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1  | INTRODUC TION

The clonal nature of plants means that they can vary tremendously 
in size, shape and reproductive investment among individuals and 
populations. This variation presents challenges to any attempt 
to describe and study plant populations (Harper, 1977; Niklas, 

1994). One way to organize our thinking about this variation is 
the −3/2 self‐thinning law (Gorham, 1979; Yoda, Kira, Ogawa, & 
Hozumi, 1963), which predicts that population density decreases 
as a power function of plant size (Enquist, Brown, & West, 1998). 
Thus, populations representing plants that differ greatly in density 
and size may simply represent different locations along a single 
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Abstract
1.	 Plants adjust their size and reproductive effort in response to numerous selection 
pressures and constraints. The self‐thinning law describes a well‐known trade‐off 
between size and density. Plants also trade‐off investment into growth vs. sexual 
reproduction, as described by life‐history theory.

2.	 We build on past work on plant allometry and life history by examining both self‐
thinning and size‐dependent reproduction in a single plant species, the saltmarsh 
grass Spartina alterniflora, across a wide range of settings: three landscape posi‐
tions, two habitats and eight sites, across sixteen years.

3.	 Plants in different landscape positions and years varied tremendously in size and 
shoot density. However, all this variation could be explained by a single allometric 
relationship consistent with the self‐thinning law, but with a lower slope. Flowering 
was size‐dependent, and the size at which plants had a 50% probability of flower‐
ing varied among habitat, sites and years. Plants that were stressed reproduced 
at a smaller size than plants that were growing under good conditions, and this 
pattern was consistent among habitat, sites and years. Finally, reproductive bio‐
mass and the proportion of shoots flowering increased with increasing vegetative 
size (plant height or shoot biomass). Combining these two patterns, S. alterniflora 
plants growing high density are small and reproduce at a smaller size than large 
plants growing at low density.

4.	 Although there is tremendous spatial and temporal variation in S.  alterniflora 
growth and reproductive patterns, all this variation can be understood as result‐
ing from two simple allometric trade‐offs. Because saltmarsh plants often occur in 
monospecific stands, they may serve as simple, model systems for studies of plant 
life history.
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allometric relationship. However, it is unclear whether the slope 
of relationship between shoot density and plant size is a constant 
(−3/2) or whether it varies depending on environmental conditions 
(Bai et al., 2010; Dai et al., 2009; Deng et al., 2006; Morris, 2002).

Another way to organize our thinking about variation in plant 
phenotype is life‐history theory, which states that the optimum size 
for reproduction is a function of trade‐offs between survival, fecun‐
dity and (for iteroparous species) the costs of reproduction (Berrigan 
& Koella, 1994; Kachi & Hirose, 1985; Kozłowski & Wiegert, 1987; 
Stearns & Koella, 1986). For semelparous plants, life‐history theory 
predicts a threshold size or age that must be attained before plants 
start to flower. This threshold size or age may vary depending on 
the environment in which populations grow (Clauss & Aarssen, 1994; 
Wesselingh, Klinkhamer, De Jong, & Boorman, 1997) because this 
determines both survivorship curves and the fecundity at each size 
or age (Koons, Metcalf, & Tuljapurkar, 2008; Wesselingh & De Jong, 
1995).

For plants that do flower, life‐history theory also predicts how 
plants should allocate biomass between sexual reproduction and 
growth (Begon, Townsend, & Harper, 2006). The patterns of al‐
location reflect evolved strategies resulting from different selec‐
tion pressures and constraints (Weiner, 2004). Allocation patterns 
have usually been described and analysed as ratios, such as re‐
productive effort (flowering ratio or percentage of reproductive 
biomass). However, plant allocation is usually allometric, changing 
with plant size (Weiner, 2004), so allocation patterns also can be 
understood using allometric relationships (e.g. plots of reproduc‐
tive vs. vegetative biomass). A number of studies have examined 
allometric relationships between reproductive and vegetative in‐
vestment within populations (Ohlson, 1988; Sugiyama & Bazzaz, 
1998; Thompson, Weiner, & Warwick, 1991; Weiner, Campbell, 
Pino, & Echarte, 2009).

