as a cache
for accessed pages. Thus, the host CPU can issue memory
requests (load/store) to a unified memory space, which eases
the programmability and management of byte-addressable
SSDs and makes programs access data across SSD and host
DRAM seamlessly.
Accessing the SSD for each memory request is, however,

slower than accessing DRAM. We propose a lightweight,
adaptive page promotion mechanism to determine which
flash pages should be placed in the host DRAM, therefore, ap-
plications can transparently exploit the advantages of both
the byte-addressable SSD and the faster DRAM. We sup-
port promoting multiple hot pages concurrently to the host
DRAM for fast access while keeping cold pages in the SSD
for direct, byte-granular access to avoid thrashing. To avoid
program stalls caused by the page promotion, we propose
a promotion look-aside buffer (PLB) in the host bridge for
redirecting memory requests for a page being promoted to
its current physical address. As PLB is only used for pages
being promoted, its storage overhead is trivial.
Furthermore, to preserve the persistent nature of SSDs

in the unified memory-storage hierarchy, we propose byte-
granular data persistence to exploit the fine-grained durable
write with a battery-backed DRAM in SSDs. Unlike conven-
tional persistent storage that uses a block interface, such a
new persistence feature of SSDs significantly reduces the

crash consistency overhead for software systems that have
strict requirement on data persistence. With case studies of
file systems and transactional databases, we demonstrate
the benefits of this new feature and its impact on the design
primitives of storage systems. Overall, this paper makes the
following contributions:

• We present FlatFlash, a unified memory and storage archi-
tecture with byte-addressable SSDs and DRAM. It presents
a unified memory interface to simplify the management
and programmability of the dual byte and block-accessible
interfaces of SSDs.

• We propose an adaptive page promotion scheme that en-
ables applications to benefit from both byte-addressable
SSDs and DRAM simultaneously while incurring negligi-
ble performance and storage overhead.

• We exploit the byte-granular data persistence in FlatFlash,
rethink the design primitives of ensuring crash consistency
in several representative systems such as file systems and
database, and demonstrate its performance benefits.

We implement FlatFlash in Linux on top of an SSD em-
ulator with the new abstractions proposed. Compared to
the state-of-the-art unified memory-storage solution, Flat-
Flash improves the performance of memory-intensive work-
loads such as the High-Performance Computing Challenge
benchmark HPCC-GUPS [43] and graph analytics frame-
work GraphChi [41] by up to 2.3×, reduces the tail latency
for the NoSQL key-value store Redis [58] by up to 2.8×, scales
the throughput of transactional database Shore-MT [34] by
up to 3.0×, decreases the meta-data persistence overhead
of file systems EXT4, XFS, and BtrFS by up to 18.9×. Be-
yond the performance and persistence benefits gained from
FlatFlash, our evaluation also shows FlatFlash improves the
cost-effectiveness by up to 3.8× compared to the DRAM-only
system, while enhancing the SSD lifetime significantly.

The rest of the paper is organized as follows: § 2 explains
the background and motivation of this work. The FlatFlash
design and implementation are detailed in § 3 and § 4 respec-
tively. Our evaluation methodology and results are presented
in § 5. We discuss the related work in § 6 and conclude the
paper in § 7.

2 Background and Motivation

To meet the ever-increasing demand for memory capacity
from data-intensive applications, system designers either
use a large amount of DRAM [42, 51] or leverage fast stor-
age medium such as SSDs as backup store to scale up the
application-usable memory capacity of systems [5, 20, 60].
Scaling up with DRAM is expensive, for example, a capac-
ity of 512GB will cost about $8,950 with eight 64GB DDR4
DIMMs in 2018 [26]. And it is limited by the number of
DIMM slots available on the servers [16, 66]. SSDs, on the
other hand, scale to terabytes in capacity per PCIe slot [44]
and are significantly cheaper than DRAM (e.g., a 1TB SSD

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

972

Hot pages Cold pages

Cache LinePage

H
o

st
 B

ri
d

g
e

DRAM

SSD

Page fault

CPU

SSD

(a) Existing Approach

H
os

t
B

ri
d

ge

DRAM

Promotion

SSD

CPU

(b) FlatFlash

Figure 1. (a) The state-of-the-art approach relies on paging
mechanism to migrate pages; (b) FlatFlash provides direct
memory accesses to the SSD with adaptive page promotion.

costs around $600 in 2018 [49]). As SSD’s capacity increases
and cost decreases, using SSDs to expand memory capacity
has become a cost-effective solution in practice [20, 27, 68].
System designers deploy SSDs as fast backing stores for
memory mapped data and swap spaces for large datasets in
virtual memory while leveraging the paging mechanism to
move data between the DRAM and the SSD.

2.1 Using SSDs as Extended Memory

The state-of-the-art system using an SSD as extended mem-
ory (i.e., unified memory-storage hierarchy) relies on paging
mechanism to manage SSDs, as shown in Figure 1a. Applica-
tions running on the CPU are allowed to access the DRAM
in cache line granularity. However, a page fault occurs when-
ever an application accesses data in the extended memory
region backed by SSD. The application is stalled until the
OS’s page fault handler migrates the requested page from the
SSD to DRAM and updates the page table. For applications
with large datasets that cannot fit in the DRAM, a significant
number of page faults are triggered and pages are frequently
swapped between DRAM and SSD [27]. For workloads with
random page access patterns to a large data set, such as the
HPCC-GUPS [43], the traffic between the SSD and DRAM
is increased drastically due to the thrashing, a phenomenon
where pages brought into DRAM are simply replaced before
they can be accessed again.

2.2 Byte vs. Block-Accessible Interface for SSDs

The cost of page migration is exacerbated for workloads
accessing only a few bytes or cache lines of a page, as any
access to a page in SSD requires migration of the whole page
between SSD and DRAM in the current memory-storage hi-
erarchy. Being able to issue memory requests (i.e., load/store)
directly to the SSD eliminates the need to migrate pages
between the SSD and the DRAM. With the existing interface
standards like PCIe (or NVMe) [48, 53], CCIX [12], QPI [4],
and OpenCAPI [50], CPUs are capable of issuing load/store
accesses, including atomic operations, directly to the SSD

Processor Chip

DRAM

CPU

Host Bridge

Unified Memory

Promotion

Manager

SSD Cache

Manager

SSD

CPU

Flash

Devices

Load/Store Interface DMA Operations

Promotion

Lookaside Buffer

SSD

Cache

Mem

Ctrl

SSD

Figure 2. System architecture of FlatFlash.

using memory-mapped I/O. However, NAND Flash chips,
the memory technology commonly used in SSDs, are not
byte-addressable. We can leverage the DRAM (a few GBs)
present inside SSDs, originally for the purpose of storing
the flash translation layer (FTL) and data buffering, to ser-
vice the CPU’s memory requests [6, 49, 59]. With the byte-
addressable SSD memory extension (see Figure 1b), appli-
cations with a random access pattern can issue memory
requests directly to the SSD in cache line granularity, thus
reducing the I/O traffic. For an application that exhibits data
locality, we can still promote its working set into fast DRAM
for better performance. We will discuss how FlatFlash man-
ages and exploits the byte-addressable SSD in detail in § 3.

3 FlatFlash Design

An overview of the FlatFlash system architecture is shown in
Figure 2. FlatFlash addresses the challenges associated with
exploiting the byte-accessibility of SSDs in five steps. First,
we discuss the techniques used to enable byte-accessibility
of SSDs in FlatFlash (§ 3.1). Second, we combine the SSD and
DRAM into a unified and flat memory space. That is, a virtual
memory page can be mapped either to the DRAM or the SSD.
Such a unified memory interface simplifies the programma-
bility of byte-addressable SSDs. Applications can directly
access the SSD using regular memory requests without the
need of paging mechanism (§ 3.2). Third, to gain benefits
from the faster accesses to the DRAM, we propose a mecha-
nism for promoting pages from the SSD to host DRAM. The
mechanism keeps the page promotion activities from stalling
application execution and ensures data consistency during
the promotion process (§ 3.3). Fourth, to further bring bene-
fits for applications, we develop an adaptive promotion policy
that is dependent on their access patterns. The adaptive pro-
motion mechanism is an integral part of Promotion Manager
and interacts with the SSD-Cache to determine which pages
to promote (§ 3.4). Fifth, FlatFlash enables byte-granular data
persistence which facilitates critical-data persistence for sys-
tems software and applications that have strict requirement
on data persistence (§ 3.5).

