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ARTICLE INFO ABSTRACT

Tidal salt marshes sequester and store blue carbon at both short and long time scales. Marsh soils shape and
maintain the ecosystem by supporting complex biogeochemical reactions, deposition of sediment, and accu-
mulation of organic matter. In this study, we examined the potential of imaging spectroscopy techniques to
indirectly quantify and map tidal marsh soil properties at a National Estuarine Research Reserve in Georgia,
USA. A framework was developed to combine modern digital image processing techniques for marsh soil
mapping, including object-based image analysis (OBIA), machine learning modeling, and ensemble analysis. We
also evaluated the efficacy of airborne hyperspectral sensors in estimating marsh soil properties compared to
spaceborne multispectral sensors, WorldView-2 and QuickBird. The pros and cons of object-based modeling and
mapping were assessed and compared with traditional pixel-based mapping methods. The results showed that
the designed framework was effective in quantifying and mapping three marsh soil properties using the com-
posite reflectance from salt marsh environment: soil salinity, soil water content, and soil organic matter content.
Multispectral sensors were successful in quantifying soil salinity and soil water content but failed to model soil
organic matter. The study also demonstrated the value of minimum noise fraction transformation and ensemble
analysis techniques for marsh soil mapping. The results suggest that imaging spectroscopy based modeling is a
promising tool to quantify and map marsh soil properties at a local scale, and is a potential alternative to
traditional soil data acquisition to support carbon cycle research and the conservation and restoration of tidal
marshes.

Keywords:

Salt marsh

Soil properties
Imaging spectroscopy
Machine learning
Object-based modeling

1. Introduction U.S., the National Estuarine Research Reserve System (NERRS) has

been established with a network of 29 coastal sites designated to protect

Coastal ecosystems such as tidal marshes play an important role in
maintaining global biodiversity and human well-being by providing a
range of benefits and services (Howard et al., 2014). Numerous studies
have highlighted their values in sequestering “blue carbon” which en-
compasses the carbon within the soil, the living biomass aboveground
and belowground, and the non-living biomass (Mcleod et al., 2011). A
coastal ecosystem’s capacity to sequester and store carbon is closely
related to soil properties which not only impact the short-term scale
(years to decades) of carbon sequestration in living plant biomass, but
also determine the long-term scale (centuries to millennia) of carbon
storage within the sediments. Despite the benefits and services of blue
carbon ecosystems, they are threatened due to anthropogenic activities
and sea level rise (Mishra et al., 2012; NERRS, 2017). For example,
340,000-980,000 ha of coastal marshes are destroyed each year
(Murray et al., 2011). Globally, efforts are underway to restore and
create new coastal marshes to mitigate historic and ongoing losses. In
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and study estuarine systems including tidal marshes. Data on soil
properties such as soil salinity, soil water content and soil organic
matter content are regularly collected and used by NERRS and other
entities in wetland conservation and restoration.

Soil salinity is a fundamental parameter controlling and maintaining
the structure of tidal marsh communities (Odum, 1988). Increases in
the frequency and extent of coastal flooding triggered by sea level rise
not only alter soil salinity but also change its spatial distribution which,
in turn, affects the marsh distribution, biodiversity, and nutrient uptake
of species in marshes (Bradley and Morris, 1991). Soil water content is
also an important property affecting the availability of water for the
plants, and the direct exchange of soil water with the atmosphere (e.g.,
evaporation). High evaporation and low water content cause the for-
mation of salt pans devoid of vegetation in coastal marshes (Pennings
and Bertness, 2001). Soil organic matter content directly relates to
carbon storage in blue carbon ecosystems. Moreover, soil organic
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matter originating from plant litter decomposition is lighter and bulkier
than mineral soils, and has large pore spaces that increase the water
holding capacity of the soil. To understand the spatial and temporal
dynamics of salt marsh productivity and carbon storage, it is helpful to
monitor these parameters across the landscape at regular intervals.
Traditional approaches used in collecting soil data are labor-in-
tensive and time-consuming. In addition, field sampling is inevitably
spatially constrained, and samples may not be representative of the true
spatial variability of soil properties across a large study domain.
Remote sensing could be an alternative approach to understanding soils
from field to space. It has been proven effective in modeling and
mapping soil properties at a broad scale (Anderson and Croft, 2009;
Mulder et al., 2011). Studies have shown that hyperspectral data are
more accurate than multispectral data in characterizing soil properties
due to their fine spectral resolution (Ben-Dor et al., 2009). Past appli-
cations of hyperspectral remote sensing in soil science can be grouped
into two categories. The first category is the analysis and modeling of
soil properties using direct hyperspectral reflectance of soil samples or
bare soils. Point spectroscopy has long been used in the laboratory/field
to identify diagnostics spectral features and develop soil models, as
reviewed by Nocita et al. (2015). In contrast, application of imaging
spectroscopy is limited, and often constrained to homogeneous terres-
trial regions or bare soil agricultural fields (e.g., DeTar et al., 2008;
Stevens et al., 2008, 2010; Bartholomeus et al., 2011; Bayer et al., 2016;
Steinberg et al., 2016; Vaudoura et al., 2016; Zizala et al., 2017). The
second category is the application of indirect indicators to retrieve soil
properties. Vegetation indices have been linked to terrain and soil types
and time series of a vegetation index can indicate the change of soil
patterns (Mulder et al., 2011). In the coastal environments, marsh soil
properties are well coupled with marsh plant distribution, diversity,
and state of health (Odum, 1988), therefore, it is expected that the
composite reflectance from marshes which include reflectance from
background moist soil and marsh canopy can indirectly indicate soil
properties. Zhang et al. (2011) evaluated several vegetation indices of
halophyte species derived from a point spectroscopy to estimate marsh
soil salinity. Application of imaging spectroscopy for estimating marsh
soil properties has not been published. In addition, how much variance
of each marsh soil property (e.g., salinity, water content, and organic
matter content) can the marsh reflectance explain remains unknown.
Analytical techniques have been used to quantify the relationship
between soil properties and remote sensing variables, with parametric
regression methods (e.g., partial least square regression) being the most
commonly used. A recent study from Forkuor et al. (2017) showed that
parametric models were problematic in the prediction of soil properties
in un-sampled areas, while non-parametric machine learning models
were valuable in mapping regions with sparse or limited samples. There
is a need to expand the use of machine learning modeling techniques
into soil imaging spectroscopy as an alternative to parametric algo-
rithms. To date, all studies related to mapping soil properties using
optical imagery have focused on matching in-situ samples with in-
dividual pixels to develop soil models, and then generating per-pixel
soil maps. In practice, pedologists and ecologists are less interested in a
single pixel than a configuration of many pixels that comprise a
meaningful patch or region or landscape. Studies also have shown that
models developed by matching field samples with regions rather than
individual pixels are more robust (Selige et al., 2006). Object-based
image analysis (OBIA) is a promising method for such applications. It
segments imagery into relatively homogeneous objects for analysis
which can reduce the “salt-and-pepper” effect in mapping hetero-
geneous regions (Blaschke, 2010). Zhang et al. (2018a) indicates that
the object-based modeling and mapping of marsh biomass is more ef-
fective than the traditional pixel-based methods. OBIA also offers an
opportunity to match field samples to a relatively homogeneous region
rather an individual pixel. Such an object-based matching scheme has
several advantages (Zhang et al., 2018a). First, it can reduce the un-
certainty of positional discrepancy between the image and in-situ
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samples. Second, a relatively homogeneous soil patch/object is more
representative than any pixel within this patch/object. Third, the local
spectral noise/variation can be effectively reduced. Lastly, additional
object-based spatial features (e.g., texture) can be extracted for each
object, which may have the potential to improve the estimation accu-
racy of soil properties by including the spatial attributes in the model.