Although a large number of studies have examined self‐thinning 
and life‐history variation in plants, many of these have been done in 
artificial settings or with a limited number of field populations, and 
few studies have integrated investigations of both topics. Here, we 
seek to build on past work by examining allometric and life‐history 
variation in a single species of saltmarsh plant, the grass S. alterni‐
flora, in natural populations representing three landscape positions, 
two habitats and eight sites across sixteen years. An advantage of 
working in saltmarshes is that plants often occur in large, monospe‐
cific stands (Pennings & Bertness, 2001), allowing allometric and 
life‐history variation in a single species to be studied without com‐
plications arising from interspecific interactions. In addition, salt‐
marsh habitats contain strong abiotic gradients related to elevation 
and freshwater input that affect plant growth (Richards, Pennings, 
& Donovan, 2005; Więski & Pennings, 2014). How these gradients 
affect allometry and reproduction has not been investigated in detail 
(but see Ellison, 1987).

We chose to work with S. alterniflora because it is the domi‐
nant plant at lower elevations in saltmarshes along the Atlantic 
and Gulf coasts of the United States (Pennings & Bertness, 2001) 
and represents a powerful invasive species that transforms 

intertidal landscapes elsewhere in the world where it occurs 
as an exotic (Strong & Ayres, 2013). Spartina alterniflora varies 
more than 10‐fold in height among microhabitats within salt‐
marshes, with taller plants along creekbanks and shorter plants 
at higher or saltier locations (Richards et al., 2005). This variation 
in height has long attracted scientific attention (Chalmers, 1979; 
Mendelssohn & Morris, 2002), but without much consideration 
of how height relates to shoot density or flowering. Instead, be‐
cause saltmarshes are so productive and therefore of interest 
with respect to support of food webs and mediation of the global 
carbon cycle, the focus has largely been on how variation in salt‐
marsh biogeochemistry and other abiotic drivers affects plant 
productivity (Mendelssohn & Morris, 2002; Morris, Sundberg, & 
Hopkinson, 2013). A great deal has been learned about these 
topics, but issues of plant allometry and life‐history theory have 
largely been ignored (but see Xiao, Tang, Qing, Zhou, & An, 
2011a, Xiao, Tang, Qing, Zhou, Kong, et al., 2011b; Xiao et al., 
2015; Crosby et al., 2015).

Spartina alterniflora grows in the intertidal zone. As a re‐
sult, plants growing at different intertidal elevations expe‐
rience different cycles of tidal flooding and exposure; tidal 
conditions also vary among sites and years. The cycles of 
flooding and exposure mediate both how salty and how well 
oxygenated the soil is. Proximity to creekbanks also affects 
the drainage of porewater at low tide and thus the turnover 
time of water in the soil. Together, these factors lead through 
a complex set of hydrological and biogeochemical processes 
to soils that vary in water content, salinity, oxygen content, 
sulphide concentration and nitrogen availability (Mendelssohn 
& Morris, 2002), all of which lead to variation in S. alterniflora 
productivity over space (Kirwan, Guntenspergen, & Morris, 
2009; O'Donnell & Schalles, 2016; Zheng, Shao, & Sun, 2018) 
and among years (Morris et al., 2013; Więski & Pennings, 
2014). Different locations and years also vary in shoot density 
(Gleason, Elmer, Pien, & Fisher, 1979; Morris & Haskin, 1990) 
and flowering (Crosby et al., 2015; Qiu et al., 2018), but these 
variables have not been systematically linked together in the 
context of ecological theory.

