
VOL. X, NO. X, XXX 2019 0000000

Sensor Applications

Robust Optical Spatial Localization using a Single Image Sensor

Ivan White*, Deva K. Borah***, and Wei Tang**

Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
*Student Member, IEEE
**Member, IEEE
***Senior Member, IEEE

Manuscript received XXX XX, 2019; revised XXX XX, 2019; accepted XXX XX, 2019. Date of publication XXX XX, 2019; date of current version XXX XX,

2019.

Abstract—A novel three-dimensional (3D) spatial localization method using a single camera with temporal-difference

image processing is proposed. The proposed active localization method uses a ring of light-emitting diodes (LEDs)

embedded on the target. The diameter and the central location of the ring’s image on the image sensor are used to

estimate the target location using a Volterra series expansion of the target coordinates. No knowledge of the camera

hardware parameters is needed. Instead, Volterra series parameters are obtained through a prior training that needs to

be performed only once. The proposed method can be implemented with low computational complexity and storage. The

performance of the proposed method is compared against an earlier method that relies on prior knowledge of the camera

hardware parameters. The proposed method demonstrates excellent performance even when the target is located far

away from the axial direction of the camera lens. The proposed method can be applied in low-power outdoor unmanned

aerial vehicle localization and indoor robotic navigation.

Index Terms—Image Sensor, Object Localization, Single Image 3D Localization, unmanned aerial vehicle

I. INTRODUCTION

Optical spatial localization has advantages in low-power appli-

cations compared to other wireless localization methods such as

ultrasound and radio-frequency (RF) methods [1]–[3]. The main

techniques in optical localization include the received signal strength

(RSS) [4], the time-of-flight (TOF) [5] and the angle-of-arrival (AOA)

methods [6], [7]. An optical localization technique can be either active

or passive. In the active method, the optical source of illumination

is placed on the target object or on the anchors (beacons). The

optical sensor, i.e., a camera, takes pictures of the optical source and

performs image processing in order to obtain the spatial location

of the target object. The active method is limited by the variation

of the optical detector performance, the background light intensity,

and the length of the baseline in the stereo-camera systems [6], [7].

On the other hand, a passive method does not use an active optical

source. It uses the optical parallax principle [8] and triangulation

techniques to obtain spatial information. This approach requires high

computational overhead to process the reflections from the target.

The passive method is also difficult to be applied in a 3-D application.

In general, the performance of localization techniques is measured in

terms of accuracy, range, as well as the implementation complexity

and computational overhead. A comprehensive review of optical

localization methods for low power sensor networks is given in [9].

In flying drone applications, although the global positioning system

(GPS) or ranging sensors are useful, there have been interests in using

camera-based localization methods [10]. The detection range in the

drone applications should reach tens of meters with an accuracy in the
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order of centimeters [11]. The camera-based methods include drone-

camera and ground-camera methods. In the drone-camera method

[12]–[14], the drone takes a video using its on-board camera and

transmits the video to the base station. The video contains landmark

information so that the base station is able to compute the location

of the drone using the landmark information. This typically requires

extensive image processing algorithms, e.g., extended Kalman Filters.

The drone-camera methods are restricted to a pre-fixed arena with

landmarks. They suffer from high computational overhead at the

base station as well as high power consumption at the drone due to

video transmission, thus reducing the battery life of the drone. In the

ground-camera method, the camera takes pictures of the drone from

the ground or from a base station while the drone is equipped with

special optical markers. For example, [15] installs infrared LEDs on

the drone so that a ground robot can take a video. The distance between

the drone and the ground robot is 5-meter. In another example, [16]

applies both thermal and visible image processing to localize the

drone. The infrared or thermal imager in the ground-camera method

has a lower resolution compared to a visible light optical imager,

which may limit the detection range and accuracy.

In [17], an improved ground-camera 3-D spatial localization method

using a single temporal difference image sensor is proposed. The

method uses a light-emitting diode (LED) ring that can be embedded

in a drone. The advantage of using the LED ring as a marker is that the

diameter of the ring can always be obtained from the major axis of the

ring’s image, which is an ellipse, regardless of the relative orientation

of the target. The approach [17], referred to as the lens geometry

method (LGM) in this paper, obtains the spatial localization using

the image shape based on the lens geometry. The lens equations are

highly accurate when the target is located close to the axial direction

of the lens. Therefore, LGM’s performance deteriorates when the

1949-307X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications\_standards/publications/rights/index.html for more information.



