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Abstract—A novel three-dimensional (3D) spatial localization method using a single camera with temporal-difference
image processing is proposed. The proposed active localization method uses a ring of light-emitting diodes (LEDs)
embedded on the target. The diameter and the central location of the ring’s image on the image sensor are used to
estimate the target location using a Volterra series expansion of the target coordinates. No knowledge of the camera
hardware parameters is needed. Instead, Volterra series parameters are obtained through a prior training that needs to
be performed only once. The proposed method can be implemented with low computational complexity and storage. The
performance of the proposed method is compared against an earlier method that relies on prior knowledge of the camera
hardware parameters. The proposed method demonstrates excellent performance even when the target is located far
away from the axial direction of the camera lens. The proposed method can be applied in low-power outdoor unmanned

aerial vehicle localization and indoor robotic navigation.

Index Terms—Image Sensor, Object Localization, Single Image 3D Localization, unmanned aerial vehicle

[. INTRODUCTION

Optical spatial localization has advantages in low-power appli-
cations compared to other wireless localization methods such as
ultrasound and radio-frequency (RF) methods [1]-[3]. The main
techniques in optical localization include the received signal strength
(RSS) [4], the time-of-flight (TOF) [5] and the angle-of-arrival (AOA)
methods [6], [7]. An optical localization technique can be either active
or passive. In the active method, the optical source of illumination
is placed on the target object or on the anchors (beacons). The
optical sensor, i.e., a camera, takes pictures of the optical source and
performs image processing in order to obtain the spatial location
of the target object. The active method is limited by the variation
of the optical detector performance, the background light intensity,
and the length of the baseline in the stereo-camera systems [6], [7].
On the other hand, a passive method does not use an active optical
source. It uses the optical parallax principle [8] and triangulation
techniques to obtain spatial information. This approach requires high
computational overhead to process the reflections from the target.
The passive method is also difficult to be applied in a 3-D application.
In general, the performance of localization techniques is measured in
terms of accuracy, range, as well as the implementation complexity
and computational overhead. A comprehensive review of optical
localization methods for low power sensor networks is given in [9].

In flying drone applications, although the global positioning system
(GPS) or ranging sensors are useful, there have been interests in using
camera-based localization methods [10]. The detection range in the
drone applications should reach tens of meters with an accuracy in the
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order of centimeters [11]. The camera-based methods include drone-
camera and ground-camera methods. In the drone-camera method
[12]-[14], the drone takes a video using its on-board camera and
transmits the video to the base station. The video contains landmark
information so that the base station is able to compute the location
of the drone using the landmark information. This typically requires
extensive image processing algorithms, e.g., extended Kalman Filters.
The drone-camera methods are restricted to a pre-fixed arena with
landmarks. They suffer from high computational overhead at the
base station as well as high power consumption at the drone due to
video transmission, thus reducing the battery life of the drone. In the
ground-camera method, the camera takes pictures of the drone from
the ground or from a base station while the drone is equipped with
special optical markers. For example, [15] installs infrared LEDs on
the drone so that a ground robot can take a video. The distance between
the drone and the ground robot is 5-meter. In another example, [16]
applies both thermal and visible image processing to localize the
drone. The infrared or thermal imager in the ground-camera method
has a lower resolution compared to a visible light optical imager,
which may limit the detection range and accuracy.

In[17], an improved ground-camera 3-D spatial localization method
using a single temporal difference image sensor is proposed. The
method uses a light-emitting diode (LED) ring that can be embedded
in a drone. The advantage of using the LED ring as a marker is that the
diameter of the ring can always be obtained from the major axis of the
ring’s image, which is an ellipse, regardless of the relative orientation
of the target. The approach [17], referred to as the lens geometry
method (LGM) in this paper, obtains the spatial localization using
the image shape based on the lens geometry. The lens equations are
highly accurate when the target is located close to the axial direction
of the lens. Therefore, LGM’s performance deteriorates when the

1949-307X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications\ standards/publications/rights/index.html for more information.