We took advantage of the monitoring programme of the 
Georgia Coastal Ecosystems Long‐Term Ecological Research pro‐
gramme to examine relationships between S. alterniflora height, 
shoot density and flowering across landscape positions, habitats 
(creekbank vs. mid‐marsh elevations), sites and years. Past work 
at this site has documented variation in plant biomass across 
habitats, sites and years (Więski & Pennings, 2014). We tested 
the hypotheses that (a) the relationship between shoot density 
and shoot size of S.  alterniflora conforms to the −3/2 self‐thin‐
ning law, (b) this relationship is the same (slopes and intercepts 
do not differ) across landscape position and years, (c) size at 
which plants had a 50% probability of flowering (henceforth, F50) 
is the same across habitats, sites and years, and (d) plants that 
flower invest a constant proportion of their biomass in sexual 
reproduction.
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2  | MATERIAL S AND METHODS

We worked within the domain of the Georgia Coastal Ecosystems 
Long‐Term Ecological Research (GCE‐LTER) programme (http://
gce-lter.marsci.uga.edu/). The GCE‐LTER includes 8 permanent 
sites (GCE 1–6, 9,10) where either creekbank or mid‐marsh habi‐
tats or both are dominated by the grass S. alterniflora (Figure 1). 
Tides are mesotidal, with a range of 2–3 m. To assess the pos‐
sibility that results would vary as a function of landscape posi‐
tion, we followed Li and Pennings (2016) in categorizing sites as 
mainland (GCE 1, 4), intermediate (GCE 2, 5, 9, 10) and barrier is‐
land (GCE 3, 6), speculating that mainland sites might have more 
freshwater input and therefore taller plants. At each site, we 
measured shoot height and flowering status of all shoots each 
October in 8 permanent plots (0.5 × 0.5 m) along the creekbank 
and 8 permanent plots (0.25 × 0.25 m) in the mid‐marsh, from 
2000 to 2015. About 13% of the were disturbed or lost each 
year due to deposition of floating wrack, creekbank slumping, 
heavy herbivory or other causes (Li & Pennings, 2016); these 
were omitted from the analysis in the year that they were dis‐
turbed. Plots that were lost were replaced each year. Because 
there was some turnover in plots among years, we could not use 
repeated‐measures approaches to analyse the data; instead, we 
treated data from each year as independent even though many 
of the plots were resampled in multiple years. We calculated 
shoot density in each plot based on the number of shoots and 
the plot area, and the flowering ratio as the number of shoots 
flowering divided by the total number of shoots in each plot. We 
used shoot heights and flowering status of S.  alterniflora every 

October from 2000 to 2015 and allometric relationships to esti‐
mate standing biomass (Więski & Pennings, 2014).

In order to determine the mass invested into vegetative growth 
and sexual reproduction, we clipped 5 flowering shoots near each 
of the creekbank plots at GCE 1 and near each of the creekbank 
and mid‐marsh plots at GCE 4 on 12–18 October 2017. At the same 
time, we similarly clipped 5 flowering shoots at eight plots (spaced 
~10 m apart) in the creekbank and in the mid‐marsh zones of two 
additional sites on the south end of Sapelo Island. For each shoot, 
we measured the total shoot height (including the inflorescence) and 
the inflorescence length. We cut each shoot into the inflorescence 
and the vegetative portion and determined dry mass of both after 
drying at 70°C for 72 hr.

To assess how abiotic conditions might affect plant allom‐
etry and reproduction, we examined eight abiotic drivers likely 
to be important to S. alterniflora growth: pore water salinity, el‐
evation of each plot, temperature, precipitation, the Palmer 
Drought Severity Index (PDSI), sea level, tide range and river 
discharge. Porewater salinity was measured adjacent to perma‐
nent plots in October of 2010–2015. Plot elevation was measured 
using real‐time kinematic GPS. For climate data, we used aver‐
age air temperature and precipitation at the Malcolm McKinnon 
Airport in Brunswick, Georgia (Wade & Sheldon, 2019), and the 
Palmer Drought Severity Index (PDSI) drought index for Georgia 
Division 9 (National Oceanic & Atmospheric Administration, 
2018). Sea level and tide range data were obtained from the 
National Oceanographic and Atmospheric Administration (station 
8,670,870, Fort Pulaski, Georgia, http://www.noaa.gov/) (Wade & 
Sheldon, 2018a). Discharge of the Altamaha River was measured 
at Doctortown gauging station on the Altamaha River by USGS 
(Wade & Sheldon, 2018b). Predictors that varied during each 
year (precipitation, temperature, river discharge, sea level, tide 
range and PDSI) were averaged over the growing season (April‐
September) to provide a single value per year.