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

973

Hot pages Cold pages

Incurs a page fault when accessed

Page Table

0 ssd_0

1 dram_0

0 ssd_2

1 dram_1

Present

Bit

Physical

Address
DRAM

SSD

P
a

g
e

 M
ig

ra
ti

o
n

(a)Memory-Mapped SSD

Page Table

1 dram_0

1 ssd_1

1 dram_1

1 ssd_3

Present

Bit
Physical

Address
DRAM

SSD

P
a

g
e

 P
ro

m
o

ti
o

n

(b) FlatFlash

Figure 3. Page table support for memory-mapped SSD vs.
FlatFlash. Both of them support unified address translation,
however, FlatFlash enables direct memory access without
relying on paging.

3.1 Enabling Byte-Addressability of SSDs

The PCIe standard defines a set of Base Address Registers
(BARs) for end-point devices like SSDs to advertise the mem-
ory mappable region to the host at the system reset stage.
During boot time, the BIOS and OS check the BAR registers
of the PCIe-based end-point devices to add the extended
memory mapped regions to the host. All memory requests
to these extended memory-mapped regions are redirected
to the respective PCIe end-point devices by the host bridge
in Figure 2. The end-point device is responsible for mapping
internal resources to the respective address ranges. With
PCIe MMIO, the memory requests including atomic reads
and writes, can be directly issued to the PCIe end-point de-
vice. FlatFlash exploits one of the PCIe BARs to expose the
SSD as a byte-addressable memory mapped region to the
host. During PCIe enumeration, the flash memory region is
mapped into the memory space in the host.

Since the host PCIe bridge does not support cache coher-
ence between the host machine and PCIe devices yet, the
PCIe MMIO accesses are not cached in the host processor
cache, which would miss the chance of exploiting the per-
formance benefit of processor cache for applications. This is
not much of a concern as commodity PCIe-based devices are
increasingly employing the cache coherent protocol such as
CAPI/OpenCAPI [25], CCIX [12], and GenZ [65] to acceler-
ate applications. We leverage the cache coherent protocol in
CAPI to enable cache-able memory accesses in FlatFlash.

Although PCIe MMIO supports memory requests in byte
granularity, NAND flash memory chips have to be accessed
in page granularity. To fill this gap, we leverage the DRAM
(normally used for FTL but no longer needed since the FTL
has been merged with the page table in the host, see § 3.2)
inside the SSD as a cache (SSD-Cache in Figure 2) for the
memory-mapped flashmemory region. Therefore, SSD-Cache
provides the necessary bridge between the byte-addressable
interface and NAND Flash chips. The SSD-Cache Manager
is responsible for handling all the operations related to SSD-
Cache. Note that we organize SSD-Cache in page granularity.
We will discuss the SSD-Cache details in § 3.4.

3.2 Unified Memory with Byte-Addressable SSD

SSDs can be used as memory via the memory-mapped inter-
face provided by operating systems. In the traditional system,
the page table entries point to the physical DRAM addresses
in the host. For an access to the page in SSD, a page fault
will occur, resulting in the page migration from the SSD
to DRAM. Recently, Huang et al. [27] proposed the unified
address translation for memory-mapped SSDs. It combines
the traditional system’s memory, storage, and device-level
address translation (i.e., flash translation layer) into page
tables in the virtual memory system. Therefore, the page
table entries can point to the physical addresses in SSD as
shown in Figure 3a. However, it still relies on paging mech-
anism to use DRAM as the cache when applications access
the memory-mapped SSD.
FlatFlash differs from these existing work that require a

page to be moved to the host DRAM before it can be accessed
through the memory interface, it provides direct cache line
access to the SSD as shown in Figure 3b. FlatFlash leverages
the unified address translation mechanism in [27] to reduce
the address translation overhead, and it further enables ap-
plications to issue memory requests directly to the pages
in the SSD. This removes the need for the paging mecha-
nism for a regular memory access to the memory-mapped
SSD. FlatFlash handles memory requests to the SSD in the
following ways.

• memory read request: The SSD-Cache manager in the SSD
controller serves the memory read request by searching
the SSD-Cache with the given physical address. For an
SSD-Cache hit, it issues a PCIe MMIO response to the
host with the data. If it is a cache miss, it reads the page
from the flash device with the physical address. The SSD-
Cache manager then issues a PCIe MMIO response with
the requested cache line from the page.
• memory write request: For memory write request, if it is a
SSD-Cache hit, SSD-Cache manager updates the page in
the SSD-Cache with the new data. If it is a cache miss, it
loads the page from the flash device into SSD-Cache and
updates it with the new data.

FlatFlash relies on the garbage collection (GC) of the SSD
to collect dirty pages in SSD-Cache and write them back to
the SSD periodically. The GC is discussed in details in § 4.

Since accesses to SSD are slower than accesses to DRAM,
pages that are frequently accessed (i.e., hot pages) can be
promoted to the host DRAM for better performance. How-
ever, promoting a page from the SSD to the host DRAM is
not free (it takes 12.1 µs as shown in Table 2). Also, a write
request to the page that is being promoted would result in
inconsistent view of the data to the application. To overcome
these challenges, FlatFlash performs off-critical path page
promotion to avoid application stall.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

974

3.3 Off-Critical Path Page Promotion

To facilitate effective page promotion and ensure data consis-
tency during the promotion procedure, we add a Promotion
Look-aside Buffer (PLB, see Figure 2) to the host bridge (a.k.a.,
Root Complex) that connects the CPU, memory controller,
and I/O interfaces. Note that the page promotion is executed
in cache line granularity and concurrent promotions for mul-
tiple cache lines are enabled.

DRAMPromotion Lookaside BufferSSD Cache

Store (0x02, data)

❶

❸

❹

❻

R
 





R
 





R
 





PLB Table

V SSD Tag Mem Tag Copied CL
0
0
0
1

- - - - - - -
- - - - - - -
- - - - - - -

0x02 0xF0 - - - 1 1

❷

In-flight Page

Migration

PLB Table

V SSD Tag Mem Tag Copied CL
0
0
0
1

- - - - - - -
- - - - - - -
- - - - - - -

0x02 0xF0 - - 1 1 1❺ ❼

(a)

(b)

(c)
PLB Table

V SSD Tag Mem Tag Copied CL
0
0
0
1

- - - - - - -
- - - - - - -
- - - - - - -

0x02 0xF0 - - 1 1 1

Dropped

Figure 4. An example for the Promotion Look-Aside Buffer.

The PLB consists of a PLB table and a controller to manage
any memory requests to the in-flight promotion page. As
shown in Figure 4a, each in-flight page promotion has an
entry in the PLB table with its source SSD physical address
(SSD tag) and its destination DRAM physical address (Mem
tag). The PLB entry also has a valid bit (V) and a bit vector
(Copied Cache Line) to indicate if each cache line (CL) in
the page is currently residing in the host DRAMor not.When
a page promotion is requested by the promotion manager,
the PLB will get a free page from a reserved memory region
in host DRAM for caching the page being promoted and
initialize a PLB entry with the SSD and DRAM addresses.
PLB uses the Copied CL field to ensure the data consis-

tency between the SSD and host DRAM. During the page
promotion, for each cache line that is promoted from the
SSD to the host, the PLB controller checks if the correspond-
ing bit in Copied CL field is set or not. If it has been set by
an evicted cache line from the CPU during the promotion,
PLB controller will cancel the promotion of that cache line
from the SSD. Otherwise, the PLB controller first sets the
corresponding bit in the Copied CL field to inform that the
most recent copy of that cache line exists in the host DRAM
and then all the memory operations to this cache line will be
forwarded to the host DRAM. When PLB receives requests
to the same cache line from both the host CPU (for regular
memory operations) and the SSD controller (for page pro-
motion), it gives higher priority to the requests from host
CPU to avoid conflicts.