0000000 VOL. X, NO. X, XXX 2019

Fig. 1: Example UAV application scenario. Left: LEDs in the ring

are off; Middle: LEDs in the ring are on; Right: temporal difference

of the two images (color inverted).

target is located much away from the axial direction. To address

this problem, in this paper, we propose a novel method based on a

Volterra series expansion of the target location. The proposed Volterra

series method (VSM) provides excellent performance even when the

target is located much away from the axial direction. Further, VSM

does not require knowledge of the camera parameters and relies on

a prior training that needs to be performed only once. We present a

detailed comparison between LGM and VSM. The rest of the paper

is organized as follows. Section II presents the experimental system.

In Section III, we describe the proposed VSM algorithm. Results

and discussions are given in Section IV. Finally, Section V provides

the conclusions of the paper.

II. EXPERIMENTAL SYSTEM

In order to compare the performance between VSM and LGM

methods, the experimental setup used is the same as described in

[17] for the LGM method. The LED ring with a diameter of 2 feet

(61cm) blinks at a frequency of 20 Hz to represent a medium-sized

unmanned aerial vehicle (UAV). To capture the image of the LED

ring, a camera is held by a tripod adapter, which is placed on a

rotating swivel stand. The rotation angles are marked by a protractor

so that the camera is able to change its horizontal view angle of the

target LED ring. The vertical view angle is adjusted by turning the

camera vertically using the tripod adapter. The camera resolution is

2976 by 2976 pixels. The true distance between the camera and the

LED ring is measured using a digital laser meter.

The camera takes pictures of the LED ring and computes the

temporal difference image by calculating the difference of the value of

each pixel between the current picture and the previous picture. Thus,

if A and A′ denote the pixel values at two consecutive sampling times

for the same pixel, then the temporal difference image is obtained

by finding |A − A′ | for all pixels. This removes static interfering

signals. Multiple consecutive temporal difference images are used

to distinguish the image of the ring from other interfering signals.

Toward this end, a pixel is determined as a possible part of the

LED ring only when it is observed to be “blinking", i.e., when the

amplitude difference for that pixel in the temporal difference images

is higher than a pre-defined amplitude threshold. Next, the pixel’s

value must change with a predetermined frequency to be acceptable

as part of the ring’s image. This can be implemented in hardware

by adding pixel values of multiple temporal difference images and

accepting only those pixels with a sum value within two specified

threshold values. Since the background is not changing according

to the target frequency, only the target LED is distinguished from

the image. This processing removes random flickering noise from

the environment or other movements of objects, including the drone

Fig. 2: Geometry of object localization. The xy and uv planes are

parallel to each other with no rotation. The z axis is normal to both

xy and uv planes, and it intersects the uv plane at the origin (0, 0, 0).

itself. Only the pixels representing the LED ring are needed to run

the VSM algorithm to be described next. An application scenario of

using temporal image difference is shown in Fig. 1.

III. PROPOSED VSM ALGORITHM

The geometry of the optical localization system is illustrated in

Fig. 2. From the image, the values of u, v and d in terms of the

number of pixels are measured and used in the VSM algorithm as

described below. Let (xi, yi, zi ) be the location of the LED ring

center with respect to the center of the camera lens during the i-th

measurement. Three quantities are measured from the image: 1) the

ring diameter (di ) in the image plane, 2) the shift of the image ring

center from the camera center along the x-direction (ui ), and 3)

the shift of the image ring center from the camera center along the

y-direction (vi ). In the following, we consider only the magnitude

of these quantities, since the sign can be easily interpreted from

the direction of the image shift from the camera center. In an ideal

camera, xi and yi are linearly related to ui and vi respectively for a

given distance zi , and zi is inversely dependent on di as zi = f D/di ,

where D is the true LED ring diameter and f is the focal length of

the camera lens. In practice, the camera lens has distortions, and the

inter-dependence of xi , yi and zi on ui , vi and di is more complex.

To handle this realistic scenario, we propose to use a nonlinear

model given by a Volterra series. In general, such a series can be

accurately represented using N terms, where N is reasonably large.

