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The bulk-edge correspondence for continuous
honeycomb lattices
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ABSTRACT
We study bulk/edge aspects of continuous honeycomb lattices in a
magnetic field. We compute the bulk index of Bloch eigenbundles: it
equals 2 or –2, with sign depending on nearby Dirac points and on
the magnetic field. We then prove the existence of two topologically
protected unidirectional waves propagating along line defects. This
shows the bulk/edge correspondence for our class of Hamiltonians.
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1. Introduction

This note focuses on bulk/edge aspects of continuous, asymptotically periodic
Hamiltonians Pd: These operators model electronic transport between honeycomb latti-
ces, when a magnetic field breaks time-reversal symmetry. Related models have sug-
gested an analogy between photonic structures and topological insulators [1, 2].
In an asymptotic regime, [3, 4] mathematically constructed edge states bifurcating

from Dirac points energies. Here, we relate their existence to a non-zero bulk invariant.
This demonstrates their persistence outside the perturbative regime.

1.1. Bulk index

The bulk operators associated to Pd are

Pd;þ ¼def �DR
2 þ Vþ d �W;Pd;� ¼def �DR

2 þ V�d �W; where : (1.1)

� V 2 C1ðR2;RÞ is even, periodic with respect to the equilateral lattice K and
invariant under the 2p=3-rotation R—see Section 2.1.

� W ¼ 1
i ðA � r þ r � AÞ and A 2 C1ðR2;R2Þ is odd and periodic w.r.t. K.

Our first result computes the bulk index of Pd;6: Let kd;1ðnÞ � � � � � kd;jðnÞ � � � � be the
eigenvalues of Pd;þ on Floquet spaces L2n—see Section 2.1. Generically, P0;þ admits
Dirac points ðn?;E?Þ and ð�n?;E?Þ—see [5]. These come with pairs ð/1;/2Þ 2 L2n? with
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kerL2n?
P0;þ�E?ð Þ ¼ C/1 � C/2;/1 Rxð Þ ¼ e2ip=3/1 xð Þ; /2 Rxð Þ ¼ e�2ip=3/2 xð Þ:

We write E? ¼ k0;nðn?Þ ¼ k0;nþ1ðn?Þ and we assume:

k0;n nð Þ ¼ k0;nþ1 nð Þ () n 2 n?;�n?f g modulo the dual lattice 2pK�; (1.2)

h? ¼def h/1;W/1iL2n? 6¼ 0; and inf d> 0 : 9n 2 R
2; kd;n nð Þ ¼ kd;nþ1 nð Þ� �

> 0: (1.3)

When (1.2) holds, (1.3) is generically satisfied. Let d] be the infimum in (1.3). The
assumptions (1.3) and (1.2) allow to construct a smooth bundle Ed;6 over the torus
R

2=ð2pK�Þ when d 2 ð0; d]Þ : the fiber at n is the L2n-eigenspace of Pd;þ corresponding
to kd;1ðnÞ; :::; kd;nðnÞ: Following the physics literature, the bulk index of Pd;6 is the
Chern number c1ðEd;6Þ—see Section 2.2. We similarly define c1ðEd;�Þ:
Theorem 1. Assume that (1.2) and (1.3) hold. Then for every d 2 ð0; d]Þ;

c1 Ed;þð Þ ¼ �sgn h?ð Þ and c1 Ed;�ð Þ ¼ sgn h?ð Þ:

1.2. Edge index and the bulk-edge correspondence

Let v 2 K—representing the direction of an edge. The operator Pd considered in [6] is

Pd ¼def �DR
2 þ Vþ d � jd �W:

Above, jd is a domain wall across Rv : there exists j 2 C1ðR;RÞ equal to ±1 near
61 such that jdðxÞ ¼ jðdhk0; xiÞ; where k0 2 K� is dual to v—see Section 3.1. See [1,
4] for related models. The operators Pd;6 in (1.1) are the limits of Pd as hk0; xi ! 61:

The operator Pd is not a periodic operator with respect to K. It is however periodic
with respect to Zv: For f 2 R; let Pd½f� be the operator equal to Pd; but acting on

L2 f½ � ¼def u 2 L2loc R
2;C

� �
; u x þ vð Þ ¼ eifu xð Þ;

ð
R

2=Zv
ju xð Þj2dx < 1

( )
:

Fix d[ 2 ð0; d]Þ and assume that there exists E[ 2 C1ðR=ð2pZÞ;RÞ with
8f; s; s0 2 0; 2p½ �; kd[;n fkþ sk0ð Þ<E[ fð Þ< kd[;nþ1 fkþ s0k0ð Þ: (1.4)

Then for every f 2 R;E[ðfÞ is not in the essential spectrum of Pd[ ½f�: This allows to
define the edge index N of Pd[ as the spectral flow of Pd[�E[: It is the signed number
of eigenvalues of Pd[ ½f� that cross the gap containing E[ðfÞ downwards as f sweeps
½0; 2p�: See [7] for an introduction to spectral flow.

Theorem 2. Assume that (1.2), (1.3), and (1.4) hold, and that hn?; vi 62 pZ. Then

N ¼ c1 Ed[;þð Þ�c1 Ed[;�ð Þ ¼ �2 � sgn h?ð Þ: (1.5)

Because the spectral flow is a topological invariant, Theorem 2 is stable under gap-
preserving perturbations of Pd½f�: The condition hn?; vi 62 pZ excludes armchair-type
edges; we will deal with such edges in an upcoming work.
When d � 1; edge states of operators similar to Pd were constructed in [3, 4, 6]

under the no-fold condition. This condition requires that the dispersion surfaces
n 7! k0;nðnÞ and n 7! k0;nþ1ðnÞ do not fold over E? except at fn?;�n?g þ 2pK�—see [3,
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Section 1.3]. Theorem 2 implies that if Pd[ ½f� has a continuously open gap for every f 2
½0; 2p�; two edge states must exist, even when the no-fold condition at d¼ 0 fails. These
edge states shall arise from resonant states bifurcating into the edge of the continuous
spectrum—see [3, Section 1.4] and the conjecture there.
Theorem 2 is an index-like result: it relates a topological index (the Chern number)

to an analytic index (the spectral flow). It expresses the bulk-edge correspondence for
continuous honeycomb Hamiltonian. This is a ubiquitous principle in mathematical
physics [8–16]. Theorem 2 advances the current understanding via:

� An analysis on a continuous, asymptotically periodic model; see also [17–19] for
the quantum Hall effect; [20] for Dirac operators; [21] for a K-theoretic
approach; and [22] for dislocation systems.

� The explicit formula (1.5) for the bulk/edge indexes, which demonstrates the sig-
nificance of Dirac points (or more generally degeneracies in the Bloch bands) in
the production of topologically protected edge states.

It would be interesting to investigate the validity of Theorems 1 and 2 for d outside
ð0; d]Þ; or with disorder [19, 20, 23–26]. There are more general analysis which address
the bulk-edge correspondence in the presence of randomness [9, 16]. Their K-theoretic
framework seems too general to compute explicitly the value of the index. In particular,
they do not predict when topologically protected edge states exist.
Theorem 2 demonstrates the existence of topologically stable time-harmonic waves

propagating along line defects in graphene. A recent analysis on Dirac operators [27]
suggests that these waves should be insensitive to back-scattering by local obstacles. We
plan to mathematically analyze this phenomena.

1.3. Sketches of proofs

The proof of Theorem 1 relies on three main steps:

� As a topological invariant, the Chern number does not depend on d 2 ð0; d]Þ : in
this range, the bundles Ed;6 are diffeomorphic to one another. Hence it suffices
to compute c1ðEd;6Þ for small d only. We then write the Chern number as the
integral of the trace of the Berry curvature BdðnÞ: This formula involves the pro-
jector PdðnÞ to the n-th lowest-energy eigenspaces of Pd;þðnÞ:

� When n is away from Dirac momenta fn?;�n?g þ 2pK�;PdðnÞ (and its deriva-
tives) converges uniformly to P0ðnÞ: Hence BdðnÞ converges uniformly to B0ðnÞ:
Because of symmetries, B0ðnÞ ¼ 0 : momenta away from fn?;�n?g þ 2pK� do
not contribute to the Chern number.

� For n near n?; we show that after rescaling, Pd;þðnÞ converges in the resolvent
sense to the two-band model MdðnÞ studied in [1]. This convergence transfers to
PdðnÞ and its derivatives, hence to BdðnÞ: The last part of the proof computes
the Berry curvature and Chern number associated to the low-lying eigenbundle
of MdðnÞ; eventually leading to c1ðEd;þÞ ¼ �sgnðh?Þ:
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In [6, Corollary 4], we showed that under a condition stronger than (1.4), the edge
index of Pd equals �2 � sgnðh?Þ: That proof relied on a resolvent estimate for Pd½f�:
Theorem 2 holds more generally. It differs from [6, Corollary 4] because it applies to
cases where the no-fold condition fails. This failure is an obstacle to construct edge
states. The existence of long-lived states was instead conjectured [3, Section 1.4].
In the setting of Theorem 2, the operator Pd[ ½f� has an essential L2½f�-gap, but Pd½f�

may not have an essential spectral gap for small d. Therefore, the resolvent estimate [6,
Theorem 2] does not hold. In order to nonetheless prove Theorem 2, we construct a
modified operator Pd; with three essential properties:

� It has the same spectral flow as Pd�E[ when d ¼ d[;
� It looks like Pd for momenta/energy near ðn?;E?Þ and d near 0.
� It retains an essential L2½f�-gap as d 2 ð0; d[� decreases to 0.