Once the promotion of a page is completed, its correspond-
ing entry in PLB is cleaned, and the corresponding page table
entry (PTE) and translation lookaside buffer (TLB) entry are
updated. As the latency of accessing data in the SSD is much
higher than the latency of TLB shootdown, the overhead of
TLB shootdown is small and has negligible impact on the
performance of the whole system.
In FlatFlash, the PLB table has 64 entries. Each entry has

24 bytes (8 bytes for each tag) and 1 valid bit. Thus, its stor-
age overhead is trivial. Once the promotion of a page is
completed, its corresponding entry in the PLB table will be
cleaned for future use. As we index the PLB entries following
the principles of the content-addressable memory (CAM) de-
sign, each PLB entry lookup takes only one CPU cycle [52],
thus its performance overhead is negligible. Since PLB has
multiple entries, it enables concurrent promotion of multiple
hot flash pages.

As host DRAM capacity is limited, the least-recently used
pages will be evicted out for free space in host DRAM and
written back to SSD with page granularity, and the corre-
sponding TLB entries will be updated to the flash addresses.
Since the latency of writing a page to SSD is much higher (16
µs for ultra-low latency Z-SSD [67]) than the latency of TLB
shootdown [3], the TLB shootdown overhead is relatively
small and has negligible effect.

We use an example to demonstrate the in-flight page pro-
motion process. As shown in Figure 4, a hot page (❶) is
identified for promotion. The SSD promotion manager ini-
tiates the promotion by informing the PLB controller with
the source and destination physical addresses. The PLB con-
troller then inserts a valid entry to the PLB table (❷) as
shown in 4a. For each CL that is promoted, the PLB con-
troller sets the corresponding bit in the Copied CL field (❸).
Figure 4b illustrates the case for a store (cache eviction) to a
CL within the in-flight page promotion (❹). PLB controller
set the Copied CL field (❺) in the PLB entry and redirects
the CL to the host DRAM using the Mem Tag field (❻). As for
the promotion of an inbound CL from the SSD promotion
manager, the PLB controller checks the Copied CL flag to
determine if the CL is updated or not. As shown in Figure 4c,
if the Copied CL is set, it means the most recent copy of
the corresponding CL is in the host DRAM, the inbound CL
from the SSD will be discarded (❼).

3.4 Adaptive Page Promotion Scheme

We now discuss how we identify pages for promotion within
SSD-Cache. SSD-Cache in FlatFlash uses a set-associative
cache structure and leverages Re-reference Interval Predic-
tion (RRIP) as its replacement policy since it can achieve
a better cache hit rate [31], especially for random page ac-
cesses. Each entry in SSD-Cache has a valid bit (V), tag (Tag),
re-reference interval value counter (RRPV), page hit counter
(pageCnt), and page data (Page). The pageCnt increments
when a cache line of a corresponding page is accessed.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

975

Variables: PageCntArray({0}), NetAggCnt(0), AccessCnt(0), AggPro-
motedCnt(0), LwRatio(0.25), HiRatio(0.75), MaxThreshold(7), Re-
setEpoch(10K), CurrThreshold(7)

1: procedure adjust_cnt(set ,way)
2: NetAggCnt← NetAggCnt - PageCntArray[set][way]
3: PageCntArray[set][way]← 0

4: procedure update(paдeSet ,paдeW ay)
5: NetAggCnt++
6: AccessCnt++
7: pageCnt← ++PageCntArray[paдeSet][paдeW ay]
8: promoteFlag← pageCnt = CurrThreshold
9: if promoteFlag then

10: AggPromotedCnt← AggPromotedCnt + pageCnt
11: promote(paдeSet , paдeW ay)

12: currRatio← AggPromotedCnt / AccessCnt
13: if currRatio ≤ LwRatio then

14: if CurrThreshold < MaxThreshold then

15: CurrThreshold++
16: else if currRatio ≥ HiRatio then

17: if CurrThreshold > 1 and promoteFlag then

18: CurrThreshold--
19: if AccessCnt = ResetEpoch then ▷ reset counters
20: AccessCnt← NetAggCnt
21: AggPromotedCnt← 0
22: CurrThreshold← maxThreshold

Algorithm 1. The adaptive page promotion algorithm. The
variables are listed with their initial values. UPDATE pro-
cedure is called on every memory access to the SSD and
ADJUST_CNT is invoked on a page eviction in SSD-Cache.

A naive approach, taken from the paging mechanism, pro-
motes every accessed page. This can pollute the DRAM as
many of these pages have low reuse. To manage page pro-
motions, an access counter can be added for each page in
the SSD-Cache, pageCnt, whose value is compared against
a threshold, maxThreshold, on every access to determine if
it should be promoted or not. However, comparison against
a fixed threshold is insufficient to dynamically adapt to dif-
ferent memory access patterns. Thus an adaptive thresh-
old, CurrThreshold, is needed so that pages are promoted
frequently when there is high page-reuse and infrequently
when there is low page-reuse.

In order to detect page re-use pattern, we set currRatio
to AggPromotedCnt

AccessCnt
, where AggPromotedCnt is the sum of the

page access counters that have reached CurrThreshold and
AccessCnt is the total number of accesses to the SSD-Cache.
A high value of currRatio signifies high page-reuse asmany
pages’ access counters reached the CurrThreshold value
and were promoted. Similarly, a low value of currRatio
signifies low page-reuse as not many pages’ access counters
reached the CurrThreshold. The adaptive promotion algo-
rithm adapts the CurrThreshold value based on whether
the currRatio is high or low. If currRatio is greater than
or equal to HiRatio, then CurrThreshold is decremented
so that the pages are promoted frequently. If currRatio is
less than or equal to LwRatio, then CurrThreshold is incre-
mented so that the pages are promoted infrequently.

To mitigate the slow unlearning rate of the adaptive pro-
motion algorithm, we reset the counters of CurrThreshold,
AggPromotedCnt, and AccessCnt at every epoch, ResetEpoch.
To preserve the access pattern for the pages currently in the
SSD-Cache, we set AccessCnt to NetAggCnt, the sum of the
pageCnt for all pages present in the SSD-Cache, avoiding the
overhead of scanning the PageCntArray which has 512K en-
tries for a 2GB SSD-Cache. The storage overhead of the page
promotion mechanism is 0.2% of the SSD-Cache size, mostly
contributed by the PageCntArray. We show the adaptive
promotion scheme in Algorithm 1.

3.5 Byte-Granular Data Persistence

As discussed, the unified memory interface simplifies the
programmability with byte-addressable SSDs, and programs
can transparently obtain the performance benefits from both
byte-addressable large SSDs and fast DRAM. As a new in-
terface enabled in SSDs, the byte-accessibility also helps
programs achieve fine-grained data persistence by exploit-
ing the byte-granular durable write in combination with the
persistence nature of SSDs.
Unlike conventional persistent storage that uses a block

interface, FlatFlash enables byte-granular data persistence,
which significantly reduces the I/O traffic to SSDs. This fea-
ture can be used to achieve fine-grained data persistence for
specific data structures in software, such as log persistence
in database and meta-data persistence in file systems.

To implement this feature, FlatFlash leverages the existing
PCIe-based atomic memory operations (see § 3.1). As many
modern SSDs employ battery-backed DRAM or large capaci-
tors [2, 6, 57] in their controllers, the received memory write
requests via PCIe MMIO will be persistent without much
hardware modifications. FlatFlash employs battery-backed
DRAM inside the SSD to simplify its implementation for
data persistence. It allows applications to create a dedicated
persistent memory region with the provided function: cre-
ate_pmem_region (void* vaddr, size_t size). All of the virtual
addresses in the persistent memory region are mapped to
the address space of the SSD.