For analysis of variation in plant height and density among land‐
scape positions, all the plots representing a particular landscape po‐
sition were averaged within a year to yield a single data point for 
each landscape position in each year. We used t‐tests to test for 
differences in plant height and shoot density between landscape 
positions. We used linear regression to analyse the relationships 
between plant traits (height and shoot density) and abiotic factors, 
with years as replicates, for each landscape position separately. To 
explore the relationship between shoot height and shoot density, we 
analysed data with individual plots from each year as replicates. We 
first analysed the entire dataset using a mixed model with log (shoot 
density) as the predictor variable, year as a random effect, landscape 
position as a fixed factor and the interaction of log (density)*land‐
scape in order to see whether the relationship between shoot height 
and density varied among landscape positions. We then analysed 
data for each landscape position separately, to see whether the re‐
lationship between shoot height and density varied among years in 
each landscape position. To this end, we fit the regression model 
with density (continuous independent variable), year (main effect) 

F I G U R E  1  Map of the study site on the coast of Georgia, USA. 
Georgia Coastal Ecosystems Long‐Term Ecological Research (GCE‐
LTER) permanent monitoring sites that were included in this study 
are marked with filled circles. GCE 3 and GCE 6 were coded as 
barrier island sites; 2, 5, 9 and 10 as intermediate; and 1 and 4 as 
mainland sites

http://gce-lter.marsci.uga.edu/
http://gce-lter.marsci.uga.edu/
http://www.noaa.gov/
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and density * year (interaction effect). To explore the relationships 
between shoot mass and shoot height, and between shoot mass and 
shoot density, we analysed data with individual plots from each year 
as replicates. We used a mixed model, with year as a random factor 
and shoot height (or density) as a fixed factor. For the mass–density 
relationship, we tested for deviation from the expected value under 
the self‐thinning law (−3/2; Yoda et al., 1963) using the R library 
smart (Warton, Duursma, Falster, & Taskinen, 2012). To analyse vari‐
ation in plant height and proportion flowering among different sites, 
years and habitats, plots were averaged within a site for each year 
to yield a single data point for each site and year per habitat. We 
used t‐tests to test for differences in plant height and proportion 
flowering between habitats. We similarly used linear regression to 
analyse the relationships between plant traits (height and proportion 
flowering) and abiotic factors. To describe the relationship between 
plant size and flowering probability and to test for differences be‐
tween groups, we used binomial logistic regression (function lmer 
in r; Bates & Maechler, ) with individual shoots as the unit of rep‐
lication, and plant size as the explanatory variable where x is plant 
size and y is the flowering probability. We also determined the size 
at which a plant had a 50% probability of flowering (F50) among dif‐
ferent sites, years and habitats. We used linear regression to anal‐
yse the relationships between F50 and abiotic factors. We also used 
linear regression to determine the relationships between vegetative 
growth and sexual reproduction. We performed all analyses with r 
statistical software (R Development Core Team, 2016) and provide 
our r code in the Appendix.

3  | RESULTS

3.1 | Variation in plant height, shoot density and 
allometry

Plant height (creekbank and mid‐marsh combined) varied among 
years and landscape positions (Figure S1a,b). Shoot density also 
varied among years and landscape position (Figure S1c,d), but in the 
opposite direction, such that years or locations with tall shoots had 
a low shoot density, and years or locations with short shoots had 
a high shoot density. Different abiotic factors were the best uni‐
variate predictors of plant height and shoot density at the different 
landscape positions. At mainland sites, plant height was positively 
correlated with river discharge, PDSI and decreased with increas‐
ing temperature (Figure S3a–c). At intermediate sites, plant height 
was positively correlated with river discharge and tidal range and 
decreased with temperature; shoot density decreased with tidal 
range (Figure S3d–g). At barrier island sites, plant height was posi‐
tively correlated with river discharge and PDSI, and decreased with 
temperature; shoot density decreased with sea level (Figure S3h–k).