The main objective of this study is to explore the capability of an
airborne hyperspectral sensor and simulated spaceborne multispectral
sensors to indirectly predict and map soil properties of tidal marshes.
Narrowband hyperspectral data might produce an acceptable result for
estimating soil properties. But an evaluation of spaceborne multi-
spectral sensors such as WorldView-2 and QuickBird with similar spa-
tial resolution to the airborne hyperspectral imagery is valuable. Such
type of satellites allows the monitoring of marsh soil properties at a
regular frequency provided there was coincident field data for cali-
bration. Comparison of hyperspectral and multispectral data can help
understand the effects of spectral scale in soil mapping. We evaluated
contemporary image processing and modeling techniques by combining
object-based image analysis, machine learning, and ensemble analysis
in a novel framework to effectively map marsh soil properties. We ex-
plored four machine learning regression methods and one parametric
algorithm, including Artificial Neural Network (ANN), Support Vector
Machine (SVM), Random Forest (RF), k-Nearest Neighbor (k-NN), and
Multiple Linear Regression (MLR). Our logic was that these models
might generate similar results but different predictions, thus an en-
semble analysis to combine the predictions from each model could
produce more robust estimations. The specific objectives of this study
were to (1) evaluate whether imaging spectroscopy is more effective in
predicting marsh soil properties than multispectral sensors such as
WorldView-2 and QuickBird; (2) examine whether machine learning
regression algorithms are better than parametric algorithms; (3) assess
the benefits of object-based techniques for modeling and mapping soil
properties compared with pixel-based methods; and (4) explore the
potential of ensemble analysis in mapping tidal marsh soil properties.

2. Study area and data
2.1. Study area

We worked at one of the NERRS, the Sapelo Island in coastal
Georgia, USA (Fig. 1). The Reserve encompasses habitats typical of the
Carolinian biographic region, which spans the south Atlantic coastline
of the United States from North Carolina to upper Florida. The Car-
olinian region is characterized by expansive tidal salt marshes protected
by a chain of barrier islands. Sapelo Island and its surrounding marshes
have been the focus of ecological and geological research since the early
1950s. The Duplin River, a 13-km long tidal inlet, flows into Doboy
Sound and forms the western boundary of Sapelo Island. The study site
is dominated by Spartina alterniflora marsh, a habitat containing a wide
range of soil conditions typical of salt marshes, but not the low-salinity
and higher-organic conditions typical of tidal fresh marshes further
upstream in the estuary (Craft, 2007). The site is within the study do-
main of the Georgia Coastal Ecosystems Long Term Ecological Research
Program (https://gce-lter.marsci.uga.edu/) which aims to understand
the patterns and processes that shape change in estuarine and marsh
environments.

2.2. Data

Data sources include hyperspectral imagery, a marsh species map,
and soil data collected by field sampling and laboratory analysis. The
hyperspectral data (Hladik, 2013) were collected using the Airborne
Imaging Spectrometer for Applications (AISA) Eagle sensor on 20 June
2006 along the Duplin River by the University of Nebraska’s Center for
Advanced Land Management Information Technologies (CALMIT). The
AISA Eagle sensor is a high performance imaging system that
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Fig. 1. Location of the study site (a) in the southeast United States, (b) on the coast of Georgia, and (c) along the west side of Sapelo Island. Panel (c) shows a false
color composite of the 1-m hyperspectral imagery used in this study, and a marsh mask produced by Hladik et al. (2013).

concurrently collects both visible and near-infrared (VNIR) data with
63 spectral channels within the wavelength range of 400-980 nm. Four
parallel flight lines of images at a spatial resolution of 1 m were cap-
tured for the study domain. Images were radiometrically corrected
using the Fast-Line-sight Atmospheric Analysis of Spectral Hypercube
(FLAASH) algorithm, and geometrically corrected using GPS and alti-
tude data. Due to the large data volume, we only mapped a portion of
the region highlighted in Fig. 1. We used a marsh map generated by
Hladik et al. (2013) to mask out non-marsh areas (e.g., forests, creeks,
and rivers). This marsh map was produced using the same hyperspectral
imagery as this study and had an overall classification accuracy of 90%.
Soil data were collected in the field coincident with the hyperspectral
campaign. A total of 346 salt marsh plots (1 X 1 m) were surveyed
along 24 transects, and root-zone soil samples were collected over
marsh regions for lab analysis. The location of each plot was recorded
using a GPS unit. Some samples were collected in the salt pans where
high soil salinities exclude vegetation (Pennings and Bertness, 2001).
Samples were processed in the laboratory to determine soil water
content using the gravimetric method, soil salinity using the rehydra-
tion approach, and soil organic matter content using the ignition
method (Pennings, 2008). Salinity was calculated as practical salinity
units (PSU).

3. Methodology
3.1. A framework for soil modeling and mapping using imaging spectroscopy

We designed a framework to model and map soil properties using an
object-based ensemble analysis and imaging spectroscopy (Fig. 2).
Hyperspectral data contains redundant spectral information, and the
Minimum Noise Fraction (MNF) algorithm is commonly used as a fea-
ture selection approach to reduce hyperspectral data. It applies two
cascaded principal component analyses, with the first transformation
decorrelating and rescaling noise in the data, and the second transfor-
mation creating coherent eigenimages that contain useful information,
and generating noise-dominated eigenimages (Green et al., 1988). We
applied the MNF transformation and selected the first 15 eigenimages
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based on visual inspection and evaluation of the corresponding eigen-
values, which were then stacked as 15-band MNF imagery to be seg-
mented for object generation and object-based variable extraction. We
spatially matched the in-situ soil samples to the image objects, leading
to a matched dataset for soil model development.

We used four machine learning algorithms, ANN, SVM, RF, and k-
NN, and one parametric method, MLR, to develop the models, and the
Correlation Coefficient (r), Mean Absolute Error (MAE), Percent Mean
Absolute error (PMAE), and Root Mean Squared Error (RMSE) to assess
the performance of each model. We conducted model comparisons and
significance tests to determine: (a) the need of ensemble analysis; and
(b) which models to include in the ensemble analysis. We used each
model to predict soil properties for all marsh objects using spectral
features and ensemble analysis to combine the outputs from individual
models. We also used the ensemble analysis to generate an uncertainty
map to spatially delineate the overall uncertainty caused by modeling
methods.