However, ensuring the data persistence is challenging, be-
cause (1) the update to the persistent memory region could
be cached in processor cache and (2) a page in SSD could
be promoted to the volatile DRAM in the host. To overcome
the first challenge, FlatFlash enforces applications to flush
the corresponding cache lines when they write to the per-
sistent memory region and employs the "write-verify read"
approach [6, 11] which functions similarly to mfence to en-
force the ordering of writes and cache flushing in host bridge.
To overcome the second challenge, FlatFlash leverages one
of the reserved bits in the PTE as the Persist (P) bit to
indicate whether a page should be promoted or not. For ev-
ery memory access to the SSD, during address translation,
the physical address is prefixed with the P bit, and this new
physical address is transferred to the host bridge. When the

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

976

Cache
Promotion

Lookaside Buffer

Host Bridge SSD

SSD-CacheCPU

flush cache lines:
clflush/clwb

verify addr &
disable promotion

PCIe

write-verify read
❶

❷

❸

Figure 5. The workflow of enforcing byte-granular data
persistence.

host bridge detects a memory request for the SSD, it cre-
ates a PCIe packet. In this packet, the Address field is set
to the memory address with the P bit masked out, and the
Attribute field is set to the value of the P bit [53]. When the
SSD receives a packet with the P bit set, it will not execute
update in Algorithm 1 to avoid the promotion of these pages.
The entire workflow is presented in Figure 5.

For decades, the upper-level storage software and appli-
cations were built based on the block I/O interface. We are
motivated to rethink their design primitives with the byte-
granular data persistence enabled in SSDs. To facilitate our
discussion, we use two representative systems as examples.

root

pointer block

pointer block

inodesm
et

ad
at

a
st

ru
ct

ur
e

packed
in blocks

data block

Figure 6. The metadata structure of a file system.

Improving Metadata Persistency in File Systems. In
almost any type of file system, maintaining the metadata
(e.g., inode) persistence is critical for ensuring data consis-
tency. Although metadata operations incur only small up-
dates (usually 8ś256 bytes in current file systems), they are
on the critical path, which significantly affects the storage
performance. A small metadata update inevitably causes a
page update, resulting in large write amplification as shown
in Figure 6. For example, file creation requires the alloca-
tion of a new inode and a update to the parent directory, it
generates 16-116 KB write IO and 24-40 KB of read IO in
different file systems [47]. With FlatFlash, we can allocate
persistent memory regions for the critical data structures
like inode and metadata journal, and persist their updates
with byte-granular data persistence.

Decentralizing the Logging for Databases. Transac-
tional databases require logging to preserve the ACID prop-
erties for transactions. In the traditional storage system stack,
databases usually have a centralized write-ahead log to group
logs (64-1,424 bytes per transaction according to our study
on database workloads TPCC, TPCB, and TATP) for avoid-
ing frequent I/O operations and generating sequential data

SSD

Centralized

Log Buffer

Lock

Contention

TXA

TXB
TXc

SSD

Log

TXA TXB TXc

Log Log

(a) Logging with block I/O (b) Logging with FlatFlash

Figure 7. Per-transaction logging with FlatFlash.

access pattern [46]. Such a design causes serious logging
contention in multi-core era [69] which limits the scalabil-
ity of transaction operations, especially when the persistent
storage device like SSD becomes faster. With FlatFlash, we
can decentralize the log buffer and apply the per-transaction
logging (similar to the logging approach proposed in [28])
to issue multiple atomic and persistent log writes concur-
rently (see Figure 7). Therefore, the logging bottleneck can
be reduced for better scalability. We integrate the discussed
approaches in both examples and evaluate them in § 5.

4 FlatFlash Implementation

FlatFlash Memory Management: We build a unified ad-
dress translation layer in the memory manager using a simi-
lar approach as described in [27], where all of the indirection
layers of the memory mapping of an SSD have been com-
bined into a single layer. FlatFlash uses the memory-mapped
interface to create a unified memory address space while
providing direct access to any data that is mapped to the
SSD in cache line granularity. Since the FTL of the SSD is
integrated into the page table in the virtual memory system
in the host, FlatFlash allows the SSD controller to update
the address mapping in PTEs and TLB entries for memory-
mapped regions when garbage collection (GC) of the SSD
moves pages to new flash blocks. To avoid frequent TLB
shootdown, FlatFlash maintains a mapping table in SSD that
maps the old physical address to the new one. Thus, it can
serve memory requests from the host machine using the old
physical address, and the entries in the mapping table will be
lazily propagated to the page table entries and TLB entries
in batches using a single interrupt [3, 8, 39].

Byte-Addressable SSDEmulation: To emulate the byte-
addressable SSD, we convert a real SSD to a byte-addressable
SSD and emulate the promotion look-aside buffer in the host
bridge (the only hardware modification required by Flat-
Flash). The host memory is used to model the SSD-cache
while the real SSD is utilized to model the raw flash device.
The host memory has been divided into two different regions:
the first region represents a regular main memory; the sec-
ond region models the SSD-Cache. We use a red-black tree

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

977

to index the pages in these regions separately. The SSD emu-
lation has been implemented as part of the memory manager
which keeps track of the pages cached in the SSD-Cache
and the pages promoted to host DRAM, and fulfills the PLB
functions and the page promotion algorithm as described in
§ 3. To reflect the memory access timings of the SSD regions,
the memory manager leverages the protection bit in the page
table entries for the SSD regions using mprotect. When the
application accesses any page within the SSD regions, an
exception is raised and the handler introduces additional la-
tency and clears the protection bit. To emulate the SSD-cache,
we flush the TLB entries of the recently accessed pages and
reset the read protection bit in these PTE entries for the SSD
region with a dedicated thread.

FlatFlash uses a similar read-modify-write garbage collec-
tion (GC) scheme as used in other SSDs [7, 24, 73], to collect
dirty pages in SSD-Cache and write them back to the SSD
periodically. In the read phase, the GC reads a flash block
into memory. In the modify phase, it overwrites the invalid
pages in the memory copy of the flash block with the dirty
pages from the SSD-Cache. In the write phase, it writes the
in-memory copy of the flash block into a free flash block
and updates the page table entries and TLB entries lazily
(as discussed previously) for these flushed dirty pages in
SSD-Cache.

5 Evaluation

Our evaluation demonstrates that: (1) FlatFlash improves
performance for data-intensive applications by adaptively
using a byte-addressable SSD and the host DRAM according
to workload characteristics (§ 5.1, § 5.2, § 5.3, and § 5.4); (2) It
minimizes the persistence overhead with byte-granular data
persistence and enables new optimization opportunities for
software systems with persistence requirement (§ 5.5 and
§ 5.6); (3) It provides a cost-effective solution to physically
extend memory capacity in a transparent way (§ 5.7). We
compare FlatFlash against the following systems:

• SeparatedMemory-Storage Stack (TraditionalStack):

The traditional memory and storage stack consisted of
DRAM with byte-addressability and SSD with a block I/O
interface. Systems software, such as the virtual memory
manager and EXT4 file system, are used to manage DRAM
and SSD, respectively. An unmodified mmap interface is
used to map the storage into virtual memory and the pag-
ing mechanism is used by default to swap pages between
DRAM and SSD. We consider TraditionalStack with plac-
ing the SSD FTL in the host DRAM for high performance,
which is similar to ioMemory [20]. All indirections are
separated but used on demand for performance.
• UnifiedMemory-Mapped Storage (UnifiedMMap): Sim-
ilar to the previous work such as FlashMap [27] that com-
bines all three indirection layers into a unified layer, it

Table 1. Real workloads used in our evaluation. We summa-
rize FlatFlash’s average improvements on both performance
and SSD lifetime compared to UnifiedMMap.

Applications Benchmarks
FlatFlash Improvement (Avg.)

Performance
SSD

Lifetime

HPC Challenge (§ 5.2) GUPS 1.6× 1.3×
Graph Analytics: PageRank 1.3× 1.5×

GraphChi (§ 5.3)
Connected
Component

1.5× 1.9×

Key-Value Store: YCSB-B 2.1× 1.3×
Redis (§ 5.4) YCSB-D 2.2× 1.3×

CreateFile 3.6-11.2× 2.2-8.4×
File Systems RenameFile 2.6-6.7× 1.5-12.1×

EXT4, XFS, BtrFS (§ 5.5) CreateDirectory 3.6-15.3× 1.4-9.8×
VarMail 3.2-6.2× 1.9-8.0×

WebServer 5.3-18.9× 1.5-3.1×
Transactional Database: TPCC 1.9× 1.0×

ShorMT (§ 5.6)
TPCB 2.8× 1.0×
TATP 1.3× 1.0×

Table 2. Latency of the major components in FlatFlash

Overhead Source Average (µsec)

Read a cache line in SSD-Cache via PCIe MMIO 4.8
Write a cache line in SSD-Cache via PCIe MMIO 0.6
Promote a page from SSD-Cache to host DRAM 12.1

Update PTE and TLB entry in host machine 1.4
Page table walking to get the page location 0.7

reduces the address translation overhead for memory-
mapped storage and utilizes the DRAM resource by low-
ering the storage cost of maintaining metadata for each
indirection layer. UnifiedMMap bypasses the conventional
storage software stack to access data in SSDs.

