
Function-as-a-Service Application Service Composition:

Implications for a Natural Language Processing Application

Mohammadbagher Fotouhi
 School of Engineering

and Technology

 University of Washington

 mfotouhi@uw.edu

Derek Chen
School of Engineering

and Technology

 University of Washington

dchen14@uw.edu

Wes J. Lloyd
 School of Engineering

and Technology

 University of Washington

 wlloyd@uw.edu

ABSTRACT

Serverless computing platforms provide Function-as-a-Service

(FaaS) to end users for hosting individual functions known as

microservices. In this paper, we describe the deployment of a

Natural Language Processing (NLP) application using AWS

Lambda. We investigate and study the performance and memory

implications of two alternate service compositions. First, we

evaluate a switchboard architecture, where a single Lambda

deployment package aggregates all of the NLP application

functions together into a single package. Second, we consider a

service isolation architecture where each NLP function is

deployed as a separate FaaS function decomposing the application

to run across separate runtime containers. We compared the

average runtime and processing throughput of these compositions

using different pre-trained network weights to initialize our neural

networks to perform inference. Additionally, we varied the

workload dataset sizes to evaluate implications of inferencing

throughput for our NLP application deployed to a FaaS platform.

We found our switchboard composition, that shares FaaS runtime

containers for all application tasks, produced a 14.75% runtime

performance improvement, and also a 17.3% improvement in

NLP processing throughput (samples/second). These results

demonstrate the potential for careful application service

compositions to provide notable performance improvements and

ultimately cost savings for application deployments to serverless

FaaS platforms.

CCS CONCEPTS

• Computer systems organizations → Cloud computing;

• Software and its engineering → Software design tradeoffs;

KEYWORDS

Serverless, Cloud Computing, FaaS, Software architecture,

Natural Language Processing

ACM Reference format:

Mohammadbagher Fotouhi, Derek Chen and Wes Lloyd. 2019. Function-

as-a-Service Application Service Composition: Implications for a Natural

Language Processing Application. In Proceedings of ACM WoSC’2019

conference (WoSC’19). ACM, Davis, CA, USA, 6 pages.

https://doi.org/10.1145/3366623.3368141

1 Introduction

Function-as-a-Service (FaaS) platforms have recently emerged as

a new cloud computing delivery model that provides a compelling

approach for hosting applications bringing us closer to the idea of

instantaneous scalability [2-4]. As a leading provider of FaaS,

AWS Lambda has grown in popularity based on its ability to

automatically and seamlessly execute code based on user events

while managing related resources [1][7]. Similarly, deep learning

models have risen to the forefront of computer science by

achieving state-of-the-art performance for many machine-learning

problems, while experiencing exponential growth in the field of

natural language processing (NLP). Recently, serverless

platforms have been studied for their potential to host machine

learning inferencing services [12] [17], and even to train neural

networks [13].

 In this paper, we investigate microservice composition for hosting

an NLP application on the AWS Lambda FaaS platforms. We

describe our application implementation in Python, and

subsequent deployment to AWS Lambda. We leverage our project

as a case study to investigate service composition where the goal

is to contrast the performance and memory implications of

alternate microservice compositions for our specific application

and datasets. Our NLP application has six separate services that

perform a series of operations on chat dialogues.

Traditional software engineering best practices encourage

developers to minimize coupling while maximizing cohesion

among classes or modules of a system. As we enter the era of

serverless software, where code composition directly impacts

creation and maintenance of ephemeral server infrastructure

impacting underlying performance and hosting costs, traditional

best practices require reevaluation. The evaluation problem is

compounded by the complexity of determining optimal software

compositions. Bell's number represents the number of partitions

of a set (k) consisting of (n) members [14]. If considering a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

WOSC '19, December 9–13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7038-7/19/12…$15.00

WoSC5 19, Dec, 2019, UC Davis, CA USA M.Fotouhi, D.Chen, W.Lloyd

2

serverless application given a set of (n) microservices, then the

total number of possible microservice compositions is Bell's

number (k). Bell’s number grows rapidly for (n) microservices

(n=3, 4, 5, 6, 7, 8) to produce k compositions (k=5, 15, 52, 203,

877, 4140). This complexity leads developers to frequently make

ad hoc deployment decisions due to the difficultly in inferring

performance implications given an explosive number of potential

service compositions requiring profiling. In these scenarios, brute

force testing rapidly becomes intractable from both a time and

cost perspective.