To compare the efficacy of hyperspectral sensors with spaceborne
multispectral sensors, we simulated the 8-band WorldView-2 and 4-
band QuickBird data from the 63-band AISA hyperspectral imagery
based on the sensor-specific spectral filter functions. We spatially
matched the simulated WorldView-2 and QuickBird data to the in-situ
samples to develop all aforementioned soil models. To compare the
object-based modeling with the pixel-based modeling approach, we also
matched the in-situ soil samples with the corresponding pixels for pixel-
based modeling. The key steps in the modeling framework included
image segmentation, data matching between in-situ samples and hy-
perspectral imagery, model development and soil mapping, and model
evaluation and accuracy assessment. These steps are detailed in the
following subsections.

3.2. Image segmentation

We applied the multi-resolution segmentation algorithm to the 15-
band MNF imagery in eCognition Developer 9.0 (Benz et al., 2004;
Trimble, 2014) to generate image objects. The multi-resolution seg-
mentation approach needs to set a scale parameter, color/shape, and
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Fig. 2. Designed framework for modeling and mapping marsh soil properties using hyperspectral data and object-based ensemble analysis.

smoothness/compactness weights, among which the scale parameter is
the most important variable. Several approaches have been developed
to optimize the scale parameter in the segmentation (e.g., Dragut et al.,
2010; Johnson and Xie, 2011; Grybas et al., 2017). In this study, we
applied the approach developed by Johnson and Xie (2011) to de-
termine an optimal scale parameter. This approach begins with a series
of segmentations using different scale parameters, and then identifies
the optimal image segmentation using a method that takes into account
global intra-segment and inter-segment heterogeneity measures. We
found that a scale of 15 was optimal for the study site in the segmen-
tation. The weight of each MNF layer was set based on its eigenvalue
produced in the MNF transformation. Color/shape weights were set to
0.9/0.1 so that spectral information would be considered most heavily
for segmentation. Smoothness/compactness weights were set to equal
weights. Following the segmentations, we extracted the spectral fea-
tures of each object which were then used for modeling and mapping.

3.3. Data matching between in-situ samples and hyperspectral imagery

We matched the in-situ samples to an image object to create a spa-
tially coincident dataset for object-based model development. For a
comparison purpose, we also matched the in-situ samples with in-
dividual pixels of the original 63-band AISA hyperspectral imagery, 15-
band MNF transformed imagery, 8-band WorldView-2 imagery, and 4-
band QuickBird imagery, respectively, to develop pixel-based models.
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3.4. Model development and soil mapping

We compared four machine learning regression algorithms, ANN,
SVM, RF, and k-NN, and one parametric regression method, MLR, for
predicting soil attributes. ANN is an important technique in machine
learning and modeling. Various ANN algorithms have been developed
and applied in remote sensing (Mas and Flores, 2008). In this study, we
used the multilayer perceptron algorithm of ANN, a commonly used
approach in remote sensing. SVM is a statistical learning approach
(Vapnik, 1995) which has been widely used in remote sensing
(Mountrakis et al., 2011). RF is a decision tree based ensemble ap-
proach which constructs numerous small regression trees contributing
to the predictions. Breiman (2001) provided a detailed description of
RF and Belgiu and Dragut (2016) reviewed the application of RF
techniques in remote sensing. k-NN is a relatively simple approach. The
estimation is predicted as a weighted average value with k spectrally
nearest neighbors using a weighting method (Chirici et al., 2016). MLR
has been frequently used in predicting soil attributes. It assumes that
remotely sensed independent variables are linearly related to in-situ
samples. Each algorithm requires the specification of several para-
meters and the setting of these parameters will impact the results. In
this study, each algorithm was implemented and tuned in Waikato
Environment for Knowledge Analysis (WEKA), a machine learning
modeling software package (Hall et al., 2009). The experimenter
function in WEKA can determine the best model for any algorithm with
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different parameter specifications based on several statistical metrics
such as correlation coefficient. We tuned each algorithm based on this
function to select the best model for our datasets.

To integrate the predictions from different models for soil mapping,
we used a weighted combining scheme developed by Zhang et al.
(2018a) based on the correlation coefficient (r) derived from each
model. If model i (i =1, 2,... M) has a correlation coefficient r;, then
the final prediction P is calculated as:

p= hp;

2 i &
where p; is the prediction of model i, and M is the total number of
models in the ensemble analysis. In this way, a model with a larger r
obtains a higher weight, and the sum of weights is 1.0. If a negative
estimation occurs from a model, the prediction from this model will be
eliminated by setting a weight of zero in the ensemble analysis.

3.5. Model evaluation and accuracy assessment

We used the k-fold cross validation technique for model training and
testing. This evaluation method has proven valuable in machine
learning techniques (Anguita et al., 2012). It splits the sampling data
into k subsets first, and then iteratively, one subset (1, 2, ... k) is used to
assess the model and other remaining subsets are used to train the
model. In this study, k was specified as 10, a number commonly used in
the literature to divide the samples into 10 divisions. In the iteration, a
subset was excluded from training the model (i.e. 9 subsets were used as
training data) to be used to generate the estimation of this subset. Each
model would iterate 10 times. After the iteration, soil predictions were
generated for all in-situ locations, which could be then used to calculate
the statistical metrics, including r, MAE, PMAE, and RMSE. They were
calculated as:

E,{il ® = P)WPiap — Piap)

F=
\/Z,Ii] @ -5 \/Zfil (Prap — Piap )’ 2)
MAE:iilp-—p |

N & P P @

PMAE = M x 100
DPuap C)]

| 1 N )

RMSE = \jﬁ 2 @ = Piap) )

where p; is the model prediction; p;q;, is the lab soil value; p; and pp, are
the mean of model predictions and mean of lab soil values, respectively.
N is the total number of matched samples.

In the k-fold cross validation, each model would produce the pre-
dictions for all the corresponding in-situ samples. The outputs from each
model and lab soil data could be then used to determine which model
should be included in the ensemble analysis using ANOVA F-test.
Following the strategy in Zhang et al. (2018a), we built a full linear
model first with the models as the independent variables and lab soil
data as the dependent variable, and then compared it with a reduced
model which was nested within the full model. We built a series of full
and reduced models and compared them using the ANOVA F-test to
determine which models could be combined in the ensemble analysis.

If ensemble analysis of two models is applied for the final estimation
of soil properties, an uncertainty map can be produced by mapping the
absolute bias between these two models. But if there are three or more
models to be combined, more uncertainty maps will be produced,
which might not be informative. We developed a process to produce
only one uncertainty map by considering the predictions from all the
models in the ensemble analysis. The process started by classifying the
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ensemble estimations into several categories (e.g., ten categories for
each soil property in this study) to be used for mapping each property,
and then calculated the total votes of each category from the models for
an input image object. For example, if all five models are combined in
ensemble analysis, then one vote means no agreement is obtained for an
input object for estimating its soil properties, i.e. all five models pro-
duced completely different estimations for this input image object,
suggesting the prediction of soil properties for this image object is
challenging. If the total number of votes is 2, 3, or 4, it means 2, 3, or 4
models produced similar estimations for an input object. If the total
number of votes is 5, it means a full agreement is achieved, i.e., all five
models produced similar estimations for the input image object, sug-
gesting the estimation for this object is the most reliable.

