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ABSTRACT  

Serverless computing platforms provide Function-as-a-Service 

(FaaS) to end users for hosting individual functions known as 

microservices.  In this paper, we describe the deployment of a 

Natural Language Processing (NLP) application using AWS 

Lambda. We investigate and study the performance and memory 

implications of two alternate service compositions. First, we 

evaluate a switchboard architecture, where a single Lambda 

deployment package aggregates all of the NLP application 

functions together into a single package. Second, we consider a 

service isolation architecture where each NLP function is 

deployed as a separate FaaS function decomposing the application 

to run across separate runtime containers. We compared the 

average runtime and processing throughput of these compositions 

using different pre-trained network weights to initialize our neural 

networks to perform inference. Additionally, we varied the 

workload dataset sizes to evaluate implications of inferencing 

throughput for our NLP application deployed to a FaaS platform.  

We found our switchboard composition, that shares FaaS runtime 

containers for all application tasks, produced a 14.75% runtime 

performance improvement, and also a 17.3% improvement in 

NLP processing throughput (samples/second).  These results 

demonstrate the potential for careful application service 

compositions to provide notable performance improvements and 

ultimately cost savings for application deployments to serverless 

FaaS platforms.  
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1 Introduction 

Function-as-a-Service (FaaS) platforms have recently emerged as 

a new cloud computing delivery model that provides a compelling 

approach for hosting applications bringing us closer to the idea of 

instantaneous scalability [2-4].  As a leading provider of FaaS, 

AWS Lambda has grown in popularity based on its ability to 

automatically and seamlessly execute code based on user events 

while managing related resources [1][7]. Similarly, deep learning 

models have risen to the forefront of computer science by 

achieving state-of-the-art performance for many machine-learning 

problems, while experiencing exponential growth in the field of 

natural language processing (NLP).  Recently, serverless 

platforms have been studied for their potential to host machine 

learning inferencing services [12] [17], and even to train neural 

networks [13]. 

 In this paper, we investigate microservice composition for hosting 

an NLP application on the AWS Lambda FaaS platforms.  We 

describe our application implementation in Python, and 

subsequent deployment to AWS Lambda. We leverage our project 

as a case study to investigate service composition where the goal 

is to contrast the performance and memory implications of 

alternate microservice compositions for our specific application 

and datasets.  Our NLP application has six separate services that 

perform a series of operations on chat dialogues.   

Traditional software engineering best practices encourage 

developers to minimize coupling while maximizing cohesion 

among classes or modules of a system.  As we enter the era of 

serverless software, where code composition directly impacts 

creation and maintenance of ephemeral server infrastructure 

impacting underlying performance and hosting costs, traditional 

best practices require reevaluation.  The evaluation problem is 

compounded by the complexity of determining optimal software 

compositions.  Bell's number represents the number of partitions 

of a set (k) consisting of (n) members [14]. If considering a 
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serverless application given a set of (n) microservices, then the 

total number of possible microservice compositions is Bell's 

number (k).  Bell’s number grows rapidly for (n) microservices 

(n=3, 4, 5, 6, 7, 8) to produce k compositions (k=5, 15, 52, 203, 

877, 4140).  This complexity leads developers to frequently make 

ad hoc deployment decisions due to the difficultly in inferring 

performance implications given an explosive number of potential 

service compositions requiring profiling.  In these scenarios, brute 

force testing rapidly becomes intractable from both a time and 

cost perspective. 

1.1 Background 

 Natural language processing (NLP) is an area of research that 

explores how computers can be used to understand and 

manipulate natural language text or speech to perform useful 

tasks. One particular task within NLP is dialogue modeling, which 

is usually divided into three components.  Consider a scenario 

where a user is talking to an agent. The agent involved in 

conversation takes in the raw text as input, and then executes the 

following three workflow phases: 

● Intent Tracking: determines what the user wants. For example, 

if the user has a question about a subject, or a request to 

perform a task. 

● Policy Management: takes in the user intent, and based on the 

policy, determines what the chosen agent action will be. For 

example, given a user intent of a question, the action chosen 

may be to give an answer, or to ask for clarification about the 

question. 