1.1 Background

 Natural language processing (NLP) is an area of research that

explores how computers can be used to understand and

manipulate natural language text or speech to perform useful

tasks. One particular task within NLP is dialogue modeling, which

is usually divided into three components. Consider a scenario

where a user is talking to an agent. The agent involved in

conversation takes in the raw text as input, and then executes the

following three workflow phases:

● Intent Tracking: determines what the user wants. For example,

if the user has a question about a subject, or a request to

perform a task.

● Policy Management: takes in the user intent, and based on the

policy, determines what the chosen agent action will be. For

example, given a user intent of a question, the action chosen

may be to give an answer, or to ask for clarification about the

question.

● Text Generation: Generate the actual text, or retrieve a

template to return to the user. For example, if the chosen agent

action is to “answer” a question about phone numbers, the text

returned is “The number is 571-599-8447.”

 All three phases include an initialization step where the raw inputs

are vectorized into a format recognizable by the network, and an

inference step where the network processes the inputs to produce

a prediction. In total for dialogue modeling there are 3 network

phases with 2 steps (initialization and inferencing) which we map

into 6 FaaS microservices.

1.2 Contributions

Leveraging our NLP use case, we investigate the impact of factors

surrounding the performance of dialogue modeling implemented

using microservices deployed on the AWS Lambda FaaS

platform.

We investigate the impact of service composition on application

performance derived from Function-as-a-Service platforms.

Current best practices for FaaS service composition suggest

composing applications as fine-grained sets of fully decomposed

lightweight microservices. We investigate trade-offs between a

fully aggregated (switchboard), and fully disaggregated (service

isolation) service composition for our NLP use case.

Architecture matters because of how serverless infrastructure is

created, reused, and ultimately deprecated after periods of

inactivity. To regain server capacity for other uses, cloud

providers automatically deprecate serverless infrastructure for

functions after long idle periods [15]. The recycling of ephemeral

server infrastructure on serverless platforms occurs as a result of

the freeze/thaw lifecycle [16]. For AWS Lambda functions, after

approximately 45-minutes of inactivity, original function runtime

containers and their host VMs are deprecated causing FaaS

endpoints to go cold (freeze). Consequently, future function calls

force initialization (thaw) of new infrastructure, adding latency to

service response times. In this paper, we investigate how the

service composition of our NLP application creates or mitigates

performance overhead from the freeze/thaw lifecycle of serverless

infrastructure.

We investigate how the adjustment of neural network weights

affects performance of our NLP application deployed on AWS

Lambda. Our investigation leverages experiments designed to

measure the trade-offs between different configurations.

2 Related Work

With the advent of FaaS platforms, developers and scientists alike

have been drawn to leverage their simplicity and elasticity to

enable rapid scaling of compute resources to improve application

performance. In [9], Lloyd et al. investigated the memory vs.

performance tradeoff for migrating a Java-based water supply

forecasting modeling application to AWS Lambda. They found

hosting costs could be cut in half at 512 MB vs 3008 MB by

sacrificing runtime. In [10], Kijak et al. adapted the Deadline-

Budget Workflow Scheduling (DBWS) algorithm to support

scheduling of scientific workflows on FaaS platforms. They

evaluated DBWS for FaaS by scheduling a small-scale 0.25-

degree Montage workflow with 43 tasks while experimenting with

memory reservation sizes and noted challenges scheduling with

heterogeneous resources.

Yan et al. describe the FaaS architecture for an NLP use case, a

chatbot deployed to the OpenWhisk FaaS platform in [11]. They

described how the serverless model helped improve the

extensibility of their chatbot while describing their approach to

instrument their microservice workflow with six abilities:

location-based weather reports, jokes, date, reminders, and a

simple music tutor. Ishakian et al. in [12] evaluated the

performance of network inferencing with large pre-trained MxNet

neural network models deployed on AWS Lambda. They

measured acceptable performance for inferencing with warm

serverless infrastructure, but noted significant overhead for

inferencing with cold function calls. Bhattacharjee et al. present a

distributed and scalable system that forecasts demand and

formulates an optimization problem to minimize the total cost of

hosting deep learning inferencing services [17]. Their approach

provides serverless inferencing by automatically managing

container infrastructure across cloud VMs in response to demand.