We can then apply the techniques of [6] to compute the spectral flow of Pd�E?:
This relies on a resolvent expansion of Pd: There are two main steps:

� We use the limiting two-band model MdðnÞ to approach Pd;þðnÞ; and we inte-
grate these estimates to expand the bulk resolvents ðPd;þ½f��zÞ�1:

� We construct a parametric based on the bulk operators Pd;þ½f�:

A family of Dirac operators—which quantizes the limiting two-band model near
infinity—controls the effective dynamics near each of the two Dirac points. Each family
has spectral flow equal to �sgnðh?Þ; which implies that Pd has spectral
flow �2 � sgnðh?Þ:
These Dirac operators arised in previous work [3, 4, 28] where they were used to

construct some edge states as adiabatic modulations of the Dirac point Bloch modes.
These constructions rely on a sophisticated Lyapounov–Schmidt reduction combined
with multiscale analysis. Working at the level of the resolvent has the advantage of pro-
ducing all edge states. This knowledge is necessary to compute the edge index—see [22,
29] for bulk/edge analysis of dislocated models.

1.4. Notations

We will use the following notations:

� Dðz; rÞ 	 C denotes the disk centered at z 2 C; of radius r.
� If H is a Hilbert space and A : H ! H is bounded, the norm of A is

jjAjjH ¼def sup
jwjH¼1

jAwjH:

� If Ae : H ! H is a bounded operator and f : ð0; e0� ! R; we write Ae ¼
OHðf ðeÞÞ when there exists C> 0 such that jjAejjH � Cf ðeÞ for e 2 ð0; e0�:
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� If f 2 R=ð2pZÞ 7!HðfÞ is a continuous family of self-adjoint operators such that
0 =2RessðHðfÞÞ; SfðHÞ denotes the spectral flow of H through zero as f spans
½0; 2p�—see [7] for a comprehensive introduction.

2. Proof of Theorem 1

2.1. Dirac points and their bifurcations

Here, we review honeycomb Schr€odinger operators, Dirac points and gap openings via
conjugation symmetry breaking. Let K ¼ Zv1 � Zv2 be the equilateral Z2-lattice:

v1 ¼ a
ffiffiffi
3

p
1

� �
; v2 ¼ a

ffiffiffi
3

p
�1

� �
;

where a> 0 is a constant such that Det½v1; v2� ¼ 1: The dual basis k1, k2 consists of two
vectors in ðR2Þ� which satisfy hki; vji ¼ dij: The dual lattice is K

� ¼ Zk1� Zk2: The cor-
responding fundamental cell and dual fundamental cell are

L ¼def sv1 þ s0v2 : s; s0 2 0; 1½ Þ� �
; L� ¼def sk1 þ s0k2 : s; s0 2 0; 2p½ Þ� �

:

Honeycomb potential are smooth functions R
2 ! R that are even, K-periodic and

invariant under 2p=3-rotations—see [6, Definition 1]. Let V be a honeycomb potential
and P0 ¼ �DR

2 þ V: Since P0 is periodic w.r.t. K, it acts on

L2n ¼def u 2 L2loc R
2;C

� �
: u xþ wð Þ ¼ eihn;wiu xð Þx 2 R

2;w 2 K
n o

;

for all n 2 R
2: Sobolev spaces Hs

n are defined analogously. We denote by P0ðnÞ the
operator P0 acting on L2n; it has discrete spectrum k0;1ðnÞ � � � � � k0;jðnÞ � ::::

Definition 1. A pair ðn?;E?Þ 2 R
2 
 R is a Dirac point of P0 if:

i. E? is a L2n?-eigenvalue of P0ðn?Þ of multiplicity 2;
ii. There exists an orthonormal basis f/1;/2g of kerL2n?

ðP0ðn?Þ�E?Þ such that

/1 Rxð Þ ¼ e2ip=3/1 xð Þ; /2 xð Þ ¼ /1 �xð Þ; /2 Rxð Þ ¼ e�2ip=3/2 xð Þ: (2.1)

iii. There exist n � 1 and �F > 0 such that for n close to n?;

k0;n nð Þ ¼ E?��F � jn�n?j þ O n�n?ð Þ2;
k0;nþ1 nð Þ ¼ E? þ �F � jn�n?j þ O n�n?ð Þ2:

In a seminal paper [5], Fefferman and Weinstein showed that for a generic choice of
V;P0 admit Dirac points ðn?;E?Þ: Different perspectives—on the proof and on the con-
text—have appeared since [4, 28, 30–33]. Because of (2.1), n? 2 fnA? ; nB?g þ 2pK� with

nA? ¼def 2p
3

2k1 þ k2ð Þ; nB? ¼def 2p
3

k1 þ 2k2ð Þ ¼ �nA? mod 2pK�:

Since P0 is invariant under spatial inversion, ðnA? ;E?Þ is a Dirac point of P0 if and
only if ðnB? ;E?Þ is another Dirac point of P0: In the rest of the paper, we assume that
ðn?;E?Þ is a Dirac point of P0; associated to the n-th band, and such that (1.2) holds:
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k0;n nð Þ ¼ k0;nþ1 nð Þ ) n 2 nA? ; n
B
?

� �
þ 2pK�:

We take f/1;/2g 	 L2n? satisfying (2.1).
Introduce the operators

Pd;6 ¼def P06dW ¼ �DR
2 þ V6dW; W ¼ A � Dx þ Dx � A; Dx ¼def 1

i

@x1

@x2

" #
;

where A 2 C1ðR2;R2Þ is periodic w.r.t. K and AðxÞ ¼ Að�xÞ: They are conjugation-
breaking perturbations of P0; they represent graphene-like structures affected by a mag-
netic field. The work [4] considers other conjugation-breaking operators, and constructs
edge states in a perturbative adiabatic regime. We define

d] ¼def inf d> 0 : 9n 2 R
2; kd;n nð Þ ¼ kd;nþ1 nð Þ� �

:

For d 2 ð0; d]Þ; the n-th L2n-gap of Pd;6ðnÞ is open:
inf
n2R2

kd;nþ1 nð Þ�kd;n nð Þ� �
> 0: (2.2)

If (1.2) holds and h? ¼ h/1;W/1iL2n? 6¼ 0 then d] > 0—see Lemma 2.3. This means
that breaking conjugation invariance opens the n-th gap of PdðnÞ: In the rest of the
paper, we work with d 2 ð0; d]Þ; in particular, (2.2) always holds.

2.2. Bulk index

We review the definition of bulk index. For d 2 ð0; d]Þ; the gap condition (2.2) holds.
We can then define a rank-n vector bundle Ed;þ over the two-torus T

2 ¼ R
2=ð2pK�Þ :

the fiber at a point n 2 T
2 is the vector space

Ed;þ nð Þ ¼def �
n

j¼1
kerL2n?

Pd;þ nð Þ�kd;j nð Þ� � 	 L2n:

When provided with its natural structure, this bundle is smooth because of the gap
condition (2.2) and [34, Section VII.1.3, Theorem 1.7]. In order to define the bulk
index, we first look at Ed;þ as a bundle over R2 instead of T2: Since R

2 is contractible,
this bundle is trivial—see [35, pp. 15]. Therefore it admits a smooth orthonormal frame

n 2 R
2 7! wd;1 nð Þ; :::;wd;n nð Þ� � 2 L2n 
 � � � 
 L2n: (2.3)

For every d 2 ð0; d]Þ; the orthogonal projector PdðnÞ : L2n ! L2n onto Ed;þ varies
smoothly with n—this means that e�ihn;xiPdðnÞeihn;xi forms a smooth family of operators
on L20: The operator PdðnÞ relates to the orthonormal frame (2.3) via

n 2 R
2 ) Pd nð Þ ¼

Xn
j¼1

wd;j nð Þ � wd;j nð Þ:

Let CðR2;Ed;þÞ be the space of smooth sections of the bundle Ed;þ over R
2; fix r 2

CðR2;Ed;þÞ: We write r ¼Pn
j¼1 rd;j � wd;j; the coordinates rd;j are smooth functions

R
2 ! C: For n 2 R

2; we set
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rr nð Þ ¼def
Xn
j¼1

drd;j nð Þ � wd;j nð Þ þ rd;j nð Þ �Pd nð Þ @wd;j nð Þ
	 


;where

drd;j nð Þ ¼def
X2
m¼1

@rd;j nð Þ
@nm

� dnm; @wd;j nð Þ ¼def
X2
m¼1

eihn;xi �
@ e�ihn;xiwd;j nð Þ
	 


@nm
� dnm:

We observe that rr is an element of CðR2;Ed;þ � T
�
R

2Þ:
If r 2 CðT2;Ed;þÞ; we can see r as an element of CðR2;Ed;þÞ: Then rr happens to

be an element of CðT2;Ed;þ � T�T2Þ:1 Since r satisfies Leibnitz’s rule, r is a connec-
tion on the bundle Ed;þ ! T

2: It is called the Berry connection; its curvature is the
Berry curvature [36, 37].
The trace of the Berry curvature, BdðnÞdn1 � dn2 has an expression in terms of PdðnÞ

that is manifestly gauge-invariant, i.e. independent of the choice of frame in (2.3):

Bd nð Þ ¼def Tr Pd nð Þ rn1Pd nð Þ;rn2Pd nð Þ� �� �
where

rnmPd nð Þ ¼def eihn;xi � @ e�ihn;xiPd nð Þeihn;xi
� �

@nm
� e�ihn;xi : L2n ! L2n:

(2.4)

We mention that BdðnÞ is purely imaginary. Indeed, using that PdðnÞ is self-adjoint
and that the trace is cyclic, BdðnÞ equals

Tr rn2Pd nð Þ�;rn1Pd nð Þ�� �
Pd nð Þ�� � ¼ Tr Pd nð Þ rn2Pd nð Þ;rn1Pd nð Þ� �� � ¼ �Bd nð Þ:

The Chern number of Ed;þ; or bulk index, is the integral of the first Chern class
BdðnÞdn over T2:

c1 Ed;þð Þ ¼ i
2p

ð
T
2
Bd nð Þ � dn: (2.5)

See for instance [20, (15)]. This is a topological integer—see e.g. [38, pp. 49]. In par-
ticular, it does not depend on d 2 ð0; d]Þ: To prove Theorem 1 we will compute
c1ðEd;þÞ in the limit d ! 0 : because of topological invariance,

d 2 0; d]
� �) c1 Ed;þð Þ ¼ lim

d!0þ
c1 Ed;þð Þ:

2.3. Berry curvature of the unperturbed operator

Let E0 ! T
2 be the bundle with fibers

E0 nð Þ ¼ �
n

j¼1
kerL2n P0 nð Þ�k0;j nð Þ� � 	 L2n; P0 nð Þ ¼ �DR

2 þ V : L2n ! L2n:

If (2.2) holds, the restriction of E0 to T
2 n ðfnA? ; nB?g þ 2pK�Þ is a smooth vector bun-

dle of rank n (when provided with its canonical structure). The trace of the Berry
curvature B0 of this bundle is defined via (2.4). We show here that B0ðnÞ ¼ 0 for every

1For a proof when n¼ 1, we refer to [22, Section 4]; the same argument applies to n> 1. It relies on the fact that the
frame ðwd;1; :::;wd;nÞ defines coordinates on Ed;þ with unitary transition functions.
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n 2 T
2 n ðfnA? ; nB?g þ 2pK�Þ because P0 is invariant under both I (spatial inversion) and

C (complex conjugation).
Fix n 2 T

2 n ðfnA? ; nB?g þ 2pK�Þ: Since CP0ðnÞC�1 ¼ P0ð�nÞ; we deduce that
CP0ðnÞC�1 ¼ P0ð�nÞ: It follows that

B0 nð Þ ¼ Tr C �P0 nð Þ rn1P0 nð Þ;rn2P0 nð Þ� � � C�1
	 


¼ Tr P0 �nð Þ rn1P0 �nð Þ;rn2P0 �nð Þ� �� � ¼ B0 �nð Þ:
(2.6)

Since B0ðnÞ is a purely imaginary number, we deduce that B0ð�nÞ ¼ �B0ðnÞ: Since
IP0ðnÞI�1 ¼ P0ð�nÞ; IP0ðnÞI�1 ¼ P0ð�nÞ and

B0 nð Þ ¼ Tr I �P0 nð Þ rn1P0 nð Þ;rn2P0 nð Þ� � � I�1
	 


¼ Tr P0 �nð Þ rn1P0 �nð Þ;rn2P0 �nð Þ� �� � ¼ B0 �nð Þ:
Hence B0ðnÞ ¼ B0ð�nÞ; and B0ðnÞ ¼ 0 for every n 2 T

2 n ðfnA? ; nB?g þ 2pK�Þ:
Remark 2.1. Fefferman et al. [3] studied an operator Pd that shares many of the char-
acteristics of Pd; but that is invariant under spatial inversion instead of complex conju-
gation. They produced two edge states for Pd½f� as adiabatic combinations of the Dirac
point Bloch modes with eigenvectors of an emerging Dirac operator. The associated
time-harmonic waves propagate in opposite directions. In [6] we proved that all edge
states take this form, and showed that the corresponding spectral flow vanishes. This
agrees with the bulk-edge correspondence. Indeed, the bulk operators are invariant
under C : the trace of the Berry curvature is odd—see (2.6). Since the Chern number is
the integral of the Berry curvature, it vanishes.

2.4. Away from Dirac momenta

In this section, we study BdðnÞ when d is small and n is away from fnA? ; nB?g þ 2pK�:
Define

q nð Þ ¼def dist n; nA? ; n
B
?

� �
þ 2pK�� �

:

Lemma 2.1. Under (1.2), for every e> 0, there exists C> 0 such that

d 2 0; d]
� �) sup jBd nð Þj : q nð Þ � e

� � � Cd:

Proof. Fix e> 0: We observe that the family of bounded operators on L20

d; nð Þ 2 0; d]
� �
 n 2 R

2 : q nð Þ � e
� �

7! e�ihn;xiPd nð Þeihn;xi (2.7)

is smooth because of (1.2) and [34, Section VII.1.3, Theorem 1.7]. Therefore, the estimate

Pd nð Þ rn1Pd nð Þ;rn2Pd nð Þ� � ¼ P0 nð Þ rn1P0 nð Þ;rn2P0 nð Þ� �þ OL2n
dð Þ

holds uniformly for n in compact subsets of R2 with qðnÞ � e: Since (2.7) varies period-
ically with n, it holds uniformly on fn 2 R

2 : qðnÞ � eg: The remainder OL2n
ðdÞ is an

operator of rank at most 2n because the leading order terms are of rank n. Therefore
we can take the trace on both sides and deduce
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Tr Pd nð Þ rn1Pd nð Þ;rn2Pd nð Þ� �� � ¼ Tr P0 nð Þ rn1P0 nð Þ;rn2P0 nð Þ� �� �þ O dð Þ;
uniformly for n 2 R

2 with qðnÞ � e: Hence BdðnÞ ¼ B0ðnÞ þ OðdÞ: Since B0ðnÞ ¼ 0; the
proof is complete. w

2.5. Near Dirac momenta

Fix a Dirac point ðn?;E?Þ of P0: In this section, we estimate Bd: We first prove spectral esti-
mates at pairs momentum/energy ðn; zÞ near ðn?;E?Þ: We recall the identity [3, Proposition
4.5] —see [6, Lemma 2.1] for the version needed here: there exists �? 2 C with j�?j ¼ �F
such that

8g 2 R
2  C; �?g ¼ 2h/1; g � Dxð Þ/2iL2n? ; Dx ¼def 1

i
@x1
@x2

� �
: (2.8)

Introduce the matrix

Md nð Þ ¼ E? þ dh? �? � n�n?ð Þ
�? � n �n?

� �
E?�dh?

" #
; h? ¼def h/1;W/1iL2n? :

For every n 2 R
2 and d> 0; the matrix MdðnÞ has two distinct eigenvalues

l6d nð Þ ¼ E?6rd nð Þ; rd nð Þ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2F � d2 þ �2F � jn�n?j2

q
; hF ¼def jh?j:

The difference between the two eigenvalues of MdðnÞ is 2rdðnÞ: Hence,

z 2 @D l6d nð Þ; rd nð Þ� �) jz�l7d nð Þj � rd nð Þ: (2.9)

The spectral theorem shows that for z 2 @Dðl6d ðnÞ; rdðnÞÞ;MdðnÞ�z is invertible and

z�Md nð Þð Þ�1 ¼ OC
2 rd nð Þ�1
� �

¼ OC
2 dþ jn�n?jð Þ�1
� �

: (2.10)

Introduce the operator

J0 nð Þ : L2n ! C
2; J0 nð Þu ¼

heihn�n?;xi/1; uiL2n
heihn�n?;xi/2; uiL2n

2
4

3
5:

Lemma 2.2. Assume that h? 6¼ 0. There exist d0 and e0 > 0 such that if

d 2 0; d0ð Þ; jn�n?j< e0; z 2 @D l6d nð Þ; rd nð Þ� �
(2.11)

then Pd;þðnÞ�z : H2
n ! L2n is invertible and

z�Pd;þ nð Þ� ��1 ¼ J0 nð Þ� � z�Md nð Þð Þ�1 � J0 nð Þ þ OL2n
1ð Þ:

Proof.
1. We proved an analogous statement in [6, Lemma 4.3] for different values of the

parameters n and z. Here we require jn�n?j � e0 and z 2 @Dðl6d ðnÞ; rdðnÞÞ
instead of jn�n?j � d1=3 and z 2 DðE?; h � rdðnÞÞ for some h 2 ð0; 1Þ: The same
strategy works here. Introduce the n-dependent family of vector spaces
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V nð Þ ¼ C � eihn�n?;xi/1 � C � eihn�n?;xi/2 	 L2n:

We split L2n as VðnÞ� VðnÞ?: With respect to this decomposition, we write
Pd;þðnÞ as a block-by-block operator:

Pd;þ nð Þ�z ¼ Ad nð Þ�z Bd nð Þ
Cd nð Þ Dd nð Þ�z

� �
: (2.12)

Below, we use h�; �i instead of h�; �iL2n to denote the Hermitian product on L2n:
2. Bounds for the operators BdðnÞ and CdðnÞ were obtained in [6, (4.8)]:

Bd nð Þ ¼ OV nð Þ?!V nð Þ rd nð Þð Þ; Cd nð Þ ¼ OV nð Þ!V nð Þ? rd nð Þð Þ: (2.13)

3. Step 3 in the proof of [6, Lemma 4.3] applies here. It uses that D0ðnÞ has no
eigenvalues near E? and that DdðnÞ�D0ðnÞ ¼ OL2n

ðdÞ: It shows that if (2.11) holds
then DdðnÞ�z is invertible from VðnÞ? \ H2

n to VðnÞ? and

Dd nð Þ�zð Þ�1 ¼ OV nð Þ? 1ð Þ: (2.14)

4. We now study AdðnÞ�z: This operator acts on the two-dimensional space VðnÞ;
its matrix in the basis feihn�n?;xi/1; e

ihn�n?;xi/2g is

heihn�n?;xi/1; Pd nð Þ � zð Þeihn�n?;xi/1i heihn�n?;xi/1; Pd nð Þ � zð Þeihn�n?;xi/2i
heihn�n?;xi/2; Pd nð Þ � zð Þeihn�n?;xi/1i heihn�n?;xi/2; Pd nð Þ � zð Þeihn�n?;xi/2i

" #
:

(2.15)

As in [6, Step 4, Lemma 4.3] the matrix elements in (2.15) are

h/j; Pd nð Þ � zð Þ/ki ¼ E?�jn�n?j2�z
� �

djk þ h/j; dWþ 2 n� n?ð Þ � Dxð Þ/ki:

Because of (2.8), h/2; 2ðn� n?Þ � Dx/1i ¼ �?ðn�n?Þ; [6, Lemma 2.1] shows that
h/j; 2ðn� n?Þ � Dx/ji vanishes. Moreover, [6, Lemma 7.3] shows that
h/2;W/1i ¼ h/1;W/2i ¼ 0 and h/1;W/1i ¼ h? ¼ �h/2;W/2i: We deduce
that the matrix (2.15) is equal to MdðnÞ�z þ OC

2ðn�n?Þ2: Using a Neumann ser-
ies argument based on (2.15), when (2.11) holds, AdðnÞ�z is invertible; and

Ad nð Þ�zð Þ�1 ¼ I0 nð Þ� � Md nð Þ�zð Þ�1 � I0 nð Þ þ OV nð Þ
jn�n?j2
rd nð Þ2

 !

¼ I0 nð Þ� � Md nð Þ�zð Þ�1 � I0 nð Þ þ OV nð Þ 1ð Þ:
(2.16)

Above, I0ðnÞ : VðnÞ ! C
2 is the coordinate map. Because of (2.10), we also get

Ad nð Þ�zð Þ�1 ¼ OV nð Þ rd nð Þ�1
� �

: (2.17)

5. Schur’s lemma allows to invert block-by-block operators of the form (2.12) under
certain conditions on the blocks; see [29, Lemma 4.1] for the version needed
here. We checked that DdðnÞ�z : VðnÞ ! VðnÞ is invertible. It remains to
check that:
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Ad nð Þ�z�Bd nð Þ � Dd nð Þ�zð Þ�1 � Cd nð Þ : V nð Þ ! V nð Þ is invertible: (2.18)

We observe that because of (2.13) and (2.14),

Bd nð Þ � Dd nð Þ�zð Þ�1 � Cd nð Þ ¼ OV nð Þ rd nð Þ2
� �

:

Therefore a Neumann series argument based on (2.17) shows that (2.18) holds.
Thanks to (2.16), it also shows that the inverse is equal to

Ad nð Þ�zð Þ�1 þ OV nð Þ 1ð Þ ¼ I0 nð Þ� � Md nð Þ�zð Þ�1 � I0 nð Þ þ OV nð Þ 1ð Þ:
We apply Schur’s lemma. From (2.12), we obtain that PdðnÞ�z : H2

n ! L2n is invert-
ible when (2.11) holds; and moreover

Pd nð Þ�zð Þ�1 ¼ I0 nð Þ� � Md nð Þ�zð Þ�1 � I0 nð Þ 0

0 0

" #
þ OL2n

1ð Þ

¼ J0 nð Þ� � Md nð Þ�zð Þ�1 � J0 nð Þ þ OL2n
1ð Þ:

This completes the proof. w

Lemma 2.3. If (1.2) holds, then h? 6¼ 0 and d] > 0 for a generic choice of W:

Proof.
1. Recall that h? ¼ h/1;W/1iL2n? and observe that

h? ¼ h/1;ADx/1iL2n? þ hDx/1;A/1iL2n? ¼ h/1 � Dx/1 � Dx/1

� �
� /1;AiL2n? :

Because of the unique continuation principle for elliptic problems—see [39,
Theorem 17.2.6]—/1 cannot vanish on an open set. We deduce that if

/1Dx/1�Dx/1/1 ¼ /1
2
Dx

/1

/1

 !

vanishes uniformly, then /1 and /1 are linearly dependent. This is impossible
because /1 2 L2�n?

and L2n? \ L2�n?
¼ f0g: We deduce that the condition h? 6¼ 0 is

equivalent to requiring that A does not lie in the hyperplane normal to /1 �
Dx/1�ðDx/1Þ � /1: This is a generic condition.

2. Define c6d ðnÞ ¼ @Dðl6d ðnÞ; rdðnÞÞ: Lemma 2.2 implies that

P6
d nð Þ ¼def 1

2pi

þ
c6d nð Þ

ðz�Pd;þ nð ÞÞ�1 � dz

¼ 1
2pi

þ
c6d nð Þ

J0 nð Þ� � z�Md nð Þð Þ�1 � J0 nð Þ � dz þ OL2n
rd nð Þ2
� �

¼def p6d nð Þ þ OL2n
rd nð Þ2
� �

:

Because of the spectral theorem, P6
d ðnÞ is a projector. If f1, f2 are normalized ele-

ments in the range of P6
d ðnÞ then

fj ¼ P6
d nð Þfj ¼ pd nð Þf1 þ OL2n

rd nð Þ2
� �

:
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Since pdðnÞ is a rank-one projector—see (2.9) —f1 and f2 cannot be orthogonal.
We deduce that P6

d ðnÞ has rank one. In other words Pd;þðnÞ has precisely one
eigenvalue in each disk Dðl6d ðnÞ; rdðnÞÞ for ðn; dÞ close enough to ðn?; 0Þ:
Because of [40, Appendix A.1], these two eigenvalues must be kd;nðnÞ and
kd;nþ1ðnÞ: We deduce that

kd;n nð Þ �P�
d nð Þ ¼ 1

2pi

þ
c�d nð Þ

z � z�Pd;þ nð Þ� ��1 � dz

¼ J0 nð Þ� � 1
2pi

þ
c�d nð Þ

z � z�Md nð Þð Þ�1 � dz � J0 nð Þ þ OL2n
rd nð Þ2
� �

¼ l�d nð Þ � J0 nð Þ�pd nð ÞJ0 nð Þ þ OL2n
rd nð Þ2
� �

:

A similar identity holds for kd;nðnÞ �Pþ
d ðnÞ: Taking the trace, we deduce that

kd;n nð Þ ¼ l�d nð Þ þ O rd nð Þ2
� �

¼ E?�rd nð Þ þ O rd nð Þ2
� �

;

kd;nþ1 nð Þ ¼ lþd nð Þ þ O rd nð Þ2
� �

¼ E? þ rd nð Þ þ O rd nð Þ2
� �

:
(2.19)

3. Assume that d] ¼ 0: Then for any k 2 N; there exist nk 2 L
� and 0< dk ! 0 as

k ! 1; with kdk;nðnkÞ ¼ kdk;nþ1ðnkÞ: After passing to a subsequence, we can
assume that nk converges to a point! n1: Because of [40, Appendix A.1],
kdk;nðnkÞ ! k0;nðn1Þ and kdk;nþ1ðnkÞ ! k0;nþ1ðn1Þ: It follows that k0;nðn1Þ ¼
k0;nþ1ðn1Þ: We deduce from (1.2) that n1 2 fnA? ; nB?g; (2.9) and (2.19) yield