● Text Generation: Generate the actual text, or retrieve a 

template to return to the user. For example, if the chosen agent 

action is to “answer” a question about phone numbers, the text 

returned is “The number is 571-599-8447.” 

 All three phases include an initialization step where the raw inputs 

are vectorized into a format recognizable by the network, and an 

inference step where the network processes the inputs to produce 

a prediction.  In total for dialogue modeling there are 3 network 

phases with 2 steps (initialization and inferencing) which we map 

into 6 FaaS microservices. 

1.2 Contributions  

Leveraging our NLP use case, we investigate the impact of factors 

surrounding the performance of dialogue modeling implemented 

using microservices deployed on the AWS Lambda FaaS 

platform.  

We investigate the impact of service composition on application 

performance derived from Function-as-a-Service platforms.  

Current best practices for FaaS service composition suggest 

composing applications as fine-grained sets of fully decomposed 

lightweight microservices.  We investigate trade-offs between a 

fully aggregated (switchboard), and fully disaggregated (service 

isolation) service composition for our NLP use case. 

Architecture matters because of how serverless infrastructure is 

created, reused, and ultimately deprecated after periods of 

inactivity.  To regain server capacity for other uses, cloud 

providers automatically deprecate serverless infrastructure for 

functions after long idle periods [15]. The recycling of ephemeral 

server infrastructure on serverless platforms occurs as a result of 

the freeze/thaw lifecycle [16]. For AWS Lambda functions, after 

approximately 45-minutes of inactivity, original function runtime 

containers and their host VMs are deprecated causing FaaS 

endpoints to go cold (freeze). Consequently, future function calls 

force initialization (thaw) of new infrastructure, adding latency to 

service response times. In this paper, we investigate how the 

service composition of our NLP application creates or mitigates 

performance overhead from the freeze/thaw lifecycle of serverless 

infrastructure. 

We investigate how the adjustment of neural network weights 

affects performance of our NLP application deployed on AWS 

Lambda. Our investigation leverages experiments designed to 

measure the trade-offs between different configurations. 

2 Related Work 

With the advent of FaaS platforms, developers and scientists alike 

have been drawn to leverage their simplicity and elasticity to 

enable rapid scaling of compute resources to improve application 

performance.  In [9], Lloyd et al. investigated the memory vs. 

performance tradeoff for migrating a Java-based water supply 

forecasting modeling application to AWS Lambda.  They found 

hosting costs could be cut in half at 512 MB vs 3008 MB by 

sacrificing runtime. In [10], Kijak et al. adapted the Deadline-

Budget Workflow Scheduling (DBWS) algorithm to support 

scheduling of scientific workflows on FaaS platforms.  They 

evaluated DBWS for FaaS by scheduling a small-scale 0.25-

degree Montage workflow with 43 tasks while experimenting with 

memory reservation sizes and noted challenges scheduling with 

heterogeneous resources.    

Yan et al. describe the FaaS architecture for an NLP use case, a 

chatbot deployed to the OpenWhisk FaaS platform in [11]. They 

described how the serverless model helped improve the 

extensibility of their chatbot while describing their approach to 

instrument their microservice workflow with six abilities: 

location-based weather reports, jokes, date, reminders, and a 

simple music tutor.  Ishakian et al. in [12] evaluated the 

performance of network inferencing with large pre-trained MxNet 

neural network models deployed on AWS Lambda. They 

measured acceptable performance for inferencing with warm 

serverless infrastructure, but noted significant overhead for 

inferencing with cold function calls.  Bhattacharjee et al. present a 

distributed and scalable system that forecasts demand and 

formulates an optimization problem to minimize the total cost of 

hosting deep learning inferencing services [17].  Their approach 

provides serverless inferencing by automatically managing 

container infrastructure across cloud VMs in response to demand.  

Feng et al. explored the use of FaaS platforms for training large 

and small neural networks studying challenges involving the use 
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of ephemeral stateless FaaS infrastructure with cold start latency 

in [13].  They found that FaaS platforms could support 

hyperparameter tuning for small neural networks as these 

workloads fit within constraints and could leverage the elasticity 

provided. Feng also proposed changes to the runtime design of 

FaaS platforms to better enable future support of deep learning.  