Feng et al. explored the use of FaaS platforms for training large

and small neural networks studying challenges involving the use

Function-as-a-Service Application Service Composition:

Implications for a Natural Language Processing Application
WoSC5 2019, Dec, 2019, UC Davis, CA USA

3

of ephemeral stateless FaaS infrastructure with cold start latency

in [13]. They found that FaaS platforms could support

hyperparameter tuning for small neural networks as these

workloads fit within constraints and could leverage the elasticity

provided. Feng also proposed changes to the runtime design of

FaaS platforms to better enable future support of deep learning.

In this paper, we investigate the utility of FaaS platforms for

dialogue modeling as an NLP use case, while studying the

performance implications of service composition.

3 Comparison Studies

Each of the three processing stages of our NLP application (intent

tracking, policy management, and text generation) include an

initialization step, and an inference step that requires significant

processing time. Overall our application consists of six total steps

decomposed into six functions as described in table 1.

 Function

ID

Title Description

F1 Initialize Intent

Tracker

Text preprocessing and

create sentence

embedding

F2 Run Intent Tracker Load the weights and

predict user intent

F3 Initialize Policy

Manager

Create action embedding

F4 Run Policy

Manager

Load the weights and

predict agent action

F5 Initialize Text

Generator

Create the generated

output embeddings

F6 Run Text

Generator

Load the weights and

create final text output

Table 1. AWS Lambda Inference Functions

We implement these six inference steps as separate AWS Lambda

functions. We then performed two experiments:

1. We varied the type of service composition used to

initialize and run the network.

2. We varied the size of the workload being placed on the

network.

3.1 Experimental Approach

A neural network can be viewed as a series of non-linear

transformations governed by the weights of the network where

each layer performs an affine transformation as shown in equation

(1).

 Y = XTW + b (1)

We anticipate a large time associated with the loading of the

weights. Concurrently, there will also be a variable component

depending on the size of the inputs, namely the X0 matrix

containing the number of chats to process.

Since there are three processes, there will be exactly three

networks to initialize. We are not training a model here, but

loading the network weights of a pre-trained model at each

initialization step to then run the inferences for each stage of the

dialogue pipeline. We note that the weights of the Text Generator

(F5/F6) are noticeably smaller by design. The size and complexity

of the networks differ dramatically, and we believe initializing the

Intent Tracker (F1/F2) will require noticeably more time than

initializing the Text Generator.

3.2 Dataset

As input data we leveraged the Multi-Domain Wizard-of-Oz 2.0

dataset (MultiWOZ_2.0), a fully labeled collection of human-

human written conversations spanning over multiple domains and

topics [6]. MultiWOZ 2.0 provided an existing dataset to provide

a set of sample workloads. Client requests were passed in as a

JSON file that the inference service parsed.

The MultiWOZ 2.0 dataset describes the communication between

a user trying to find a restaurant, and an agent recommending a

place to eat. Each sample of this dataset will be a sentence

regarding the user asking an agent about restaurants. For

example: “I would like to eat some Chinese food on the north

side.” We can easily partition the data to fit the size we want,

which is where the variable workload comes from. Note the

explicit goal of a neural network based dialogue agent is to

support arbitrary natural language requests within the given

domain (i.e. restaurant reservations), so if there is any need, an

exponentially large number of new inputs can be easily generated.

3.3 Design Tradeoffs

We investigate and study the performance and memory

implications of two different types of service compositions: a

switchboard architecture, and full service isolation.