Within the mainland, intermediate and barrier island sites, 
plant height declined as shoot density increased (Figure 2a, Table 
S2); this relationship did not differ among landscape positions. 
Similarly, within each landscape location, the negative relation‐
ship between plant height and shoot density did not differ among 
years in the mainland or intermediate landscape positions, but 
did differ among years in the barrier island landscape position 
(Figure 2b–d, Table S2).

F I G U R E  2   Relationships between 
shoot height and density in different 
landscape positions (all years combined) 
(a), and among years at mainland (b), 
intermediate (c) and barrier island 
(d) landscape positions. There were 
no differences in the slopes among 
landscape positions or years, detailed 
statistical results in Table S2
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Shoot height was a strong predictor of shoot biomass (Figure 3a), 
allowing us to estimate shoot biomass in all the monitoring plots 
from the shoot height data. With all the monitoring data combined, 
shoot mass decreased with shoot density with a slope of −1.11 on 
a log–log scale (R2 = 0.43, p < 0.0001), which differs (p < 0.0001) 
from the canonical slope of −3/2 expected under the self‐thinning 
law (Yoda et al., 1963).

3.2 | Variation in proportion flowering and F50

Plants were ~170% taller, and the proportion of shoots flowering 
was ~400% greater at the creekbank vs. the mid‐marsh plots (Figure 

S2b,d,f,h). Height varied among years (Figure S2a) and among sites 
(Figure S2c) in both the creekbank and mid‐marsh habitat. The pro‐
portion of shoots flowering also varied among years (Figure S2e) and 
sites (Figure S2g) in both the creekbank and mid‐marsh habitat. Marsh 
zones, sites and years with taller plants tended to have a higher pro‐
portion of shoots flowering; we address this point more rigorously 
below. Different abiotic factors were the best univariate predictors of 
plant height and shoot density at the different sites and among years. 
Variation in height among sites in both the creekbank and mid‐marsh 
habitats was predicted by soil salinity (Figure S4a) and plot elevation 
(Figure S4b). Neither variable predicted variation in the proportion of 
shoots flowering among sites (Figure S4c,d). Variation in both height 

F I G U R E  3   Relationships between 
shoot mass and shoot height (a), and 
between shoot mass and shoot density (b)

F I G U R E  4   Binomial regression 
models predicting the probability that an 
individual shoot of Spartina alterniflora will 
flower based on shoot height in creekbank 
vs. mid‐marsh habitats for all sites and 
years combined (a), among 8 different 
GCE sites in the creekbank (c) and mid‐
marsh (b) habitats for all years combined, 
and across years in the creekbank (e) 
and mid‐marsh (d) habitats for all sites 
combined
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and proportion flowering among years in the creekbank habitat was 
predicted by temperature and river discharge (Figure S5c,d,g,h). In the 
mid‐marsh, variation in both height and the proportion of stems flow‐
ering among years was predicted by precipitation, river discharge and 
PDSI (Figure S5a,b,e,f,i,j).

We measured 31,352 shoots between 2000 and 2015 in undis‐
turbed plots. The probability of any given shoot flowering increased 
with plant height, but this relationship differed between marsh zones, 
sites and years (Figure 4). The F50 was 176 cm at the creekbank vs. only 
105 cm in the mid‐marsh (Figure 4a). The F50 at the mid‐marsh varied 
from 68 to 123 cm among sites (Figure 4b) and from 81 to 120 cm 
among years (Figure 4d). The F50 at the creekbank varied from 146 to 
195 cm among sites (Figure 4c) and from 151 to 209 cm among years 
(Figure 4e). Among sites, the F50 increased with average plant height 
(Figure S6a), decreased with soil salinity (Figure S6b) and decreased 
with elevation (Figure S6c). Among years, the F50 at the creekbank 
increased with tide range (Figure S6d). In the mid‐marsh habitat, 
temperature (marginally significant, p = 0.057) and river discharge pre‐
dicted annual variation in F50.