0000000

VOL. X, NO. X, XXX 2019

Fig. 1: Example UAV application scenario. Left: LEDs in the ring
are off; Middle: LEDs in the ring are on; Right: temporal difference
of the two images (color inverted).

target is located much away from the axial direction. To address
this problem, in this paper, we propose a novel method based on a
Volterra series expansion of the target location. The proposed Volterra
series method (VSM) provides excellent performance even when the
target is located much away from the axial direction. Further, VSM
does not require knowledge of the camera parameters and relies on
a prior training that needs to be performed only once. We present a
detailed comparison between LGM and VSM. The rest of the paper
is organized as follows. Section II presents the experimental system.
In Section III, we describe the proposed VSM algorithm. Results
and discussions are given in Section IV. Finally, Section V provides
the conclusions of the paper.

II. EXPERIMENTAL SYSTEM

In order to compare the performance between VSM and LGM
methods, the experimental setup used is the same as described in
[17] for the LGM method. The LED ring with a diameter of 2 feet
(61cm) blinks at a frequency of 20 Hz to represent a medium-sized
unmanned aerial vehicle (UAV). To capture the image of the LED
ring, a camera is held by a tripod adapter, which is placed on a
rotating swivel stand. The rotation angles are marked by a protractor
so that the camera is able to change its horizontal view angle of the
target LED ring. The vertical view angle is adjusted by turning the
camera vertically using the tripod adapter. The camera resolution is
2976 by 2976 pixels. The true distance between the camera and the
LED ring is measured using a digital laser meter.

The camera takes pictures of the LED ring and computes the
temporal difference image by calculating the difference of the value of
each pixel between the current picture and the previous picture. Thus,
if A and A’ denote the pixel values at two consecutive sampling times
for the same pixel, then the temporal difference image is obtained
by finding |A — A’| for all pixels. This removes static interfering
signals. Multiple consecutive temporal difference images are used
to distinguish the image of the ring from other interfering signals.
Toward this end, a pixel is determined as a possible part of the
LED ring only when it is observed to be “blinking", i.e., when the
amplitude difference for that pixel in the temporal difference images
is higher than a pre-defined amplitude threshold. Next, the pixel’s
value must change with a predetermined frequency to be acceptable
as part of the ring’s image. This can be implemented in hardware
by adding pixel values of multiple temporal difference images and
accepting only those pixels with a sum value within two specified
threshold values. Since the background is not changing according
to the target frequency, only the target LED is distinguished from
the image. This processing removes random flickering noise from
the environment or other movements of objects, including the drone
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Fig. 2: Geometry of object localization. The xy and uv planes are
parallel to each other with no rotation. The z axis is normal to both
xy and uv planes, and it intersects the uv plane at the origin (0, 0, 0).

itself. Only the pixels representing the LED ring are needed to run
the VSM algorithm to be described next. An application scenario of
using temporal image difference is shown in Fig. 1.

Ill. PROPOSED VSM ALGORITHM

The geometry of the optical localization system is illustrated in
Fig. 2. From the image, the values of u, v and d in terms of the
number of pixels are measured and used in the VSM algorithm as
described below. Let (x;,y;,z;) be the location of the LED ring
center with respect to the center of the camera lens during the i-th
measurement. Three quantities are measured from the image: 1) the
ring diameter (d;) in the image plane, 2) the shift of the image ring
center from the camera center along the x-direction (u;), and 3)
the shift of the image ring center from the camera center along the
y-direction (v;). In the following, we consider only the magnitude
of these quantities, since the sign can be easily interpreted from
the direction of the image shift from the camera center. In an ideal
camera, x; and y; are linearly related to u; and v; respectively for a
given distance z;, and z; is inversely dependent on d; as z; = fD/d;,
where D is the true LED ring diameter and f is the focal length of
the camera lens. In practice, the camera lens has distortions, and the
inter-dependence of x;, y; and z; on u;, v; and d; is more complex.
To handle this realistic scenario, we propose to use a nonlinear
model given by a Volterra series. In general, such a series can be
accurately represented using N terms, where N is reasonably large.
In our case, to keep the complexity low, we use a second order
series with N = 10 terms. The proposed series representation is

given by x; = o +alu; +aPvi +a (1/d;) +aud +adv?
+a@(1/d?) +aPuv; +aPu;/d; +avi/d;, where @ = 1 and
P, i=1,---,9,are parameters to be determined. Note that x; not

only contains linearly dependent terms on u;, v; and 1/d; but also
the non-linear terms, e.g., u%, and the cross-terms, e.g., u; /d;. We can
similarly present expressions for y; and z; in terms of coefficients
a(yi) and a(zi) , 1 =0,---,9, respectively. Therefore, a total of 27
parameters are to be determined.