Figure 1: Switchboard Architecture -

 Asynchronous Flow Control

In the switchboard composition, the client initiates the pipeline

by calling our fully composed NLP Lambda function that

aggregates together our six microservices using a single

deployment package. A “switchboard” routine intercepts the call,

and routes the client request internally. The advantage here is that

when warming cloud infrastructure to run F1, infrastructure for

WoSC5 19, Dec, 2019, UC Davis, CA USA M.Fotouhi, D.Chen, W.Lloyd

4

F2, F3, F4, F5, and F6 are also warmed subverting the freeze/thaw

lifecycle for the remaining 5-steps of our pipeline. Additionally,

this composition provides benefits for hosting requests from

concurrent users, as rather than requiring separate runtime

containers for each function (F1-F6), all pre-warmed runtime

containers can perform any function (F1-F6). This increases the

likelihood of FaaS runtime container reuse while minimizing

iterations of the freeze-thaw lifecycle. Figure 1 depicts our

pipeline, where first the intent tracker weights are initialized to

run the intent tracker, and then the result is passed on. The

weights for the policy manager are then loaded, and the policy

manager is run to find a suitable policy. After policy

identification, the text generator weights are loaded, and the text

generator is run to generate the final results for retrieval by the

client.

In contrast, our service isolation composition fully decomposes

the six inference steps as independent microservices which are

then deployed independently. The cloud provider must then

provision separate runtime containers to host each microservice.

Infrastructure for each service experiences the freeze/thaw

serverless lifecycle [8][9]. Ultimately, for both compositions, we

are interested in measuring the average runtime and throughput

for processing varying dataset sizes.

Figure 2: Full-Service Isolation Architecture -

Synchronous Client-side Flow Control

In the service isolation architecture, each phase is decomposed as

two services: one initialization service, and one inference service,

enabling the initialization phases to run in parallel. This

composition has the effect of distributing infrastructure used to

host the functions across six separate FaaS function runtime

environments providing better resource isolation and load

balancing when initialization phases run in parallel for concurrent

workloads. However, as the number of concurrent queries

increases, our switchboard architecture gains the upper hand as

the added cost of initializing significantly more runtime containers

for service isolation becomes a bottleneck. Here, the switchboard

architecture recycles more serverless infrastructure minimizing

the cold start initialization time. With the switchboard

architecture, every pre-warmed runtime container can perform

any task in our pipeline increasing the chance for infrastructure

reuse and retention before infrastructure is automatically

reclaimed due to inactivity [8][9].

3.4 Application Implementation

Our neural network model is uploaded onto AWS S3. We used the

AWS CLI to submit service requests to the Lambda functions.

Our Lambda functions collectively load our NLP model from

Amazon S3, provision it, and execute the model locally to

generate results. Concretely, provisioning the data and weights

from S3 for each of the three networks can cause a relatively large

delay.

All software dependencies such as NumPy and Scikit-Learn were

identified for inclusion in Lambda FaaS function deployment

packages. Dependencies were first identified using AWS EC2’s

Python Cloud9 IDE, and later downloaded to a local IDE for

further development. All dependencies were packaged as a zip

file and uploaded for final deployment. Composing all

dependencies into a single zip file that fit within the maximum file

size constraints of AWS Lambda was critical to deploying our

NLP inferencing pipeline.

4 Experimental Results

We performed a series of experiments to investigate the effects of

memory reservation size while varying neural network weights to

evaluate implications on application performance for our two

different service compositions. Additionally, we also varied the

size of the input data to test 3, 10, 30, 100, 300, and 1000 samples.

Each test was performed 10 times, and we report average values

for metrics (e.g. runtime, memory utilization).

4.1 Runtime Performance

We composed all six of our functions together into the

switchboard architecture for deployment, and then varied the size

of input data to perform a series of experiments to measure

runtime. Here, all six initialization and inference calls are

performed by the same runtime container on AWS Lambda.

Figure 3. Switchboard Architecture Runtime Performance of

FaaS Functions with Increasing Data Sizes

Function-as-a-Service Application Service Composition:

Implications for a Natural Language Processing Application
WoSC5 2019, Dec, 2019, UC Davis, CA USA

5

As seen in Figure 3, running the inferences (running the neural

network) is the performance and memory bottleneck, and also

increasing the number of samples increases the runtime.

