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ABSTRACT ACM Reference format:

Serverless computing platforms provide Function-as-a-Service
(FaaS) to end users for hosting individual functions known as
microservices. In this paper, we describe the deployment of a
Natural Language Processing (NLP) application using AWS
Lambda. We investigate and study the performance and memory
implications of two alternate service compositions. First, we
evaluate a switchboard architecture, where a single Lambda
deployment package aggregates all of the NLP application
functions together into a single package. Second, we consider a
service isolation architecture where each NLP function is
deployed as a separate FaaS function decomposing the application
to run across separate runtime containers. We compared the
average runtime and processing throughput of these compositions
using different pre-trained network weights to initialize our neural
networks to perform inference. Additionally, we varied the
workload dataset sizes to evaluate implications of inferencing
throughput for our NLP application deployed to a FaaS platform.
We found our switchboard composition, that shares FaaS runtime
containers for all application tasks, produced a 14.75% runtime
performance improvement, and also a 17.3% improvement in
NLP processing throughput (samples/second). These results
demonstrate the potential for careful application service
compositions to provide notable performance improvements and
ultimately cost savings for application deployments to serverless
FaaS platforms.
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1 Introduction

Function-as-a-Service (FaaS) platforms have recently emerged as
a new cloud computing delivery model that provides a compelling
approach for hosting applications bringing us closer to the idea of
instantaneous scalability [2-4]. As a leading provider of FaaS,
AWS Lambda has grown in popularity based on its ability to
automatically and seamlessly execute code based on user events
while managing related resources [1][7]. Similarly, deep learning
models have risen to the forefront of computer science by
achieving state-of-the-art performance for many machine-learning
problems, while experiencing exponential growth in the field of
natural language processing (NLP). Recently, serverless
platforms have been studied for their potential to host machine
learning inferencing services [12] [17], and even to train neural
networks [13].

In this paper, we investigate microservice composition for hosting
an NLP application on the AWS Lambda FaaS platforms. We
describe our application implementation in Python, and
subsequent deployment to AWS Lambda. We leverage our project
as a case study to investigate service composition where the goal
is to contrast the performance and memory implications of
alternate microservice compositions for our specific application
and datasets. Our NLP application has six separate services that
perform a series of operations on chat dialogues.

Traditional software engineering best practices encourage
developers to minimize coupling while maximizing cohesion
among classes or modules of a system. As we enter the era of
serverless software, where code composition directly impacts
creation and maintenance of ephemeral server infrastructure
impacting underlying performance and hosting costs, traditional
best practices require reevaluation. The evaluation problem is
compounded by the complexity of determining optimal software
compositions. Bell's number represents the number of partitions
of a set (k) consisting of (n) members [14]. If considering a
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serverless application given a set of (n) microservices, then the
total number of possible microservice compositions is Bell's
number (k). Bell’s number grows rapidly for (n) microservices
(n=3, 4,5, 6, 7, 8) to produce k compositions (k=5, 15, 52, 203,
877, 4140). This complexity leads developers to frequently make
ad hoc deployment decisions due to the difficultly in inferring
performance implications given an explosive number of potential
service compositions requiring profiling. In these scenarios, brute
force testing rapidly becomes intractable from both a time and
cost perspective.

1.1 Background

Natural language processing (NLP) is an area of research that
explores how computers can be used to understand and
manipulate natural language text or speech to perform useful
tasks. One particular task within NLP is dialogue modeling, which
is usually divided into three components. Consider a scenario
where a user is talking to an agent. The agent involved in
conversation takes in the raw text as input, and then executes the
following three workflow phases:

o [ntent Tracking: determines what the user wants. For example,
if the user has a question about a subject, or a request to
perform a task.

® Policy Management: takes in the user intent, and based on the
policy, determines what the chosen agent action will be. For
example, given a user intent of a question, the action chosen
may be to give an answer, or to ask for clarification about the
question.

o Text Generation: Generate the actual text, or retrieve a
template to return to the user. For example, if the chosen agent
action is to “answer” a question about phone numbers, the text
returned is “The number is 571-599-8447.”