We use a server machine with a 24-core Intel Haswell
based Xeon CPU running at 2.6 GHz with 64GB of DRAM
and an Intel DC P3700 series PCIe-based SSD with the capac-
ity of 1.6TB. We use the system described in § 4 to emulate
FlatFlash.We set the size of the SSD-Cache to be 0.125% of the
SSD capacity by default. To quantify the performance bene-
fits of FlatFlash in different aspects, we use a variety of data-
intensive applications that contain both high-performance
computing and enterprise workloads. We summarize the
experimental results in Table 1.
To measure the read/write latency of accessing a cache

line via PCIe MMIO, we used a Xilinx Virtex-7 [70] and
annotated the driver of a reference design. We used the mea-
sured numbers (see Table 2) in our byte-addressable SSD
emulator. The MMIO write operation is a posted transaction
which is completed when the written data reaches the write
buffer [11]. Therefore, the latency of the write transaction is
significantly lower than that of the read transaction.

5.1 Byte-Addressable SSD vs. Paging Mechanism

We first evaluate the performance of FlatFlash with synthetic
workloads. We vary the SSD size from 32GB to 1TB while
keeping the host DRAM size at 2 GB for the workloads (with-
out including the main memory required by host OS). We
allocate 2 million pages (4 KB) that distribute uniformly from

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

978

(a) Sequential Access (b) Random Access

Figure 8. Average latencies of accessing a cache line (64
bytes) in sequential and random manner respectively.

a file that spans the entire SSD. We perform both sequential
and random memory accesses against these pages in cache
line granularity (64 Bytes). At the beginning, we randomly
access the 2 million pages to warm up the system.
We compare the read/write latencies of FlatFlash with

TraditionalStack and UnifiedMMap as described above and
report the average latencies of accessing 64 bytes of data
in Figure 8. For sequential memory access, the latency of
accessing a cache line in FlatFlash is close to that of Unified-
MMap with a slight overhead as shown in Figure 8a. The
additional overhead is introduced by the off-critical path
page promotion (see § 3.3) which takes 12.1 µs on average
for a 4KB page. Both FlatFlash and UnifiedMMap performs
much better than TraditionalStack because they bypass the
storage software stack with the unified address translation.
For random memory access, FlatFlash reduces the laten-

cies by 1.2-1.4× and 1.8-2.1× compared to the UnifiedMMap

and TraditionalStack respectively, because accessing a cache
line of a page in SSD-Cache via PCIe MMIO is more efficient
than moving a flash page with low reuse to host DRAM.
FlatFlash will automatically switch between the PCIe MMIO
mode and page promotion according to workload patterns.
In summary, for memory accesses with high page-reuse,

FlatFlash promotes pages to host DRAM for better perfor-
mance. For low page-reuse cases, FlatFlash outperforms oth-
ers because it adaptively issues memory requests to the SSD
over PCIe rather than using the conventional paging mecha-
nism. We evaluate FlatFlash with real applications as follows.

5.2 Performance Benefit for HPC Applications

For high-performance computing applications, a representa-
tive benchmark is the High-Performance Computing Chal-
lenge (HPCC-GUPS) [43]. We use its RandomAccess bench-
mark in our experiment, as it is usually used to test the
capability of memory systems. In this benchmark, multi-
ple threads cooperate to solve a large scientific problem by
updating random locations of a large in-memory table. We
set the table size to be 32GB, which is larger than the host
DRAM available for GUPS (2GB). Therefore, SSDwill be used
to expand the memory space when the benchmark runs.

(a) HPCC-GUPS Performance (b) Sensitivity to SSD-Cache Size

Figure 9. (a) FlatFlash performs 1.6× and 2.7× faster than
UnifiedMMap and TraditionalStack for HPCC-GUPS. The
lines represent the number of page movements between
SSD and host DRAM. (b) FlatFlash benefits more from the
increased SSD-Cache size.

FlatFlash performs 1.5-1.6× and 2.5-2.7× faster than Uni-

fiedMMap and TraditionalStack respectively as shown in Fig-
ure 9a. FlatFlash outperforms UnifiedMMap because many
of the random memory accesses are issued to the SSD di-
rectly with PCIe MMIO. In this case, fewer pages are moved
between the SSD and host DRAM. FlatFlash reduces page
movement by 1.3-1.5× compared to the UnifiedMMap and
TraditionalStack solutions (see the lines in Figure 9a). Uni-
fiedMMap has slightly fewer page movements than that of
TraditionalStack because it has more available DRAM for the
application’s working set by combining the address transla-
tion layers across the storage stack and thus reducing the
size of the page index. For applications that demand a large
amount of memory and have random memory accesses, Flat-
Flash provides a practical solution by leveraging the SSD
to expand the memory capacity while exploiting its byte-
accessibility for better performance.
To understand how SSD-Cache size affects the FlatFlash

performance, we vary the SSD-Cache size while keeping
the same working set size for GUPS, and maintaining the
SSD:DRAM ratio at 512. Figure 9b shows the performance
speedup of FlatFlash over UnifiedMMap and TraditionalStack
is increased as we increase the SSD-Cache size. This is be-
cause both UnifiedMMap and TraditionalStack have to mi-
grate pages from the SSD to host DRAM irrespective of the
SSD-Cache size. FlatFlash can utilize the SSD-Cache capacity
and directly access the data in SSD without migrating pages.

5.3 Performance Benefit for Graph Analytics

Beyond HPC workload, we also evaluate the performance
benefit of FlatFlash for enterprise graph analytics applica-
tions. These graph analytics applications are typically used
for large social networks and genomics analysis, which are
memory intensive. The experiments with graph analytics
aim to demonstrate that FlatFlash can also benefit memory-
intensive applications that preserve certain levels of data
locality (e.g., power-law distribution [21]).
We use GraphChi [41], which is a graph analytics frame-

work that partitions large graphs such that each partition

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

979

(a) PageRank + Twitter (b) PageRank + Friendster (c) Conn-Component + Twitter (d)Conn-Component + Friendster

Figure 10. Performance of graph analytics on Twitter and Friendster graph datasets with various DRAM size. Compared to
UnifiedMMap, FlatFlash provides 1.1-1.6× better performance for PageRank and 1.1-2.3× better performance for Connected-
Component Labeling algorithm. The lines represent the number of page movement between SSD and host DRAM.

can fit in DRAM. We modify GraphChi to place the entire
graphs in FlatFlash and run graph analytic algorithms with
various DRAM sizes. The size of the graph data is beyond the
available amount of DRAM, thus, the SSD is used as mem-
ory. We run two graph analytics algorithms, PageRank and
Connected Component Labeling, on two different graphs: (1)
Twitter graph dataset [40], which has 61.5 million vertices
and 1.5 billion edges; (2) Friendster graph dataset [71], which
has 65.6 million vertices and 1.8 billion edges.

We first run the PageRank algorithm on both Twitter and
Friendster datasets. FlatFlash outperforms UnifiedMMap by
1.1-1.6× as shown in Figure 10. Aswe increase the SSD:DRAM
ratio, the benefit brought by FlatFlash over UnifiedMMap is
increased, because the thrashing of the limited DRAM is
reduced since the host can directly issue memory requests
to the SSD to avoid page movement between the SSD and
host DRAM. As FlatFlash performs 1.2-3.3× better than Tra-

ditionalStack, as it leverages the unified address translation
to improve DRAM efficiency.
We next evaluate the Connected-Component Labeling

algorithm. FlatFlash performs 1.1-2.3× and 1.3-4.8× better
than UnifiedMMap and TraditionalStack, respectively. For the
Friendster graph dataset, a significant number of page move-
ments are incurred due to misses in host DRAM, as shown
in Figure 10d. FlatFlash improves such types of workload
significantly as it enables the host CPU to access flash pages
directly without paging them to host DRAM.