E? þ rdk nkð Þ þ O rdk nð Þ2
	 


¼ E?�rdk nkð Þ þ O rdk nð Þ2
	 


:

This is not possible unless dk ¼ 0 for k large enough, which contradicts dk > 0: We con-
clude that d] > 0: w

Let n 2 R
2 7! bdðnÞ be the trace of the Berry curvature associated to the line bundle

with fiber kerC2ðMdðnÞ�l�d ðnÞÞ over R2:

Lemma 2.4. There exist d0 > 0 and e0 > 0 such that

d 2 0; d0ð Þ; jn�n?j< e0 ) Bd nð Þ ¼ bd nð Þ þ O rd nð Þ�1
� �

:

Proof.
1. Let QdðnÞ : L2n ! L2n the projector on

�
n�1

j¼1
kerL2n Pd;þ nð Þ�kd;j nð Þ� �

:

The eigenvalues k0;1ðn?Þ; :::; k0;n�1ðn?Þ of P0ðn?Þ are separated from the rest of
the spectrum of P0ðn?Þ because E? ¼ k0;nðn?Þ ¼ k0;nþ1ðn?Þ has multiplicity pre-
cisely 2. Because of [34, Section VIII.1.3 Theorem 1.7], the family ðd; nÞ 7!QdðnÞ
is smooth on a neighborhood of ð0; n?Þ: In particular, under these conditions,

Tr Qd nð Þ rn1Qd nð Þ;rn2Qd nð Þ� �� � ¼ O 1ð Þ:
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For d> 0; let P�
d ðnÞ be the projector on kerL2nðPd;þðnÞ�kd;nðnÞÞ: Because of

(2.19), for ðd; nÞ near ð0; n?Þ; kd;nðnÞ is a simple eigenvalue of Pd;þðnÞ: Therefore
for ðd; nÞ near ð0; n?Þ the projector PdðnÞ splits orthogonally as

Pd nð Þ ¼ P�
d nð Þ þ Qd nð Þ: (2.20)

We recall that BdðnÞ is gauge independent—i.e. it does not depend on the choice
of frame in (2.3). Pick a frame in (2.3) associated to the orthogonal decompos-
ition (2.20). The associated Berry connection and curvature split accordingly to
components for P�

d ðnÞ and QdðnÞ: In other words, the curvature endomorphism
is a two-form valued diagonal by block matrix, with respect to the decomposition
(2.20). Therefore,

Bd nð Þ ¼ Tr Qd nð Þ rn1Qd nð Þ;rn2Qd nð Þ� �� �þ Tr P�
d nð Þ rn1P

�
d nð Þ;rn2P

�
d nð Þ� �� �

¼ Tr P�
d nð Þ rn1P

�
d nð Þ;rn2P

�
d nð Þ� �� �þ O 1ð Þ:

(2.21)

One could also invoke the additivity of Chern classes for the first line of (2.21).
2. Recall that c�d ðnÞ ¼ @Dðl�d ðnÞ; rdðnÞÞ oriented clockwise. When ðn; dÞ is suffi-

ciently close to ðn?; 0Þ; we saw in Step 2 of the proof of Lemma 2.3 that Pd;þðnÞ
has a unique eigenvalue in Dðl6d ðnÞ; rdðnÞÞ; which is kd;nðnÞ: The Cauchy for-
mula yields

P�
d nð Þ ¼ 1

2pi

þ
c�d nð Þ

z�Pd;þ nð ÞÞ�1dz:
	

(2.22)

Let p�d ðnÞ be the projector on the eigenvalue l�d ðnÞ of MdðnÞ: We use Lemma
2.2 and that c�d ðnÞ has length OðrdðnÞÞ to get

P�
d nð Þ ¼ J0 nð Þ� � 1

2pi

þ
c�d nð Þ

ðz�Md nð ÞÞ�1dz � J0 nð Þ þ OL2n
rd nð Þð Þ

¼ J0 nð Þ� � p�d nð Þ � J0 nð Þ þ OL2n
rd nð Þð Þ:

3. We study rn1P
�
d ðnÞ—defined in (2.4):

rn1P
�
d nð Þ¼ def eihn;xi � @ e�ihn;xiP�

d nð Þeihn;xi� �
@n1

� e�ihn;xi : L2n ! L2n: (2.23)

The projector e�ihn;xiP�
d ðnÞeihn;xi is associated to e�ihn;xiPdðnÞeihn;xi instead of

PdðnÞ: The same Cauchy formula as (2.22) gives

e�ihn;xiP�
d nð Þeihn;xi ¼ 1

2pi

þ
c�d nð Þ

z � e�ihn;xi
Pd;þ nð Þeihn;xi

	 
�1
dz: (2.24)

Observe that e�ihn;xiPdðnÞeihn;xi ¼ ðDx þ nÞ2 þ Vþ dW: Hence,

@ e�ihn;xiPd;þ nð Þeihn;xi� �
@n1

¼ 2 Dx1 þ n1ð Þ ¼ 2e�ihn;xiDx1e
ihn;xi:

We use [22, Lemma A.6]—a result to differentiate Cauchy integrals when the
contour depends on the parameter—to differentiate (2.24) w.r.t. n1. We get
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1
2pi

þ
c�d nð Þ

z � e�ihn;xi
Pd;þ nð Þeihn;xi

	 
�1 @ e�ihn;xiPd;þ nð Þeihn;xi� �
@n1

z � e�ihn;xi
Pd;þ nð Þeihn;xi

	 
�1
dz

¼ 1
2pi

þ
c�d nð Þ

z � e�ihn;xi
Pd;þ nð Þeihn;xi

	 
�1
� 2e�ihn;xiDx1e

ihn;xi � z � e�ihn;xi
Pd;þ nð Þeihn;xi

	 
�1
dz

¼ e�ihn;xi � 1
2pi

þ
c�d nð Þ

z�Pd;þ nð ÞÞ�1 � 2Dx1 � z�Pd;þ nð Þ� ��1
dz � eihn;xi:

	

We deduce from (2.23) that

rn1P
�
d nð Þ ¼ 1

2pi

þ
c�d nð Þ

z�Pd;þ nð ÞÞ�1 � 2Dx1 � z�Pd;þ nð Þ� ��1
dz:

	
(2.25)

We recall that ðz�MdðnÞÞ�1 ¼ OC
2ðrdðnÞ�1Þ when z 2 c�d ðnÞ: Because of Lemma

2.2, ðz�Pd;þðnÞÞ�1 ¼ OL2n
ðrdðnÞ�1Þ when z 2 c�d ðnÞ: Since the contour c�d ðnÞ has

length OðrdðnÞÞ; we deduce from (2.25) that rn1P
�
d ðnÞ ¼ OL2n

ðrdðnÞ�1Þ:
Moreover, Lemma 2.2 combined with (2.25) shows that rn1P

�
d ðnÞ equals

J0 nð Þ� � 1
2pi

þ
c�d nð Þ

z�Md nð ÞÞ�1 � J0 nð Þ2Dx1J0 nð Þ� � z�Md nð Þð Þ�1dz � J0 nð Þ þ OL2n
1ð Þ:

	

As in Step 4 in the proof of Lemma 2.2,

J0 nð Þ2Dx1J0 nð Þ� ¼ 0 �?
�? 0

� �
þ O

C
2 n�n?ð Þ ¼ @Md nð Þ

@n1
þ O

C
2 n�n?ð Þ:

We use ðz�MdðnÞÞ�1 ¼ OC
2ðrdðnÞ�1Þ when z 2 c�d ðnÞ; c�d ðnÞ has length OðrdðnÞÞ;

jn�n?j � rdðnÞ�1 ¼ Oð1Þ; to deduce that rn1P
�
d ðnÞ equals, modulo OOL2n

ð1Þ;

J0 nð Þ� � 1
2pi

þ
c�d nð Þ

ðz�Md nð ÞÞ�1 @Md nð Þ
@n1

z�Md nð Þð Þ�1dz � J0 nð Þ

¼ J0 nð Þ� � @

@n1

1
2pi

þ
c�d nð Þ

z �Md nð ÞÞ�1dz
	 


� J0 nð Þþ ¼ J0 nð Þ� � @p
�
d nð Þ
@n1

� J0 nð Þ:
 

A similar calculation leads to

@P�
d nð Þ
@n2

¼ OL2n
rd nð Þ�1
� �

;
@P�

d nð Þ
@n2

¼ J0 nð Þ� � @p
�
d nð Þ
@n2

� J0 nð Þ þ OL2n
1ð Þ:

4. We conclude that

P�
d nð Þ rn1P

�
d nð Þ;rn2P

�
d nð Þ� �

¼ J0 nð Þ� � p�d nð Þ @n1p
�
d nð Þ; @n2p�d nð Þ� � � J0 nð Þ þ OL2n

rd nð Þ�1
� �

:
(2.26)