Parameter determination: For a given camera, the parameters, a.,
ay, and a, are fixed, and thus they need to be calculated only once.
To determine the parameters, a set of L measurements is obtained by
placing the LED ring at multiple locations. For each measurement,
the LED ring is placed at a known specific location (x;, y;, z;) and
the values of u;, v; and d; are obtained from the corresponding
image. Let us define a vector of parameters for x; as p, = [a&o)
@ .. P17, and a vector of measured quantities as s; = [1

u; Vi 1/dl M% Vi2 1/d12 Uuivi Mi/dl' Vi/di]T, so that the
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corresponding Volterra series expression is x; = s7 p, where (-)7
denotes a transpose operation. We can similarly define p, and p.
in terms of a/(yj) and (t(Z’ ), j=0,---,9, respectively, and can write
yi = sIpy, and z; = sTp,. From the set of L measurements, we
construct the measurement matrix S = [s; S, -, s.]%, so that slT,
sy ,---,s} formthe L rows of the matrix S. The corresponding location
vectors are defined as x = [x; x, ---x.15,y=[n y» -y,
andz = [z, z» ---zz]", that allow us to write Sp, = X, Sp, =Y,
and Sp. = z. Note that the matrix S and the vectors X, y and z are
known from the L training measurements. Therefore, the parameter
vectors Py, Py and p, are determined using p, = S'x, p, = S'y,
and p. = 87z, where ST = (S”S)~!S7 is the matrix pseudo-inverse.
This requires L > 10 independent training measurements. Note that
parameter determination does not involve real-time operations. The
27 real parameters are obtained a priori, and stored for the given
camera system.

Unknown location estimation after parameters are estimated
by training. When the ring is positioned at an unknown location
(Xks Vs 2k ), We measure Uy, vi and dy from its image, and construct
the measurement vector s, = [1 wux v 1/de ui vi 1/d:
vi/di ] . The unknown location is then estimated as
£k =S Px, Sk = s{ Py, and 2 = sTp., where the hat denotes an
estimate. This requires at most 27 multiplications and 27 additions
on a real time basis. Note that some of the parameters may be zero
causing a reduction in the computational complexity.

urve  wi/d

Using built-in pixel value subtracting circuits, the VSM algorithm
can be implemented in a hardware-friendly way with the help of
the temporal difference image sensor [18]. The temporal difference
operation can also be performed in the computing domain when using
a regular image sensor. The temporal difference image sensor can
also adjust the difference threshold to adapt to different background
noise and illumination contrast of the target circle. Finally, as
outlined in [17], the registration of the target requires finding the
minimum area rectangle that encloses the circle or ellipse in the
image, which requires much less computation power compared to
a registration of a full ellipse or special shape that may rotate,
potentially requiring computationally intensive Hough Transform.
This saves the processing energy for battery-powered devices.

IV. RESULTS AND DISCUSSION

We obtain a set of 60 measurements by placing the LED ring
at various locations in an indoor environment at distances of 1m,
3m, 10m, and 30m. This distance range has importance for UAV
applications, for example, in docking. We divide the available data
into two groups: (1) a set of L = 40 training data samples ensuring
that enough training exposure to various locations is obtained. The
training data set is used to estimate the parameter vectors py, py
and p_ as described in the previous section. (2) a set of 20 test data
samples for testing the performance of the proposed algorithm. Our
experimental results are analyzed in Figs. 3, 4 and 5 as described
below.

In Fig. 3, we display the 3D localization performance of the
proposed VSM algorithm and compare its performance against LGM.
Observe that LGM performs quite accurately when the image of the
target is near the center of the image sensor. However, for large
x and y, i.e., when the image is located at the edge of the image
sensor, LGM’s performance degrades rapidly (e.g., points A and B
in Fig. 3) as the lens equations used in LGM become inaccurate due
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Fig. 3: Experimental results of the true and estimated 3-D locations
of the target.

to imperfections of the optical system. On the other hand, due to the
more general model used in VSM, its performance remains superior
at the edges.
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Fig. 4: Error between true and estimated results when the centroid
of the target is at different locations on the images.