3.3 | Relationship between vegetative growth and 
sexual reproduction

Across the sixteen years of data at all the sites, the proportion of 
shoots flowering was positively related to average plant height 
(Figure 5a). For the plants sampled in 2017, inflorescence length was 
positively related to shoot height (Figure 5b), and inflorescence mass 
was positively related to shoot mass (Figure 5c).

4  | DISCUSSION

Ecologists have long remarked on the tremendous variation in S. al‐
terniflora height and shoot density across the landscape. Here, we 
show that 14‐fold variation in shoot height and 37‐fold variation in 
density among plots are explained by the self‐thinning law. Variation 
in flowering was more complex: the probability that an individual 
shoot at a given location would flower was a simple function of plant 
height, but the F50 varied among microhabitats, sites and years, with 
plants flowering at a shorter height when conditions were more 
stressful.

Saltmarshes have long been a model system for studies of plant 
ecology (Chapman, 1974), in part because the simplicity of their low‐
diversity plant communities makes ecological patterns more obvi‐
ous. One of the most obvious patterns in saltmarshes on the East 
and Gulf Coasts of North America is that the dominant plant in these 
habitats, S. alterniflora, varies tremendously in height, from <25 cm 
to >200  cm, among different microhabitats (Richards et al., 2005; 
Schalles, Hladik, Lynes, & Pennings, 2013). In particular, plants are 
shorter at higher marsh elevations and taller along the creekbank 
(Proffitt, Travis, & Edwards, 2003; Schalles et al., 2013).

Consistent with these previous studies, we found variation in 
plant height and shoot density both across the landscape and among 
microhabitats. Plant height increased but shoot density decreased 
from barrier island to mainland sites. As has been found previously 
(Bertness, 1992; Nestler, 1977), this spatial variation was correlated 
with porewater salinity, with plants shorter in more saline soils 
(Bertness & Pennings, 2002; Richards et al., 2005).

F I G U R E  5   Relationships between the 
proportion of shoots flowering and shoot 
height (a), inflorescence length and shoot 
height (b), and inflorescence mass and 
shoot mass (c)
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There are fewer studies of temporal variation in S.  alterniflora 
(Teal & Howes, 1996; Visser, Sasser, & Cade, 2006), but we found 
that shoot height and density (pooled across creekbank and mid‐
marsh habitats) again varied inversely among years. Plant height was 
positively affected by river discharge, which reduces porewater sa‐
linities, and negatively by temperature, which concentrates salts by 
increased evapotranspiration (Więski & Pennings, 2014). The PDSI, 
which incorporates both precipitation and temperature, also was a 
good predictor of plant height. At the intermediate sites, plant height 
was also positively related to tide range, consistent with previous 
geographical comparisons that have found that tide range positively 
affects S.  alterniflora (Liu, Maung‐Douglass, Strong, Pennings, & 
Zhang, 2016; Mckee & Patrick, 1988; Turner, 1976). Fewer signifi‐
cant relationships were found for variation in shoot density among 
years, but the best predictors were tide range and sea level.

For any subset of these data, plant height was negatively related 
to shoot density. This result is consistent with a vast body of work 
showing that density is one of main components in determining plant 
size due to competition for resources (Deng et al., 2006; Harper, 
1977; Roscher & Schumacher, 2016; Sugiyama & Bazzaz, 1998). 
The relationships between plant height and shoot density did not 
differ among landscape positions or, for any given landscape posi‐
tion, among years, suggesting that there was a universal underlying 
relationship for all sites and dates. Because S. alterniflora naturally 
occurs as monocultures at all the locations sampled, we were able 
to test the hypothesis that this universal underlying relationship was 
the −3/2 self‐thinning law.

The self‐thinning law is generally understood to reflect the ef‐
fects of intraspecific competition within a monoculture, creating a 
negative relationship between plant size and density (Watkinson, 
1980; Yoda et al., 1963). We found a strong negative relationship be‐
tween log shoot mass and log density that held across all landscape 
positions and years. The slope of −1.11 was different than the ca‐
nonical self‐thinning slope of −3/2, but there is increasing evidence 
that the self‐thinning slope is variable among species and conditions 
(Wade, 2018). In particular, the self‐thinning slope is often shallower 
than −3/2 for plants growing in stressful conditions (Deng et al., 
2006; Morris, 2002), which is consistent with our finding from the 
saltmarsh. Regardless of the exact slope, the important finding is 
that the tremendous variation in S. alterniflora height and variation 
observed among microhabitats and sites actually reflects a single 
size–density relationship, with stands of plants located at differ‐
ent point along the relationship depending on local environmental 
conditions.