5.4 Latency Benefit for Key-Value Store

We now demonstrate the benefit of FlatFlash for latency-
critical applications. We use the in-memory key-value store
Redis [58] as a representative for such applications. We run
Yahoo Cloud Serving Benchmark (YCSB) [15] workloads that
represent the typical cloud services to test the latencies of
accessing Redis. In our evaluation, we use workloads B and D.
Workload B consists of 95% reads and 5% updates, modeling a
photo tagging application. Workload D consists of 95% reads
and 5% inserts, modeling social media status updates. Both
workloads issue requests with Zipfian distribution.

(a) YCSB-B (b) YCSB-D

Figure 11. Tail latency reduction for key-value store Redis.
FlatFlash reduces the tail latency by 1.8-2.7× and 2.0-2.8×
compared to TraditionalStack andUnifiedMMap, respectively.

(a) YCSB-B (b) YCSB-D

Figure 12. Average latency reduction for key-value store
Redis with YCSB. FlatFlash reduces the average latency by
1.2-3.2× and 1.1-1.4× compared to TraditionalStack and Uni-

fiedMMap, respectively. The lines represent cache hit ratio.

We use 16 client threads to issue key-value operations
against Redis. Each key-value pair is 64 bytes. We conduct 64
million operations for each workload and adjust the working
set sizes by setting the request distribution parameter in
YCSB.Wemaintain the SSD:DRAM ratio at 256while varying
the ratio of working set size to DRAM size.
In these workloads, the tail latency is important as it dic-

tates the performance guarantees for 99% of the requests (i.e.,
99th percentile latency). FlatFlash reduces the 99th percentile
latency by 2.2× and 2.5× on average compared to Unified-

MMap and TraditionalStack, respectively (see Figure 11). The
benefit mainly comes from FlatFlash’s promotion algorithm,
which decreases page movement between the SSD and host

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

980

Figure 13. FlatFlash improves the performance of the com-
mon file system operations by up to 18.9×. VarMail bench-
mark emulates a mail server that stores each email in a file;
WebServer emulates the storage operations in a web-server.

DRAM as it avoids promoting low-reuse pages. Taking the
YCSB workload B for example, when its working set size is
16× larger than the available host DRAM size, the number of
pages moved between SSD and host DRAM is reduced from
3.9 million in TraditionalStack to 2.7 million in FlatFlash as
shown in Figure 11a. Such a policy can avoid pollution in the
host DRAM and reduce the I/O traffic to the SSD, therefore,
the performance interference is reduced. Similar results have
been seen in YCSB workload D as shown in Figure 11b.
FlatFlash improves the average latency of Redis by up

to 3.2× and 1.4× compared to TraditionalStack and Unified-

MMap respectively, as demonstrated in Figure 12. For YCSB
workloads that have certain levels of data locality, FlatFlash
further improves application performance by reducing the la-
tency of the remaining random requests (see Figure 8) while
exploiting the DRAM speed for requests with data locality.

5.5 Persistency Benefit for File Systems

In this section, we demonstrate the benefit of FlatFlash on
data persistence by applying the byte-granular data persis-
tence to file systems as the case study discussed in § 3.5.
We modified EXT4 (e.g., ext4_setattr in inode.c), XFS (e.g.,
xfs_setattr_size in xfs_iops.c), and BtrFS (e.g., btrfs_setattr
in inode.c) to instrument their metadata persistence proce-
dures and collect the storage traces of metadata and data
operations when running a variety of file system bench-
marks from FileBench [64]. Each benchmark executes about
50 million file system operations. As shown in Figure 13,
FlatFlash improves the performance of these common file
system operations such as file creation, file rename, and di-
rectory creation by 2.6-18.9×, 5.3-11.2×, 3.2-15.3× for EXT4,
XFS, and BtrFS, respectively. The benefits of FlatFlash mainly
come from the byte-accessibility of SSDs. Since each file sys-
tem has its own implementation for data consistency, the
performance improvement varies for the same workload.
Instead of persisting a page for each metadata operation,

FlatFlash guarantees the atomicity and durability of the small
updates with PCIe operations and their persistency with
a battery-backed DRAM cache inside SSD. Beyond perfor-
mance benefits, FlatFlash also significantly reduces the write
amplification for file system operations by avoiding the re-
dundant journaling (for EXT4 and XFS) and copy-on-write

Table 3. Cost-effectiveness of FlatFlash vs. DRAM-only.

Application Workloads
Slow-
down

Cost-
Saving

Cost-
Effectiveness

HPC Challenge GUPS 8.9× 14.6× 1.6×

Graph Analytics
PageRank 11.0× 14.6× 1.3×
Conn-

Component
6.9× 14.6× 2.1×

Key-Value Store
YCSB-B 6.1× 15.0× 2.5×
YCSB-D 5.5× 15.0× 2.7×

Transactional TPCC 1.4× 2.4× 1.7×
Database TPCB 1.9× 2.6× 1.4×

TATP 1.2× 4.5× 3.8×

logging (for BtrFS), which further improves SSD lifetime as
shown in Table 1.

5.6 Persistency Benefit for Transactional Database

To evaluate the persistency benefit of FlatFlash for database,
we modify the open-source database Shore-MT [34] and
implement per-transaction logging with TraditionalStack,
UnifiedMMap, and FlatFlash respectively. We use Shore-Kits
benchmarks that include TPCC, TPCB, and TATP database
workloads. We reserve 6GB for the memory manager of
Shore-MT database engine. The database size used is 48GB.
We vary the number of client threads from 4 to 16.

FlatFlash scales the throughput of transaction operations
by up to 3.0× and 4.2× compared to UnifiedMMap and Tra-

ditionalStack, respectively, as demonstrated in Figure 14.
Applying the per-transaction logging scheme to Tradition-
alStack and UnifiedMMap does not improve their (TPCC
and TATP) throughput significantly, because they interact
with SSD using page granularity and scalable logging has
less chance to group logs and thus increases the I/O traf-
fic as the transaction log entry is usually small (64ś1,424
bytes). As TPCB is an update-intensive workload, the per-
transaction logging brings benefit to TraditionalStack and
UnifiedMMap, however, FlatFlash still performs the best. Flat-
Flash treats byte-addressable SSD as a non-volatile memory
device, which enables new optimization opportunities for
persistence-critical systems. As the SSD latency decreases
with newmemory technologies (e.g., PCM [56], 3DXPoint [1]),
FlatFlash can achieve even more performance benefits as
shown in Figure 14d. FlatFlash has the same write amplifica-
tion factor for logging as other two schemes with centralized
log buffer, thus its SSD lifetime is not improved (see Table 1).

5.7 FlatFlash vs. DRAM-Only Systems

In this section, we analyze the cost-effectiveness of FlatFlash
in comparison to DRAM-only systems. We rerun the work-
loads in Table 1 by hosting their entire working sets in DRAM.
Our analysis uses the ratio of the DRAM-only system’s per-
formance to FlatFlash’s performance as the performance
slowdown, with the DRAM and SSD cost for hosting all rele-
vant data for the workloads. The unit prices for DRAM and
the PCIe SSD used in our experiments are $30/GB and $2/GB,
respectively.DRAM-only system increases the server’s base
cost by $1,500 as more DIMM slots are required. As shown

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

981

(a) TPCC (b) TPCB (c) TATP (d) Various device latency

Figure 14. Throughput of running database with scalable logging for TPCC, TPCB, and TATP. For Flash with 20 µs device
latency, FlatFlash improves the throughput by 1.1-3.0× and 1.6-4.2× compared to UnifiedMMap and TraditionalStack. As we
reduce the device latency in (d), FlatFlash outperforms UnifiedMMap by up to 5.3× when running database with 16 threads.

in Table 3, FlatFlash costs 2.4-15.0× less compared to the
DRAM-only setup for different applications, improving the
normalized performance per cost by 1.3-3.8×.