4. Results
4.1. Marsh soil properties from laboratory analyses

The Duplin River tidal salt marsh sediments consist mainly of re-
worked Pleistocene muds, eroded and redeposited by the tidal currents
(Chalmers, 1997). The sediments are characterized by high and variable
salinities, water content, and organic matter content, with a mean
salinity of 44 PSU, water content of 50%, and organic matter content of
14% (Table 1). Soil salinity varied from 6 to 306 PSU, with the highest
values in salt pans. Soil water and organic matter content were also
highly variable with ranges of 10-75% and 1-41%, respectively. Soil
water and organic matter content were strongly correlated (R = 0.8)
with an exponential fit, and weakly related to soil salinity (Fig. 3). The
relationships were slightly different when we used samples from ve-
getated marshes only (i.e., mud salt pans excluded), but the results still
showed that soil water and organic matter content were strongly re-
lated to each other and weakly related to soil salinity (results not
shown). Correlation analysis between each property and the original 63
spectral bands showed that visible region was more related to soil
salinity, while NIR was more related to water and organic matter
content (Fig. 4). Band 24 with a wavelength of 615.05 nm was found to
have the highest correlation coefficient (r = 0.88) with salinity, while
band 54 with a wavelength of 942.3nm had the least correlation
(r = 0.54) with soil salinity. Soil water content and soil organic matter
were negatively related to salt marsh reflectance. Band 58 with a wa-
velength of 932.95 nm was found to have the highest correlation with a
r of 0.74 and 0.55 to water and organic matter, respectively. Band 31
with a wavelength of 680.5nm had the lowest correlation with a r of
0.45 and 0.34 to water and organic matter, respectively.

4.2. Pixel- and object-based modeling using different datasets and
algorithms

The pixel-based modeling results from 63-band original AISA hy-
perspectral data, simulated 8-band WorldView-2 data and 4-band
QuickBird data, and 15-band MNF transformed data, and object-based
modeling results using the 15-band MNF transformed dataset for pre-
dicting soil salinity, water content, and organic matter content are
provided in Tables 2-4, respectively. For the soil salinity estimation,
application of the original AISA hyperspectral dataset from five models
produced r of 0.87-0.92, a MAE of 9.65-12.10 PSU, a PMAE of

Table 1
Descriptive statistics of soil attributes from laboratory analyses.

Salinity Water content (%) Organic matter (%)
Minimum 6 10 1.2
Maximum 306 75 41
Mean 44 50 14
Standard deviation 37 19 9
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Fig. 3. Bivariate relationships between the three marsh soil properties derived from field sampling. Regression equations and R values are given inside each panel.

21.93-27.50%, and a RMSE of 14.61-18.39 PSU (Table 2). When we
resampled the AISA hyperspectral imagery to WorldView-2 satellite
data, the performance of prediction was slightly reduced with a r, MAE,
PMAE, and RMSE of 0.86-0.90, 10.47-12.21 PSU, 23.8-27.75%, and
16.16-18.99 PSU. The performance further deteriorated when the AISA
imagery was resampled to QuickBird data with a r, MAE, PMAE, and
RMSE of 0.86-0.88, 11.20-12.92 PSU, 25.45-29.36%, and 18.03-18.73
PSU, respectively. When the MNF transformed dataset was used, the
performance of prediction improved slightly (r: 0.90-0.93; MAE:
8.61-11.3 PSU; PMAE: 20.91-25.68%, and RMSE: 14.11-17.31 PSU)
compared to the application of original AISA hyperspectral data.
Comparison of five algorithms showed that SVM model consistently
produced the best result for mapping soil properties using hyperspec-
tral, WorldView-2 and QuickBird datasets when r, MAE, PMAE, and
RMSE observed jointly, while RF applied to MNF transformed data
generated the best predictions of soil salinity. When pixel-based models
were compared with the object-based model, we found that the object-
based modeling using the 15-band MNF transformed dataset produced

0.9

Correlation Coefficient (r)

4| ———— Soil salinity

the best results with the highest r of 0.94, the lowest MAE, PMAE and
RMSE of 8.45 PSU, 19.20% and 13.43 PSU. Among the five modeling
algorithms, the SVM model produced the highest r and k-NN produced
the lowest MAE, while RF generated the lowest PMAE and ANN pro-
duced the lowest RMSE.

Table 3 shows the modeling results for soil water content estima-
tion. The pixel-based estimation results illustrated that the SVM con-
sistently produced the best result among five algorithms when the
original hyperspectral, WorldView-2 and QuickBird datasets were ap-
plied. This is similar to the soil salinity modeling. The 63-band hyper-
spectral imagery produced a good result with a r, a MAE, a PMAE and a
RMSE of 0.76-0.82, 8.09-10.09%, 16.18-20.18% and 10.99-12.38%,
respectively. Application of WorldView-2 dataset was also encouraging
with the r, MAE, PMAE, and RMSE of 0.65-0.80, 8.56-12.09%,
17.12-24.18% and 11.54-14.45%. Again, the performance of predic-
tion was reduced (: 0.61-0.73; MAE: 10.30-12.39%; PMAE:
20.6-24.78%; and RMSE: 13.35%-15.10%) when QuickBird dataset
was used. Application of the MNF transformed dataset at the pixel-level
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Fig. 4. Correlation analysis between each soil property and reflectance of salt marshes derived from 63-band hyperspectral data.
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Table 2
Model performance for soil salinity estimation (unit: PSU) using different da-
tasets and algorithms. The best result of the five algorithms is bolded.
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Table 3
Model performance for soil water content estimation (unit: %) using different
datasets and algorithms. The best result of the five algorithms is bolded.