All three phases include an initialization step where the raw inputs
are vectorized into a format recognizable by the network, and an
inference step where the network processes the inputs to produce
a prediction. In total for dialogue modeling there are 3 network
phases with 2 steps (initialization and inferencing) which we map
into 6 FaaS microservices.

1.2 Contributions

Leveraging our NLP use case, we investigate the impact of factors
surrounding the performance of dialogue modeling implemented
using microservices deployed on the AWS Lambda FaaS
platform.

We investigate the impact of service composition on application
performance derived from Function-as-a-Service platforms.
Current best practices for FaaS service composition suggest
composing applications as fine-grained sets of fully decomposed
lightweight microservices. We investigate trade-offs between a
fully aggregated (switchboard), and fully disaggregated (service
isolation) service composition for our NLP use case.
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Architecture matters because of how serverless infrastructure is
created, reused, and ultimately deprecated after periods of
inactivity. To regain server capacity for other uses, cloud
providers automatically deprecate serverless infrastructure for
functions after long idle periods [15]. The recycling of ephemeral
server infrastructure on serverless platforms occurs as a result of
the freeze/thaw lifecycle [16]. For AWS Lambda functions, after
approximately 45-minutes of inactivity, original function runtime
containers and their host VMs are deprecated causing FaaS
endpoints to go cold (freeze). Consequently, future function calls
force initialization (thaw) of new infrastructure, adding latency to
service response times. In this paper, we investigate how the
service composition of our NLP application creates or mitigates
performance overhead from the freeze/thaw lifecycle of serverless
infrastructure.

We investigate how the adjustment of neural network weights
affects performance of our NLP application deployed on AWS
Lambda. Our investigation leverages experiments designed to
measure the trade-offs between different configurations.

2 Related Work

With the advent of FaaS platforms, developers and scientists alike
have been drawn to leverage their simplicity and elasticity to
enable rapid scaling of compute resources to improve application
performance. In [9], Lloyd et al. investigated the memory vs.
performance tradeoff for migrating a Java-based water supply
forecasting modeling application to AWS Lambda. They found
hosting costs could be cut in half at 512 MB vs 3008 MB by
sacrificing runtime. In [10], Kijak et al. adapted the Deadline-
Budget Workflow Scheduling (DBWS) algorithm to support
scheduling of scientific workflows on FaaS platforms. They
evaluated DBWS for FaaS by scheduling a small-scale 0.25-
degree Montage workflow with 43 tasks while experimenting with
memory reservation sizes and noted challenges scheduling with
heterogeneous resources.

Yan et al. describe the FaaS architecture for an NLP use case, a
chatbot deployed to the OpenWhisk FaaS platform in [11]. They
described how the serverless model helped improve the
extensibility of their chatbot while describing their approach to
instrument their microservice workflow with six abilities:
location-based weather reports, jokes, date, reminders, and a
simple music tutor. Ishakian et al. in [12] evaluated the
performance of network inferencing with large pre-trained MxNet
neural network models deployed on AWS Lambda. They
measured acceptable performance for inferencing with warm
serverless infrastructure, but noted significant overhead for
inferencing with cold function calls. Bhattacharjee et al. present a
distributed and scalable system that forecasts demand and
formulates an optimization problem to minimize the total cost of
hosting deep learning inferencing services [17]. Their approach
provides serverless inferencing by automatically managing
container infrastructure across cloud VMs in response to demand.
Feng et al. explored the use of FaaS platforms for training large
and small neural networks studying challenges involving the use
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of ephemeral stateless FaaS infrastructure with cold start latency
in [13]. They found that FaaS platforms could support
hyperparameter tuning for small neural networks as these
workloads fit within constraints and could leverage the elasticity
provided. Feng also proposed changes to the runtime design of
FaaS platforms to better enable future support of deep learning.
In this paper, we investigate the utility of FaaS platforms for
dialogue modeling as an NLP use case, while studying the
performance implications of service composition.