6 Related Work

Using SSDs as Memory. SSDs have been used to expand
the main memory capacity with the memory-mapped inter-
face and swapping mechanism in operating systems [5, 13,
17, 27, 35, 54, 60, 62, 63]. They treat SSDs as block devices
and rely on paging mechanism to manage the data move-
ment between the SSD and host DRAM. FlatFlash exploits
the byte-accessibility of SSDs and investigates its impact on
the unified memory-storage hierarchy. To improve the per-
formance of accessing SSDs, previous solutions either bypass
the storage software stack [9, 14, 27, 38, 55] or move system
functions closer to the hardware [22, 36]. FlatFlash shares
the similar performance goals with these work by bypassing
the storage software stack, but it focuses on exploiting the
performance benefits of byte-addressable SSDs.
Byte-addressable SSDs. Jacob et al. [30] proposed amem-

ory architecture that leverages DRAM as a cache to provide
quasi-byte-addressability for Flash. Jin et al. proposed Pebb-
leSSD [33] that architects non-volatile memory inside SSD
controller to reduce the metadata management overhead for
SSDs. Bae et al. proposed a dual, byte- and block-addressable
SSD with a persistent memory [6] by leveraging the byte-
addressability of PCIe interconnect. FlatFlash acknowledges
these work and moves further to rethink the unified mem-
ory system design to manage the byte-addressable SSD and
exploit its byte-accessibility in computing systems. For in-
stance, FlatFlash performs higher throughput for transac-
tional databases by decentralizing the logging for databases
as discussed in § 5.6.
Hybrid Memory Systems. To overcome the scaling lim-

its of DRAM, alternative memory technologies such as non-
volatile memories (NVMs) like PCM, STT-RAM, and 3D
Xpoint have been proposed [18, 45, 56, 74]. As these tech-
nologies have different characteristics in terms of perfor-
mance, capacity, lifetime, and cost, it is unlikely that a single
memory technology will simply replace others to satisfy all

the requirements of applications [6, 18, 19, 37]. The byte-
addressable SSD has its unique properties. It is developed
based on the commodity PCIe attached SSD and provides
both byte and block-accessible interfaces. FlatFlash focuses
these unique parts, rethinks the current system design, and
investigates its performance and persistency benefits for sys-
tems software and applications. In hybrid memory systems,
the page migration between different memory devices has
been a classical topic [10, 32, 61, 72], FlatFlash proposes an
adaptive page promotion mechanism dedicated for the byte-
addressable SSD and host DRAM with the goal of exploiting
their advantages concurrently and transparently. As NVM
such as PCM is slower than DRAM, we believe FlatFlash tech-
niques (e.g., page promotion) can shed light on the unified
DRAM-NVM hierarchy.

7 Conclusion

In this paper, we exploit the byte-accessibility of SSDs inmod-
ern memory-storage hierarchy. We leverage a unified mem-
ory interface to simplify the management and programma-
bility of byte-addressable SSDs. We develop an adaptive page
promotion mechanism between the SSD and host DRAM,
thus programs can exploit benefits from both of them concur-
rently. We also exploit the byte-granular data persistence of
SSDs and apply it to representative software systems such as
file systems and database. Experiments show that FlatFlash
is a cost-effective solution, which brings significant perfor-
mance and persistency benefits to a variety of applications.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments and feedback. This work was supported
in part by the Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and
DARPA, E2CDA-NRI, a funded center of NRI, a Semicon-
ductor Research Corporation (SRC) program sponsored by
NERC and NIST, IBM-ILLINOIS Center for Cognitive Com-
puting Systems Research (C3SR) - a research collaboration
as part of the IBM AI Horizon Network.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

982

References
[1] 3D XPoint™Technology. 2018. https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.
[2] A Closer Look At SSD Power Loss Protection. 2019.

https://www.kingston.com/us/ssd/enterprise/technical_brief/

tantalum_capacitors.
[3] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with

Page Access Tracking. In Proceedings of the 2017 USENIX Annual Tech-

nical Conference (USENIX ATC’17). Santa Clara, CA.
[4] An Introduction to the Intel® QuickPath Interconnect. 2009. https:

//www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html.
[5] Anirudh Badam and Vivek S. Pai. 2011. SSDAlloc: Hybrid SSD/RAM

Memory Management Made Easy. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation (NSDI’11).
Boston, MA, 211ś224.

[6] Duck-Ho Bae, Insoon Jo, Youra A. Choi, Joo-Young Hwang, Sangyeun
Cho, Dong-Gi Lee, and Jaeheon Jeong. 2018. 2B-SSD: The Case for
Dual, Byte- and Block-Addressable Solid-State Drives. In Proceedings

of the 45Th Annual International Symposium on Computer Architecture

(ISCA ’18). Los Angeles, CA, 425ś438.
[7] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-

ber, Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log
Design for Flash Clusters. In Proc. 9th USENIX NSDI. San Jose, CA.

[8] Batch TLB Flushes. 2015.
https://lkml.org/lkml/2015/4/25/125.

[9] Matias Bjùrling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013.
Linux Block IO: Introducing Multi-queue SSD Access on Multi-core
Systems. In Proceedings of the 6th International Systems and Storage

Conference (SYSTOR ’13). New York, NY, USA, 22:1ś22:10.
[10] Daniel P Bovet andMarco Cesati. 2005. Understanding the Linux Kernel:

from I/O ports to process management. Oreilly & Associates Inc.
[11] R. Budruk, D. Anderson, and T. Shanley. 2004. PCI Express System

Architecture. Addison-Wesley.
[12] Cache Coherent Interconnect for Accelerators (CCIX). 2019. http:

//www.ccixconsortium.com.
[13] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. 2009. Gor-

don: Using Flash Memory to Build Fast, Power-efficient Clusters for
Data-intensive Applications. In Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XIV). Washington, DC.
[14] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel

Coburn, and Steven Swanson. 2012. Providing Safe, User Space Access
to Fast, Solid State Disks. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XVII). London, United Kingdom.
[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing

(SoCC ’10). Indianapolis, IN.
[16] Elliott Cooper-Balis, Paul Rosenfeld, and Bruce Jacob. 2012. Buffer-on-

board Memory Systems. In Proceedings of the 39th Annual International

Symposium on Computer Architecture (ISCA ’12). Portland, OR, 392ś
403.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM
Space Skimpy Key-value Store on Flash-based Storage. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of

Data (SIGMOD ’11). Athens, Greece.
[18] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the 9th European

Conference on Computer Systems (EuroSys ’14). Amsterdam, The Nether-
lands.

[19] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data Tiering in Heterogeneous Memory Systems. In
Proceedings of the Eleventh European Conference on Computer Systems

(EuroSys ’16). London, United Kingdom.
[20] Fusion ioMemory™SX350 PCIe Application Accelerators.

2019. https://www.sandisk.com/business/datacenter/resources/

data-sheets/fusion-iomemory-sx350_datasheet.
[21] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. 2012. PowerGraph: Distributed Graph-parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX Con-

ference on Operating Systems Design and Implementation (OSDI’12).
Hollywood, CA, 17ś30.

[22] Y. Gottesman and Y. Etsion. 2016. NeSC: Self-virtualizing nested stor-
age controller. In 2016 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO).
[23] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The Bleak

Future of NAND Flash Memory. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies (FAST’12). San Jose, CA,
2ś2.

[24] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A
Flash Translation Layer Employing Demand-based Selective Caching
of Page-level AddressMappings. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’09). Washington, DC.
[25] How you can Boost Acceleration with OpenCAPI, Today!. 2017. http:

//opencapi.org/2017/11/can-boost-acceleration-opencapi-today/.
[26] HP 805358-512 PC4-19200 512GB LRDIMM. 2019. https://www.

serversupply.com/MEMORY/PC4-19200/512GB/HP/805358-512.htm.
[27] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten

Schwan. 2015. Unified Address Translation for Memory-mapped SSDs
with FlashMap. In Proceedings of the 42Nd Annual International Sym-

posium on Computer Architecture (ISCA ’15). Portland, OR.
[28] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2015.

NVRAM-award Logging in Transaction Systems. In Proceedings of

the 41th International Conference on Very Large Data Bases (VLDB’15).
Kohala Coast, HI.

[29] Intel 900P Optane NVMe PCIe vs Samsung 960 Pro M.2.
2019. http://ssd.userbenchmark.com/Compare/Samsung-960-
Pro-NVMe-PCIe-M2-512GB-vs-Intel-900P-Optane-NVMe-PCIe-
280GB/m182182vsm315555.