Statistical Metrics ANN SVM RF k-NN MLR Statistical Metrics ANN SVM RF k-NN MLR
Pixel-based modeling Pixel-based modeling

63-band AISA hyperspectral data 63-band AISA hyperspectral data

cC 0.90 0.92 0.87 0.88 0.89 cCc 0.80 0.82 0.79 0.76 0.76
MAE (PSU) 11.51 9.65 11.10 11.41 12.10 MAE (%) 8.83 8.09 8.83 9.54 10.09
PMAE (%) 26.16 21.93 25.23 25.93 27.50 PMAE (%) 17.66 16.18 17.66 19.08 20.18
RMSE (PSU) 16.21 14.61 18.39 17.63 16.78 RMSE (%) 11.38 10.99 11.56 12.38 12.37
8-band WorldView-2 multispectral data 8-band WorldView-2 multispectral data

cCc 0.90 0.90 0.86 0.87 0.89 cc 0.72 0.80 0.73 0.71 0.65
MAE (PSU) 11.50 10.47 11.42 11.55 12.21 MAE (%) 10.61 8.56 9.75 10.13 12.09
PMAE (%) 26.14 23.80 25.95 26.25 27.75 PMAE (%) 21.22 17.12 19.5 20.26 24.18
RMSE (PSU) 16.41 16.16 18.99 18.73 17.27 RMSE (%) 13.36 11.54 12.98 13.49 14.45
4-band QuickBird multispectral data 4-band QuickBird multispectral data

CC (n 0.86 0.88 0.87 0.87 0.87 CC (n) 0.61 0.73 0.70 0.65 0.63
MAE (PSU) 11.81 11.20 11.73 11.65 12.92 MAE (%) 12.19 10.30 10.27 11.02 12.39
PMAE (%) 26.84 25.45 26.66 26.48 29.36 PMAE (%) 24.38 20.60 20.54 22.04 24.78
RMSE (PSU) 18.15 18.03 18.68 18.40 18.73 RMSE (%) 15.10 13.35 13.63 14.82 14.79
15-band MNF transformed data 15-band MNF transformed data

cC (M 0.91 0.91 0.92 0.93 0.90 CC (N 0.83 0.86 0.82 0.85 0.82
MAE (PSU) 11.05 10.81 9.20 8.61 11.30 MAE (%) 8.59 7.31 8.25 7.19 8.67
PMAE (%) 25.11 24.57 20.91 19.57 25.68 PMAE (%) 17.18 14.62 16.5 14.38 17.34
RMSE (PSU) 15.68 17.31 14.44 14.11 16.25 RMSE (%) 10.74 9.97 10.87 10.01 10.82
Object-based modeling Object-based modeling

15-band MNF transformed data 15-band MNF transformed data

cC (M 0.93 0.94 0.92 0.93 0.93 cCc 0.88 0.89 0.88 0.89 0.87
MAE (PSU) 8.98 8.96 8.53 8.45 9.13 MAE (%) 6.79 6.08 6.30 6.51 6.89
PMAE (%) 20.41 20.36 19.39 19.20 20.75 PMAE (%) 13.58 12.16 12.6 13.02 13.78
RMSE (PSU) 13.43 13.71 14.35 14.14 13.83 RMSE (%) 9.19 8.67 8.91 8.86 9.21

CC (r): Correlation Coefficient; MAE: Mean Absolute Error; RMSE: Root Mean
Squared Error; PMAE: Percent Mean Absolute Error.

ANN: Artificial Neural Network; SVM: SVM; RF: Random Forest; k-NN: k-
Nearest Neighbor; MLR: Multiple Linear Regression. MNF: MNF.

improved the prediction of soil water content with the highest r of 0.86,
the lowest MAE, PMAE, and RMSE of 7.19%, 14.38%, and 9.97%.
Object-based modeling increased the r to 0.89, and decreased the MAE,
PMAE and RMSE to 6.08%, 12.16% and 8.67%, respectively. Compar-
ison between pixel-based and object-based modeling results for water
content estimations, again, demonstrated the superior performance of
object-based modeling using MNF transformed data when the same
regression algorithm was applied.

Table 4 displays the modeling results for soil organic matter esti-
mations. For the pixel-based estimation, the r, MAE, PMAE and RMSE
were in the range of 0.54-0.61, 5.02-5.58%, 35.86-39.86% and
6.86-7.37%, respectively, using the hyperspectral imagery; and within
0.50-0.61, 5.13-6.01%, 36.64-42.93%, and 6.92%-7.77% using the
WorldView-2 dataset. The worst estimation was from the QuickBird
data with r, MAE, PMAE and RMSE in the range of 0.40-0.52,
5.56-6.42%, 39.71-45.86% and 7.46-8.22%, respectively. MNF trans-
formed data produced the best estimation among the pixel-based
modeling but object-based modeling enhanced the estimation with a r
of 0.80, MAE, PMAE and RMSE of 3.66%, 26.14% and 5.00%, respec-
tively, using the SVM algorithm.

4.3. Object-based mapping of soil properties and uncertainty

The above comparative results showed that object-based modeling
using the MNF transformed dataset produced the best result in esti-
mating all three soil properties. ANOVA F-test consistently indicated
that three algorithms, SVM, RF, and k-NN should be included in the
ensemble analysis. Statistical metrics showed that the other two algo-
rithms, ANN and MLR sometimes produced similar results compared to
the three chosen algorithms but not consistently. We thus estimated and

Notes: CC (r), MAE, RMSE, PMAE, ANN, SVM, RF, k-NN, MLR and MNF are
same abbreviations as in Table 2.

mapped soil properties using object-based ensemble analysis on the
MNF transformed dataset, as shown in Fig. 5(a)—(c) with blue indicating
low estimations and red representing high estimations. The three marsh
soil properties revealed interesting spatial patterns. In the soil salinity
map, a small area was observed to have the highest salinity (more than
60 PSU) in the marsh west of Duplin River. A ridge with intermediate
salinity (yellowl) occurred parallel to the east bank of the river, while
low salinity (blue) was observed over a large portion of the east part of
the marsh. Water content and organic matter were well coupled with
high values observed in the east part of the river, and low values in the
west marsh.

The uncertainty maps produced by ensemble analysis are shown in
Fig. 5(d)—(f). The classified categories shown in the corresponding maps
reveal the voting agreement between the three models, SVM, RF, and k-
NN. If there was only one vote, then no agreement was obtained (in
red). If there were two votes for an input object, a partial agreement
was produced (in blue). If there were three votes, a full agreement was
achieved (in green). The uncertainty maps revealed the consistency and
differences in the estimations from three modeling algorithms. In gen-
eral, the estimation of soil properties was robust with a major portion
shown in blue and green, indicating a high confidence in the estima-
tion. A few areas displayed a “warning sign” in red, where no estima-
tion agreement was obtained. These regions had the highest probability
of being incorrectly estimated. Comparison of three uncertainty maps
showed that the most agreement was produced for soil water content
estimation with a larger area in green, whereas, the most disagreement
occurred in soil organic matter estimation with a large number of areas
in red.

! For interpretation of color in Fig. 5, the reader is referred to the web version
of this article.
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Table 4
Model performance for soil organic matter content estimation (unit: %) using
different datasets and algorithms. The best result of the five algorithms is
bolded.