Performance ranged from 22.46 seconds to process 3 samples, to

92.31 seconds to process 1,000 samples while throughput

(samples/second) increased ~81x. The Coefficient of Variation

(CV), defined as the standard deviation divided by the mean,

provides a normalized comparison of performance variance across

test configurations. The coefficient of variation (CV) averaged

10.3% when processing 3, 10, and 30 samples, and just 6.7% for

processing 100, 300, and 1,000 samples. The Intent tracker

initialization time was slower than other initialization phases

because it includes the Lambda function cold start initialization

time. The during of other initialization phases are reduced because

the application was already in the warm-state when they execute

Figure 4. Service Isolation Architecture Runtime Performance

of FaaS Functions with Increasing Data Sizes

Our service isolation architecture divides the workload across six

different runtime containers on AWS Lambda. As seen in Figure

4, as the data is loaded in parallel in the pipeline for the

initialization phases, all have the same performance. In all cases,

the performance bottleneck is running the network, not

initialization, and the runtime increases with larger input data

sizes. Performance ranged from 14.19 seconds to process 3

samples, to 108.29 seconds to process 1,000 samples while

throughput (samples/second) increased ~43x. The coefficient of

variation (CV) averaged 12.6% when processing 3, 10, and 30

samples, and just 5.6% for processing 100, 300, and 1,000

samples.

From these observations, one challenge for deploying deep

learning NLP is the Lambda memory limitations for processing

large sample datasets.

4.2 Memory Utilization

AWS Lambda pricing is based on memory usage. The Free Tier

includes 1 million free requests per month and 400,000 GB-

seconds of compute time. Pricing above the Free Tier usage is

based on memory reservation time, and the total number of

function calls, where time is rounded up to the nearest 100-

milliseconds interval. To evaluate performance, we completed a

series of experiments to determine the memory required to run our

application for both service compositions while changing the

input data size. Figure 5 and Figure 6 depict the memory

utilization of the switchboard architecture and service isolation

architectures. For both, increasing the number of input samples

increased the required memory to run our neural networks.

Benchmarking actual application memory utilization helps

identify the minimum required memory reservation size to

successfully execute the functions on AWS Lambda without error.

Figure 5. Switchboard Architecture Memory Utilization

Figure 6. Service Isolation Architecture Memory Utilization

Both architectures consumed more memory when the number of

samples increased. Surprisingly, memory consumption for

function executions using the switchboard architecture grew less

rapidly as the number of samples increased. As the serverless

infrastructure used to invoke functions experienced more reuse

with the switchboard architecture, memory caches may have been

in a more favorable state supporting memory savings.

4.3 Performance Comparison

We depict the runtime performance comparison of our service

compositions in Figure 7. The service isolation architecture is

shown to perform more efficiently than the switchboard when the

size of the input data is relatively small, but as the input data size

grows, the switchboard outperforms the service isolation

WoSC5 19, Dec, 2019, UC Davis, CA USA M.Fotouhi, D.Chen, W.Lloyd

6

architecture. The service isolation architecture runtime

performance normalized to switchboard performance was 63.2%,

73%, 84%, 91.5%, 94.6%, and 117.3% for 3, 10, 30, 100, 300,

750 and 1,000 sample tests respectively. As you while the number

of samples is less than 400, service isolation architecture has a

better performance and lower runtime but as the number of

samples goes above 400, switchboard architecture will perform

better and has lower runtime comparing to service isolation

architecture.

Figure 7. Runtime Performance of Service Isolation and

Switchboard Architectures

5 Conclusion

In this paper, we have described the runtime performance and

memory limitations of an NLP (Natural Language Processing)

application using AWS Lambda using two different service

compositions: a switchboard architecture, and a service isolation

architecture. By examining memory utilization of networking

inferencing, we determined that the main challenge of deploying

an NLP application over AWS Lambda was not library size, but

runtime memory limitations. We have shown that memory limits

increase steadily while increasing the input data size. When

comparing runtime performance, we observed that the

switchboard architecture minimized cold starts, and performed

more efficiently over larger input dataset sizes. With 1,000

samples, the end to end runtime of our NLP pipeline of our

switchboard architecture was 14.75% faster than our service

isolation architecture. This improvement produced a 17.3%

increase in throughput. In contrast, when inferencing just 3

samples, the service isolation architecture was faster (36.96%),

while yielding higher throughput (58%).

We used different pre-trained network weights to initialize and

run inference in the same fashion as neural networks, and

observed how varying the network weights increases the runtime

of both service compositions. Additionally, we experimented

with varying the dataset sizes to evaluate our pipeline’s

throughput in samples/second. Ultimately, we found that the

switchboard composition helped improve runtime and throughput

for neural network inferencing, though inferencing remains

compute intensive regardless of the microservice composition

used.