In our case, to keep the complexity low, we use a second order

series with N = 10 terms. The proposed series representation is

given by xi = α
(0)
x +α

(1)
x ui +α

(2)
x vi +α

(3)
x (1/di ) +α

(4)
x u2

i +α
(5)
x v

2
i

+α
(6)
x (1/d2

i ) +α
(7)
x uivi +α

(8)
x ui/di +α

(9)
x vi/di , where α

(0)
x = 1 and

α
(i)
x , i = 1, · · · , 9, are parameters to be determined. Note that xi not

only contains linearly dependent terms on ui , vi and 1/di but also

the non-linear terms, e.g., u2
i , and the cross-terms, e.g., ui/di . We can

similarly present expressions for yi and zi in terms of coefficients

α
(i)
y and α

(i)
z , i = 0, · · · , 9, respectively. Therefore, a total of 27

parameters are to be determined.

Parameter determination: For a given camera, the parameters, αx,

αy , and αz are fixed, and thus they need to be calculated only once.

To determine the parameters, a set of L measurements is obtained by

placing the LED ring at multiple locations. For each measurement,

the LED ring is placed at a known specific location (xi, yi, zi ) and

the values of ui , vi and di are obtained from the corresponding

image. Let us define a vector of parameters for xi as px = [α
(0)
x

α
(1)
x · · · α

(9)
x ]T , and a vector of measured quantities as si = [1

ui vi 1/di u2
i v

2
i 1/d2

i uivi ui/di vi/di ]
T , so that the
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corresponding Volterra series expression is xi = sTi px , where (·)T

denotes a transpose operation. We can similarly define py and pz

in terms of α
( j )
y and α

( j )
z , j = 0, · · · , 9, respectively, and can write

yi = sTi py , and zi = sTi pz . From the set of L measurements, we

construct the measurement matrix S = [s1 s2 · · · , sL]T , so that sT
1

,

sT
2

, · · · , sTL form the L rows of the matrix S. The corresponding location

vectors are defined as x = [x1 x2 · · · xL]T , y = [y1 y2 · · · yL]T ,

and z = [z1 z2 · · · zL]T , that allow us to write Spx = x, Spy = y,

and Spz = z. Note that the matrix S and the vectors x, y and z are

known from the L training measurements. Therefore, the parameter

vectors px , py and pz are determined using px = S†x, py = S†y,

and pz = S†z, where S† = (ST S)−1ST is the matrix pseudo-inverse.

This requires L > 10 independent training measurements. Note that

parameter determination does not involve real-time operations. The

27 real parameters are obtained a priori, and stored for the given

camera system.

Unknown location estimation after parameters are estimated

by training. When the ring is positioned at an unknown location

(xk, yk, zk ), we measure uk , vk and dk from its image, and construct

the measurement vector sk = [1 uk vk 1/dk u2
k

v
2
k

1/d2
k

uk vk uk/dk vk/dk ]T . The unknown location is then estimated as

x̂k = sT
k

px , ŷk = sT
k

py , and ẑk = sT
k

pz , where the hat denotes an

estimate. This requires at most 27 multiplications and 27 additions

on a real time basis. Note that some of the parameters may be zero

causing a reduction in the computational complexity.

Using built-in pixel value subtracting circuits, the VSM algorithm

can be implemented in a hardware-friendly way with the help of

the temporal difference image sensor [18]. The temporal difference

operation can also be performed in the computing domain when using

a regular image sensor. The temporal difference image sensor can

also adjust the difference threshold to adapt to different background

noise and illumination contrast of the target circle. Finally, as

outlined in [17], the registration of the target requires finding the

minimum area rectangle that encloses the circle or ellipse in the

image, which requires much less computation power compared to

a registration of a full ellipse or special shape that may rotate,

potentially requiring computationally intensive Hough Transform.

This saves the processing energy for battery-powered devices.

IV. RESULTS AND DISCUSSION

We obtain a set of 60 measurements by placing the LED ring

at various locations in an indoor environment at distances of 1m,

3m, 10m, and 30m. This distance range has importance for UAV

applications, for example, in docking. We divide the available data

into two groups: (1) a set of L = 40 training data samples ensuring

that enough training exposure to various locations is obtained. The

training data set is used to estimate the parameter vectors px , py

and pz as described in the previous section. (2) a set of 20 test data

samples for testing the performance of the proposed algorithm. Our

experimental results are analyzed in Figs. 3, 4 and 5 as described

below.

In Fig. 3, we display the 3D localization performance of the

proposed VSM algorithm and compare its performance against LGM.