Statistical Metrics ANN SVM RF k-NN MLR
Pixel-based modeling

63-band AISA hyperspectral data

CcC (M 0.57 0.61 0.57 0.54 0.55
MAE (%) 5.47 5.02 5.06 5.53 5.58
PMAE (%) 39.07 35.86 36.14 39.50 39.86
RMSE (%) 7.18 6.86 7.13 7.37 7.23
8-band WorldView-2 multispectral data

cCc 0.51 0.61 0.55 0.52 0.50
MAE (%) 5.90 5.13 5.29 5.99 6.01
PMAE (%) 42.14 36.64 37.79 42.79 42.93
RMSE (%) 7.62 6.92 7.31 7.77 7.58
4-band QuickBird multispectral data

CC (n 0.40 0.52 0.52 0.45 0.46
MAE (%) 6.42 5.69 5.56 6.41 6.24
PMAE (%) 45.86 40.64 39.71 45.79 44.57
RMSE (%) 8.09 7.46 7.54 8.22 7.76
15-band MNF transformed data

CcC (M 0.65 0.68 0.65 0.69 0.67
MAE (%) 5.07 4.74 4.73 4.57 4.99
PMAE (%) 36.21 33.86 33.79 32.64 35.64
RMSE (%) 6.63 6.36 6.61 6.31 6.53
Object-based modeling

15-band MNF transformed data

cC (M 0.76 0.80 0.78 0.79 0.78
MAE (%) 4.06 3.66 3.76 3.66 3.95
PMAE (%) 29.00 26.14 26.86 26.14 28.21
RMSE (%) 5.47 5.00 5.21 5.24 5.35

Notes: CC (r), MAE, RMSE, PMAE, ANN, SVM, RF, k-NN, MLR and MNF are
same abbreviations as in Table 2.

5. Discussion
5.1. Predicting marsh soil properties using imaging spectroscopy

5.1.1. Marsh soil salinity estimation

Previous studies have found that plant composition can be used as
an indirect indicator of soil salinity (Metternicht and Zinck, 2003).
Several vegetation indices from hyperspectral data have been examined
to quantify soil salinity with varying degree of accuracies (e.g., Zhang
et al., 2011). Our study demonstrated that soil salinity can be indirectly
predicted in a marsh environment using imaging spectroscopy, machine
learning algorithms, and in-situ data. Application of the hyperspectral
data with the MNF transformation achieved a r of 0.94 in soil salinity
estimation using the object-based modeling method. The soil salinity
map clearly mirrored the plant zonation pattern, which was expected
because first, salinity plays an important role in mediating the plant
zonation pattern (Pennings et al., 2005), and second species reflectance
played a heavy role in the model input. Typically, in a southeastern
USA salt marsh, the highest soil salinity is associated with the salt pans
and the lowest with Juncus roemerianus (Pennings and Bertness, 2001).
Soil salinity for short and medium Spartina alterniflora and for Borrichia
frutescens is usually higher than for tall Spartina alterniflora because of
less frequent tidal flushing that allows evapotranspiration to con-
centrate salts in the soil. Finally, salt pans occur where soil salinities
exceed levels that the plants can tolerate. To examine the relationship
between soil salinity and plant species distribution, the species dis-
tribution map was overlaid on the hyperspectral color composite and
the salinity map covering three representative marsh areas including
salt pan, short Spartina alterniflora, and tall Spartina alterniflora, are
highlighted in Fig. 6. In general, the pattern of estimated salinity had a
good alignment with the marsh plant distribution. The highest
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estimated salinity was observed for salt pans, and the lowest salinity for
tall Spartina alterniflora. Short Spartina alterniflora was mainly dis-
tributed over the eastern side of the river where medium salinity ridges
were observed. The plant distribution map only delineated the
boundary of each species, while the salinity map provided more details
within each plant species. These details indicate the heterogeneity of
soil conditions within an area occupied by a single species. And two
may provide new insights into other soil characteristics such as geo-
morphology, and plant or invertebrate ecology.

5.1.2. Marsh soil water content estimation

Soil water content is another important factor affecting plant zo-
nation patterns in low-latitude coastal marshes (Pennings et al., 2005).
We found that marsh soil water content was negatively correlated to
soil salinity, as reported in a previous study (Zhang et al., 1997). Using
imaging spectroscopy of marsh reflectance to indirectly estimate and
map soil moisture has not been explored. In this study, the MNF
transformed dataset produced a r of 0.89 for predicting soil water
content using object-based modeling. Soil water content in the surface
sediment varies over time daily with tides, and monthly with the
spring-neap tide cycle. As a result, accurate estimates of water content
will only be possible given calibrations based on field data for a given
time period. There are issues to quantify the absolute water content for
a specific time based on vegetation reflectance only. Also, there is time
lag between vegetation response and average water content change.
However, the indirect method developed here can at least indicate the
spatial pattern of average soil water content or the availability of water
to sustain marsh plants. The plant species map was overlaid on the soil
water content map with two regions (salt pans and medium Spartina
alterniflora) highlighted in two separate maps. Salt pans had a low
water content, which was expected due to the high evaporation and
concentration of salt (Fig. 7a). Regions with high water content were
distributed along the eastern river bank covered by medium Spartina
alterniflora. The western bank, however, did not show a parallel pattern.
It had moderate soil water content and was covered by Borrichia fru-
tescens and short Spartina alterniflora. This illustrates that soil water
content is not simply a function of distance to the river or tidal inlet, but
also of other factors such as elevation.

5.1.3. Marsh soil organic matter estimation

Compared with soil salinity and water content, more efforts have
been made to quantify soil organic matter using imaging spectroscopy
through the direct methods, and a varying degree of accuracies have
been reported with r ranging from 0.69 (DeTar et al., 2008) to 0.95
(Selige et al., 2006). In this study, a moderate accuracy was obtained in
predicting organic matter content with an r of 0.8 using the MNF
transformed data and object-based modeling. Compared with the esti-
mation of salinity and water content, a relatively lower accuracy was
produced for organic matter estimation. Again, the plant species map
was overlaid on the soil organic matter map with salt pans and short
Spartina alterniflora highlighted. As expected, salt pans had the lowest
organic matter content (Fig. 7c). High organic matter was observed
over regions dominated by medium and short Spartina alterniflora
(Fig. 7d). Soil organic matter and water content were well coupled with
high values observed on the eastern side of the river dominated by
Spartina alterniflora, and relatively lower values on the western side of
the river dominated by Salicornia virginica (Fig. 7). Inconsistency be-
tween soil water content and organic matter was also detected. For
example, over the eastern side of the river, high water content was
observed in the region dominated by medium Spartina alterniflora
(Fig. 7b), while the high organic matter zone showed a trend of east-
ward migration from medium Spartina alterniflora to short Spartina al-
terniflora. Soil organic matter is characterized by slow temporal dy-
namics, and as such is far more stable than soil salinity and water
content. Therefore, maps of soil organic content will only need to be
produced every few years.
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Fig. 5. Maps of estimated soil salinity (a), soil water content (b), and soil organic matter content (c), and corresponding uncertainty maps generated from ensemble
analysis of the predictions from SVM, RF, and k-NN models for estimating soil salinity (d), soil water content (e), and soil organic matter content (f).