ACKNOWLEDGEMENTS

This research is supported by the US National Science

Foundation’s Advanced Cyberinfrastructure Research Program

(OAC-1849970), the NIH grant R01GM126019, and by the AWS

Cloud Credits for Research program.

REFERENCES

[1] AWS Lambda – Serverless Compute – Amazon Web Services,
https://aws.amazon.com/lambda/

[2] Boyd-Wickizer S., Clements A.T., Mao Y., Pesterev A., Kaashoek
M.F., Morris R.T., Zeldovich N., An Analysis of Linux Scalability to
Many Cores. In Proc. of OSDI ‘10, Oct 2010, v10, n13, pp. 86-93.

[3] Herbst, N.R., Kounev, S., Weber, A. and Groenda, H., BUNGEE: an
elasticity benchmark for self-adaptive IaaS cloud environments. In
Proceedings of the 10th IEEE International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, May 2015,
pp. 46-56.

[4] Gong, Z., Gu, X. and Wilkes, J., Press: Predictive elastic resource
scaling for cloud systems. In Proceedings of the 2010 IEEE
International Conference on Network and Service Management, Oct
2010, pp. 9-16.

[5] ConvNetJS: Deep Learning in your browser,
https://cs.stanford.edu/people/karpathy/convnetjs/

[6] MultiWOZ Corpus – Dialog Systems Group,
http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/

[7] Mathew S., Varia J., Overview of Amazon Web Services, Amazon
Whitepapers., Nov. 2014.

[8] Lloyd W., Ramesh S., Chinthalapati S., Ly L., Pallickara S.,
Serverless computing: An investigation of factors influencing
microservice performance. In Proceedings of 2018 IEEE Int.
Conference on Cloud Engineering (IC2E 2018), April 2018, pp. 159-
169.

[9] Lloyd W., Vu M., Zhang B., David O., Leavesley G., Improving
Application Migration to Serverless Computing Platforms: Latency
Mitigation with Keep-Alive Workloads. In Proc. of the IEEE/ACM
Int. Conference on Utility and Cloud Computing, Workshop on
Serverless Computing (WOSC 2018), Dec. 2018, pp. 195-200.

[10] Kijak J., Martyna P., Pawlik M., Balis B., Malawski M., Challenges
for Scheduling Scientific Workflows on Cloud Functions. In Proc. of
the Int. Conf on Cloud Computing (CLOUD 2018) July 2018, pp.
460-467.

[11] Yan M., Castro P., Cheng P., Ishakian V., Building a chatbot with
serverless computing. In Proc. of the 1st Int. Workshop on Mashups
of Things and APIs 2016, Dec 2016, 5p.

[12] Ishakian V., Muthusamy V., Slominski A., Serving deep learning
models in a serverless platform, In Proceedings of the IEEE Int.
Conf. on Cloud Engineering (IC2E 2018), April 2018, pp. 257-262.

[13] Feng L., Kudva P., Da Silva D., Hu J., Exploring serverless
computing for neural network training. In Proc. of the IEEE 11th Int.
Conf. on Cloud Computing (CLOUD 2018) July 2018, pp. 334-341.

[14] Chen, W., Deng, E., Du, R., Stanley, R., Yan, C., Crossing and
Nesting of Matching and Partitions, In Transactions of the American
Mathematical Society, vol. 359, No. 4, April 2007, pp. 1555-1575.

[15] Adzic G., Chatley R., Serverless computing: economic and
architectural impact. In Proc. of the 11th Mtg on Foundations of
Software Engr Aug 2017, pp. 884-889.

[16] Pérez A., Moltó G., Caballer M., Calatrava A., Serverless computing
for container-based architectures. Future Generation Computer
Systems. 2018 June;83:50-9.

[17] Bhattacharjee, A., Chhokra, A. Kang, A., Sun, H., Gokhale A., and
Karsai, G., BARISTA: Efficient and Scalable Serverless Serving
System for Deep Learning Prediction Services, in Proceedings of the
2019 IEEE International Conference on Cloud Engineering (IC2E
2019), Prague, Czech Republic, 2019, pp. 23-33.

https://aws.amazon.com/lambda/
https://cs.stanford.edu/people/karpathy/convnetjs/
http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/