In this paper, we investigate the utility of FaaS platforms for 

dialogue modeling as an NLP use case, while studying the 

performance implications of service composition. 

3 Comparison Studies 

Each of the three processing stages of our NLP application (intent 

tracking, policy management, and text generation) include an 

initialization step, and an inference step that requires significant 

processing time.  Overall our application consists of six total steps 

decomposed into six functions as described in table 1. 

 

 Function 

ID 

Title Description 

F1 Initialize Intent 

Tracker 

Text preprocessing and 

create sentence 

embedding 

F2 Run Intent Tracker Load the weights and 

predict user intent 

F3 Initialize Policy 

Manager  

Create action embedding 

F4 Run Policy 

Manager 

Load the weights and 

predict agent action 

F5 Initialize Text 

Generator 

Create the generated 

output embeddings 

F6 Run Text 

Generator 

Load the weights and 

create final text output 

Table 1. AWS Lambda Inference Functions 

 

We implement these six inference steps as separate AWS Lambda 

functions.  We then performed two experiments: 

1. We varied the type of service composition used to 

initialize and run the network. 

2. We varied the size of the workload being placed on the 

network.  

3.1 Experimental Approach 

A neural network can be viewed as a series of non-linear 

transformations governed by the weights of the network where 

each layer performs an affine transformation as shown in equation 

(1). 

                            Y = XTW + b                                  (1) 

We anticipate a large time associated with the loading of the 

weights. Concurrently, there will also be a variable component 

depending on the size of the inputs, namely the X0 matrix 

containing the number of chats to process. 

Since there are three processes, there will be exactly three 

networks to initialize. We are not training a model here, but 

loading the network weights of a pre-trained model at each 

initialization step to then run the inferences for each stage of the 

dialogue pipeline. We note that the weights of the Text Generator 

(F5/F6) are noticeably smaller by design. The size and complexity 

of the networks differ dramatically, and we believe initializing the 

Intent Tracker (F1/F2) will require noticeably more time than 

initializing the Text Generator.  

3.2 Dataset 

As input data we leveraged the Multi-Domain Wizard-of-Oz 2.0 

dataset (MultiWOZ_2.0), a fully labeled collection of human-

human written conversations spanning over multiple domains and 

topics [6].  MultiWOZ 2.0 provided an existing dataset to provide 

a set of sample workloads. Client requests were passed in as a 

JSON file that the inference service parsed.   

The MultiWOZ 2.0 dataset describes the communication between 

a user trying to find a restaurant, and an agent recommending a 

place to eat. Each sample of this dataset will be a sentence 

regarding the user asking an agent about restaurants.  For 

example: “I would like to eat some Chinese food on the north 

side.” We can easily partition the data to fit the size we want, 

which is where the variable workload comes from. Note the 

explicit goal of a neural network based dialogue agent is to 

support arbitrary natural language requests within the given 

domain (i.e. restaurant reservations), so if there is any need, an 

exponentially large number of new inputs can be easily generated. 

3.3  Design Tradeoffs 

We investigate and study the performance and memory 

implications of two different types of service compositions: a 

switchboard architecture, and full service isolation. 

 

              

Figure 1:  Switchboard Architecture -  

 Asynchronous Flow Control 

In the switchboard composition, the client initiates the pipeline 

by calling our fully composed NLP Lambda function that 

aggregates together our six microservices using a single 

deployment package.  A “switchboard” routine intercepts the call, 

and routes the client request internally.  The advantage here is that 

when warming cloud infrastructure to run F1, infrastructure for 
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F2, F3, F4, F5, and F6 are also warmed subverting the freeze/thaw 

lifecycle for the remaining 5-steps of our pipeline. Additionally, 

this composition provides benefits for hosting requests from 

concurrent users, as rather than requiring separate runtime 

containers for each function (F1-F6), all pre-warmed runtime 

containers can perform any function (F1-F6).  This increases the 

likelihood of FaaS runtime container reuse while minimizing 

iterations of the freeze-thaw lifecycle.  Figure 1 depicts our 

pipeline, where first the intent tracker weights are initialized to 

run the intent tracker, and then the result is passed on. The 

weights for the policy manager are then loaded, and the policy 

manager is run to find a suitable policy.  After policy 

identification, the text generator weights are loaded, and the text 

generator is run to generate the final results for retrieval by the 

client.  