[30] Bruce Jacob. 2016. The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90 kW Cabinet:
A System Architecture for Exascale and Big Data. IEEE Comput. Archit.

Lett. 15, 2 (July 2016).
[31] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.

2010. High Performance Cache Replacement Using Re-Reference
Interval Prediction (RRIP). SIGARCH Comput. Archit. News 38, 3 (June
2010).

[32] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian. 2010. CHOP: Adaptive filter-based
DRAM caching for CMP server platforms. In Procedding of the 16th

International Symposium on High-Performance Computer Architecture

(HPCA ’10). Bangalore, India.
[33] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven

Swanson. 2017. Improving SSD Lifetime with Byte-addressable Meta-
data. In Proceedings of the International Symposium on Memory Systems

(MEMSYS ’17). Alexandria, VA.
[34] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Aila-

maki, and Babak Falsafi. 2009. Shore-MT: A Scalable Storage Manager
for theMulticore Era. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology

(EDBT ’09). Saint Petersburg, Russia.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

983

[35] Myoungsoo Jung andMahmut Kandemir. 2013. RevisitingWidely Held
SSD Expectations and Rethinking System-level Implications. In Pro-

ceedings of the ACM SIGMETRICS/International Conference on Measure-

ment and Modeling of Computer Systems (SIGMETRICS ’13). Pittsburgh,
PA.

[36] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. 2018. De-
signing a True Direct-Access File System with DevFS. In 16th USENIX

Conference on File and Storage Technologies (FAST’18). Oakland, CA,
241ś256.

[37] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS - OS Design for Heterogeneous Memory Manage-
ment in Datacenter. In the 44th International Symposium on Computer

Architecture (ISCA’17). Toronto, Canada.
[38] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect:

A User-space I/O Framework for Application-specific Optimization
on NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 16). Denver, CO.
[39] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Jan Vesely,

Zi Yan, Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna.
2018. LATR: Lazy Translation Coherence. In Proceedings of the 23rd

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’18). Williamsburg, VA.
[40] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a Social Network or a News Media?. In Proceedings

of the 19th International Conference on World Wide Web (WWW ’10).
Raleigh, NC.

[41] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-scale Graph Computation on Just a PC. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’12). Hollywood, CA, 31ś46.
[42] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,

Jignesh M. Patel, and Mike Zwilling. 2011. High-performance Concur-
rency Control Mechanisms for Main-memory Databases. Proc. VLDB
Endow. 5, 4 (Dec. 2011).

[43] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner,
Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The
HPC Challenge (HPCC) Benchmark Suite. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing (SC ’06). Tampa, FL.
[44] Chris Mellor. 2017. Samsung drops 128TB SSD and kinetic-type

flash drive bombshells. https://www.theregister.co.uk/2017/08/09/

samsungs_128tb_ssd_bombshell/.
[45] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. 2012. En-

abling Efficient and Scalable Hybrid Memories Using Fine-Granularity
DRAM Cache Management. IEEE Computer Architecture Letters (July
2012).

[46] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting
Fine-granularity Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Trans. Database Syst. 17, 1 (March 1992).

[47] Jayashree Mohan, Rohan Kadekodi, and Vijay Chidambaram. 2017.
Analyzing IO Amplification in Linux File Systems. arXiv preprint

arXiv:1707.08514 (2017).
[48] NVMe 1.3 Specification . 2019. http://nvmexpress.org/resources/

specifications/.
[49] NVMe SSD 960 PRO/EVO | Samsung Consumer V-NAND SSD.

2019. http://www.samsung.com/semiconductor/minisite/ssd/product/

consumer/ssd960/.
[50] OpenCAPI Technical Specifications. 2019. http://opencapi.org/

technical/specifications/.
[51] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,

Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Diego Ongaro, Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble,
Eric Stratmann, and Ryan Stutsman. 2011. The Case for RAMCloud.
Commun. ACM 54, 7 (July 2011).

[52] K. Pagiamtzis and A. Sheikholeslami. 2006. Content-addressable mem-
ory (CAM) circuits and architectures: a tutorial and survey. IEEE

Journal of Solid-State Circuits 41, 3 (March 2006).
[53] PCIe 3.0 Specification. 2019. https://pcisig.com/specifications.
[54] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multi-

threaded Asynchronous Graph Traversal for In-Memory and Semi-
External Memory. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis (SC ’10). Washington, DC.
[55] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind

Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2014. Arrakis:
The Operating System is the Control Plane. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14). Broomfield,
CO, 1ś16.

[56] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
2009. Scalable High Performance Main Memory System Using Phase-
change Memory Technology. In Proceedings of the 36th Annual In-

ternational Symposium on Computer Architecture (ISCA ’09). Austin,
TX.

[57] Rajat Kateja and Anirudh Badam and Sriram Govindan and Bikash
Sharma and Greg Ganger. 2017. Viyojit: Decoupling Battery and
DRAMCapacities for Battery-Backed DRAM. In Proceedings of the 44th
International Symposium on Computer Architecture (ISCA’17). Toronto,
Canada.

[58] Redis. 2019. https://redis.io/.
[59] Samsung Z-NAND Technology Brief. 2017. https://www.samsung.

com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_

v5.pdf.
[60] Mohit Saxena and Michael M. Swift. 2010. FlashVM: Virtual Memory

Management on Flash. In Proceedings of the 2010 USENIX Conference

on USENIX Annual Technical Conference (USENIXATC’10). Boston, MA,
187ś200.

[61] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris Wilker-
son, and Hyesoon Kim. 2014. Transparent Hardware Management of
Stacked DRAM As Part of Memory. In Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-47).
Cambridge, United Kingdom.

[62] Yongseok Son, Hyuck Han, and Heon Young Yeom. 2015. Optimizing
File Systems for Fast Storage Devices. In Proceedings of the 8th ACM

International Systems and Storage Conference (SYSTOR ’15). New York,
NY, USA.

[63] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom.
2016. Efficient Memory-Mapped I/O on Fast Storage Device. Trans.
Storage 12, 4 (May 2016).

[64] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench:
A flexible framework for file system benchmarking. The USENIX

Magazine 41, 1 (2016).
[65] The Gen-Z Consortium. 2019.

https://genzconsortium.org/.
[66] K. Therdsteerasukdi, G. S. Byun, J. Ir, G. Reinman, J. Cong, and M. F.

Chang. 2011. The DIMM tree architecture: A high bandwidth and
scalable memory system. In 2011 IEEE 29th International Conference on

Computer Design (ICCD).
[67] Ultra-Low Latency with Samsung Z-NAND SSD. 2017. White Paper

(2017).
[68] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann.

2012. NVMalloc: Exposing an Aggregate SSD Store as a Memory
Partition in Extreme-Scale Machines. In 2012 IEEE 26th International

Parallel and Distributed Processing Symposium.
[69] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through

EmergingNon-VolatileMemory. In Proceedings of the 40th International
Conference on Very Large Data Bases (VLDB’14). Hangzhou, China.

[70] Xilinx Virtex-7 FPGA VC709. 2019. https://www.xilinx.com/products/

boards-and-kits/dk-v7-vc709-g.html#documentation.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

984

[71] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Net-
work Communities Based on Ground-truth. In Proceedings of the ACM

SIGKDDWorkshop onMining Data Semantics (MDS ’12). Beijing, China.
[72] HanBin Yoon, RachataMeza, Justin Ausavarungnirun, Rachael A. Hard-

ing, andOnurMutlu. 2012. RowBuffer Locality Aware Caching Policies
for Hybrid Memories. In Proceedings of the 2012 IEEE 30th International

Conference on Computer Design (ICCD 2012) (ICCD ’12). Washington,
DC, USA, 8.

[73] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2012. De-indirection for Flash-based SSDs
with Nameless Writes. In Proc. 10th USENIX FAST. San Jose, CA.

[74] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P.
Jouppi. 2013. Kiln: Closing the Performance Gap Between Systemswith
and Without Persistence Support. In Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-46).
Davis, CA.

Session: Storage Systems ASPLOS’19, April 13–17, 2019, Providence, RI, USA

985