This single size–density relationship, however, did not fully ex‐
plain spatial or temporal variation in flowering. The proportion of 
stems in a plot that were flowering varied tremendously, from 0 to 
0.85. As has been previously reported (Bertness, 1985; Gallagher, 
Somers, Grant, & Seliskar, 1988), S. alterniflora were both taller and 
more likely to flower in creekbank vs. mid‐marsh habitats; however, 
as we will discuss below, the relationship between height and flow‐
ering varied among habitats. Spartina alterniflora stems also varied 
in height among sites, due in part to variation among sites in plot 

elevation and soil salinity. Plant height decreased with plot eleva‐
tion and soil salinity in both the mid‐marsh and creekbank habi‐
tats (Figure S4a,b), which is consistent with many previous results 
showing that S. alterniflora height decreases with elevation and sa‐
linity (Linthurst & Seneca, 1981; Pearcy & Ustin, 1984; Peng, Chen, 
Pennings, & Zhang, 2018). Across sites, however, these same vari‐
ables did not predict the proportion of stems flowering, suggesting 
that the relationship between plant height and flowering differed 
among sites. Finally, S. alterniflora stems at both the creekbank and 
the mid‐marsh varied in height and flowering among years. The same 
variables predicted annual variation in both height and proportion 
flowering; however, as we discuss below, this superficial similarity 
obscures important differences in the relationship between height 
and flowering among years.

In most plant species, the probability of flowering increases with 
size (Pickering & Arthur, 2003; Reekie, 1998; Sun & Frelich, 2011). 
Similarly, we found an overall relationship across the entire dataset 
(31,352 stems) for S. alterniflora in which the probability of flowering 
increased with stem height. Moreover, the 2017 field survey clari‐
fied that the height–flowering relationship was a simplified version 
of a positive relationship between somatic mass and reproductive 
mass, with heavier shoots producing heavier flowers. This relation‐
ship is consistent with the general finding that larger plants invest 
more in reproduction (Aarssen & Taylor, 1992; Bolmgren & Cowan, 
2008; Du & Qi, 2010; Hoyo & Tsuyuzaki, 2015). This relationship 
can be interpreted as a result of the modular architecture of plants. 
Within a population, larger individuals have more vegetative and re‐
productive modules (Niklas, 1995; Weiner, 1988). Large plants can 
thus allocate more biomass to both vegetative and sexual reproduc‐
tion than smaller plants, resulting in a positive correlation between 
plant size and sexual reproduction rather than the expected negative 
one (Weiner et al., 2009).

However, the average size at which plants flowered varied ~170% 
among habitats, 25%–50% among sites and 10%–50% among years, 
as a function of abiotic stress. In particular, the size at which plants had 
a 50% probability of flowering was greater when abiotic conditions 
were less stressful, as indicated by taller shoots (Figure S6a). Because 
variation in S. alterniflora height is directly or indirectly a function of 
river discharge, porewater salinity, temperature, tide range and plot 
elevation, variation in these factors also affected the F50, with pore‐
water salinity as the best single predictor (Figure S6b–d).

Life‐history theory shows that the optimum size for reproduc‐
tion is a function of trade‐offs between survival, fecundity and (for 
iteroparous species) the costs of reproduction (Berrigan & Koella, 
1994; Kachi & Hirose, 1985; Kozłowski & Wiegert, 1987; Stearns & 
Koella, 1986). A clone of S. alterniflora is iteroparous, but an individ‐
ual shoot—the focus of this study—lives for only a single year and 
can be treated as semelparous. At the growing edge of a clone in‐
vading a salt pan, young shoots are supported by the translocation 
of resources from older shoots, but the benefits of clonal integra‐
tion in S. alterniflora were minor for shoots growing in monospecific 
stands (Pennings & Callaway, 2000). If we consider individual shoots 
as semelparous organisms, theory predicts that sexual reproduction 
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should be delayed under conditions in which plants grow bet‐
ter (Hesse, Rees, & Müller‐Schärer, 2008). This is exactly what we 
found. The F50 was greater (i.e. plants delayed reproduction), at the 
creekbank, where plants were taller, vs. the mid‐marsh, where plants 
were shorter. Similarly, the F50 was greater at sites and in years when 
plants grew taller.