3 Comparison Studies

Each of the three processing stages of our NLP application (intent
tracking, policy management, and text generation) include an
initialization step, and an inference step that requires significant
processing time. Overall our application consists of six total steps
decomposed into six functions as described in table 1.

Function Title Description
ID
F1 Initialize Intent Text preprocessing and
Tracker create sentence
embedding
F2 Run Intent Tracker |Load the weights and
predict user intent
F3 Initialize Policy Create action embedding
Manager
F4 Run Policy Load the weights and
Manager predict agent action
F5 Initialize Text Create the generated
Generator output embeddings
F6 Run Text Load the weights and
Generator create final text output

Table 1. AWS Lambda Inference Functions

We implement these six inference steps as separate AWS Lambda
functions. We then performed two experiments:

1. We varied the type of service composition used to
initialize and run the network.

2.  We varied the size of the workload being placed on the
network.
3.1 Experimental Approach

A neural network can be viewed as a series of non-linear
transformations governed by the weights of the network where
each layer performs an affine transformation as shown in equation

(1.
Y=X"W+b (1)
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We anticipate a large time associated with the loading of the
weights. Concurrently, there will also be a variable component
depending on the size of the inputs, namely the Xo matrix
containing the number of chats to process.

Since there are three processes, there will be exactly three
networks to initialize. We are not training a model here, but
loading the network weights of a pre-trained model at each
initialization step to then run the inferences for each stage of the
dialogue pipeline. We note that the weights of the Text Generator
(F5/F6) are noticeably smaller by design. The size and complexity
of the networks differ dramatically, and we believe initializing the
Intent Tracker (F1/F2) will require noticeably more time than
initializing the Text Generator.

3.2 Dataset

As input data we leveraged the Multi-Domain Wizard-of-Oz 2.0
dataset (MultiwOZ _2.0), a fully labeled collection of human-
human written conversations spanning over multiple domains and
topics [6]. MultiWOZ 2.0 provided an existing dataset to provide
a set of sample workloads. Client requests were passed in as a
JSON file that the inference service parsed.

The MultiWOZ 2.0 dataset describes the communication between
a user trying to find a restaurant, and an agent recommending a
place to eat. Each sample of this dataset will be a sentence
regarding the user asking an agent about restaurants. For
example: “I would like to eat some Chinese food on the north
side.” We can easily partition the data to fit the size we want,
which is where the variable workload comes from. Note the
explicit goal of a neural network based dialogue agent is to
support arbitrary natural language requests within the given
domain (i.e. restaurant reservations), so if there is any need, an
exponentially large number of new inputs can be easily generated.

3.3 Design Tradeoffs

We investigate and study the performance and memory
implications of two different types of service compositions: a
switchboard architecture, and full service isolation.

1 service

. @ @y
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Switchboard
Figure 1: Switchboard Architecture -
Asynchronous Flow Control

In the switchboard composition, the client initiates the pipeline
by calling our fully composed NLP Lambda function that
aggregates together our six microservices using a single
deployment package. A “switchboard” routine intercepts the call,
and routes the client request internally. The advantage here is that
when warming cloud infrastructure to run F1, infrastructure for
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F2, F3, F4, F5, and F6 are also warmed subverting the freeze/thaw
lifecycle for the remaining 5-steps of our pipeline. Additionally,
this composition provides benefits for hosting requests from
concurrent users, as rather than requiring separate runtime
containers for each function (F1-F6), all pre-warmed runtime
containers can perform any function (F1-F6). This increases the
likelihood of FaaS runtime container reuse while minimizing
iterations of the freeze-thaw lifecycle. Figure 1 depicts our
pipeline, where first the intent tracker weights are initialized to
run the intent tracker, and then the result is passed on. The
weights for the policy manager are then loaded, and the policy
manager is run to find a suitable policy. After policy
identification, the text generator weights are loaded, and the text
generator is run to generate the final results for retrieval by the
client.