In contrast, our service isolation composition fully decomposes 

the six inference steps as independent microservices which are 

then deployed independently.  The cloud provider must then 

provision separate runtime containers to host each microservice.  

Infrastructure for each service experiences the freeze/thaw 

serverless lifecycle [8][9]. Ultimately, for both compositions, we 

are interested in measuring the average runtime and throughput 

for processing varying dataset sizes. 

  

 

 

 

 

 

 

 

 

Figure 2: Full-Service Isolation Architecture - 

Synchronous Client-side Flow Control 

In the service isolation architecture, each phase is decomposed as 

two services: one initialization service, and one inference service, 

enabling the initialization phases to run in parallel. This 

composition has the effect of distributing infrastructure used to 

host the functions across six separate FaaS function runtime 

environments providing better resource isolation and load 

balancing when initialization phases run in parallel for concurrent 

workloads. However, as the number of concurrent queries 

increases, our switchboard architecture gains the upper hand as 

the added cost of initializing significantly more runtime containers 

for service isolation becomes a bottleneck.  Here, the switchboard 

architecture recycles more serverless infrastructure minimizing 

the cold start initialization time. With the switchboard 

architecture, every pre-warmed runtime container can perform 

any task in our pipeline increasing the chance for infrastructure 

reuse and retention before infrastructure is automatically 

reclaimed due to inactivity [8][9]. 

3.4 Application Implementation  

Our neural network model is uploaded onto AWS S3. We used the 

AWS CLI to submit service requests to the Lambda functions. 

Our Lambda functions collectively load our NLP model from 

Amazon S3, provision it, and execute the model locally to 

generate results.  Concretely, provisioning the data and weights 

from S3 for each of the three networks can cause a relatively large 

delay. 

All software dependencies such as NumPy and Scikit-Learn were 

identified for inclusion in Lambda FaaS function deployment 

packages.  Dependencies were first identified using AWS EC2’s 

Python Cloud9 IDE, and later downloaded to a local IDE for 

further development.  All dependencies were packaged as a zip 

file and uploaded for final deployment. Composing all 

dependencies into a single zip file that fit within the maximum file 

size constraints of AWS Lambda was critical to deploying our 

NLP inferencing pipeline.  

4 Experimental Results 

We performed a series of experiments to investigate the effects of 

memory reservation size while varying neural network weights to 

evaluate implications on application performance for our two 

different service compositions. Additionally, we also varied the 

size of the input data to test 3, 10, 30, 100, 300, and 1000 samples.  

Each test was performed 10 times, and we report average values 

for metrics (e.g. runtime, memory utilization). 

4.1 Runtime Performance 

We composed all six of our functions together into the 

switchboard architecture for deployment, and then varied the size 

of input data to perform a series of experiments to measure 

runtime.  Here, all six initialization and inference calls are 

performed by the same runtime container on AWS Lambda.  

Figure 3. Switchboard Architecture Runtime Performance of 

FaaS Functions with Increasing Data Sizes 
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As seen in Figure 3, running the inferences (running the neural 

network) is the performance and memory bottleneck, and also 

increasing the number of samples increases the runtime. 

Performance ranged from 22.46 seconds to process 3 samples, to 

92.31 seconds to process 1,000 samples while throughput 

(samples/second) increased ~81x.  The Coefficient of Variation 

(CV), defined as the standard deviation divided by the mean, 

provides a normalized comparison of performance variance across 

test configurations.  The coefficient of variation (CV) averaged 

10.3% when processing 3, 10, and 30 samples, and just 6.7% for 

processing 100, 300, and 1,000 samples.  The Intent tracker 

initialization time was slower than other initialization phases 

because it includes the Lambda function cold start initialization 

time. The during of other initialization phases are reduced because 

the application was already in the warm-state when they execute 

Figure 4. Service Isolation Architecture Runtime Performance 

of FaaS Functions with Increasing Data Sizes 

Our service isolation architecture divides the workload across six 

different runtime containers on AWS Lambda. As seen in Figure 

4, as the data is loaded in parallel in the pipeline for the 

initialization phases, all have the same performance.  In all cases, 

the performance bottleneck is running the network, not 

initialization, and the runtime increases with larger input data 

sizes.  Performance ranged from 14.19 seconds to process 3 

samples, to 108.29 seconds to process 1,000 samples while 

throughput (samples/second) increased ~43x.  The coefficient of 

variation (CV) averaged 12.6% when processing 3, 10, and 30 

samples, and just 5.6% for processing 100, 300, and 1,000 

samples.   