A number of other studies have compared the threshold for 
flowering of plants growing in different conditions, with results con‐
sistent with ours. For example, Wesselingh et al. (1997) compared 
three sites and found that the threshold size for flowering of the 
facultative biennial herb Cynoglossum officinale increased with hab‐
itat suitability. Similarly, Méndez and Karlsson (2004) compared 11 
populations of the perennial herb Pinguicula ulgaris and found that 
flowering probability varied among sites, with populations in better 
abiotic conditions (low altitudes and wet soils) having a significantly 
higher threshold size for reproduction. Similarly, Guo et al. (2012) 
compared 44 naturally occurring populations representing 24 spe‐
cies of Pedicularis in the Tibetan Plateau and found that plants in‐
vested less in reproduction at more stressful, higher elevations. Our 
study extends these previous findings by comparing a single species 
across two habitats, eight sites and sixteen years in a single study, 
thereby providing the most comprehensive understanding of size‐
dependent flowering variation across space and time to date.

This extensive dataset provided an unprecedented oppor‐
tunity to explore how natural populations of plants conform to 
general theories of allometry and reproduction. Plant phenotype 
varied tremendously across the dataset, with height varying 14‐
fold, shoot density varying 35‐fold, the proportion of stems in a 
plot flowering varying from 0 to 0.85 among plots and the size at 
which plants had a 50% probability of flowering varying ~170% 
among habitats, 25%–50% among sites and 10%–50% among 
years. This remarkable phenotypic variation, however, could be 
explained by general ecological theory. Variation in plant height 
and shoot density was mediated across sites and dates by abi‐
otic conditions, but conformed across the entire dataset to the 
self‐thinning law. Both the proportion of stems flowering and the 
resources allocated to flowering increased with plant height, but 
the F50 for flowering also increased with plant height, consistent 
with general life‐history theory. Because of their strong abiotic 
gradients and low species diversity, saltmarshes have long been 
a productive study system for studies of community ecology 
(Bertness, 1992; Chapman, 1974; Pennings & Bertness, 2001); our 
work suggests that they also offer an excellent model system for 
studies of plant life history.
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precipitation) at the Malcolm McKinnon Airport in Brunswick, Georgia, 
1948–2019: https​://gcelt​er.marsci.uga.edu/porta​l/stati​ons/nws_bruns​
wick_ap/histo​ric/data/nws_bruns​wick_ap_month​ly_aug19​48-jun20​
19.xml (Wade & Sheldon, 2019); The Palmer Drought Severity Index 
(PDSI) drought index data at Georgia Division 9, 1895–2018: http://
gce-lter.marsci.uga.edu/porta​l/stati​ons/noaa_droug​ht/histo​ric/data/
noaa_pdsi_ga_div9_jan18​95-jan20​18.xml (National Oceanic and 
Atmospheric Administration, 2018); Sea level and tide range data at the 
National Oceanographic and Atmospheric Administration, 1935–2018: 
http://gce-lter.marsci.uga.edu/porta​l/stati​ons/nos_fort_pulas​ki/histo​
ric/data/nos_fort_pulas​ki_month​ly_jul19​35-jan20​18.xml (Wade & 
Sheldon, 2018a); Discharge of the Altamaha River data at Doctortown 
gauging station on the Altamaha River by USGS, 1932–2017: http://
gce-lter.marsci.uga.edu/porta​l/stati​ons/usgs_docto​rtown/​histo​ric/
data/usgsd​octor​town_yearly_jan19​32-dec20​17.xml (Wade & Sheldon, 
2018b).
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