Since the terms on both sides have rank at most 1, the remainder term has rank
at most 2 and we can take the trace of (2.26), without changing the magnitude of
the remainder. This yields

Tr P�
d nð Þ rn1P

�
d nð Þ;rn2P

�
d nð Þ� �� � ¼ Tr p�d nð Þ rn1p

�
d nð Þ;rn2p

�
d nð Þ� �� �þ O rd nð Þ�1

� �
:
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Above we used the cyclicity of the trace and the formula J0ðnÞJ0ðnÞ� ¼ Id
C

2 to
get rid of the terms J0ðnÞ and J0ðnÞ�: The proof is complete thanks to (2.21). w

Observe that because rdðnÞ is bounded below by �Fjn�n?j; for every e> 0;ð
D n?;eð Þ

dn
rd nð Þ �

ðe
0

2pr � dr
�Fr

¼ 2pe
�F

: (2.27)

We deduce from Lemma 2.4 and (2.27) that for every e 2 ð0; e0Þ and d 2 ð0; d0Þ; there
exists a constant C0 such that

i
2p

ð
D n?;eð Þ

Bd nð Þdn� i
2p

ð
D n?;eð Þ

bd nð Þdn


 � C0e:

Fix e1 such that e1 � e0 and 4C0e1 � 1: Then

i
2p

ð
D n?;e1ð Þ

Bd nð Þdn� i
2p

ð
D n?;e1ð Þ

bd nð Þdn


 � 1
4
: (2.28)

The next lemma computes explicitly bdðnÞ and the associated Chern number.

Lemma 2.5. Let e1 be the number fixed above. As d ! 0;

i
2p

ð
D n?;e1ð Þ

bd nð Þdn ¼ � 1
2
� sgn h?ð Þ þ O dð Þ:

Proof.
1. We first assume that h? > 0: Observe that

Md Ud nð Þð Þ ¼ E? þ dh? � M nð Þ; M nð Þ ¼def 1 n
�n �1

� �
; Ud nð Þ ¼def n? þ

dh? � �?n
�2F

:

(2.29)

Above C is canonically identified with R
2:

2. We compute the Berry curvature bðnÞ associated to the negative energy eigen-
bundle for MðnÞ; using [41, (23)]:

b nð Þ ¼ i

2 1þ jnj2
� �3=2

n1
�n2
1

2
64

3
75 � @

@n1

n1
�n2
1

2
64

3
75 �

@

@n2

n1
�n2
1

2
64

3
75

0
B@

1
CA

¼ i

2 1þ jnj2
� �3=2

n1
n2
1

2
64

3
75 �

1

0

0

2
64
3
75 �

0

�1

0

2
64

3
75

0
B@

1
CA ¼ i

2 1þ jnj2
� �3=2 :

(2.30)

3. Because of (2.29), bðnÞdn ¼ U�
dðbdðnÞdnÞ: Moreover,

Ud D 0;
�Fe1
hFd

� �� �
¼ D n?; e1ð Þ:

It follows that
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i
2p

ð
D n?;e1ð Þ

bd nð Þdn ¼ i
2p

ð
D 0;

�Fe1
hFd

� �U�
d bd nð Þdnð Þ ¼ i

2p

ð
D 0;

�Fe1
hFd

� �b nð Þdn:

We now use the formula (2.30) to compute this integral: we have

i
2p

ð
D 0;

�Fe1
hFd

� �b nð Þdn ¼ � 1
4p

ð
D 0;

�Fe1
hFd

� � dn

1þ jnj2
� �3=2 ¼ � 1

2
þ O dð Þ:

(2.31)

In the last equality we used that e1 is a fixed constant.
4. We now deal with the case h? < 0: In this case, the value (2.31) corresponds to

the positive energy eigenbundle of Mdðn? þ dh?��1
? nÞ: The positive and negative

eigenbundles direct sum to the trivial bundle R
2 
 C

2; whose total Berry curva-
ture vanishes. We deduce that when h? < 0 and d goes to zero,

i
2p

ð
D n?;e1ð Þ

bd nð Þdn ¼ � i
2p

ð
D 0;�F e1hFd

� �b nð Þdn ¼ 1
2
þ O dð Þ:

This completes the proof. w

2.6. Proof of Theorem 1

We are now ready to prove Theorem 1. Fix e1 as in (2.28). Because of the definition of
the first Chern class (2.5),

c1 Ed;þð Þ ¼ i
2p

ð
L
�
Bd nð Þdn ¼ i

2p

ð
n2L�

q nð Þ�e1

Bd nð Þdnþ i
2p

X
J¼A;B

ð
D nJ?;e1ð Þ

Bd nð Þdn: (2.32)

Because of Lemma 2.1, the first integral is OðdÞ: The sum in (2.32) reduces to integrals
of traces of Berry curvatures bdðnÞ associated to low-energy eigenbundles MdðnÞ; modulo
an error term that is at most 2 � 1=4 ¼ 1=2 because of (2.28). Lemma 2.5 computes these
integrals and shows that their sum equals �sgnðh?Þ þ OðdÞ: We end up with:

jc1 Ed;þð Þ þ sgn h?ð Þj � 1
2
þ O dð Þ:

Making d ! 0 and using that c1ðEd;þÞ and sgnðh?Þ are both integers, we conclude
that c1ðEþ;dÞ ¼ �sgnðh?Þ:
We can go from Pd;þ to Pd;� by simply switching W to �W: This changes h? to

�h?: Therefore c1ðE�;dÞ ¼ sgnðh?Þ: This completes the proof of Theorem 1.

3. Proof of Theorem 2

3.1. The edge problem

We review the definition of the edge operator Pd introduced in [6, Section 1.7]. This
operator models interface effect between two materials—described respectively by Pd;þ
and Pd;�—along a rational edge Rv; v 2 K: Write v ¼ a1v1 þ a2v2 with a1; a2 2 Z rela-
tively prime and set
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v0 ¼def b1v1 þ b2v2; a1b2�a2b1 ¼ 1; b1; b2 2 Z;

k ¼def b2k1�b1k2; k
0 ¼def �a2k1 þ a1k2:

The operator Pd is �DR
2 þ Vþ d � jd �W; where the function jd 2 C1ðR2;RÞ is a

domain wall across Rv :

jd xð Þ ¼ j dhk0; xi� �
; 9L> 0; j tð Þ ¼ �1 when x � �L;

1 when x � L:

�

Since hk0; vi ¼ 0; the operator Pd is periodic w.r.t. Zv (though it is not periodic w.r.t.
K). We denote by Pd½f� the operator formally equal to Pd; but acting on

L2 f½ � ¼def u 2 L2loc R
2;C

� �
; u x þ vð Þ ¼ eifu xð Þ;

ð
R

2=Zv
ju xð Þj2dx < 1

( )
:

The bulk operators Pd;6½f� prescribe the essential spectrum of Pd½f� :
Ress Pd f½ �ð Þ ¼ Ress Pd;þ f½ �� � [ Ress Pd;� f½ �� �

:

When (1.4) is satisfied, the operator Pd½f� has an L2½f�-gap, containing the energy
level E[ðfÞ: The edge index N of Pd in this gap is defined as the signed number of
eigenvalues of the family Pd½f��E[ðfÞ crossing E? downward as f spans ½0; 2p�: It is a
topological invariant of the system; we refer to [7] for a comprehensive introduction. In
this section we prove the bulk-edge correspondence: the edge index of Pd can be com-
puted from the bulk index of the operators Pd;6:

3.2. Description of the problem

Fix d 2 ð0; d]Þ such that (1.4) holds. Define

d� ¼def inf d> 0 : 8f 2 0; 2p½ �; sup
s2 0;2p½ �

kd;n fkþ sk0ð Þ ¼ inf
s2 0;2p½ �

kd;n fkþ sk0ð Þ
� �

:

In [6, Corollary 4] we showed that the spectral flow of Pd�E? is �2 � sgnðh?Þ for
every d 2 ð0; d�Þ: Therefore, if d[ 2 ð0; d�Þ then Theorem 2 holds.
However, generally d�< d]: This happens for instance when the no-fold condition of

Fefferman–Lee-Thorp–Weinstein [3, Section 1.3] fails. If f? ¼ hn?; vi; the failure of the
no-fold condition is equivalent to

9s 2 0; 2p½ �; f?kþ sk0 62 n? þ 2pK�; k0;n f?kþ sk0ð Þ ¼ E? or k0;nþ1 f?kþ sk0ð Þ ¼ E?:

Since n? 2 f?kþ Rk0; in this situation d� ¼ 0—this can be proved using standard per-
turbative theory of eigenvalues [34]. In other words, for d small, Pd;þ½f?� does not have
a spectral gap.
One could nonetheless envision situations where a spectral gap of Pd;þ½f?� eventually

opens as d grows enough—i.e. to a value d[ < d] for which (1.4) holds. We refer to
Figure 1. In such situations, Theorem 2 is more general than [6, Corollary 4]. We will
derive Theorem 2 following the approach of [6].
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3.3. Preparative steps

We fix EdðnÞ depending smoothly on ðd; nÞ 2 ½0; d]Þ 
 R
2; 2pK�-periodic in n, such

that:

n 62 nA? ; n
B
?