5.2. Performance of hyperspectral vs. multispectral sensors

Hyperspectral data is available mostly from airborne sensors, and
thus data acquisition is expensive and infrequent. It is valuable to assess
the capability of spaceborne sensors for higher-frequency monitoring
since these sensors could obtain data less expensive and visit the same
location regularly. We explored the potential applicability of 8-band
WorldView-2 and 4-band QuickBird spaceborne multispectral sensors
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for modeling and monitoring marsh soil properties. Feature selection
techniques are frequently used in imaging spectroscopy to reduce the
dimensionality of hyperspectral data. Few studies have evaluated the
impact of dimensionality reduction on the prediction of soil properties.
We compared 63-band AISA hyperspectral dataset and a simulated 8-
band WorldView-2 data, 4-band QuickBird data, and 15-band MNF
transformed data to assess the impact of the dimensionality reduction of
hyperspectral data in the prediction of soil properties. We found that
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Fig. 6. Zoomed-in areas that highlight salt pans with the highest salinity in patches (a), short Spartina alterniflora with higher salinity as salinity ridges (b), and tall
Spartina alterniflora with low salinity (c). Areas covered by salt pan, short Spartina alterniflora, tall Spartina alterniflora and other species are derived from the
classification of hyperspectral imagery (Hladik et al., 2013). Color scales are same as Fig. 5 for soil property mapping.

estimation accuracy was somewhat declined when the spectral resolu- hyperspectral data, encouraging accuracies (r: 0.90 and 0.88) were
tion was reduced. Although a slightly reduced accuracy was obtained produced for soil salinity estimation. For soil water content estimation,
from WorldView-2 and QuickBird datasets compared with the the results were also acceptable from the two spaceborne sensors with
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Fig. 7. Zoomed-in areas to highlight salt pans with the lowest water content (a),
medium Spartina alterniflora with high water content (b) along the river bank,
salt pans with the lowest organic matter content (c), and short and medium
Spartina alterniflora with high organic matter content (d). Color scales are same
as Fig. 5 for soil property mapping.

an r of 0.80 and 0.73, respectively. But poor results were produced for
organic matter content prediction. Given the high cost in acquiring
hyperspectral data, it would be much more cost-effective to use
spaceborne sensors such as Worldview-2 and QuickBird for broad area
mapping and monitoring of marsh soil properties. These sensors have a
high spatial resolution and the multi-temporal nature, which provides
the opportunity to monitor the soil properties on any date for which it is
convenient to collect field data for calibration. Application of Landsat-
type sensors (e.g., Landsat and Sentinel-2) is also possible because it has
a similar spectral configuration as QuickBird. But Landsat-type data
have a relatively coarse spatial resolution of 30 m and the mixed pixel
problem might be a challenge for the modeling and mapping because
marsh vegetation, salinity, water content and soil organic matter con-
tent can change rapidly over a few meters. The scalability of the soil
remote sensing models to true multispectral satellite data and sensi-
tivity of the models to subtle changes in reflectance are important
avenues for future studies.
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Our study showed that the application of a noise reduction algo-
rithm such as the MNF transformation was important in indirect soil
characterization using hyperspectral imagery. Ben-Dor et al. (2002)
applied this technique to separate the noise components of the DAIS-
7915 data in order to reconstruct the informative spectral channels for
soil modeling, rather than to reduce the high dimensionality of hy-
perspectral data. Research from Belluco et al. (2006) for mapping salt
marsh vegetation using hyperspectral data demonstrated that MNF
technique was the most effective method to reduce the redundancy in
hyperspectral data for marsh identification. It extracts information-
containing bands and identifies the noise component in the general case
of unequal noise content over different bands, which makes it more
effective than other feature selection techniques such as principle
component analysis. This technique not only helps by reducing the
dimensionality of hyperspectral data to save computational cost, but
also largely improves the modeling and mapping accuracy. In addition,
if object-based modeling and mapping is applied, segmenting the ori-
ginal hyperspectral imagery will be computation-intensive. Application
of MNF transformed imagery will largely reduce the computational cost
in the segmentation. Similarly, a range of feature selection techniques
and indices have been developed to reduce the dimensionality of hy-
perspectral data and identify important spectral narrowband regions for
modeling or isolating soil characteristics. It would be valuable to ex-
amine the effectiveness of those techniques such as red-edge on indirect
marsh soil modeling in future research.

5.3. Parametric regression, machine learning, and ensemble analysis

Past studies commonly applied the partial least square regression
and MLR methods in soil modeling. Stevens et al. (2010) were the first
to explore the SVM regression in soil organic carbon mapping using
imaging spectroscopy. We used four machine learning models including
ANN, SVM, RF, and k-NN, and compared the results with the MLR
method. In general, SVM had the best performance in processing each
dataset, while other methods produced comparable results in accuracy.
All models achieved acceptable accuracies for estimating soil salinity
and produced low accuracies for estimating organic matter content
when the original hyperspectral, and a simulated WorldView-2, and
QuickBird datasets were used. Although all models produced similar
results in terms of the statistical metrics based on the validation data,
the predictions from each model for mapping were different. For ex-
ample, for salinity estimation, the difference between two models was
more than 80 for some regions. These types of discrepancies were also
observed for the same objects in predictive models of water content and
organic matter content. ANN and MLR even produced results similar as
the machine learning algorithms. However, when they were applied for
mapping, many outliers were produced including negative predictions,
especially over the regions with sparse samples. This was another
reason why we did not include ANN and MLR in the ensemble mapping.
The diversity in predictions among models was a result of differences in
the architecture of the algorithms. Each model has its pros and cons,
and an ensemble analysis can make the prediction more robust than the
application of an individual model alone, especially for unknown re-
gions (Zhang et al., 2018a). We explored the potential of ensemble
analysis for estimating soil properties. It is unnecessary to recalculate r,
MAE and RMSE from the ensemble analysis, because these statistical
metrics should be similar to the models that are combined. The en-
semble analysis also provides a solution to map the spatial uncertainty
to complement the traditional metrics in soil modeling. The uncertainty
map from ensemble analysis effectively identifies regions that are easy
to estimate and other areas that are difficult to quantify. This type of
map is useful to guide field soil sampling. For example, more field
samples should be collected from the regions with a high uncertainty to
recalibrate or tune the models. Use of uncertainty maps generated from
ensemble analysis is somewhat limited and further research is needed to
investigate the potential application of such maps in soil modeling and
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mapping. This problem was also reported in Forkuor et al. (2017), and
that is another reason we did not include it in the ensemble analysis.

5.4. Pros and cons of object-based modeling and mapping

Our study is the first attempt to examine the potential of object-
based modeling for mapping tidal marsh soil properties. Object-based
modeling produced a higher accuracy than the pixel-based method and
generated informative soil maps, which suggests that it is a promising
alternative to the traditional pixel-based modeling and mapping. It
improved the estimation accuracy of all three soil properties. This is
attributed to two major factors. First, our object-based approach spa-
tially matched field samples to an image object, and thereby reduced
the positional discrepancy to combine field data with remote sensing
imagery. The misregistration of field samples can strongly affect the
estimation accuracy, especially when a fine spatial resolution image is
used. Both GPS readings of the field locations and georeferencing of the
imagery have errors, particularly at the edges of a pixel, leading to the
positional discrepancy between two datasets. There is a higher prob-
ability that a field sample is located in an object/patch rather than
within a single pixel. Thus, using an object is more robust than a pixel
and can potentially increase the estimation accuracy. Second, as de-
monstrated in previous OBIA studies on wetlands, the object-based
modeling approach can reduce local noise and heterogeneity, and
thereby enhance the accuracy of the analysis (Dronova, 2015). Using
the mean spectrum of an object can reduce the effect of noise, thus
increasing the accuracy of estimations. Object-based modeling has also
been attempted over bare soil regions using imagine spectroscopy and
those studies have recommended ways to reduce the noise issue in the
pixel-based modeling (Ben-Dor et al., 2002; Selige et al., 2006). To the
best of our knowledge, object-based soil mapping has not been con-
ducted.