In contrast, our service isolation composition fully decomposes
the six inference steps as independent microservices which are
then deployed independently. The cloud provider must then
provision separate runtime containers to host each microservice.
Infrastructure for each service experiences the freeze/thaw
serverless lifecycle [8][9]. Ultimately, for both compositions, we
are interested in measuring the average runtime and throughput
for processing varying dataset sizes.
. F1

Figure 2: Full-Service Isolation Archltecture -
Synchronous Client-side Flow Control

In the service isolation architecture, each phase is decomposed as
two services: one initialization service, and one inference service,
enabling the initialization phases to run in parallel. This
composition has the effect of distributing infrastructure used to
host the functions across six separate FaaS function runtime
environments providing better resource isolation and load
balancing when initialization phases run in parallel for concurrent
workloads. However, as the number of concurrent queries
increases, our switchboard architecture gains the upper hand as
the added cost of initializing significantly more runtime containers
for service isolation becomes a bottleneck. Here, the switchboard
architecture recycles more serverless infrastructure minimizing
the cold start initialization time. With the switchboard
architecture, every pre-warmed runtime container can perform
any task in our pipeline increasing the chance for infrastructure
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reuse and retention before infrastructure is automatically
reclaimed due to inactivity [8][9].

3.4 Application Implementation

Our neural network model is uploaded onto AWS S3. We used the
AWS CLI to submit service requests to the Lambda functions.
Our Lambda functions collectively load our NLP model from
Amazon S3, provision it, and execute the model locally to
generate results. Concretely, provisioning the data and weights
from S3 for each of the three networks can cause a relatively large
delay.

All software dependencies such as NumPy and Scikit-Learn were
identified for inclusion in Lambda FaaS function deployment
packages. Dependencies were first identified using AWS EC2’s
Python Cloud9 IDE, and later downloaded to a local IDE for
further development. All dependencies were packaged as a zip
file and wuploaded for final deployment. Composing all
dependencies into a single zip file that fit within the maximum file
size constraints of AWS Lambda was critical to deploying our
NLP inferencing pipeline.

4 Experimental Results

We performed a series of experiments to investigate the effects of
memory reservation size while varying neural network weights to
evaluate implications on application performance for our two
different service compositions. Additionally, we also varied the
size of the input data to test 3, 10, 30, 100, 300, and 1000 samples.
Each test was performed 10 times, and we report average values
for metrics (e.g. runtime, memory utilization).

4.1 Runtime Performance

We composed all six of our functions together into the

switchboard architecture for deployment, and then varied the size

of input data to perform a series of experiments to measure

runtime. Here, all six initialization and inference calls are

performed by the same runtime container on AWS Lambda.
Switchboard Run-time
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Figure 3. Switchboard Architecture Runtime Performance of
FaaS Functions with Increasing Data Sizes
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As seen in Figure 3, running the inferences (running the neural
network) is the performance and memory bottleneck, and also
increasing the number of samples increases the runtime.
Performance ranged from 22.46 seconds to process 3 samples, to
92.31 seconds to process 1,000 samples while throughput
(samples/second) increased ~81x. The Coefficient of Variation
(CV), defined as the standard deviation divided by the mean,
provides a normalized comparison of performance variance across
test configurations. The coefficient of variation (CV) averaged
10.3% when processing 3, 10, and 30 samples, and just 6.7% for
processing 100, 300, and 1,000 samples. The Intent tracker
initialization time was slower than other initialization phases
because it includes the Lambda function cold start initialization
time. The during of other initialization phases are reduced because
the application was already in the warm-state when they execute

Service Isolation Run-time
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Figure 4. Service Isolation Architecture Runtime Performance
of FaaS Functions with Increasing Data Sizes

Our service isolation architecture divides the workload across six
different runtime containers on AWS Lambda. As seen in Figure
4, as the data is loaded in parallel in the pipeline for the
initialization phases, all have the same performance. In all cases,
the performance bottleneck is running the network, not
initialization, and the runtime increases with larger input data
sizes. Performance ranged from 14.19 seconds to process 3
samples, to 108.29 seconds to process 1,000 samples while
throughput (samples/second) increased ~43x. The coefficient of
variation (CV) averaged 12.6% when processing 3, 10, and 30
samples, and just 5.6% for processing 100, 300, and 1,000
samples.