From these observations, one challenge for deploying deep 

learning NLP is the Lambda memory limitations for processing 

large sample datasets.   

4.2 Memory Utilization 

AWS Lambda pricing is based on memory usage. The Free Tier 

includes 1 million free requests per month and 400,000 GB-

seconds of compute time. Pricing above the Free Tier usage is 

based on memory reservation time, and the total number of 

function calls, where time is rounded up to the nearest 100-

milliseconds interval.  To evaluate performance, we completed a 

series of experiments to determine the memory required to run our 

application for both service compositions while changing the 

input data size. Figure 5 and Figure 6 depict the memory 

utilization of the switchboard architecture and service isolation 

architectures. For both, increasing the number of input samples 

increased the required memory to run our neural networks.  

Benchmarking actual application memory utilization helps 

identify the minimum required memory reservation size to 

successfully execute the functions on AWS Lambda without error.   

Figure 5. Switchboard Architecture Memory Utilization 

Figure 6. Service Isolation Architecture Memory Utilization 

Both architectures consumed more memory when the number of 

samples increased. Surprisingly, memory consumption for 

function executions using the switchboard architecture grew less 

rapidly as the number of samples increased. As the serverless 

infrastructure used to invoke functions experienced more reuse 

with the switchboard architecture, memory caches may have been 

in a more favorable state supporting memory savings.   

4.3 Performance Comparison 

We depict the runtime performance comparison of our service 

compositions in Figure 7. The service isolation architecture is 

shown to perform more efficiently than the switchboard when the 

size of the input data is relatively small, but as the input data size 

grows, the switchboard outperforms the service isolation 
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architecture. The service isolation architecture runtime 

performance normalized to switchboard performance was 63.2%, 

73%, 84%, 91.5%, 94.6%, and 117.3% for 3, 10, 30, 100, 300, 

750 and 1,000 sample tests respectively. As you while the number 

of samples is less than 400, service isolation architecture has a 

better performance and lower runtime but as the number of 

samples goes above 400, switchboard architecture will perform 

better and has lower runtime comparing to service isolation 

architecture.    

 

Figure 7. Runtime Performance of Service Isolation and 

Switchboard Architectures 

5 Conclusion 

In this paper, we have described the runtime performance and 

memory limitations of an NLP (Natural Language Processing) 

application using AWS Lambda using two different service 

compositions: a switchboard architecture, and a service isolation 

architecture. By examining memory utilization of networking 

inferencing, we determined that the main challenge of deploying 

an NLP application over AWS Lambda was not library size, but 

runtime memory limitations. We have shown that memory limits 

increase steadily while increasing the input data size. When 

comparing runtime performance, we observed that the 

switchboard architecture minimized cold starts, and performed 

more efficiently over larger input dataset sizes. With 1,000 

samples, the end to end runtime of our NLP pipeline of our 

switchboard architecture was 14.75% faster than our service 

isolation architecture.  This improvement produced a 17.3% 

increase in throughput.  In contrast, when inferencing just 3 

samples, the service isolation architecture was faster (36.96%), 

while yielding higher throughput (58%). 

We used different pre-trained network weights to initialize and 

run inference in the same fashion as neural networks, and 

observed how varying the network weights increases the runtime 

of both service compositions.  Additionally, we experimented 

with varying the dataset sizes to evaluate our pipeline’s 

throughput in samples/second. Ultimately, we found that the 

switchboard composition helped improve runtime and throughput 

for neural network inferencing, though inferencing remains 

compute intensive regardless of the microservice composition 

used. 
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