� �
þ 2pK�; d 2 0; d]

� �) kd;n nð Þ< E? þ Ed nð Þ< kd;nþ1 nð Þ;
E? þ Ed[ nð Þ ¼ E[ hn; við Þ; and Ed nð Þ ¼ 0 for d; nð Þ near 0; nA?

� �
and 0; nB?

� �
:

(3.1)

The first condition is possible because of (1.3); the second one is possible because of
(1.4). The third one is possible because E? is not an eigenvalue of Pd;þðnÞ for n near nA?
and nB? and d near 0—see (2.19). We refer to Figure 2.
Define Td½f� the operator formally equal to EdðDxÞ; but acting on L2½f� :

Td f½ � ¼def 1
2p

ð�

0;2p½ �
Ed fkþ sk0ð Þ � IdL2fkþsk0

ds: (3.2)

Let Pd½f� ¼ Pd½f��Td½f�: Because of (3.1), for d 2 ð0; d]Þ;E? does not belong to the
spectrum of the operators Pd;6ðnÞ�EdðnÞ: Hence Pd½f� has an essential spectral gap at
energy E?: We have the spectral flow equalities:

N ¼ Sf Pd[�E?�E[ð Þ ¼ Sf Pd[�E?�Td[ð Þ ¼ Sf Pd[�E?ð Þ ¼ Sf Pd�E?ð Þ: (3.3)

The first equality is simply the definition of N: The second one comes from Td[ ½f� ¼
E[ðfÞ � IdL2f : Indeed, because of (3.2),

Td f½ � ¼ 1
2p

ð�

0;2p½ �
Ed fkþ sk0ð Þ � IdL2fkþsk0

ds ¼ E[ fð Þ
2p

ð�

0;2p½ �
IdL2fkþsk0

ds ¼ E[ fð Þ � IdL2f :

The third equality in (3.3) is the definition of Pd[ ½f�; the last one holds because for
d 2 ð0; d]Þ;Pd½f��E? has a gap containing 0, hence its spectral flow does not depend on
d. Because of (3.3), we can obtain N by taking the limit of SfðPd�E?Þ as d ! 0:

Figure 1. The red curves represent sections of the n-th and nþ 1-th dispersion surfaces of Pd;þ for
quasi-momentum n 2 f?k þ Rk0: The gray area on the vertical axis is the L2½f?�-spectrum of Pd;þ½f?�:
For d small, the n-th and nþ 1-th dispersion surfaces of Pd;þ are separated though Pd;þ½f?� does not
have a spectral gap. We have d? ¼ 0 and we cannot properly define SfðPdÞ: As d increases to d[;
the operator Pd[ ;þ½f?� has a spectral gap—a necessary condition to define SfðPdÞ: This illustrates the
problematic of Section 3.2.
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3.4. Proof of Theorem 2

We now follow the approach of [6]: we derive a resolvent estimate for Pd½f� as d ! 0:
The first step is an estimate on the bulk resolvent ðPd;6½f��E?Þ�1 where Pd;6½f� ¼
Pd;6½f� þ Td½f� and ðk; fÞ is near ðE?; f?Þ; as in [6, Section 5]. Introduce:

R : L2 R
2=Zv;C2

� �
! L2 R;C2

� �
; Rfð Þ tð Þ ¼def

ð1
0
f svþ tv0ð Þds;

R� : L2 R;C2
� �

! L2 R
2=Zv;C2

� �
; R�gð Þ xð Þ ¼def g hk0; xi� �

;

Ud : L
2
R;C2
� �

! L2 R;C2
� �

; Udfð Þ tð Þ ¼def f dtð Þ:
Let 6DðlÞ be the operator

6D lð Þ ¼def h? �?k0

�?k0 �h?

� �
Dt þ l

0 �?‘
�?‘ 0

� �
þ h? 0

0 �h?

� �
j; ‘ ¼def k�hk; k0i

jkj2 k0: (3.4)

Above, �?‘ is the complex number defined according to (2.8). We let 6D6ðlÞ :
H1ðR;C2Þ ! L2ðR;C2Þ be the formal limits of 6DðlÞ as t ! 61—i.e. replacing j in
(3.4) by ±1.

Theorem 3. Assume that (1.2) holds and that h? 6¼ 0; f? ¼ hn?; vi 62 pZ. Fix l] > 0 and
�> 0. There exists d0 > 0 such that if

d 2 0; d0ð Þ; l 2 �l]; l]ð Þ; z 2 D 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2F þ l2 � �2Fj‘j2

q
� �

� �
;

f ¼ f? þ dl; k ¼ E? þ dz

then the operators Pd;6½f��k : H2½f� ! L2½f� are invertible. Furthermore,

Pd;6 f½ ��k
� ��1 ¼ S6d l; zð Þ þ OL2 f½ � d

�1=3ð Þ;
k0 � Dxð Þ Pd;6 f½ ��k

� ��1 ¼ SD
6d l; zð Þ þ OL2 f½ � d

�1=3ð Þ;

where : S6d l; zð Þ ¼def 1
d
� /1

/2

" #>
eildh‘;xiR� � Ud 6 D6 lð Þ�z

� ��1U�1
d � Re�ildh‘;xi /1

/2

" #
;

SD
6d l; zð Þ ¼def 1

d
� k0 � Dxð Þ/1

k0 � Dxð Þ/2

" #>
eildh‘;xiR� � Ud 6 D6 lð Þ�z

� ��1U�1
d � Re�ildh‘;xi /1

/2

" #
:

Proof. We explain why the proof of Theorem 3 is the same as [6, Theorem 3], without
giving full details. There we processed with three main steps:

� We proved resolvent estimates on L2n for n 2 fkþ Rk0; away from n?;

� We proved resolvent estimates on L2n for n 2 fkþ Rk0 near n?;
� We integrated these estimates over the segment fkþ ½0; 2p� � k0:

To reproduce the first step, we must check that Pd;6ðnÞ has a spectral gap near E?;
when n is away from n? and d is small. The eigenvalues of Pd;þðnÞ are kd;jðnÞ�EdðnÞ:
Because of (3.1), kd;nðnÞ�EdðnÞ gets closed to E? only if n approaches nA? or nB? modulo
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2pK�: We must guarantee that nA? and nB? do not both belong to f?kþ Rk0 þ 2pK�:
This is equivalent to f? 62 pZ—which is assumed in Theorem 3. Hence the first step in
the proof of [6, Theorem 3] goes through with only minor modifications: an analog of
[6, Lemma 4.1] holds.
Since EdðnÞ vanishes near n?; adding the operator EdðnÞ � IdL2n does not modify Pd;þðnÞ

for n near n?: Thus the second step in the proof of [6, Theorem 3] is unchanged.
Because the first and second step lead to the same results as in [6, Section 4], the third

step (the integration process) is identical. This completes the proof of Theorem 3. w

As in [6, Section 6], we use the bulk resolvent estimates of Theorem 3 to derive
resolvent estimate for the edge operator Pd½f�: We introduce a parametrix:

Qd f; kð Þ ¼def
X
6

v6;d � Pd;6 f½ ��k
� ��1

; v6;d ¼def 16jd
2

:

A calculation shows:

Pd f½ ��kð Þ � Qd f; kð Þ�Id ¼
X
6

Pd f½ ��kð Þ � v6;d � Pd;6 f½ ��k
� ��1�Id

¼
X
6

Pd;6 f½ ��kþ jd � dW7dW
� � � v6;d � Pd;6 f½ ��k

� ��1

¼
X
6

7
1�j2d
2

� dW � Pd;6 f½ ��k
� ��1 þ

X
6

D2
x þ Td f½ �; v6;d

h i
� Pd;6 f½ ��k
� ��1

¼
X
6

D2
x; v6;d

h i
7
1�j2d
2

� dW
� �

� Pd;6 f½ ��k
� ��1 þ

X
6

Td f½ �; v6;d

� � � Pd;6 f½ ��k
� ��1

:

The next lemma proves that the terms ½Td½f�; v6;d� � ðPd;6½f��kÞ�1 are negligible.