From these observations, one challenge for deploying deep
learning NLP is the Lambda memory limitations for processing
large sample datasets.

4.2 Memory Utilization

AWS Lambda pricing is based on memory usage. The Free Tier
includes 1 million free requests per month and 400,000 GB-
seconds of compute time. Pricing above the Free Tier usage is
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based on memory reservation time, and the total number of
function calls, where time is rounded up to the nearest 100-
milliseconds interval. To evaluate performance, we completed a
series of experiments to determine the memory required to run our
application for both service compositions while changing the
input data size. Figure 5 and Figure 6 depict the memory
utilization of the switchboard architecture and service isolation
architectures. For both, increasing the number of input samples
increased the required memory to run our neural networks.
Benchmarking actual application memory utilization helps
identify the minimum required memory reservation size to
successfully execute the functions on AWS Lambda without error.

Switchboard Memory Limits
-Runlt -RunPM - RunTg
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— 1365 ¥/
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Figure 5. Switchboard Architecture Memory Utilization

Service Isolation Memory Limits
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Figure 6. Service Isolation Architecture Memory Utilization

Both architectures consumed more memory when the number of
samples increased. Surprisingly, memory consumption for
function executions using the switchboard architecture grew less
rapidly as the number of samples increased. As the serverless
infrastructure used to invoke functions experienced more reuse
with the switchboard architecture, memory caches may have been
in a more favorable state supporting memory savings.

4.3 Performance Comparison

We depict the runtime performance comparison of our service
compositions in Figure 7. The service isolation architecture is
shown to perform more efficiently than the switchboard when the
size of the input data is relatively small, but as the input data size
grows, the switchboard outperforms the service isolation
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architecture. The service isolation architecture runtime
performance normalized to switchboard performance was 63.2%,
73%, 84%, 91.5%, 94.6%, and 117.3% for 3, 10, 30, 100, 300,
750 and 1,000 sample tests respectively. As you while the number
of samples is less than 400, service isolation architecture has a
better performance and lower runtime but as the number of
samples goes above 400, switchboard architecture will perform
better and has lower runtime comparing to service isolation
architecture.

Service Isolation VS Switchboard end to end Run-time

= Service Isolation = Switchboard
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Figure 7. Runtime Performance of Service Isolation and
Switchboard Architectures

5 Conclusion

In this paper, we have described the runtime performance and
memory limitations of an NLP (Natural Language Processing)
application using AWS Lambda using two different service
compositions: a switchboard architecture, and a service isolation
architecture. By examining memory utilization of networking
inferencing, we determined that the main challenge of deploying
an NLP application over AWS Lambda was not library size, but
runtime memory limitations. We have shown that memory limits
increase steadily while increasing the input data size. When
comparing runtime performance, we observed that the
switchboard architecture minimized cold starts, and performed
more efficiently over larger input dataset sizes. With 1,000
samples, the end to end runtime of our NLP pipeline of our
switchboard architecture was 14.75% faster than our service
isolation architecture. ~This improvement produced a 17.3%
increase in throughput. In contrast, when inferencing just 3
samples, the service isolation architecture was faster (36.96%),
while yielding higher throughput (58%).

We used different pre-trained network weights to initialize and
run inference in the same fashion as neural networks, and
observed how varying the network weights increases the runtime
of both service compositions. Additionally, we experimented
with varying the dataset sizes to evaluate our pipeline’s
throughput in samples/second. Ultimately, we found that the
switchboard composition helped improve runtime and throughput
for neural network inferencing, though inferencing remains
compute intensive regardless of the microservice composition
used.
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