We demonstrate the estimation error on x and y for various z values
for both LGM and VSM in Fig. 4. The estimation error for the k-th
location is calculated as €, = \/(xk =)+ (v = )2+ (2 — 21)%
where (xg, Yk, Zx) is the true location of the LED ring center and
(Rks Ii» 21 ) is the estimate obtained using LGM or VSM. Note that
VSM’s error stays reasonable for all cases, while LGM’s performance
significantly worsens toward the edge of the image sensor. Defining
the overall mean-squared error (MSE) as (1/K) Zf:l ei, we have
obtained an MSE of 1.45 m? for LGM and 0.21 m? for VSM. Since
LGM performs accurately when the LED ring center is near the
camera axis, a hybrid method (HM) can be employed, wherein LGM
is first employed to estimate the LED ring location, and if the x— or
y— axis value is found to be more than 1.5 m, then HM switches to
VSM. We have noticed that HM improves the performance over both

LGM and VSM at the cost of increased computational complexity,
and the MSE of HM for our case is found to be 0.182 m?. In general,
for large z, the error performance degrades for all the methods as
the image gets smaller.

In Fig. 5, we analyze the average estimation errors on x, y and z
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Fig. 5: Error behavior for low, medium and high offsets of the target.

co-ordinates for small, medium and large axial offsets of the target.
We define axial offset as r = 4/x2 + y2, which represents the radial
distance of the target with respect to the camera axial direction.
The target is considered to have a low axial offset if r is less than
20% of z, i.e., r < 0.2z. Similarly, a medium offset arises when
0.2z < r < 0.4z, and a large axial offset refers to the case when
r > 0.4z. The average of the estimation errors, |x — %|, |y — | and
|z — 2| for the x, y and z axes respectively, show that at low axial
offsets, both VSM and LGM perform well for x, y and z. In fact, the
estimation of z is found to be better for LGM. However, for large
offsets, VSM outperforms LGM for all the axes.

We compare VSM against LGM in Table 1. The two methods have
their own benefits and drawbacks. Although the real-time operations
for VSM is high, the complexity can be significantly reduced by
setting all the small parameters to zero. In our experimental results,
it is found that setting all the parameters, a&”, i=1,---,9, to zero
except the most dominant one, reduces the number of operations to 5
multiplications, 1 division, and 3 additions with a storage requirement
of only 3 real numbers. The MSE degrades slightly to 0.45 m?, which
is still far better than the LGM’s MSE of 1.45 m?.

Table 1: Comparison of LGM and VSM. LGM stores tan(-) function
values for angles < 50° with 5 divisions per degree.

Attribute LGM [17] VSM (This Work)
Prior training Not needed Needed
Accurate values of Needed Not needed

camera parameters

Real-time 7 multiplications, 3 31 multiplications, 4
computations divisions, 5 additions divisions & 27 additions
& 1 square root
Storage 250 real numbers 27 real numbers
Error Performance is

performance close
to sensor center

Error Performance
performance at degrades

sensor edges

Very good sometimes slightly
worse than LGM
Performance is
much better

than LGM

V. CONCLUSION

A novel 3-D spatial localization method based on the Volterra
series is presented in a system that uses a blinking LED ring marker
and a digital camera receiver. Unlike many other optical triangulation
AOA methods that require multiple receivers, the proposed method
uses the temporal image difference from only a single imager. The
method can accurately localize a target over a wide range of the
camera’s field of view and has potential applications in outdoor UAV
flight control, for example, docking of UAVs, and in indoor robotic
navigation. The method is required to store a set of 27 parameters,

which can be reduced to just 3 parameters for low complexity efficient
hardware implementation. The stored parameters are used along with
the measured image quantities to estimate the target location. The
proposed method does not require any prior knowledge of the camera
hardware parameters. On the other hand, if the camera hardware
parameters are known, the proposed method can be combined with
LGM to further improve the localization performance.
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