There are other potentials using OBIA in soil modeling. The object-
based approach offers the spatial features (e.g., texture) which have
proven valuable for marsh species classification (e.g., Zhang et al.,
2018b). The object-based spatial features might be valuable for soil
modeling too, especially when plants are used as the indirect indicator
of soil properties. Another advantage of the object-based method is that
it allows for segmenting the image into objects/segments at multiple
scales, which offers an opportunity to map soil properties at multiple
scales or at different levels of detail adaptable to various applications.
In contrast, the pixels are uni-scale and represent a fixed area on the
ground with a single value. It would be a valuable direction for future
research to include object-based spatial features and multi-scale map-
ping features to map salt marsh soil properties. There are some lim-
itations to the use of object-based modeling such as the parameter
specification in the image segmentation. The settings of these para-
meters will impact the results. A range of methods have been developed
to optimize the scale parameter. But other parameters are commonly set
empirically or subjectively. It is worthy to evaluate the impact of seg-
mentation on the modeling and mapping result.

5.5. Sources of errors

We have identified multiple potential sources of errors in our soil
modeling and mapping procedure, including upscaling, time gaps be-
tween acquisition of field samples and hyperspectral data, radiometric
mismatch between flight lines, and limited field samples. First, we
matched the field samples collected from a homogeneous plot
(I1m x 1m) to the image objects with varying shapes and sizes.
Advantages of this matching scheme have been discussed in the above
subsection, but uncertainties from the segmentation would affect the
modeling and mapping results. Second, there was a short time gap
between the acquisition of hyperspectral imagery (6/20/2006) and
field samples (6/20/2006-6,/26/2006). This should not be an issue for
organic matter estimation but could have influenced the salinity and
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water content results because these two attributes are temporally more
dynamic. Third, there was a slight radiometric mismatch of hyper-
spectral data between flight lines. Such radiometric differences are
often caused by varied atmospheric condition, sun angles, and illumi-
nation differences, rather than by physical changes in surface properties
(Jensen, 2015). Although we applied atmospheric correction to each
flight line, the mismatch could still be observed over the seam line
when the flight lines were mosaicked. Several relative radiometric
correction methods have proven to be useful to remove this mismatch
from multispectral imagery, but none of these techniques generated
ideal results for the hyperspectral data used in this study. This mis-
match could have impacted both the modeling and mapping results
particularly around the seamline. In addition, due to the large volume
of the hyperspectral data, the images were divided into small tiles.
Inconsistencies in mapping were also observed along seam lines be-
tween tiles. This is a typical issue when using a large volume hyper-
spectral dataset in soil mapping. The fourth and last error could be from
the limited number of field samples. In-situ sampling and laboratory
analysis is time-consuming and labor-intensive. In this study, field
samples were collected along transects to represent the varying struc-
ture of salt marsh soils. However, it was difficult to collect samples over
regions that were hard to access on the ground. Estimations over those
regions should be reevaluated in future with more field data. Despite
the issues that could have affected modeling accuracy, the general
spatial patterns of the three soil properties in the study domain seem
appropriate from a geomorphological and ecological prospective.

5.6. Implications for marsh ecology and carbon cycling studies

This study has broader implications in ecology and carbon cycle
studies pertaining to tidal marsh Gross Primary Production (GPP)
modeling. GPP models developed based on a method proposed by
Monteith (1972) have been parametrized widely by ecologists for tidal
wetlands by incorporating variables such as soil salinity, soil water
content (a proxy for tidal fluctuations), temperature, and phenology
(Yuan et al., 2007; Kathilankal et al., 2008; Moffett et al., 2010; Barr
et al., 2013; Forbrich and Giblin, 2015; Knox et al., 2018). Although
these types of parametrizations have been found to work well within
the footprint of an Eddy Covariance flux tower deployed in a tidal
wetland, they may not be ideal for scaling up a GPP model to an area
outside of the footprint. That is because the tidal fluctuations and
salinity data used in upscaling light use efficiency models are based on
few discrete stationary measurements and may not represent the con-
ditions of the tower footprint. The approach presented in this study
would improve the satellite based GPP models because it includes the
per-pixel/object values of soil salinity and water content rather than
assuming that these parameters remain the same throughout the entire
scene. Whether or not the soil salinity, water and organic matter con-
tent products can enhance GPP models and improve the estimation of
other biophysical parameters such as aboveground and belowground
biomass remains to be examined. It would also be useful to assess the
sensitivity of the developed models to changes in canopy reflectance
caused by plant phenology.

6. Conclusions and future research

We developed an alternative framework to traditional interpolation
techniques for estimating marsh soil properties by using simultaneously
collected hyperspectral imagery and limited in-situ data. We combined
object-based image analysis (OBIA), machine learning, and ensemble
analysis techniques in the framework. We evaluated the potential ap-
plicability of the spaceborne multispectral sensors WorldView-2 and
QuickBird for modeling and monitoring temporal variations of marsh
soil properties. An acceptable modeling result was achieved, and the
spatial patterns of marsh soil salinity, water content, and soil organic
matter were revealed. The results illustrated that imaging spectroscopy
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is valuable for soil data collection. Spaceborne WorldView-2 and
QuickBird sensors look promising in monitoring marsh soil salinity and
water content. The logic of the framework can be used to other marsh
ecosystems to delineate marsh soil patterns.

Direct application of the developed models across time might be
problematic due to the high temporal variability of soil salinity and
water content, low variation of soil organic matter, and the time lag of
vegetation response to the change of these properties. More research is
needed to address the suitable recalibration time interval for these
models, which depend on the temporal variability of the soil and plant
properties within a study site. For example, soil organic matter changes
slowly (years) compared to soil salinity and soil water content (based
on daily and spring-neap tidal cycles) and plant reflectance patterns
(based on phenology; seasonally). Therefore, the “train once and clas-
sify ever” type of framework typically used in time-series analysis is not
suitable for this study. Additional work is needed to develop an optimal
time interval (weekly, monthly or seasonally) to train the models with
independent field data and coincident hyperspectral/multispectral data
in order to capture the spatial and temporal variability of these soil
parameters. It might also be informative to include more modeling al-
gorithms in the ensemble analysis. The inclusion of other datasets such
as topography and environmental variables might also increase the
prediction performance. We hope this study will stimulate the appli-
cation of modern remote sensing data processing techniques to soil
spectroscopy in general, and particularly marsh soil mapping.
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