Observe that LGM performs quite accurately when the image of the

target is near the center of the image sensor. However, for large

x and y, i.e., when the image is located at the edge of the image

sensor, LGM’s performance degrades rapidly (e.g., points A and B

in Fig. 3) as the lens equations used in LGM become inaccurate due
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Fig. 3: Experimental results of the true and estimated 3-D locations

of the target.

to imperfections of the optical system. On the other hand, due to the

more general model used in VSM, its performance remains superior

at the edges.
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Fig. 4: Error between true and estimated results when the centroid

of the target is at different locations on the images.

We demonstrate the estimation error on x and y for various z values

for both LGM and VSM in Fig. 4. The estimation error for the k-th

location is calculated as ǫk =
√

(xk − x̂k )2
+ (yk − ŷk )2

+ (zk − ẑk )2,

where (xk, yk, zk ) is the true location of the LED ring center and

( x̂k, ŷk, ẑk ) is the estimate obtained using LGM or VSM. Note that

VSM’s error stays reasonable for all cases, while LGM’s performance

significantly worsens toward the edge of the image sensor. Defining

the overall mean-squared error (MSE) as (1/K )
∑K

k=1 ǫ
2
k
, we have

obtained an MSE of 1.45 m2 for LGM and 0.21 m2 for VSM. Since

LGM performs accurately when the LED ring center is near the

camera axis, a hybrid method (HM) can be employed, wherein LGM

is first employed to estimate the LED ring location, and if the x− or

y− axis value is found to be more than 1.5 m, then HM switches to

VSM. We have noticed that HM improves the performance over both

LGM and VSM at the cost of increased computational complexity,

and the MSE of HM for our case is found to be 0.182 m2. In general,

for large z, the error performance degrades for all the methods as

the image gets smaller.

In Fig. 5, we analyze the average estimation errors on x, y and z
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Fig. 5: Error behavior for low, medium and high offsets of the target.

co-ordinates for small, medium and large axial offsets of the target.

We define axial offset as r =
√

x2
+ y2, which represents the radial

distance of the target with respect to the camera axial direction.

The target is considered to have a low axial offset if r is less than

20% of z, i.e., r < 0.2z. Similarly, a medium offset arises when

0.2z ≤ r < 0.4z, and a large axial offset refers to the case when

r ≥ 0.4z. The average of the estimation errors, |x − x̂ |, |y − ŷ | and

|z − ẑ | for the x, y and z axes respectively, show that at low axial

offsets, both VSM and LGM perform well for x, y and z. In fact, the

estimation of z is found to be better for LGM. However, for large

offsets, VSM outperforms LGM for all the axes.

We compare VSM against LGM in Table I. The two methods have

their own benefits and drawbacks. Although the real-time operations

for VSM is high, the complexity can be significantly reduced by

setting all the small parameters to zero. In our experimental results,

it is found that setting all the parameters, α
(i)
x , i = 1, · · · , 9, to zero

except the most dominant one, reduces the number of operations to 5

multiplications, 1 division, and 3 additions with a storage requirement

of only 3 real numbers. The MSE degrades slightly to 0.45 m2, which

is still far better than the LGM’s MSE of 1.45 m2.

Table 1: Comparison of LGM and VSM. LGM stores tan(·) function

values for angles ≤ 50o with 5 divisions per degree.

Attribute LGM [17] VSM (This Work)

Prior training Not needed Needed

Accurate values of Needed Not needed

camera parameters

Real-time 7 multiplications, 3 31 multiplications, 4

computations divisions, 5 additions divisions & 27 additions

& 1 square root

Storage 250 real numbers 27 real numbers

Error Performance is

performance close Very good sometimes slightly

to sensor center worse than LGM

Error Performance Performance is

performance at degrades much better

sensor edges than LGM

V. CONCLUSION

A novel 3-D spatial localization method based on the Volterra

series is presented in a system that uses a blinking LED ring marker

and a digital camera receiver. Unlike many other optical triangulation

AOA methods that require multiple receivers, the proposed method

uses the temporal image difference from only a single imager. The

method can accurately localize a target over a wide range of the

camera’s field of view and has potential applications in outdoor UAV

flight control, for example, docking of UAVs, and in indoor robotic

navigation. The method is required to store a set of 27 parameters,

which can be reduced to just 3 parameters for low complexity efficient

hardware implementation. The stored parameters are used along with

the measured image quantities to estimate the target location. The

proposed method does not require any prior knowledge of the camera

hardware parameters. On the other hand, if the camera hardware

parameters are known, the proposed method can be combined with

LGM to further improve the localization performance.
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