Lemma 3.1. Assume that the conditions of Theorem 3 are satisfied. Then

Td f½ �; v6;d

� � � Pd;6 f½ ��k
� ��1 ¼ OL2 f½ � d

2=3ð Þ:
The basic idea is that because of Theorem 3, ðPd;6½f��kÞ�1 localizes to frequencies

near n? modulo lower order terms; while Td½f� essentially localizes to frequencies away

Figure 2. The horizontal level E[ðf?Þ separates the n-th and nþ 1-th dispersion curves of Pd[;þ:
When d decreases to 0, these curves remain separated but the separation level E? þ EdðnÞ has to
be curved.
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from n?: Semiclassical analysis provides the natural tool to prove Lemma 3.1. We use
the notations of [42, Section 4]. We say that a smooth function ðt; sÞ 2 R

2 7! aðt; sÞ 2
C (possibly depending on d 2 ð0; d[�) belongs to the symbol class S when:

8a; b 2 N; sup j@a
x@

b
na t; sð Þj : t; s; dð Þ 2 R

2 
 0; d[ð �
n o

<1:

See [42, Section 4.4]. For a 2 S; we denote by aW the Weyl quantization of a with
semiclassical parameter d—see [42, (4.1.1)]. This is a bounded operator on L2—see [42,
Theorem 4.23]. Moreover, if b 2 S; then

aWbW ¼ abð ÞW þ d
2i

a; bf gW þ OL2 d2ð Þ; (3.5)

where {a, b} is the Poisson bracket of a and b. The formula (3.5) follows from [42,
Theorem 4.18 and (4.4.15)] which writes aWbW as a semiclassical operator with symbol

abþ d
2i

a; bf g þ OS d2ð Þ;

and [42, Theorem 4.23]: the quantization of a symbol OSðd2Þ is OL2ðd2Þ:

Proof of Lemma 3.1.
1. Let v;W 2 C1ðR;CÞ bounded together with their derivatives, with uniform

bounds as d goes to zero. We observe that

W Dtð Þ; Udvð Þ� � ¼ Ud W dDtð Þ; v½ �U�1
d : (3.6)

Note that WðdDtÞ is a semiclassical pseudodifferential operator with symbol
ðt; sÞ 7!WðsÞ; and v is also a semiclassical pseudodifferential operator with sym-
bol ðt; sÞ 7! vðtÞ because of [42, (4.1.6)]. We deduce from (3.5) that

W dDtð Þ; v½ � ¼ d
i

W; vf gW þ OL2 d2ð Þ: (3.7)

In particular, the operator (3.6) is OL2ðdÞ:
2. Assume that in addition, W vanishes in a d-independent neighborhood of 0. Then

we can write (3.7) as

W dDtð Þ; v½ � ¼ d � W sð Þ; v tð Þ� �
is

� s
� �W

þ OL2 d2ð Þ:

We use (3.5) to deduce that

W dDtð Þ; v½ � ¼ d � W sð Þ; v tð Þ� �
is

� �W

� dDt þ OL2 d2ð Þ:

Thanks to (3.6), if W vanishes in a d-independent neighborhood of 0 then

W Dtð Þ; Udvð Þ� �Ud ¼ d � Ud
W sð Þ; v tð Þ� �

is

� �W

� dDt þ OL2 d2ð Þ ¼ OH1!L2 d3=2ð Þ:
(3.8)

3. For f 2 L2½f�; set Fðs; tÞ ¼ f ðsvþ tv0Þ: If G is a bounded operator on L2ðRÞ; we
define
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Gf svþ tv0ð Þ ¼ GF s; �ð Þ� �
tð Þ:

Observe that jjGjjL2½f� � jjGjjL2 :

jGf j2L2 f½ � ¼
ð1
0

ð
R

jGf svþ tv0ð Þj2dsdt ¼
ð1
0

ð
R

jGF s; �ð ÞÞ tð Þj2dsdt

¼
ð1
0
jGF s; �ð Þj2L2ds � jjGjj2L2 �

ð1
0
jF s; �ð Þj2L2ds ¼ jjGjj2L2 � jf j2L2 f½ �:

We now observe that if f 2 L2½f�; then
Td f½ �; v6;d

� �
f

� �
svþ tv0ð Þ ¼ U�1

d � Ed fkþ dk0Dtð Þ; v6
� � � UdF s; �ð Þ

	 

tð Þ: (3.9)

To prove (3.9), we fix f 2 L2½f� which we expand in Fourier series w.r.t. Zv :

f xð Þ ¼
X

m22pZ
ei fþmð Þhk;xifm hk0; xi� �

:

Since eiðfþmÞhk;xi 2 L2ðfþmÞk; and EdðnÞ depends periodically on n,

EdðDxÞeiðfþmÞhk;xi ¼ eiðfþmÞhk;xiEdðfkþ DxÞ: It follows that
Ed Dxð Þf� �

svþ tv0ð Þ ¼
X

m22pZ
ei fþmð Þs � Ed fkþ k0Dtð Þfm

� �
tð Þ ¼ Ed fkþ k0Dtð ÞF s; �ð Þ

	 

tð Þ:

It suffices to recall that Td is formally equal to EdðDxÞ (though acting on L2½f�)
to conclude the proof of (3.9).
We now apply Step 1 to WðsÞ ¼ Edðfkþ sk0Þ and v ¼ v6 ¼ 16j

2 : We deduce that

k Td f½ �; v6;d

� �kL2 f½ � � kU�1
d � Ed fkþ dk0Dtð Þ; v6

� � � UdkL2 ¼ O dð Þ:
Using Theorem 3, we see that

Td f½ �; v6;d

� � � Pd;6 f½ ��k
� ��1 ¼ Td f½ �; v6;d

� � � Sd l; zð Þ þ OL2 f½ � d
2=3ð Þ:

4. To conclude the proof, we show that ½Td½f�; v6;d� � Sdðl; zÞ ¼ OL2½f�ðdÞ: Let
UðxÞ ¼ eildh‘;xi½/1ðxÞ;/2ðxÞ�>: We write ½Td½f�; v6;d� � Sdðl; zÞ ¼ d�1T6;1 � T6;2;

where

T6;1 ¼def Td f½ �; v6;d

� � � UR� � Ud : H
1 ! L2 f½ �;

T6;2 ¼def 6D6 lð Þ�z
� ��1U�1

d � Re�ildh‘;xi /1

/2

" #
: L2 f½ � ! H1:

We observe that T6;2 ¼ OL2½f�!H1ðd1=2Þ:
We recall that Td½f� is the operator formally equal to EdðDxÞ but acting on L2½f�:

Thanks to this identification, we have

Td f½ �; v6;d

� � � U ¼ Ed Dxð Þ; v6;d

� � � U ¼ U � Ed Dx�n?�ldkð Þ; v6;d

� �
:

Above, we used that Ed is periodic and that U 2 L2n?�ldk: We deduce that

T6;1 ¼ U � Ed Dx�n?�ldkð Þ; v6;d

� �R�Ud ¼ UR� � Ed k0Dt�n?�ldkð Þ; Udv6ð Þ� �Ud:
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We now apply (3.8) with v ¼ v6 and WðsÞ ¼ Edðsk0�n?�ldkÞ; we observe that W
vanishes in a d-independent neighborhood of 0 because EdðnÞ vanishes when n is near
n?: We deduce that T6;1 ¼ OH1!L2½f�ðd3=2Þ: Since ½Td½f�; v6;d� � Sdðl; zÞ ¼ d�1T6;1 � T6;2;

we deduce that ½Td½f�; v6;d� � Sdðl; zÞ ¼ OL2½f�ðd2Þ: The proof of the lemma is com-
plete. w

We conclude from Lemma 3.1 and the discussion preceding it that

Pd f½ ��kð Þ � Qd f; kð Þ ¼ IdþKd f; kð Þ þ OL2 f½ � d
2=3ð Þ;

Kd f; kð Þ ¼def
X
6

D2
x; v6;d

h i
7
1�j2d
2

� dW
� �

� Pd;6 f½ ��k
� ��1

:

The operator Kdðf; kÞ and Qdðf; kÞ satisfy the same expansions as Kdðf; kÞ and
Qdðf; kÞ in [6, Section 6.1], because Theorem 3 provides the same resolvent estimates as
[6, Theorem 3]. Therefore, the proof of [6, Theorem 2] applies without further changes.
It yields:

Theorem 4. Assume that (1.2) holds and that h? 6¼ 0; f? 62 pZ; fix l] > 0 and �> 0. Let
RðlÞ denote the L2-spectrum of 6DðlÞ. There exists d0 > 0 such that if

l 2 �l]; l]ð Þ; d 2 0; d0ð Þ; z 2 D 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2F þ l2 � �2Fj‘j2

q
��

� �
; dist R lð Þ; z� � � �;

f ¼ f? þ dl; k ¼ E? þ dz

then Pd½f��k is invertible and its resolvent ðPd½f��kÞ�1 equals

1
d
� /1

/2

� �>
e�ildh‘;xi � R�Ud � 6 D lð Þ�z

� ��1 � U�1
d R � eildh‘;xi /1

/2

� �
þ OL2 f½ � d

�1=3ð Þ:

The family l 7! 6DðlÞ has spectral flow equal to �sgnðh?Þ as l runs through R—see
[6, Section 3.2]. Since there are two Dirac points, we recover a spectral flow of Pd�E?
equal to �2 � sgnðh?Þ for small d—see the proof of [6, Corollary 4]. The identity (3.3)
completes the proof of Theorem 2.
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